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�e biological process andmolecular functions involved in the cancer progression remain di	cult to understand for biologists and
clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models
for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data
produced by high-throughput experimental techniques.�euse of computationalmodels in systems biology allows us to explore the
pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy
optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput
technologies and systemic modeling of the biological process in cancer research. In this review, we 
rstly studied several typical
mathematical modeling approaches of biological systems in di�erent scales and deeply analyzed their characteristics, advantages,
applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this
review provides an update of important solutions using computational modeling approaches in systems biology.

1. Introduction

In recent years, the area of precision medicine was signi
-
cantly promoted by the rapid development of next generation
sequencing, which implies lower cost and higher throughput
[1, 2]. In the meanwhile, high-throughput mass spectrum
was widely used to measure the protein expression and
posttranslational modi
cation and then generated various
kinds of proteomic and metabolic data [3]. In addition,
general public databases and platforms, such as GEO, TCGA,
and ENCODE, also provide data for analysis and knowledge
discovery [4]. Systems biology, which usesmultiomic data for
deep analyses and predictions, potentially provides insights
of the mechanisms of complicated diseases, particularly as
various cancers in human [5–7].

At present, people are more interested in the discovery
of new drugs for cancer therapy, even though molecular

and cell biology had greatly improved our understanding
of many diseases in past decades. �e essential linkage
between basic science and e�ective treatment was lost,
which is the inference and analysis of biological networks
[8]. Computational or mathematical modeling of biological
systems at multiple scales is an e�ective way to discover
new drugs for cancer therapy in clinic. In the intracellular
scale, these networks explain how cells regulate signaling or
metabolic pathways to respond the external perturbations
or drug treatment [9]. In the intercellular scale, cell-cell
communication networks re�ect how di�erent cell types
communicate through various ligands to promote tumor
growth, metastasis, and angiogenesis [10]. In the tissue scale,
how these ligands distribute and di�use in the 3D tumor
space was also valuable to be studied [11]. With the advance
of high-throughput technology, systems biology devel-
oped rapidly; however, the development of mathematical
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Figure 1: �e whole picture of the systemic modeling approaches introduced in this work.

modeling approaches su�ers from new biological questions
[12].

In this review, we 
rstly studied several well-established
systems modeling approaches of biological networks, such as
ordinary di�erential equations, Petri net, Boolean network,
and linear programming. Secondly, we summarized the typ-
ical modeling studies for the cell-cell communications (such
as tumor-stromal interactions, tumor-immune interactions,
and stromal cell lineage process) in the heterogeneous tumor
microenvironment, that is, agent-based model.�irdly, three
potential directions of multiscale modeling in systems biol-
ogy were deeply discussed. We believe that this work can
provide a big picture of systemicmodeling in systems biology
as well as promoting the development of precision medicine
in the near future.

2. Several Classical Systemic
Modeling Approaches

With the development of the high-throughput experiment
technologies (such as gene microarray, RNA-seq, mass spec-
trometry, and metabolic pro
les), computational and math-
ematical modeling of biological processes provides deep
insights of the complex cellular systems [13]. Researchers
built various computational models to elucidate the com-
plex behaviors of cancers, such as tumor progression, drug
resistance, and immune inert. It is well-known that bioin-
formatics is data-driven [14, 15]. However, systems biology is
hypothesis-driven [16, 17], since we o�en generate a testable
hypothesis based on small-scale experimental observations

and then construct a systemicmodel based on this hypothesis
to obtain mechanistic insights. In this study, we mainly
focus on several classic systemic modeling approaches and
their applications in current cancer research. �ese popular
modeling approaches can simulate the dynamic changes of
regulatory networks (signaling pathways andmetabolic path-
ways), tumor growth, and its microenvironments, such as
ordinary di�erential equations (ODEs) [10], Boolean network
[18], Petri nets [19], linear programming (LP) basedmodel [9,
20], agent-basedmodel [11], and the system biologymodeling
approach considering genetic variation [21]. We present
these models in Figure 1. Although there are many available
reverse-engineering [22] algorithms for the inference of gene
regulatory networks [23], such as ARACNe [22] and MINDy
[24], we omitted them in this review, since they are better
suited to be categorized in the 
eld of bioinformatics.

2.1. ODE-Based Modeling. With the rapid development of
computer performance, ordinary di�erential equation (ODE)
based approaches are widely used for continuous dynamic
modeling in complex biological systems [25]. ODE-based
methods represent the interactions among various biological
molecules (such as protein kinases or metabolites), which
re�ect the time-varying e�ects of biological processes [26].
Based on the di�erent biological hypotheses, the current
ODE-based methods can be categorized into three types: the
law of mass action [27, 28], Hill function [29], andMichaelis-
MentenKinetics [30].�e choice of a speci
cmethod depends
on the biological questions or the experimental data. Here, we
illustrate how to use these kinetic approaches to describe the
biochemical reactions.
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Law of Mass Action. �e law of mass states that the reaction
rate is proportional to the probability of the collision of
the reactants. �is probability is also proportional to the
concentration of reactants to the power of their molecularity
and the number of them entering the speci
c reaction
[31]. For example, a reaction between �, �, and � can be
represented as

� + �
�ON���→←���
�OFF

� (1)

By the de
nition of mass action law, we can derive the
concentration change over time of the above two reactants
(� and �) and one product (�) by the following ODEs:

� [�]
�	 =

� [�]
�	 = 
OFF [�] − 
ON [�] [�]

� [�]
�	 = 
ON [�] [�] − 
OFF [�]

(2)

Hill Function. In the ODE models of signaling pathways, Hill
functions are generally used to represent a protein’s activation
or inhibition, which are induced by their upstream parental
nodes. In biochemistry, the binding from a ligand towards
a large molecule can be enhanced if there is also another
ligand binding to it, which is called cooperative binding. For
each protein involved in the signaling pathways, the dynamic
changes of its expression can be described by Hill functions
as shown in the following formula:

��
�	 =

�
∑
�=1
+ (��) +

�
∑
�=1
− (��) − � ∗ �� (3)

± (�) = ���
�±	�

�±	�� + �±	�
, (4)

where � is the concentration of activated protein, �� (� =
1, 2, . . . ,�) is the �th protein which activates protein �, and
�� (� = 1, 2, . . . , �) represents the �th protein, which inhibits
protein �. In formula (4), ±(�) is the activating pro
le (+)
or inhibiting pro
le (−) induced by protein �, respectively;
��� represents activating rate (+) or inhibiting rate (−); ��
is the microscopic dissociation constant and �� is the Hill
coe	cient; �� is the degradation rate of protein �.

Michaelis-Menten Kinetics. When a signaling reaction is
catalyzed by an enzyme (kinase or phosphatase that is
not consumed or produced), it may form a temporary
complex with substance in the reaction. For such reaction,
the Michaelis-Menten Kinetics can be used to describe the
reaction rate under the key assumption of quasi-steady-state
approximation, while enzyme concentration is much lower
than the substrate concentration and the enzyme is not
allosteric [11]. �eMichaelis-Menten Kinetics is expressed as

V = �max�


 + �

, (5)

where

 is the Michaelis constant.

Generally, ODE systems are suitable for modeling small-
scale networks, since there are many parameters need to be
estimated. If the network scale is large, parameter estimation
will lead to high computational cost, and the prediction
accuracy of model may decrease. �erefore, searching of
the optimal parameters for an ODE system is a challenging
question. Intelligent algorithms with heuristic search, such
as Genetic Algorithm (GA) or Particle Swarm Optimization
(PSO), are o�en used as a heuristic strategy to obtain the
parameters in ODE functions [28, 32]. In addition, scatter
search potentially 
nd solutions of a higher average quality
than GA [33, 34]. Moreover, Stochastic Ranking Evolution
Strategy (SRES) is incorporated in some computational
strategies for parameter estimation in biological models
including signaling pathways and gene regulation networks,
such as SBML-PET (Systems Biology Markup Language-
based Parameter Estimation Tool) [35] and libSRES (C library
for Stochastic Ranking Evolution Strategy for parameter
estimation) [36].

ODE-based approaches have been used in the underlying
mechanisms of complicated diseases in intracellular and
intercellular levels. Peng et al. de
ned a series of ODE-based
approaches with the law of mass action, to creatively simulate
the intracellular pathways and obtain important biological
discoveries [37–39]. For example, they developed an ODE-
basedmodeling approach to comparably assess the inhibition
e�ects of single or combined treatment of drugs on NFKB
pathway in multiple myeloma cell and further predict the
synergism of drug combinations [38]. Shao et al. proposed
ODEs with Hill functions to study the signaling network sig-
natures by integrating both therapeutic and side e�ects. �is
model was used to screen 27 kinase inhibitors for optimal
treatment concentration [29]. Sun and colleagues designed
an ODE-based model with Michaelis-Menten for modeling
the antiapoptotic pathways in prostate cancer and illustrated
the molecular mechanisms of psychological stress signaling
in therapy-resistant cancer [30]. Furthermore, ODEs were
also successfully applied to describe the dynamic changes
of metabolites in the small-scale metabolic reaction systems
[40].

In particular, ODEs have begun to be used to model
the cell-cell interactions [10, 32]. For example, Peng and
coworkers developed a novel ODE system to understand
how the cell-cell interactions regulate multiple myeloma
initiating cell fate [32]. �e results from this dynamic system
may be potentially useful for understanding mechanism of
cancer stem cells development. Peng et al. proposed a mul-
tiscale multicomponent mathematical model to explore the
interactions between prostate tumor and immune microen-
vironment using ODE-based strategy in both intercellular
and intracellular levels [10]. �is study highlights a poten-
tial therapeutic strategy in e�ectively managing prostate
tumor growth and provides a framework of systems biol-
ogy approach in studying tumor-related immune mecha-
nism.

Together, all above works indicate that ODE-based mod-
els are suitable for modeling the continuous changes of
kinetics in small-scale intracellular or intercellular networks
[41, 42].
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Figure 2: An example of Petri nets (selected from literature [43]). (a) shows the initial marking before 
ring the enable transition t; (b) shows
the marking a�er transition labeled reaction 1 
res.

2.2. Petri Net-Based Modeling Approaches. Petri net (PN),
developed by Petri in 1962, was a graphical mathematical
modeling tool applicable to a wild range of technical systems
[43]. Recently, increasing number of studies are involved in
the utility of PNs in systems biology such as modeling of
signaling pathways, metabolic pathways, and gene regulatory
network [19, 44, 45]. A PN is a directed, weighted bipartite
graph consisting of two types of nodes: places and transitions.
As shown in Figure 2, places are represented by circles and
transitions are represented by boxes. �rough transition

rings, the source in�uences the number of tokens assigned
to the target, called token-count. A place that has an outgoing
arc towards a transition 	 is known as input place of 	; a
place that has an incoming arc from a transition 	 is output
place of 	. Arcs are labeled with weights that represent the
minimum tokens required by input places to enable the
transition. When a transition 
res, it removes a token from
each place connected to it by inputting arcs and adds a token
to each place connected to it by output arcs. �erefore, a
Petri net can be de
ned as a 5-tuple (�, �, �, ,�0), where
� = {!1, !2, . . . , !
} is the set of places and " is the total
number of places, � = {	1, 	2, . . . , 		} is the set of transitions,
the set of arcs � = (�×�)∪ (�×�) and : � → �, � being
the set of natural numbers, is called theweighting function. In
order to simulate a dynamic process, a number of tokens are
assigned to each place indicating the quantitative property.
�is assignment of tokens to all the places represents the
system states, which is called a marking. �e initial marking
of a PN is a mapping�0 : � → {0, 1, 2, . . .}. From the initial
state �0, changes in the system are simulated by executing
the PN, and a series states can be obtained: (�1,�2, . . .).

For biological molecular network modeling, we usually
consider a token to be a unit of weight of a molecule. A
place-transition or transition-place connection is made by a
weighted arc (directed edge), designating how much of the
input places (reactants) are required to produce tokens for
the output places (products) in a reaction. A transition can
only 
re when it is enabled, meaning that each of its input
places has at least one token in the current marking. �e
transition may 
re (reaction occurs) a�erwards. If transition

	, when 
red on a marking�1, produces marking�2, then
we write �1 | 	 > �2. Obviously, this notation can be
extended to represent the e�ect of 
ring a series of transitions:
$ = (	1, 	2, . . . , 	�).

As a type of dynamic modeling approach, PN was mainly
used to simulate not only signaling pathway networks [46, 47]
but also gene regulatory networks [48]. In a signaling Petri
net, its aim is to predict signal �ow through a cell-speci
c
network in experimental conditions [49]. Each place is
denoted to the activated signaling protein; and each transition
is associated with a unique phosphorylation event.

In fact, PN is a discrete dynamicmodeling strategy, which
simulates signaling network with multiple states of places.
A�er the topology of a network is determined, PN is suitable
to analyze the global property of the system characterized
as concurrent, asynchronous, distributed, parallel, nonde-
terministic, and stochastic. As a novel systemic modeling
strategy to describe the biological systems with graphical
notation, PN can be used at multiple levels of abstraction
and accommodate timing information. �erefore, it forms a
language that allows the automatic generation of a speci
c
simulation. However, the obvious disadvantage of PNs is that
the conception of PNs is too primitive so that the graphical
representation may become too complex for analysis. Hence,
developing optimized PN models to reconstruct the speci
c
biological networks is still an important topic.

2.3. Boolean Modeling Approaches. In a Boolean network,
each node is described with binary states, which are denoted
by 1 and 0, corresponding to, for example, activation/
inactivation of a protein, respectively. �e time variable is
considered to be discrete. �e future state of a node at
each time step is determined by the current states of all
its input nodes (parents) through a Boolean function. For
each Boolean function �, it can be represented as a mapping

� : {0, 1}� → {0, 1}. �is mapping denotes that the out-
come of a node was determined by its � parent nodes. And
the mapping � also can be represented as a truth table
[13]. �ese Boolean functions are usually expressed together
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Figure 3: An example of Boolean network. (a) Network topological structure; (b) the de
nition of Boolean functions; (c) state transition of
Boolean network.

with the logical operators, including AND, OR, and NOT.
Given a Boolean network including � nodes, there are �
Boolean variables ($1, $2, . . . , $	) and � Boolean functions
(�1, �2, . . . , �	). �ere are generally two types of strategies
for updating the network states: synchronization [50] and
asynchronization [51]. In the synchronous pattern, the states
of all the nodes are updated simultaneously as shown in the
following formula:

$� (	 + 1) = �� ($�1 (	) , $�2 (	) , . . . , $��� (	)) . (6)

�e asynchronous pattern can be expressed by the following
formula:

$∗� (	 + 1) = �� ($�1 , $�2 , . . . , $��� ) . (7)

Formula (6) indicates that the state of node $� at time point
	 + 1was determined by the combination of the states of its ��
parent nodes at time point 	. However, the input variables on
the right side of formula (7) might be at di�erent time points.

�e state of a Boolean network at each time step can
be expressed as a vector whose elements represent the state
of all the nodes at that time step. By updating the states
of nodes at each time step, the network states vary over
time, which is called “state transition” in BN [9, 52]. In fact,
Boolean network modeling is between static network model
and continuous network model (such as ODEs), which is

especially suitable for large-scale network and is reputed for
its high e	cacy [9]. An example of Boolean network is shown
in Figure 3, to elaborate the above conceptions. Figure 3(a)
shows the topological structure of a Boolean network, which
includes four nodes �1, �2, �3, and �4, and their states are
de
ned by three Boolean variables $1, $2, $3, and $4. �ree
Boolean functions are listed in Figure 3(b). Figure 3(c) shows
the state transition graph. Given a starting state, the network
will eventually converge to a steady state, which is called
“attractor” [52]. According to Figure 3, we can easily conclude
that the analysis of Boolean network always depends on an
assumption: the network structure is determined in advance.

Generally speaking, Boolean dynamic modeling of reg-
ulatory network follows three steps: (1) reconstructing the
network; (2) identifying Boolean functions from the network
topological structure; (3) analyzing the dynamics of the
system with or without node perturbations. As a parameter-
free model, it works e	ciently even for large-scale networks.

During the last decade, researchers carried out many
studies of reconstruction of gene regulatory networks using
Boolean networkmodeling [18, 53], which re�ects the generic
coarse-grained properties of large genetic network. �e
hypothesis for the Boolean networks as models of gene
regulatory networks is that, during regulation of functional
states, the cell exhibits switch-link behavior. �is hypothesis
is important for cells to transfer from one state to another
during a complex biological process a�er the cells received
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the external stimulations or perturbations [54]. D’haeseleer
et al. discussed the way to cluster coexpression pro
les
to infer large-scale gene regulatory network from high-
throughput gene expression assays [55–57]. Moreover, the
intrinsic properties of Boolean network, such as stability
[58, 59], robustness [60], and fragility [51] for gene regulatory
networks were deeply studied, which speeded up the Boolean
network development and applications in more areas. In
addition, Boolean network modeling approaches have been
improved in other 
elds. Zhao and Ouyang et al. proposed
an algorithm for inferring gene regulatory networks by using
modi
ed Boolean network from a time series dataset [61–
63]. However, Boolean network only provides a very limited
quantitative insight in biological systems due to their inherent
qualitative nature of state and time. In order to overcome the
deterministic rigidity of BNs, probabilistic Boolean network
(PBN) was introduced for the modeling of gene regulatory
networks [64–67]. Generally, PBNs combine the rule-based
modeling of Boolean networks with uncertainty principles
as described by Markov chains [68]. Modeling with PBNs
provides a quantitative understanding of biological systems,
such as interactive e�ects between genes or average activities
of certain genes given by steady-state probabilities [69]. PBNs
thus have been widely applied to various biological processes
[64, 66, 70, 71].

In recent years, Boolean dynamic modeling begins to be
applied to signal transduction networks analysis. Anderson
et al. proposed an approach for integrating gene set enrich-
ment methods with Boolean dynamic modeling to reveal
the induction of a densely connected network of cellular
(TFs) and molecular (ligands) signaling upon in�uenza virus
infection of dendritic cell [72]. Kaderali and colleagues also
inferred signaling pathways from gene knockdown data
using Boolean networks with probabilistic Boolean threshold
functions [73]. PBNs were also applied to study the crosstalk
relevancy in a given signaling pathways or simulate the
outcome with external perturbations [67, 74].

Since many years ago, Boolean network was widely
applied in the studying of network modeling and analysis;
however, the key signaling pathways for some diseases or
cancers are still unknown, which limits the use of BN in
such cases. Although the topological structure of signaling
pathways can be determined with the prior knowledge, the
speci
c pathways of some cancer cells are still unclear. Based
on above questions, Saez-Rodriguez et al. developed a novel
discrete logic model to infer cell-speci
c pathways [75].
�e proposed model represents the topological structure of
signaling pathway as Boolean network (two states of nodes).
Based on the experimental observations on a part of protein
nodes, this model infers an optimal subnetwork from the
original generic pathway map as the cell-speci
c pathways
for further predictions.�is is the 
rst work to implement the
inference and optimization of cell-speci
c pathways using the
conception of Boolean or discrete networks.

2.4. Linear Programming Approaches. Linear programming
(LP), as an important subject in mathematics, 
rst appeared
in the 1950s [76]. Linear programming is the problem of
maximizing or minimizing a linear function over a convex

polyhedron speci
ed by linear and nonnegativity constraints.
Simplistically, linear programming is the optimization of an
outcome based on some set of constraints using a linear
mathematical model. In general, linear programmingmodels
can be categorized into four types: (1) Integer Programming
(IP), de
ning a part of or all variables as integers; (2)
Binary Linear Programming (BLP), denoting all variables as
binary numbers [9]; (3)Mixed Integer Programming (MIP),
constraining that only a part of variables are integer [77]. In
addition, nonlinear programming is also very common in the
real world, which refers to the mathematical programming
which has nonlinear constraints or objective function [78],
such asMixed Integer Quadratic Programming (MIQP) [79].

In recent years, LP-based approaches were applied in the
reconstruction of gene regulatory networks [80], metabolic
networks [20], and inference of cell-speci
c signaling net-
work [9, 81, 82]. In the following paragraphs, we will summa-
rize how LP is utilized to model these molecular networks.

Orth et al. creatively proposed a novel computational
approach for the genome-scale metabolic network recon-
structions that is called �ux balance analysis (FBA) [20]. �e
metabolic networks contain all knownmetabolic reactions in
an organism and the genes that encode the enzyme of each
reaction [83, 84]. �e fundamental theory of FBA is that the
�owing energy between input and output should be balanced;
and FBA makes it possible to predict the growth rate of
an organism or the production rate of a biotechnologically
important metabolite. FBA-based approaches reconstruct
large-scale networks; and LP is an e�ective strategy to solve
this kind of optimization problem [20]. �e general work
�ow of FBA is shown in Figure 4. According to the concept
of FBA, a metabolic network reconstruction consists of a
list of stoichiometrically balanced biochemical reactions; and
each reaction is controlled by an enzyme (Figure 4(a)). �e
reconstruction is converted into a mathematical model by
forming a stoichiometric matrix �, in which each row rep-
resents a metabolite and each column represents a reaction
(Figure 4(b)). At steady state of the network, the �ux of each
reaction is given by � ⋅ � = 0, which de
nes a combination
of linear equations (Figure 4(c)). By de
ning an objective
function, the linear programming with a set of constraints
identi
es the solution vector � in a subspace (Figures 4(d)
and 4(e)). On one hand, FBA provides a way to reconstruct
metabolic network in the scale of entire genome. On the
other hand, most FBA applications do not consider the ther-
modynamic realizability. Hoppe was the 
rst to put forward
a method by including metabolite concentrations in �ux
balance analysis [85]. �ey demonstrated the usefulness of
their method for assessing critical concentrations of external
metabolites preventing attainment of ametabolic steady state.

Another very important aspect of the LP-based strategies
is that those strategies were developed to infer cell-speci
c
signaling pathways with experimental proteomic data [9, 81,
82, 86]. �e rational of this type of approaches is that the
relationships (states) between a child node and its connected
parental nodes were de
ned by a set of constraints. Accord-
ing to the experimental observations of a part of nodes,
some redundant edges in the network can be detected and
then removed in the process of optimization. �e inferred
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cell-speci
c signaling network therefore generally becomes a
subgraph of the generic pathway map. Mitsos was the 
rst
researcher to propose an ILP-based approach for inferring
cell-speci
c signaling pathways with phosphoproteomic data
and identify drug e�ects via pathway alterations [82]. In
Mitsos’s approach, the protein nodes were represented as
Boolean states (“activated” or “inactivated”), which is similar
to the Boolean network.�e innovation is that the edges were
de
ned by Boolean variables; and the states of connected
nodes were constrained by mathematical rules. �erefore,
given the observations of a part of nodes in the network, the
states of all the nodes and links can be predicted with the
de
ned constraints, and the inconsistent edges are removed
from the topological structure of the generic pathways.
However, the constraint system developed byMitsos can only
address very simple topological structures of singling path-
ways; and the generalization of their method is so limited.
We proposed an improved Boolean Integer Programming
based approach to overcome this limitation and de
ned
four linking patterns of connected proteins for modeling
the complex signaling networks [9]. However, Boolean states

de
ned in above approaches have obvious insu	ciency for
the variations of phosphor-signals under di�erent condi-
tions. �us, we further proposed a novel discrete modeling
strategy (DILP) to represent relative changes of phosphor-
proteins with three states (0, −1, and 1, denote “no change,”
“downregulation,” and “upregulation”); and the edges are
still with binary states. DILP was then applied to infer
osteoclasts-mediated myeloma cell-speci
c pathways under
normoxic and hypoxic condition on time series proteomic
data and 
nally revealed that how OC-myeloma interaction
in a hypoxic environment a�ects myeloma cell growth and
drug response [81]. In summary, as a type of parameter-free
method, LP-based model provides an innovative strategy for
modeling large-scale molecular networks.

2.5. Agent-BasedModel of Biological Systems. An agent-based
model (ABM) is another class of computational models for
simulating the actions and interactions of autonomous agents
with a view of assessing their e�ects on the system as a
whole [87]. In systems biology, ABM is usually used to model
tumor growth (drug response) and angiogenesis in the cancer
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microenvironment. Each cell type in this system is considered
as an agent, and the complicated cell-cell communications
are achieved through some secreted ligands [88–94]. �e
implement of ABM is usually based onMarkov ChainMonte
Carlo. By ABM modeling, we can stimulate the process of
stromal cell lineage, tumor growth, and angiogenesis in the
cellular and tissue level and the process of signal transduction
in the molecular level. Some typical research works about
ABMmodeling were summarized as follows.

Currently, there are two types of agent-based models:
2D ABM [95] and 3D ABM [96]. Solovyev et al. proposed
a two-dimensional agent-based model of ischemia-induced
hyperemia and pressure ulcer formation. �is model de
ned
a 2D space of pressure ulcer formation and simulated the
interactions among skin cells, in�ammatory cells, and blood
vessels through the cytokines TNF* and TGF- [95].

3D ABM models in systems biology were o�en designed
to mimic the dynamic changes of tumor tissues and various
interactions with other types of cells (stromal cells, tumor
cells, and immune cells) in the heterogeneous microenviron-
ment.�erefore, 3DABMmodels potentially integrate events
at di�erent spatial and temporal scales. For the spatial scales,
the cell behaviors, such as tumor cell migration and invasion
and e�ector cell-induced clearance of target cells, can be
simulated in the 3D space. For the temporal scales, short-term
intracellular signaling dynamics; medium-term cell division
and apoptosis; long-term drug response and tumor growth
also can be modeled. Su et al. established an ABM model
using the Markov Chain Monte Carlo approach to simulate
the e�ects of SDF1 induced chemophysical communications
amongMICs and BMSCs onmyeloma cell growth and exam-
ine whether the biophysical properties of myeloma niches
are druggable with two representative drugs [96]. �is study
provided a typical approach to simulate the process of tumor-
stromal cell lineage and intracellular signal transduction with
Hill function. Particularly, we further developed a hybrid
multiscale agent-based model (HABM) that combines an
ODE system and agent-based model [97]. �e ODE system
was used tomodel the dynamic changes of intracellular signal
transductions; and the ABM is used to model the cell-cell
interactions between stromal cells, cancer cells, and immune
system. It is the 
rst work to study systemic modeling of
tumor growth and immune response within an integrated
3D model (Figure 5). In addition, tumor progression is
related to angiogenesis; therefore, it is necessary to integrate
vascularization into ABM model to re�ect the endothelial
cells interaction with cancer cells through some key factors,
such as VEGF [98]. Wang et al. proposed an ABM model
that integrates the angiogenesis into tumor growth to study
the response of melanoma cancer under combined drug
treatment [99]. �e di�usions of ligands or drugs in the
tumormicroenvironments are always simulated by PDE [97].

To consider the real situation in tumor microenviron-
ment, multiscale ABM modeling tries to simulate the cell
migration in tissue level, cell-cell communication through
ligands in intercellular level, and dynamical signal transduc-
tion in intracellular level in an integrated system [11, 100].
For example, Sun et al. developed a multiscale ABM model
to study cell responses to growth factors released from a
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Cell

Figure 5: A general framework of agent-based model.

3D biodegradable porous calcium phosphate bone sca�old.
Sun’s model reconstructed the 3D bone regeneration system
and examined the e�ects of pore size and porosity on bone
formation and angiogenesis.

Although current ABM models are able to simulate the
tissues, organs, and microenvironment closely enough to the
real situation, the variability of model outcomes should be
considered.�erefore, replicates are necessary to calculate the
models’ average performance. Uncertainty analysis should
also be used to represent the variability of the model results.

2.6. Integrating Genetic Variation to Infer Cancer Networks.
Previously, the systemic modeling of intracellular pathway
networks depends on an assumption that all cells in a
tumor tissue share the same pathways and the data (e.g.,
western blot and gene array pro
les) used in the process
of modeling re�ects the average expression of molecules.
�e heterogeneous genetic variations occurred in tumor
cell population are not considered in the existing models.
How to integrate the information of genetic variations in the
systemic modeling work is now a new topic. AlQuraishi et al.

rst proposed a multiscale statistical mechanical framework
integrated genomic, binding, and structural data to predict
the e�ects of speci
c mutations on PPI networks and cancer-
related pathways [21]. Based on the concept of Hamiltonian,
they modeled how the mutations in SH2 domains induced
network alterations and the experimental results validated the
proposed model. We believe this interesting topic will attract
researchers’ wide attention.

3. Current Three Hot Directions in
Systems Biology

Cancer is a genetic disease driven by mutations in key
genes that lead to uncontrolled growth and abnormal cell
behavior. However, the fact that tumor is living in a complex
heterogeneous microenvironment drives the tumor progres-
sion as well as treatment resistances. Understanding the
interplay between homeostasis, heterogeneity, and evolution
in cancer progression is currently hot topics. Multiscale
computational modeling has strong potential to bridge the
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gap between precision medicine and translational systems
biology, in which quantitative metrics and data guide patient
care through improved strati
cation, diagnosis, and therapy.

3.1. Dynamics of Cell-Cell Interactions in Tumor Progression.
�e reciprocal relationship between cancer cells, the host
immune system, and the tumor microenvironment evolves
during the cancer progression [101]. How these dynamic
and unstable interactions prevent or drive tumor initiation
and progression is not well understood. At present, some
researchers start to focus on predictive and testable hypothe-
ses of how dynamic cell-cell (tumor-tumor [96], tumor-
stroma [102], tumor-immune [103], and immune-stroma
[104]) communication a�ects cancer development, and the
responses to various therapies. Due to the complex nature of
these interactions, mathematical and computational models
are ideal tools to elucidate them and make predictions that
are pro
table for both experiment and novel therapeutic
approaches [105–108]. Su et al. proposed an agent-based
model to mimic the multiple myeloma cancer cell lineage
process and the interactions between myeloma initial cell
(MIC) and bone marrow stromal cells [96]. �e com-
putational model simulated the myeloma progression and
drug resistance driven by various cell-cell communications.
Similarly, to understand the mechanism of multiple cell-
cell interactions involved in circulating tumor cell adhesion,
Uppal et al. used an ABM of Early Metastasis (ABMEM)
to dynamically represent the hypotheses of essential steps
involved in circulating tumor cell adhesion and interac-
tion with other circulating cells, examine their functional
constraints, and predict e�ects of inhibiting mechanisms.
�e results show that the ABMEM successfully captures the
essential interactions of the whole process and allows in
silico iterative characterization and invalidation of proposed
hypotheses regarding this process in conjunction with in
vitro and in vivo models [109]. Furthermore, both the innate
and adaptive immune response have been demonstrated to
induce tumor cell death [110, 111]. Conversely, cancers are
assumed that have developed adaptive strategies to evade
immune attack. However, systemic modeling of tumor for-
mation, growth (development and progression), and immune
functions (including macrophage, CTL, and Treg) within
an integrated computational system was still rarely studied.
�erefore, modeling the interactions of cancer cells, stromal
cells, and immune cells in its microenvironment may poten-
tially improve our understanding of tumor growth, immune
tolerance, and drug resistance [97].

3.2. Systems-Level Analyses of the Role of the Heterogeneity
and the Microenvironment. Usually, researchers consider a
tumor to be a heterogeneous population containing poten-
tially many distinct cellular phenotypes (variations of cell-
speci
c traits such as cell-cell adhesion, migration speed, and
proliferation rate); and, via proliferation, each cell had a small
chance to mutate to one of these phenotypes in a random
manner. A number ofmodeling strategies have suggested that
the local microscopic heterogeneity can vary wildly in tumor,
such as blood vessel, cellular density, and metabolism [112,
113]. In another aspect, genetic heterogeneity (e.g., mutation)

within a tumor continues to be of great interest to the cancer
community [114]. A major question in biology is how to
connect genotype with phenotype. We believe that, only
through the integration of computationalmodels with careful
experimentation, the gene-centric and microenvironment-
centric views of cancer progression can be bridged.

Furthermore, tumor microenvironment (mE) is tempo-
rally and spatially heterogeneous due to the variations in
blood �ow, resulting in local �uctuations of nutrients (e.g.,
O2), growth factors [115], extracellular matrix, and other
cellular populations [116]. �e mE is considered to play a
crucial role in driving the evolution of aggressive tumor
phenotypes; however, the problem of how the mE modulates
this heterogeneous and drives the behavior of the tumor cell
population is still far away from being fully understandable
by researchers [116]. Picco et al. developed a 2D hybrid
discrete-continuum cellular model to investigate the role of
environmental context in the expression of stem-like cell
properties through in silico simulation of ductal carcinoma
[101]. �ey demonstrated that variations in environmental
niche can produce cancers independent of genetic changes
in the resident cells. Also, Ji et al. investigated the e�ects
of oxygen heterogeneous distribution in bone marrow on
myeloma progression via osteoclast-myeloma cell interac-
tions and proposed an LP-basedmodel to infer OC-mediated
myeloma cell-speci
c signaling pathways under hypoxia and
normoxia [81].�e abovemodeling studies guide us to realize
the therapies targeting the mE which may o�er an alternative
cancer prevention strategy.

More recently, quantitative measurement technologies
have facilitated the collection of chemical, molecular, struc-
tural, interactome, and localization datawithin and across cell
populations in the tumor microenvironment. �e systems
modeling and analyses using multiomic data are potentially
to predict cell behaviors and translate important information
across space and time.

3.3. Systems Biology Aided Clinical Trial Design. Precision
medicine requires integrating patient-speci
c characteristics
into knowledge gained preclinical studies, such as di�er-
ences in multicellular or multiclonal drug response, stag-
gered temporal dosing schedules, and dynamic prediction of
e�ective combination therapies. Systems biology synthesizes
data obtained from individual reductionist perspectives,
focuses on construction of integrated, holistic models of
determinants of biological responses, and o�ers an exciting
opportunity by which to identify potential therapeutic targets
[117]. Currently, methylation marks, transcript abundance,
and miRNA pro
les are integrated with SNP results from
GWAS to better explain the genome complexity as it may
relate to pathophenotype and drug treatment response. It is
a good way to take clinically relevant cells from clinical trial
participants, treat those cultured cells with the relevant drug
from the clinical trial, and determine transcript abundance
in the cell as a function of drug treatment response. �e data
can be further integrated with GWAS data from the trial to
performa regression of SNPon transcript abundance in order
to identify regulatory variants that can be utilized for pathway
modeling or network analysis. More recently, using a systems
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biology strategy, Laaksonen et al. demonstrated the treatment
e�ects of high dose simvastatin on nonhepatic tissues as well
as a di�erent pro
le of the e�ects of atorvastatin on such
tissues. �ey described that the further understanding of the
impact of their lipidomic 
ndings has the potential to lead to
individualized drug and dose selection [118]. Another example
of the potential bene
ts of a systemic modeling approach is
drug combination therapies [10]. Expansion of the catalog of
drug interactions using a systemicmodeling approach, incor-
porating pharmacogenomics and computational biology, has
the potential for optimizing pharmacotherapeutic schemes in
the future.

Recent developments in molecular analysis and bioin-
formatics make targeted treatment feasible; however, more
e	cient, multifaceted clinical trial designs are still needed.
�e studies on the utilization of systems biology approaches
in clinic may help us to re
ne experimental measurements
and improve decision-making about therapies for clinical
trial planning and ultimately personalized therapy. Artemov
et al. presented a novel computationalmodel for predicting an
optimal personalized treatment for cancer patients based on
high-throughput gene expression signature of the individual
tumor samples. �e e�ectiveness of this model was validated
by using clinical trials data [119]. Kim et al. proposed anODE-
based computational framework to implement virtual phase
� trials in cancer, using an experimentally calibrated mathe-
matical model of melanoma combination therapy, which can
readily capture observed heterogeneous clinical outcomes
and be used to optimize clinical trial design [120]. Lawler
et al. suggested potential solutions in precision medicine
for clinical trial design that balanced the cost and value, to
deliver cost-e�ective cancer care [121].�ebene
ts of Lawler’s
approach can be transferred directly to the patients [121].

4. Discussion

�e development of cancer study is a complex, multiscale
biological process, in which genetic mutations occur at
a subcellular level and manifest themselves as functional
changes at the intracellular, intercellular, and tissue scale. Sig-
ni
cant developments of integrating mathematical modeling
approaches with experimental data provide deep insight of
the mechanisms that provoke cancer initiation, progression,
and drug resistance. Although various computational models
have been developed in cancer research studies, the current
challenge is that the knowledge about the mechanistic details
of many biological systems is still rare. On the other hand,
the real biological systems aremuchmore complicated so that
current established mathematical approaches are insu	cient
to describe all the details in these systems.

In this review, we 
rstly provide a methodology overview
of mathematical and computational modeling in systems
biology which was well studied to elucidate how com-
plex behaviors of biological systems are. �is category of
approaches includes ordinary di�erential equations (ODEs),
Petri net (PN), Boolean network (BN), Integer Linear Pro-
gramming (ILP) for intracellular network modeling, and
agent-based model (ABM) for cell-cell communication in
intercellular level. ODE systems are well-suited to describe

continuous processes that can be approximated as well-
mixed system.ODE-basedmodeling is o�en applied to small-
scale intracellular network or cell-cell interaction network in
systems biology. Boolean network, a typical discrete mod-
eling approach, uses well-de
ned connectivity information
to study the global and dynamical properties of network.
Boolean modeling of biological network realizes the state
transition of the computational system among discrete time
points by de
ning the states of nodes and edges as binary
variables [122]. Petri net, as a discrete dynamic model, is
widely used in biological network modeling. PN stimulates
the dynamic changes of kinase in signaling pathways asODEs
and represents the state transition between discrete time
points as BN. �e linear programming based approach is an
innovative strategy to model large-scale molecular networks
[81]. LP-based method is parameter-free, works e	ciently
in the optimization of networks, and can be combined with
ODEs to develop a two-stage hybrid model for signaling
pathway reconstruction.�e LP-based method was 
rst used
to simplify the generic pathway map to obtain cell-speci
c
pathways. �en, the ODE-based method was applied on
the inferred cell-speci
c network to analyze the dynamic
changes of each kinase. Finally, the agent-basedmodel and its
usage in biological systems are introduced [100]. Agent-based
simulations monitor the actions of a large number of simple
agents, in order to observe their aggregated behavior. ABM is
not only used to model 2D computational systems [95] (such
as skin injury and in�ammation) but also used to model 3D
tumor growth with its microenvironment [96, 100].

5. Parameter Estimation, Sensitivity, and
Uncertainty Analyses

5.1. Parameter Estimation. Most mathematical models in
systems biology face three troubles: highly nonlinear models,
a large number of parameters for approximation, and the
scarce information content of the available experimental data.
Hence, there is a demand for global optimization methods
that are capable of estimating the parameters e	ciently
(Figure 6(a)).

ODE is widely used to model signaling pathways and
metabolic pathways [29, 123]. �e parameters in ODE sys-
tems were o�en optimized by heuristic search algorithms,
such as Genetic Algorithm (GA) and Particle Swarm Opti-
mization (PSO) [39, 99]. �e classic algorithm of GA or PSO
usually plunges into local optima; therefore, some advanced
strategies about the global search of parameters in large-
scale optimization are required, such as an enhanced scatter
search algorithm for parameter estimation in large-scale
systems biology models [124, 125]. Moreover, Stochastic
Ranking Evolution Strategy (SRES) is incorporated into some
computational tools for parameter estimation jobs [36, 126].
For example, libSRES [36] is a free C library for Stochastic
Ranking Evolution Strategy for parameter estimation, which
is suitable to use under opens source environment.

However, ABM is a computational model for the stochas-
tic process simulating behaviors and interactions between
autonomous agents, where the outcome might be �uctuate
even though the parameters were 
xed. Generally, parameter
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Figure 6: Uncertainty and sensitivity analyses ofmodel output. (a)�e baseline of themodel; (b) the framework of uncertainty and sensitivity
analysis. Based on the changes of each parameter within a range, UA is 
rstly used to analyze the viability of model results. And then SA is
used to identify which parameters are responsible for the result viability.

tuning is a common way to determine the parameters in
ABM, such as Su et al.’s work [96]. We suggest that the
researchers may manually determine the parameters in ABM
model by tuning and ensure that the simulation outcomes are
close to experiment data. For each condition, it is necessary
to implement ABM model over hundred times, and the
dynamic changes of each cell population can be represented
by averaging the results of all the times. By using this strategy,
the predicted results of ABMmodel are reliable and stable.

5.2. Sensitivity Analysis. Sensitivity analysis (SA) of param-
eters provides valuable insights of the parameters that
are responsible for the variability of model outputs (see
Figure 6(b)). Local and global sensitivity analysis approaches
are commonly applied in systems biology [127]. Taking the
ODE system as an example, some local sensitivity analyses
o�en increase or decrease only one parameter with a small
range at a time to learn the impact of small perturbations
on the model outputs [29, 38]. On the other hand, global
sensitivity analysis is used to investigate the e�ects of simul-
taneous parameter variations over large but 
nite ranges.
It also explores the e�ects of interactions between param-
eters [128, 129]. �e selection of proper sensitivity analysis
approaches depends on the speci
c biological models and the
experimental data.

5.3. Uncertainty Analysis. Uncertainty analysis (UA) evalu-
ates how the variability of parameters propagates through
the model and a�ects the output values [130]. Di�erent
from SA, which evaluates how parameter variability con-
tributes to model output, the objective of UA is to quantify

the distribution of results given uncertain parameters (see
Figure 6(b)). In the process of UA, it requiresmultiplemodels
to run, where parameter values are randomly chosen from
their respective distributions. �e selection of the sampling
methods used to perform UA is essential. �e quasi-random
sampling that generates samples more uniformly over the
entire parameter space is widely used [131]. In UA, the mean
represents the central tendency of the stochastic process; and
the variance summarizes the variability of the model output.

Secondly, we summarized several hot topics of systems
biology in cancer research.Modeling the dynamics of cell-cell
interactions in the process of tumor progression provides sig-
ni
cant insight into the mechanisms of cancer development
in the complicated microenvironment. System-level analyses
of the role of the heterogeneity discussed the di�erences
between patients with the same type of cancer, the di�erent
cancers for the same patient, the behaviors of various cell
types among the tumor tissue, and the di�erent genomic
changes among the same type of cells. Obviously, there are
still many complicated biological processes and phenomenon
that are not explored or understood by human.

In summary, in order to simulate and represent more
complicated biological systems, the current modeling ap-
proaches introduced in this review are still limited. Another
limitation is that we did not further discuss the studies
of miRNA-mRNA interactions, although there are some
systems biology approaches reported in the literature, which
are related to functional genomics based analysis [132]. We
expected that, in the near future, the e�ects of genomic
information (e.g., mutation and alternative splicing) on the
cell states or cell behaviors can bewellmodeled. Furthermore,
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the techniques in computer science and mathematics may
provide some new theoretical models for systems biology.
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computational systems biology: a practical session in metabolic
modeling and simulation,” Biochemistry and Molecular Biology
Education, vol. 37, no. 3, pp. 178–181, 2009.

[17] A. Schmid and L. M. Blank, “Systems biology: hypothesis-
driven omics integration,” Nature Chemical Biology, vol. 6, no.
7, pp. 485–487, 2010.

[18] R. �omas, “Boolean formalization of genetic control circuits,”
Journal of �eoretical Biology, vol. 42, no. 3, pp. 563–585, 1973.

[19] C. Chaouiya, “Petri netmodelling of biological networks,”Brief-
ings in Bioinformatics, vol. 8, no. 4, pp. 210–219, 2007.

[20] J. D. Orth, I. �iele, and B. O. Palsson, “What is �ux balance
analysis?” Nature Biotechnology, vol. 28, no. 3, pp. 245–248,
2010.

[21] M. AlQuraishi, G. Koytiger, A. Jenney, G. MacBeath, and P.
K. Sorger, “A multiscale statistical mechanical framework inte-
grates biophysical and genomic data to assemble cancer net-
works,” Nature Genetics, vol. 46, no. 12, pp. 1363–1371, 2014.

[22] K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-
Favera, and A. Califano, “Reverse engineering of regulatory
networks in human B cells,” Nature Genetics, vol. 37, no. 4, pp.
382–390, 2005.

[23] C. Fujii, H. Kuwahara, G. Yu, L. Guo, and X. Gao, “Learning
gene regulatory networks from gene expression data using
weighted consensus,”Neurocomputing, vol. 220, pp. 23–33, 2017.

[24] K.Wang, M. Saito, B. C. Bisikirska et al., “Genome-wide identi-

cation of post-translational modulators of transcription factor
activity in human B cells,” Nature Biotechnology, vol. 27, no. 9,
pp. 829–837, 2009.
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