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Abstract. In Computational Neuroscience, mathematical and computa-
tionalmodeling are differentiated. In this paper, both kinds ofmodeling are
considered. In particular, modeling approaches to signal generation and
processing in single neurons (i.e., membrane excitation dynamics, spike
propagation, and dendritic integration) and to spatiotemporal activity
patterns in neuronal ensembles are discussed.
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1 Introduction

Two kinds of modeling are differentiated in Computational Neuroscience (CNS),
mathematical and computational modeling. The first emerges from applying
mathematics to neuroscience in the way that is standard in science. This con-
ventional modeling concentrates on the analysis of structure and dynamics of
the brain and its parts. Thus it is confined to the nervous system itself. The
other kind, computational modeling, is concerned with function, which in the
classical AI tradition means, information representation, processing and manip-
ulation, learning and decision-making. Alternative directions think of function
rather in terms of behavior, e.g. visual scene analysis, sensomotor coordination,
reaching and grasping, and navigation. Here modelers are forced to deal with an
organism embedded in an environment. There are several features common to
both modeling kinds: they require an abstraction process by which presumably
negligible details are eliminated. Any instance of a computational model is a
mathematical model, and the two are normally closely meshed with one another
in particular research subjects. In principle, by this meshing computational con-
straints could guide the appropriate design of mathematical models, but these
techniques are not yet widely used. In the following, both kinds of modeling in
CNS are considered. In particular, modeling approaches to signal generation and
processing in single neurons and to spatiotemporal activity patterns in neuronal
ensembles are discussed.
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2 Single Neuron Modeling

At the level of single neuron modeling, the cable theory of signal spread in passive
dendrites, the Hodgkin-Huxley model relating action potential, ionic conduc-
tances and membrane particles, and the compartmental modeling approach to
complex branched neurons represent the ”working horses” of CNS [1]. Two types
of complexity must be dealt with: the intricate interplay of active conductances
underlying the complex neuronal excitation dynamics, and the elaborate den-
dritic morphology that allows neurons to receive and process inputs from many
other neurons (e.g. [2]). Their specific morphology is used to classify neurons1

(Fig. 1).

Fig. 1. Examples of rendered neuron morphologies. Left: pyramidal neuron of the mouse
somatosensory cortex [4], Right: wide-field neuron of the cat superior colliculus [5].

2.1 Mathematical Models

Membrane excitation dynamics. The evolution of the membrane potential
of a neuron is described by a system of coupled, non-linear ordinary differential
equations, such as the Hodgkin-Huxley model[6]. The Hodgkin-Huxley model is
well beyond analytical solution; fortunately, dynamical systems theory provides
insights into how neuron activity is shaped by individual neuronal parameters,
such as the maximal conductance of a particular membrane current. For instance,
in [7], the functional role of the repolarizing ionic currents in the periodic activity
of nerve membranes was analyzed. The Hodgkin-Huxley equations can be driven
into repetitive activity by a maintained depolarizing current I, a decrease in the
maximal K+–conductance gK , or by moving the Nernst potential VK for K+ in
the depolarizing direction. In all these cases large amplitude periodic solutions
are obtained (Fig. 2, left). Changing two parameters gives rise to bifurcation
curves in the parameter plane. For the parameters I and VK a region of multi-
ple equilibria is found. The three equilibrium solutions occur in the interior of
the solid curves in Fig. 2 (right) where the dashed curve represents the Hopf
bifurcation.

1 For a review of our approaches to morphological quantification and mathematical
modeling of neuron growth and structure, see [3].
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Fig. 2. Left: Numerical solutions of the standard Hodgkin-Huxley membrane equations
as VK , the Nernst potential for K+, is changed.. Right: Bifurcation curve in the I−VK

plane at a specific value of gK [7]. See text for details.

Models of dendritic integration. Models of the integrative neuron function
differ in the extent to which the branching geometry of the dendrites is consid-
ered. Originally, the cable equation describing passive membrane voltage changes
and current spread was assumed to be linear2, and the complex morphology was
reduced to a single, electrically equivalent cylinder (EC) [8]. It turned out, how-
ever, that most of the restrictions imposed by Rall’s EC model are not fulfilled
in reality [9], and the model has lost the favorite state for the interpretation
and prediction of experiments. In order to overcome this, two alternatives have
been followed: a) to modify the EC model and b) to implement a compartmental
model.

In [10], the main types of passive dendritic cable models, including the equiv-
alent cable (ECa) model were presented. The ECa model is based on the cable
equation with spatially varying parameters. While this equation can be solved
in general only numerically, we were able to formulate a branching condition
(comprising the idealized geometry necessary for the EC model) under which
analytical solutions can be deduced (Fig. 3, left), and branching patterns found
in dendritic neurons could be analytically treated [11,12].

Based on experimental data of several types of neurons, compartment mod-
els have been used for exploring intraneuronal signal processing, and to analyze
the impact of dendritic morphology and non-uniform ion channel distribution
on neuron function. These models can be employed in two ways: to solve the
inverse problem (i.e., to determine membrane parameters) and to do forward
calculations [13]. The inverse problem was shown to be ill-posed, i.e. parameter
estimation is not unique. Using physiological restrictions, several admissible pa-
rameter combinations can be determined. In the forward calculations, a model

2 Now it is unquestionable that many if not most dendrites are not passive but active,
and thus the nonlinear cable equation or a corresponding compartmental model must
be used.
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Fig. 3. Left: Equivalent cable model. The reduction of a neuron with two stem den-
drites to an equivalent cable is illustrated. The lines connect points of equal electrotonic
distance on the dendrites and on the nonuniform equivalent cable with sine/cosine pro-
file. Right: Propagation of excitation front along a neurite of the sine/cosine geometry
type. Displayed is the neurite diameter function in anatomical and electrotonic space
(top), and snapshots of an excitation front moving leftwards (bottom). Notice that
amplitude changes with diameter. After [12].

with fitted parameters is applied to calculate functional characteristics of, e.g.,
passive dendrites such as attenuation, delay and time window of synaptic input
signals. In this way, clues for the possible function of the neurons studied can be
derived. For example, neurons from superior colliculus (a part of the midbrain)
could be differentiated w.r.t. to computing function as coincidence detectors and
integrators, respectively [5] (see below, paragraph 2.2).

In the study [4], we employed compartmental modeling to perform a com-
parative electrotonic analysis of two samples of cortical pyramidal neurons, one
from wildtype, and the other from transgenic mice. While anatomical dendritic
trees of transgenic pyramidal neurons were significantly enlarged, the statistical
analysis of the sample morphoelectrotonic (MET) dendrograms revealed that
the transgenic neurons scaled in a MET-conserving mode. This means, the di-
mensions of their dendritic trees changed in such a way that direction- and
frequency-dependent signal propagation in the passive neuron models was little
affected!
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The nerve conduction model. For the conduction of nerve impulses along
a neurite (dendrite or axon), the model involves a nonlinear parabolic partial
differential equation (PDE) such as those of Hodgkin and Huxley [6] or FitzHugh
and Nagumo ([14]). Its solutions mimic membrane potential and current as a
function of time and distance along the neurite.

In the standard case of neurites with uniform electrical and geometric prop-
erties, a traveling wave solution exists, and an explicit velocity–diameter rela-
tionship for nerve fibers can be given. Experimental effects which could not be
explained with this theory include blocking of impulse conduction and changes
of action potential (AP) shape in regions of nonuniform axon geometries (for
review, see [15]). Using the FitzHugh-Nagumo PDE, we could show that AP
propagation in a non-uniform neurite is equivalent (under certain variable trans-
formations) to the homogeneous case [14,16]. The transformation conditions de-
termine six specific neurite geometries enabling exact solutions, including diam-
eter profiles of the type power, exponential and sine/cosine function. For these
inhomogeneous neurite geometries, explicit formulas were derived reproducing
the observed relationship between neurite geometry type and AP shape, velocity
and frequency [14,16] (see Fig. 3, right).

2.2 Single-Neuron Computations

Computing in computer science means implementing an algorithm, that is, a
sequence of simple computational steps that map the input to the output. Based
on this model, ways are searched for decomposing into such simpler building
blocks the very complex mapping done by a neuron, and for determining the
units of computation. At the level of single neurons, literally each structural
part, i.e. dendrites, spines, cell body and axon, has been considered as possible
functional units3. For example, models of dendritic neurons have been used to
implement Boolean logical operations, to compute the movement direction of a
stimulus, and to simulate coincidence detection in auditory neurons (see [18]) for
review). The possible computational functions of axons have been less studied.
The nonlinear interactions (observed and modeled, see above, paragraph 2.1) of
action potentials at regions of changing axon geometry could serve computational
functions. E.g., a reduction of spike frequency at branching points [15]) could be
exploited in brain networks using rate coding.

Summing up, there is no doubt that single neurons dispose of a range of
mechanisms that could be used to implement elementary computations. Proving
that neurons, dendrites etc. do really a specific computation is not possible, even
if this has been claimed. In the cases mentioned (and in general) only indirect
evidence is available or can be expected, due to the problems that inhere in the
computational approach itself [19].

3 The underlying concept of decompositional brain analysis has been critiziced in [17].
There I concluded that in complex systems like the brain, structural and functional
components generally do not match up one-to-one.
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3 Modeling Neural Ensembles

The distributed activity of neural ensembles, i.e. large populations of neurons, in
the form of, e.g. oscillations and traveling waves, is known to play an important
role in the nervous system. A common starting point for analyzing the large-
scale dynamics of cortex is to treat nerve tissue as a continuous two-dimensional
medium, so-called neural fields.

3.1 Neural Fields and Their Dynamics

The work of Amari [20] has provided a categorization of the dynamics of one-
dimensional, homogeneous neural fields with symmetrical lateral coupling func-
tions. In one-layer fields, five types of dynamics were proved to exist, which
are in general multi-stable. Among them are stationary, localized excitation re-
gions, often referred to as bumps, and several modes of interaction of excitation
regions. Two-layer fields admit oscillatory and traveling wave solutions. These
results transfer to two-dimensional neural fields, but new types of dynamics ap-
pear [21,22,23].

Using computer simulations [24], we found that inhomogeneous neural fields
with asymmetrical coupling functions can produce stable bumps moving on the
neural field (Fig. 4).

3.2 Analog Computations in Neural Fields

The rich dynamic behavior of neural fields has been successfully employed to
realize analog computations. This has been based on the idea of mapping a
particular problem to be solved onto the dynamics of a neural field. The problem
solution can be obtained then by following the spatiotemporal field evolution.

In general, homogeneous, symmetrically connected networks have been used as
models of neural computations. However, biological neural networks have asym-
metrical connections, at the very least because of the separation between excita-
tory and inhibitory neurons in the brain. It has been shown that the distinctly
different dynamical behaviors they present can make the asymmetrical networks
computationally beneficial [24]. In [25], we proposed a neural field model of dy-
namic control of fast orienting eye movements (saccades). The model realizes the
short-term memory of target location using a homogeneous field with symmet-
rical couplings, and the dynamic motor error coding via the hill-shift effect in
an inhomogeneous field with asymmetrical couplings. The different schemes of
lateral coupling have been chosen in general agreement with experimental find-
ings. Fig. 4 shows the modeled hill-shift effect as found in the superior colliculus
of the cat.

From a general point of view, the interpretation in terms of computations
of the activity patterns appearing in neural fields can be easier achieved, as
compared with single neurons. This is due to the experimentally available tech-
niques which can be used to demonstrate correlations between recorded activity
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Fig. 4. Hill-shift effect in an inhomogeneous field with asymmetrical couplings. The
bump moves from start location (A) via (B), (C) to location (D), see [24].

patterns and behavior of the animal4. Because of the nature of the modeling re-
lation [17] for complex systems like the brain, an ultimate proof that a particular
computation produces a particular behavior is not possible.
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