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Abstract: With the effects of climate change such as increasing heat, higher rainfall, and more re-
current extreme weather events including storms and floods, a unique approach to studying the
effects of climatic elements on groundwater level variations is required. These unique approaches
will help people make better decisions. Researchers and stakeholders can attain these goals if they
become familiar with current machine learning and mathematical model approaches to predicting
groundwater level changes. However, descriptions of machine learning and mathematical model
approaches for forecasting groundwater level changes are lacking. This study picked 117 papers
from the Scopus scholarly database to address this knowledge gap. In a systematic review, the
publications were examined using quantitative and qualitative approaches, and the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the reporting
format. Machine learning and mathematical model techniques have made significant contributions
to predicting groundwater level changes, according to the study. However, the domain is skewed
because machine learning has been more popular in recent years, with random forest (RF) methods
dominating, followed by the methods of support vector machine (SVM) and artificial neural network
(ANN). Machine learning ensembles have also been found to help with aspects of computational
complexity, such as performance and training times. Furthermore, compared to mathematical model
techniques, machine learning approaches achieve higher accuracies, according to our research. As a
result, it is advised that academics employ new machine learning techniques while also considering
mathematical model approaches to predicting groundwater level changes.

Keywords: machine learning; mathematical model; statistical model; climate; systematic review;
groundwater; groundwater level

1. Introduction

Groundwater is one of the most important sources of water [1]. Groundwater provides
drinking water to up to 50% of the world’s population [2], as well as accounting for 43% of
all agricultural water [3]. Groundwater is a major natural resource for our mother earth,
accounting for around 95 percent of all freshwater on the planet [4], making it essential
for human existence and economic advancement. The effects of global climate change
on groundwater level changes are significant enough to warrant further investigation in
order to enhance forecasting and future consequences [5]. Due to poor extraction and
overexploitation, the volume of groundwater has declined in recent years, worsening
future water shortages [6]. The need to study these important resources is vital to ensure
sustainable development. Researchers have used a variety of machine learning (ML) models
to predict groundwater level (GWL) changes, including [7], who used a hybrid ML model,
ref. [8] who used an ensemble modeling framework based on spectral analysis, machine
learning, and uncertainty analysis, ref. [9] who used two ANN models, ref. [10] who used
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random forest (RF), and [11], who used two commonly employed machine learning models:
multi-linear regression (MLR) and random forest (RF).

In addition, statistical models (SM) by [12–14] and mathematical models (MM) by [15–17]
have also been used to predict GWL changes. In recent years, there has been a growing
interest in applying machine learning and data-driven methodologies to groundwater
modeling [18–20]. With the persistent threat of climate change and human influences,
access to high-resolution and continuous hydrologic data is critical for projecting trends
and water resource availability [19]. Many studies on groundwater level measurement
have been conducted due to the relevance of assessing and forecasting groundwater level
changes [20]. Predicting the level of groundwater in farms with accuracy and simplicity
is an important part of agricultural water management [21,22]. The use of groundwater
for various activities has increased in the last decades [8]. Machine learning and mathe-
matical modeling methodologies and techniques [23] have been used to forecast changes
in groundwater levels based on research [24,25]. In addition, it must be noted that the
state of the water as well as its level are interesting aspects of groundwater modeling
(e.g., concentrations of different chemicals and geospatial analysis) [26,27]. However, the
combination of mathematical and machine learning approaches to forecast groundwater
level changes is scarce. Although previous studies have summarized and addressed either
ML or MM on GWL, none have, to our knowledge, focused on both ML and MM models
on groundwater level fluctuations in a systematic means. The goal of this study is to offer a
thorough evaluation of existing research on the application of machine learning, as well as
mathematical and statistical methodologies, for modeling and forecasting groundwater
resources. By conducting a detailed analysis of the gathered data in a systematic review, this
work explores the applicability of ML, MM, and SM techniques for estimating groundwater
level resources. Monitoring groundwater levels helps to ensure that the aquifer systems
in the basin are well understood, as well as how they react to changes in groundwater
recharge, pumping, and other factors [26]. The estimation of groundwater level variations
can also be used to determine how much groundwater storage has increased as a result of
recharge or decreased as a result of discharge, such as extraction for usage [27]. For effective
groundwater resource development, quantification of groundwater level fluctuations is a
fundamental prerequisite, and this is especially important for areas with a preponderance of
semi-arid and arid environments. Understanding how the hydrogeologic system responds
and understanding the effects of climate to conserve aquifers for irrigation, among other
things, depend greatly on the findings of measuring groundwater levels.

“A systematic review tries to bring evidence together to answer a pre-defined research
topic”, say Pollock and Berge [28]. Despite the fact that the scope of this systematic review
is broad, it concentrates on groundwater level change prediction and the performance of
ML and MM techniques in terms of groundwater level attributes.

There is no doubt that ML and MM practitioners and researchers generally believe that
AI has advanced [29], but to the best of our knowledge, these statements are hypothetical
and have not been empirically supported. The majority of studies now in existence have
either shown how their innovation outperforms a number of currently used techniques
or have surveyed a sample of systems and evaluated their performance [30] in relation
to others. The amount of selection biases is significant across the board. Additionally,
this research represents the most recent work in the fields of ML and MM for simulating
changes in groundwater levels. As a result, there is a need for a compiled literature that
offers descriptions of the problems, difficulties, and potential future research areas.

The next section gives an overview of how ML and MM/SM approaches are used
to anticipate groundwater level changes. This is followed by a discussion of previously
published similar efforts as well as the current knowledge gap. The research technique is
described, as well as the findings, comments, and conclusions.
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2. Background Literature

The literature on machine learning and mathematical model techniques for simulating
groundwater level changes is presented in this area. The section also includes research that
shows how both ML and MM approaches were used to predict GWL fluctuations, as well as
literature that exclusively shows modular finite-difference groundwater flow (MODFLOW)
approaches. In addition, relevant works (reviews) on our subject are discussed.

2.1. Machine Learning for Groundwater Level Change Prediction

The resurgence of attention in machine learning is due to the growing volumes and
types of available data, less expensive computational handling, and all-the-more ground-
breaking and modest data storage [31]. In recent years, academics have created a number
of machine learning algorithms for forecasting stock trends [32] and groundwater level
prediction [33], for example. Today, even on a massive scale, it is possible to quickly and
organically develop models that can dissect larger, more mind-boggling data and deliver
faster, more exact results. The ability of machine learning, which has the capability to
learn complex correlations between the important hydrogeological factors (HGFs) and
the groundwater level (GWL), is essential [34]. There are several machine learning algo-
rithms available, including classification and regression models. Artificial intelligence
(AI) models have been extensively used in the last 20 years to overcome the limitations of
traditional numerical models for GWL simulation [24]. Therefore, improving the planning
and management of water resources requires the use of precise soft computing methods for
groundwater level (GWL) predictions.

Forecasting groundwater levels (GWL) is critical for irrigation planning, water supply,
and land development. Although some studies have used artificial neural networks
(ANN) [35], support vector machine (SVM) [36] and random forest (RF) [37] methods,
support vector machine, generalized regression neural network, convolutional neural
network, long short-term memory, and gated recurrent network are examples of machine
learning and deep learning methodologies used by others [38] to simulate GWL changes.
For example, ref. [11] employed multi-linear regression (MLR) and random forest (RF)
methods. ANN models [35] with one natural factor and two anthropogenic factors as
input variables were used to anticipate groundwater levels. Furthermore, ANN, SVM, and
extreme gradient boosting (XGB), three frequently used machine learning models, were
tested for their efficacy in predicting groundwater levels [39].

Ensemble modeling is also a great method to improve the presentation of models.
Ensemble machine learning is used to predict GWL changes [40]; however, it is not always
the most portable of the ML models [2]. Using a variety of modeling algorithms or training
data sets, ensemble modeling is the process of building numerous varied models to predict
an outcome [2]. By mixing numerous models instead of just one, ensemble methods offer
methodologies that try to increase the accuracy of outcomes in models [36]. The combined
models considerably improve the results’ accuracy. Due to this, ensemble approaches
in machine learning have gained prominence. The goal of employing ensemble models
is to lower the prediction’s generalization error. When using the ensemble approach,
the prediction error lowers as long as the basis models are diverse and independent.
Artificial intelligence methods [41], such as genetic programming (GP) and adaptive neural
fuzzy inference system (ANFIS) [42], and deep learning models [43], such as LSTM and
developed LSTM extension (DeepAR), help in groundwater level forecast and simulation.
Furthermore, ref. [44] developed an ensemble of one- to five-month lead-time estimates for
water tables based on various data-driven models (DDMs). Furthermore, ref. [6] used a
hybrid ANN model to forecast GWL. Models that explicitly mix two or more models are
known as hybrid models [45]. The ML architecture that underlies hybrid machine learning
(HML) algorithms differs slightly from the conventional workflow. It is understood that
every ML algorithm has a strategy for determining the optimal model in the context of an
ideal configuration.
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The radial basis function (RBF) neural network–whale algorithm (WA) model, the
multilayer perception (MLP) model, and genetic programming (GP) were the three ANN
models used in the same way [46,47] used ANN and ANFIS for prediction of GWL. In
another instance, refs [2,48] proposed a new machine learning ensemble model (ARZ
ensemble); thus, automatic multilayer perceptron (AutoMLP), RF, and ZeroR based on
a majority voting-based technique applied to its standalone classifier. Because of its ca-
pacity to simulate nonlinearities between GWL and its drivers (e.g., rainfall), machine
learning (ML) (e.g., artificial neural networks) is increasingly being used to anticipate
GWL [49–51]. Machine learning has been used to supplement existing technical methods
because it provides effective standards, increases efficiency, and improves GWL prediction
performance [50].

Despite all of ML’s advantages, the continuous growth of techniques makes it difficult
for academics to determine the most effective technique and its impact on GWL prediction.
Machine learning has already been used to predict GWL in a number of studies, but there
is a need for a collected literature that outlines the domain’s issues, challenges, and future
research aims.

2.2. Mathematical/Statistical Modeling for Groundwater Level Change Prediction

The process of turning issues from an application zone into manageable mathematical
formulations utilizing a hypothetical and arithmetical analysis to provide perception, an-
swers, and guidance for application development is known as mathematical modeling [51].
Numerical models are powerful tools for simulating and analyzing groundwater dynamics
under varying conditions, and they are employed all around the world [16]. In the literature,
mathematical models (MM) have also been used to predict groundwater level variations.
From 1993–2019, everyday groundwater level readings were analyzed statistically by [52].
In a work by [4], the stability theory of nonlinear differential equations was applied to
create a mathematical model to optimize the groundwater level declination using a set of
nonlinear ordinary differential equations (ODEs). In addition, ref. [53] developed a simple
mathematical model based on the mass balance principle, and in the same way, ref. [54] in
a mathematical model based on Biot’s model of consolidation, was also presented, which
was expanded with a rheological skeleton for GWL variations. Furthermore, to simulate
variations in coastal groundwater flow, researchers [3] employed a process-based numerical
model. Similarly, refs [55,56] used MM to determine the primary components behind the
water level variation mechanism.

To this end, mathematical models (MMs) can help uncover essential data items and
their roles as model inputs by exploring the interplay between variables [57]. In brief, there
is also a need for a consolidated literature that summarizes concerns, challenges, and future
research objectives in the MM domain.

2.3. Combination of Both ML and MM/SM for Groundwater Level Change Prediction

Other researchers have used a combination of ML and MM/SM to forecast changes in
groundwater levels. Thus, ref. [58] employed a mixture of statistical and machine learning
models, such as entropy-SVM-SG, entropy-SVM-RBF, and entropy-SVM-LN, but did not
conduct a systematic review. In another related study, ref. [23] created a sensitivity map
to the incidence of land subsidence using statistical and machine learning methods, but
this work did not conduct a comprehensive review. Furthermore, ref. [22] employed
ANN and MM to estimate groundwater level, although the work was not conducted in a
systematic manner. A study by [59] employed extreme learning machine (ELM), modular
finite-difference groundwater flow (MODFLOW), and wavelet–extreme learning machine
(WA–ELM) methodologies to model groundwater level; again, they failed to perform a
systematic review. According to our study, modeling groundwater level fluctuations using
a combination of ML and MM methodologies is rare, and new techniques in this domain
are needed.
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2.4. Groundwater Modelling with MODFLOW

According to the United States Geological Survey (USGS), “(MODFLOW) is a finite-
difference groundwater flow modeling application that allows you to create a arithmetic
representation (i.e., a groundwater model) of the hydrogeologic environment” [60]. MOD-
FLOW can be used to estimate groundwater resources and gain a better knowledge of the
system from hydrological, geological, chemical, and hydrological perspectives. A three-
dimensional transient groundwater flow model [61] was used to simulate three climate
time periods from 1960–1999, 2010–2039, and 2040–2069 to assess the impacts of climate
change on groundwater levels. Similarly, MODFLOW-2000 was utilized by [62,63] to better
understand regional groundwater flow and Murzuq aquifer systems in Libya, respectively.
In addition, ref. [64] used the widely used MODFLOW-2005 model to examine variations in
groundwater levels. In addition, ref. [65] used a combined hydrological–hydrogeological
model, i.e., employed MODFLOW, under climate change scenarios, defining the spatio-
temporal dynamics of water balance and groundwater–surface water (GW–SW) interactions
for the upper stream basin of Del Azul. Groundwater numerical models with a traditional
rectilinear grid geometry, such as MODFLOW [66], have rarely been used to simulate
aquifer test results at a pumping well, in contrast to analytical models, because they are
not designed or expected to accurately reproduce the head gradient near the well. MOD-
FLOW is a groundwater modeling approach based on mathematical models. At the time
of the present study, the most recent version of MODFLOW 6 was version 6.3.0, which
was released on March 4, 2022. Finally, for estimating two-dimensional groundwater flow,
ref. [67] used numerical models. According to our research, finding a systematic approach
to this problem is difficult.

2.5. Related Work

Existing research efforts have sought to review the literature on ML and MM models
for GWL predictions, as previously indicated. For example, Tao et al. [68] demonstrated
a thorough understanding of the state-of-the-art ML models utilized for GWL modeling
as well as the milestones achieved in this domain. Despite their research being beneficial
to scholars, it does not answer worries about recent machine learning accomplishments.
In comparison to this present study, it is two years behind. Hanoon et al. [69] presented
many state-of-the-art artificial intelligence (AI) methods for groundwater quality (GWQ)
modeling, as well as a brief description of common AI methodologies. Paepae et al. [70]
focused on a high-level overview of critical water quality parameters for a specific use
case, as well as the formulation of cost estimates for monitoring them. In a review paper,
Saha et al.) [71] reviewed several machine learning and artificial intelligence techniques
and methodologies that were commonly used to model and anticipate GWL changes
from 2011 to 2020. Other scholars focused their research on measuring model correctness.
Ahmadi et al. [72] conducted a systematic review of this subject and evaluated the accuracy
of numerous models. According to their statistics, their study was limited to twenty-eight
(28) countries. Chiloane et al. [73] examined current development in GWL strategies based
on geographic information systems (GIS) and remote sensing. Their research did not pay
attention to machine learning model methodologies. In addition, Singh et al. [74] examined
an artificial neural network (ANN) model for groundwater level prediction in a study.
Their research is not a systematic review, but it does focus on ANN modeling.

In addition, traditional groundwater modeling options, such as certain numerical
methodologies, have been proposed [75,76]. Researchers analyzed computing models
and simulations for groundwater modeling in a study by Aderemi et al. [77], but they
were concerned about existing data collection methods being able to meet computational
model criteria and management objectives. Furthermore, in a study by Hussain [78],
numerical modeling was used to estimate groundwater levels. They claimed that numerical
groundwater modeling is a better alternative to costly aquifer pumping tests for describing
aquifer response to external loads. Guevara et al. [79,80] studied three mathematical models
to represent variable-density groundwater flow simulations in a systematic investigation.
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They were particularly interested in non-Boussinesq effects. The study, however, was
insufficiently thorough in meeting the requirements of the systematic review study.

Although the studies mentioned above do not represent the entirety of the literature
on machine learning and mathematical models for groundwater level prediction, a search
of academic electronic databases for systematic review studies on groundwater level
prediction using machine learning and mathematical models yielded few results, if any
at all. It is critical to be aware of data on publication trends, popular machine learning
algorithms and performance metrics, and mathematical models for groundwater level
variations. These data are important for researchers because of the knowledge gap they will
fill and the possibility for growth in this field. Despite the fact that systematic reviews may
not promise bias-free research, they do reduce bias and give auditable results. As a result
of this, it is critical to use a systematic approach to investigate GWL change prediction
utilizing machine learning and mathematical models.

3. Methodology

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

A robust review technique was created to provide a complete and traceable evaluation.
For this purpose, review methods serve as a foundation for the review process, reducing
researcher bias. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) flow diagram from Prisma-statement.org [81] was used in this investigation.
The information flow across the several phases of a systematic review is depicted in the
PRISMA flow diagram. Identifying all possibly relevant data, choosing eligible research,
determining bias risk, data extraction, qualitative synthesis of the studies included, and
likely meta-analysis [82] are all express and inducible procedures in the systematic review
(Figure 1). Drissi et al. [83] exhibited the PRISMA flow diagram in a systematic review,
and Pant et al. [84] did the same in a study. The review process was depicted using a
diagrammatic presentation.
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Using the PRISMA conceptual framework as a foundation (Figure 1), we created a
search string to search the abstract, title, and keywords of literature in the online database
“Scopus”. The literature sample was compiled from peer-reviewed journal articles pub-
lished in English between January 2000 and May 2022. On 15 May 2022, the search process
was completed.

The procedure went through four steps (Figure 2) before obtaining the 117 most
important studies on groundwater level change modeling using machine learning and
mathematical model techniques.
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The search string was designed to suit specific exact keywords, such as “groundwater”,
“mathematical models”, “groundwater flow”, “groundwater resources”, “climate change”,
“computer simulation”, “numerical model”, “statistical model”, “machine learning”, and
“groundwater level changes”, through a well-thought-out search strategy. Many articles
were found using the search query, but many were eliminated during the title and abstract
screening phase. The search string appears in the text field (Table 1) below.

Table 1. The search query.

The Search String

TITLE-ABS-KEY((MACHINE LEARNING AND GROUNDWATER LEVEL CHANGES) OR (MATHEMATICAL MODELS AND
GROUNDWATER LEVEL CHANGES)) AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO

(PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO
(PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2011) OR LIMIT-TO (PUBYEAR, 2010) OR LIMIT-TO (PUBYEAR, 2009) OR LIMIT-TO
(PUBYEAR, 2008) OR LIMIT-TO (PUBYEAR, 2007) OR LIMIT-TO (PUBYEAR, 2006) OR LIMIT-TO (PUBYEAR, 2005) OR LIMIT-TO
(PUBYEAR, 2004) OR LIMIT-TO (PUBYEAR, 2003) OR LIMIT-TO (PUBYEAR, 2002) OR LIMIT-TO (PUBYEAR, 2001) OR LIMIT-TO

(PUBYEAR, 2000)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (EXACTKEYWORD, “Groundwater”) OR LIMIT-TO
(EXACTKEYWORD, “Mathematical Models”) OR LIMIT-TO (EXACTKEYWORD, “Groundwater Flow”) OR LIMIT-TO
(EXACTKEYWORD, “Groundwater Resources”) OR LIMIT-TO (EXACTKEYWORD, “Climate Change”) OR LIMIT-TO
(EXACTKEYWORD, “Computer Simulation”) OR LIMIT-TO (EXACTKEYWORD, “Numerical Model”) OR LIMIT-TO
(EXACTKEYWORD, “Ground Water”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (SRCTYPE, “j”))
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There were 237 articles found that matched the search-string criteria. The title, key-
word, abstract, digital object identifier (DOI), and other information from the articles were
recorded in a comma-separated value (CSV) file (generated from the Scopus database).
The articles were saved in a reference manager software (Mendeley). According to Mende-
ley.com accessed on 1 June 2022, “Mendeley Reference Manager is a free web and desktop
reference management tool. It aids you simplify your reference management workflow so
you can focus on achieving your goals” [85,86].

Review questions were constructed during the design stage to elicit the study aims,
which subsequently formed the foundation of the inquiry, as indicated by Brereton et al. [87].
The approach of the Goal-Question-Metric (Table 2) [88] was utilized. The technique has
been shown to be effective for obtaining systematic review objectives by Lun et al. [89] and
Wiafe et al. [90].

Table 2. Goal-Question-Metric espoused from [88].

Purpose This research examines.

Issues Trends in publishing, application domains, methodologies, and future directions.

Object Prediction of groundwater level variations with existing machine learning and mathematical model approaches.

Viewpoint Between the years 2000 and 2022.

Within the domain of groundwater level changes, issues about the most often used
ML and MM methodologies and their performances, as well as present and future research
directions, raise questions. As a result, the goal of this research is to look into existing
studies in the field in order to fill in these knowledge gaps. Questions about the review
process were raised and answered, as well as the logic or motivation for doing so (Table 3).

Table 3. Review interrogations and motivation.

Research Question Inspiration Technique

RQ1

What are the publication
trends in groundwater level

changes using ML and
MM approaches?

To categorize studies and evaluate their foci,
dominant venues, and contributions. Trends can be

examined throughout time depending on the
quantity of studies. These data will show the
scientific community where there are gaps in

the domain.

Quantitative

RQ2
In groundwater level change

modeling, which ML and MM
approaches are used?

To identify the several ML and MM techniques that
are currently being utilized to predict groundwater
level changes. This will reveal which method is the
most popular. It will also reveal why it is the most
popular option. Researchers will be able to see the
potentials and/or lack of concentration in various

ML and MM methodologies based on
this information.

Quantitative

RQ3
What effect have these ML
and MM techniques had on
groundwater level changes?

To determine the present impact of ML and MM
approaches on groundwater level changes, as well

as to study and categorize existing ML and MM
approaches for groundwater level changes based on

the specific challenges they attempt to solve.

Qualitative

RQ4 What will be the research
focus in the future?

This topic aims to suggest future ambitions for
researchers and practitioners in using ML and MM
methodologies to predict groundwater level changes.
It provides newbie researchers with information on

current subjects of interest in the domain.

Qualitative
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Other publications were found through a search on Google Scholar and Google, based
on our study’s topic and objectives. From Scopus, Google Scholar, and Google search,
there were a substantial number of duplicate articles. The problem of duplication was
solved using Mendeley’s automatic duplicate elimination procedure. We examined if the
title, keywords, and DOI of the records in the CSV file were the same, and eliminated the
duplicates accordingly to ensure the process’s credibility.

After removing duplicates, the screening procedure began with 410 records, which
included the inclusion and exclusion criteria. Two reviewers worked simultaneously and
independently to qualify the titles of articles that would be kept or eliminated. In some
cases, the reviewers submitted article titles for consideration to third-party reviewers who
are experts in the field. The agreement was the final judgment if both critics agreed to
maintain or remove a certain record. In the end, 290 reports were assessed for eligibility
(Figure 3). The papers were randomly assigned to five reviewers from two different higher
education institutions. Each reviewer evaluated the allocated records to see if they fulfilled
the exclusion and inclusion criteria. The exclusion and inclusion criteria were used to keep
or remove papers that were more relevant to our topic.
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For this study, a report may have been removed (a) or met (b) the criteria on:

a. Exclusion criteria: Our research disqualifies any report that meets the following criteria:

• There were no full texts available. As a result, 98 reports were deemed unfit;
• Titles were not in the scope of our study. As a result, 54 reports were discarded;
• Original research was not presented in the abstracts. As a result, 30 reports

were deleted;
• The articles were written in non-English language. As a result, 13 reports

were removed.
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b. Inclusion criteria: Reports that matched the following criteria were included in
our research:

• The articles are published in English, and the abstracts contain original research
on the topics;

• Articles in our scope introduce machine learning and mathematical model techniques.

We excluded conference, short paper, and workshop publications from the scope of
this study. Following the reviewers’ full-text screening, 195 reports were deleted from
the exclusion criteria. At the completion of the systematic review, there were 117 papers
(Figure 3): 95 studies included in the review, and 22 reports of included studies from Google
Scholar, Google, and citation searching (Figure 3).

Finally, another reviewer double-checked the included papers to guarantee that the
data had been mined correctly. All members of the research team were assigned to serve
as second reviewers, confirming that the other reviewers’ extracted and included primary
studies (117 articles) were accurate and answered the research questions in Table 3. The
primary studies (PS) used in this review are listed in Appendix A.

4. Results and Discussion

The year of publishing, the address and affiliation of the accompanying author, and
the journal outlet (publisher) were all noted. In addition, the publication ID, DOI, and
authors’ PubMed ID were noted for each piece. The ML and MM approaches that were
used are also discussed. Studies that looked at how to improve existing methods were also
analyzed and summarized, as well as the analysis of the graphic maps. The following is a
discussion of the study’s findings.

4.1. Publication Trends

Over time, the quantity of research articles on ML and MM techniques for groundwater
level change prediction has expanded. Between 2000 and 2015, the use of ML and MM
approaches for predicting groundwater level changes increased and decreased within the
same period (Figure 4), but it began to gain traction again after 2016. From 2000 to 2016,
thirty-seven articles accounted for 31.62 percent of all primary research reviewed. There
were no papers published in 2001, 2005, or 2013. Based on the study’s goal, there was a
surge in 2021, which represents 28 (23.93 percent) of the 117 reviewed papers on ML and
MM techniques. Since 2016, publications in the domain saw an exponential increase up
until 2021, i.e., the steepest slope. In 2019, the number of publications in the area climbed
from six to sixteen, increased by one in 2020, and increased by eleven in 2021. As of the
time the survey was conducted in 2022, nine articles had been recorded.

Based on the findings, the primary articles (117 articles) were also slanted towards
publishing firms/outlets. Out of the primary articles, Elsevier BV had the most papers
with 30 (25.64%), followed by Multidisciplinary Digital Publishing Institute (MDPI) with
20 (17.09%), Springer Science and Business with 14 (11.97%), and Blackwell Publishing
Limited with 10 (8.55%). These four publishers published 63.25 percent (74) of the 117 pri-
mary articles (Figure 5). The fewest number of articles recorded by a publishing house was
one. The remaining publishing houses only have eight or fewer studies.

We discovered that the primary studies (117 articles) are skewed by country in this
systematic review. China had the most corresponding authors with thirty-eight, followed by
the United States (US) with twenty-five, and the United Kingdom (UK) with nine (Figure 6).
According to the associated writers’ addresses, the majority of the papers originated in
Asian countries. Asia was responsible for 56 of the 117 articles (47.9 percent). North
America had twenty-five articles, while South America had three. Africa was represented
by two articles: from South Africa and Egypt. Figure 6 summarizes the distribution of
publications based on geographic location.

The proportion of the top five countries is also shown (Figure 7). China accounted for
32% of all primary studies, the US for 21%, the UK for 8%, Iran for 4%, and Portugal, Japan,
and Spain for 3% each.
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Predictor Variables for Modeling GWL Changes

The primary articles used in this study used input data to predict groundwater level
changes and address their impact, and our study will look at the climatic data from those
studies as well. According to NASA.gov accessed on 9 June 2022 [91], “climate change is a
shift in the usual weather found in a place”. Groundwater level changes are influenced by
climate conditions [92], and climate change is threatening our future. Extreme occurrences
such as droughts and floods, as well as rising precipitation variability due to climate change,
have a severe impact on groundwater quantity and quality. Precipitation, temperature,

NASA.gov
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rainfall, Gravity Recovery and Climate Experiment (GRACE) data, ENVISAT advanced
synthetic aperture radar (ASAR) satellite data, and lithology are among the many predictor
variables. The primary studies’ predictor factors are provided (see Table 4).
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The groundwater level changes were predicted with the predictor factors from our
primary investigations (117 articles) (Table 4). Precipitation was used in many of the studies.
According to education.nationalgeographic.org accessed on 9 june 2022 [93], any liquid or
frozen water that forms in the atmosphere and falls back to Earth is known as precipitation.
Rain, sleet, and snow are only a few examples.

4.2. Techniques in Modeling GWL Changes

Groundwater level changes over the years have been predicted with ML [2] and
MM [56] approaches. This section examines how both strategies have been employed in
research. According to our data (main studies), ML techniques accounted for 45.3 percent
(53) of the publications, MM approaches for 39.3 percent (46) of the articles, and 5.1 percent
(6) were cases where both ML and MM approaches were used in a study. The MODFLOW
technique, which aids in the accurate, dependable, and efficient simulation of groundwater
flow, accounted for 10.3% (12) of the primary publications (Figure 8).
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Table 4. Common predictor variables from the primary study.

Predictor Variable Type

Precipitation Continuous
Temperature Continuous
Streamflow Continuous

Irrigation demand Continuous
Rainfall Continuous

Population growth Categorical
Environmental regulations Categorical

Land elevation Categorical
Lithology Continuous

Distance from river Continuous
Plan and profile curvature Categorical

Land use Categorical
Sea level Continuous

Evapotranspiration Continuous
Soil moisture Categorical

Humidity Continuous
Canopy water Continuous

Vegetation Categorical
Sunshine Continuous

Average wind Continuous
GRACE data Satellite data

ENVISAT ASAR (EA) Satellite data
RADAR SAT-2 Satellite data

4.2.1. ML Approaches and Performance Metrics

Machine learning techniques have been used to forecast changes in groundwater
levels and accounted for 45.3 percent (53) of the publications (Figure 8). The many papers
that were included in the review yielded over 70 different algorithms (Table 5). Random
forest (RF), artificial neural network (ANN), multilayer perceptron (MLP), support vector
machine (SVM), long short-term memory (LSTM), adaptive boosting (AdaBoost), extreme
gradient boosting (XGBoost), recurrent neural network (RNN), adaptive neuro-fuzzy
systems (ANFIS), and metaheuristic algorithms such as differential evolution (DE) and
the genetic algorithm (GA) were the dominating algorithms. Other ensembles of the
aforementioned algorithms, such as extreme learning machine (ELM) crossbred with
ant bee colony (ABC), improved grey wolf optimizer (IGWO), and whale optimization
algorithm (WOA), were used. Singular spectrum analysis (SSA), support vector regression
and support vector classification (SVR-SVM) were the other ensembles.

The most commonly utilized algorithm was RF (20 studies), which was followed by
ANN (15 studies). AdaBoost and XGBoost were employed in 9 and 8 studies, respectively,
while SVM was utilized in 13 studies. In eight (8) and five (5) studies, respectively, ensem-
bles and metaheuristic algorithms were applied. In 20 studies, various algorithms such
as decision tree (DT), convolutional neural network (CNN), ZeroR, Fuzzy Logic (FL), and
others were utilized. It should be noted that one article in the primary study can employ
three or more ML approaches. Figure 9 summarizes the number of times ML approaches
were employed in studies.

In the primary research, statistical indicators were utilized to assess the accuracy of the
ML models used to forecast groundwater level changes. According to our statistics, the root
mean square error (RMSE) is the most widely utilized performance indicator for monitoring
accuracies, accounting for 30.8 percent. Nineteen evaluation metrics were identified in the
study. Table 6 shows the number of times performance metrics were employed and their
proportions. The Nash–Sutcliffe efficiency coefficient (NSE), mean absolute error (MAE),
coefficient of correlation (R), coefficient of determination (R2), percentage bias (PBias), mean
square error (MSE), mean absolute percentage error (MAPE), and Pearson coefficient (PR)
were also used to measure the accuracy of the models. Other metrics included Monte Carlo,
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normalized mean square error (NMSE), Shannon entropy, area under the curve (AUC),
Akaike’s information criteria (AIC), average squared error (ASE), area under the receiver
operator characteristics curve (AUROC), Kling–Gupta efficiency (KGE), scatter index (SI),
and mean absolute relative error (MARE).
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Table 5. ML techniques for predicting GWL changes.

Algorithm Number of Times Used in Primary Study

RF 20
SVM 13
ANN 15
LSTM 7
MLP 8

AdaBoost 9
XGBoost 8
ANFIS 5
RNN 4

Ensembles 8
Metaheuristic Algorithms 5

Others 20
Total 122

NMSE, RMSE, Monte Carlo, Shannon entropy, AUC, and MAPE were discovered to
be the most often used performance measures in the ML ensembles approach. The Pearson
coefficient (PR) was also observed being used in deep learning algorithms. KGE, NSE,
and PBias were also used to evaluate XGBoost machine learning algorithms. MAE, RMSE,
and R2 performance metrics were also used in hybrid ML models. The root mean square
error (RMSE) represents the model’s absolute fit to the data and is an acceptable degree of
performance with the same units as the projected. The coefficient of determination (R2), on
the other hand, is a relative statistic that does not represent the model’s absolute correctness.
Furthermore, Monte Carlo is utilized to measure forecast uncertainty.
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Table 6. Performance metrics and their proportions.

Performance Metric Number of Times Employed Percentage (%)

RMSE 32 30.8
MSE 7 6.73
MAE 11 10.6
NSE 11 10.6

MAPE 4 3.8
R 11 10.6

Monte Carlo 2 1.9
NMSE 1 0.96

Shannon Entropy 1 0.96
AUC 1 0.96
AIC 1 0.96
R2 11 10.6

PBias 4 3.83
PR 2 1.9

ASE 1 0.96
AUROC 1 0.96

KGE 1 0.96
SI 1 0.96

MARE 1 0.96
Total 104 100

4.2.2. MM Approaches and Performance Metrics

Mathematical and statistical models accounted for 39.32 percent (46 papers) of the
primary investigations (117 articles) used (Figure 8). The most prevalent approaches
were the Boussinesq equation, Biot’s model, rheological model, cross-correlation analysis,
Laplace transform (LT), Laplace homotopy perturbation model (LHPM), and Bayesian
model averaging. The Glover–Dumm mathematical model was also used in primary
investigations that took into account MM methods. The Glover–Dumm MM technique,
on the other hand, was coupled with other models such as frequency ratio (FR) by the
researchers to produce a proposed model. The most widely used performance indicators
are the coefficient of determination (CD), the modeling efficiency (EF), the maximal error
(EF), coefficient of residual mass (CRM), and the root mean square error (RMSE). The MM
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techniques and assessment criteria utilized to estimate groundwater level changes derived
from our primary investigations are shown in Table 7.

Table 7. MM approaches and performance metrics.

MM Approaches Performance Metrics

LT RMSE, EF
LHPM CRM, CD

Boussinesq equation CD, CRM, EF
Bayesian modeling Posterior, predictive checks, AIC, RMSE
Rheological model EF, RMSE

Glover–Dumm model CRM, R, R2

Proposed Models RMSE, MAE, AIC, etc.

The majority of the MM techniques were clearly deployed between the years 2000 and
2011. Between 2012 and 2022, few MM methods were used.

4.3. Impacts of ML and MM Approaches on GWL Changes

When ML is compared to mathematical model techniques, the application of machine
learning approaches for groundwater level changes has increased throughout the years. The
application of single machine learning algorithms and the presentation of novel methods
are the most significant contributions of ML and MM approaches in predicting groundwater
level variations. Due to the difficulty of computational complexity in machine learning
algorithms [94], research towards lowering computational times is required and significant.
Although computational complexity can impair application performance, several studies
have found that performance times are reduced. As utilized in studies by Jiang et al. [2]
and Kayhomayoon et al. [95], the employment of some ensembles of machine learning
and metaheuristic algorithms helps to minimize computational time and enhances the
prediction of groundwater level changes.

Furthermore, model performance and computing efficiency are critical, and mathe-
matical models are not excluded. Our primary research revealed that MM techniques have
not been applied in a long time, resulting in a gap. However, it is important to recognize
their significance in anticipating groundwater level variations. Researchers said in a study
by Li et al. [96] that “there is no viable mathematical approach and theory to be utilized for
modeling and predicting the fluctuation in the permafrost groundwater”, but they did not
rule out the use of mathematical models in predicting groundwater level variations.

This research has added to our understanding of the machine learning and mathe-
matical models commonly used in predicting groundwater level changes, revealing that
machine learning models are used more frequently than mathematical models, with the for-
mer providing more effective ways to predict groundwater level changes. Also, SVM [18],
RF [38], ensembles of ML [36], and some statistical techniques [13] can increase accura-
cies, computational efficiency, and performance in groundwater level change prediction.
Jyolsna et al. [11] also proved that using imagery to predict groundwater level fluctuations
improves prediction performance.

Currently, the application of machine learning ensembles has been shown to produce
higher accuracies in predicting groundwater level fluctuations. For example, Yadav et al. [36]
showed that ensembles improve prediction accuracy, achieving an accuracy of 89.3 percent,
which is the current attained accuracy for ensembles based on our core articles (117 articles).
The improvement of planning and management of water resources depends on the develop-
ment of an accurate soft computing method for groundwater level (GWL) forecasting [97],
and this study has brought great news to the literature by revealing that random forest
(RF) [10], support vector machine (SVM) [36], and artificial neural network (ANN) [9]
methodologies are widely used machine learning algorithms for modeling groundwater
level changes. Additionally, the most often employed GWL predictor factors were identi-
fied by this study (Table 4). Our research has shown that machine learning, including its
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hybrid [7] and ensemble [8] models, operates flawlessly when employing satellite images
by increasing computing complexity and processing time.

4.4. Future Directions of ML and MM Approaches in Predicting GWL Changes

Although the use of machine learning and mathematical model techniques has ex-
panded since 2016, machine learning accounts for the majority of primary publications.
Between 2000 and 2009, the majority of the MM techniques were employed to forecast
groundwater level fluctuations. Global climate change has already had visible conse-
quences on the environment, and groundwater, which serves as a supply of drinking water
for humans, remains a key worry. Challenges and issues of climate change continue to
evolve. Today, the world strives for technology, which has a massive impact. Machine
learning and mathematical model techniques are making life easier since they learn from
previous events and forecast future ones. Researchers employed machine learning algo-
rithms more frequently than mathematical models in the primary publications included
in this systematic review. Figure 8 shows that ML accounted for 53 of the 117 articles,
whereas MM accounted for 46. It has been discovered that MM approaches for predict-
ing groundwater level changes have been used less frequently in recent years. Machine
learning has surpassed mathematical models, and the random forest (RF) algorithm is
the most commonly used algorithm for predicting groundwater level fluctuations, accord-
ing to Table 3. Some algorithms in Table 3 were classed as “other”, and they appeared
20 times in the sampled data. These algorithms were found to be utilized in fewer than
three articles. Decision tree (DT) and multiple linear regression (MLR) are examples of
the “other” algorithms. To predict groundwater level changes, researchers are turning to
newer, maybe more inventive methodologies. As a result, future research may employ
unique methodologies such as hybrid and ensemble models. Furthermore, researchers may
again use hybrid mathematical models, combining new models with old mathematical
models. Nonetheless, it should be noted that academics are worried about the requirement
for models to minimize computational complexity, to be computationally efficient, and
increase performance accuracy. Furthermore, based on some findings in our main research,
increasing activism and education on the effects of climate change are essential.

4.5. Analysis of Graphic Maps

This part uses the VOSviewer software [98] to give an examination of scientific graphi-
cal maps based on bibliographic data. Bibliometrics is a branch of research that examines
citations and keywords in the context of scholarly publishing. Scholars can use such
techniques to better comprehend the topography of scholarly debate as it appears in
the literature.

4.5.1. Co-citation of Authors

The goal of the author co-citation analysis [99] is to reveal the structure and linkages
between the writers who are most frequently mentioned together [100]. Figure 10 shows a
bibliometric map with five subject clusters formed by co-citation links between authors.
Rodell is an influential author with the greatest number of citations (58 citations), as can be
seen from the second node (Cluster 2: green color).

4.5.2. Co-Citation of Journals

Once two articles published in different journals acquire a citation from a third paper
published in another journal, this is known as journal co-citation [101]. The co-citation of
journals from our primary study is depicted in Figure 11. The larger the node, the more
documents that have been published. We can see that there are three groups, with Journal
of Hydrology being the most referenced of them all.
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4.5.3. Bibliographic Coupling by Countries

The graphical map of bibliographic connection among the major countries is shown in
Figure 12. It displays fascinating interconnections between them. China, Iran, Australia,
and Italy were bibliographically linked to the United States. However, based on addresses
of the corresponding authors from the primary studies (117 articles), we discovered that
many of the articles were from China.

4.5.4. Bibliographic Coupling of Author Keywords

Figure 13 depicts the author keywords layered by their average year of publication,
with colors indicating temporal variability. A content analysis can be carried out to provide
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quantitative measures by gathering keywords. When it comes to exploring new fields, this
strategy looks promising.
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5. Research Legitimacy, Limitations, and Conclusions

This article presents an overview of existing research on the application of machine
learning and mathematical model techniques for modeling groundwater level changes. It
is one of the few systematic reviews that we are aware of, if not the first, that considers both
machine learning and mathematical model approaches in literature, and also considers
their impact on groundwater level changes. However, it is the first in a systematic review
to analyze ML and MM techniques in predicting groundwater level changes.

Methods validation in research is critical, so we must validate our approach. The data
for this study were gathered using the Scopus database. Possible paper omissions during
the selection process, as well as data extraction bias (consideration of papers from only the
Scopus database), are threats to the study’s validity. Considering only the Scopus database,
there are a number of other databases, including IEEE, Web of Science, and ACM, that may
contain related studies.

Our findings in this study cannot be generalized, but they do show how ML and
MM techniques have been utilized in the domain to forecast groundwater level changes.
Furthermore, in order to reduce bias in paper selection, the PRISMA [81] guidelines were
used, which have been shown to be effective, as shown in a work by Alfadil et al. [82].
Multiple people carefully selected the search string, database, and scope. Furthermore, the
protocol was reviewed by domain experts as external reviewers to eliminate any potential
bias. The groundwater search keywords were carefully chosen to ensure a descriptive
scope and to extract papers for the review.

The study only considered journal articles to ensure that the primary studies were of
excellent quality and have undergone peer review; while journal articles are not without
bias, ensuring quality is critical. Although the omission of conference papers may introduce
some bias, it is difficult to select the best ones from the vast number of available proceedings.
Researchers assessed the paper quality on conference proceedings at their discretion, which
would have added an additional bias, hence the omission of conference papers in this study.

In fact, the study demonstrated that various researchers have used ML and MM
approaches to predict groundwater level changes. Although both ML and MM techniques
are used, according to our primary articles (117 articles), the former is mostly used for
the same purpose in recent years, presenting a significant skewness in the domain. The
state of the water as well as its level are interesting aspects of groundwater modeling (e.g.,
concentrations of different chemicals and geospatial analysis).

Machine learning has lowered computational complexity and shortened model train-
ing times. Furthermore, researchers frequently used the support vector machine (SVM),
random forest (RF), and artificial neural network (ANN) algorithms in their studies, with lit-
tle emphasis on other algorithms such as ensembles, hybrid, and metaheuristic algorithms.
Researchers are encouraged to use mathematical model approaches to predict changes in
groundwater levels. Because these algorithms are rarely used, it is both a difficulty and
an opportunity for scholars and stakeholders in this domain to investigate new ML and
MM techniques.

Both ML and MM techniques are anticipated to continue to deliver opportunities for
modeling groundwater level changes. Researchers must begin adopting and adapting
new approaches, as well as publishing widely, to ensure that research does not become
static. Groundwater is important in people’s daily lives, and it is threatened by global
climate change. Researchers, governments, organizations, non-governmental organizations
(NGOs), and other stakeholders are encouraged to advocate for climate change mitigation
and education.

Our research has demonstrated that machine learning techniques are more recently
used for modeling changes in groundwater levels than mathematical models. Random
forest (RF), support vector machine (SVM), and artificial neural network (ANN) algorithms
are the most popular machine learning (ML) approaches in literature. The most common
predictive variables for changes in groundwater level are summarized based on our in-
vestigation (Table 4). Additionally, of the primary papers, 30.8 percent employ RMSE as
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their primary evaluation metric, followed by MAE (10.6 percent), NSE (10.6 percent), and
R (10.6 percent) (Table 6).
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