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The climate is a forced and dissipative nonlinear system featuring non-trivial dynamics of

a vast range of spatial and temporal scales. The understanding of the climate’s structural

and multiscale properties is crucial for the provision of a unifying picture of its dynamics

and for the implementation of accurate and efficient numerical models. We present

some recent developments at the intersection between climate science, mathematics, and

physics, which may prove fruitful in the direction of constructing a more comprehensive

account of climate dynamics. We describe the Nambu formulation of fluid dynamics,

and the potential of such a theory for constructing sophisticated numerical models of

geophysical fluids. Then, we focus on the statistical mechanics of quasi-equilibrium

flows in a rotating environment, which seems crucial for constructing a robust theory

of geophysical turbulence. We then discuss ideas and methods suited for approaching

directly the non-equilibrium nature of the climate system. First, we describe some

recent findings on the thermodynamics of climate and characterize its energy and entropy

budgets, and discuss related methods for intercomparing climate models and for studying

tipping points. These ideas can also create a common ground between geophysics and

astrophysics by suggesting general tools for studying exoplanetary atmospheres. We

conclude by focusing on non-equilibrium statistical mechanics, which allows for a unified

framing of problems as different as the climate response to forcings, the effect of altering

the boundary conditions or the coupling between geophysical flows, and the derivation

of parametrizations for numerical models.

I. INTRODUCTION

The Earth’s Climate provides an outstanding exam-
ple of a high-dimensional forced and dissipative complex
system. The dynamics of such system is chaotic, so that
there is only a limited time-horizon for skillful prediction,
and is non-trivial on a vast range of spatial and temporal
scales, as a result of the different physical and chemi-
cal properties of the various components of the climate
system and of their coupling mechanisms (Peixoto and

Oort , 1992).
Thus, it is extremely challenging to construct satis-

factory theories of climate dynamics and it is virtually
impossible to develop numerical models able to describe
accurately climatic processes over all scales. Typically,
different classes of models and different phenomenologi-
cal theories have been and are still being developed by
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focusing on specific scales of motion (Holton, 2004; Val-
lis, 2006), and simplified parametrizations are developed
for taking into account at least approximately what can-
not be directly represented (Palmer and Williams , 2009).

As a result of our limited understanding of and ability
to represent the dynamics of the climate system, it is hard
to predict accurately its response to perturbations, were
they changes in the opacity of the atmosphere, in the so-
lar irradiance, in the position of continents, in the orbital
parameters, which have been present for our planet dur-
ing all epochs (Saltzman, 2001). The full understanding
of slow- and fast-onset climatic extremes, such as drought
and flood events, respectively, and the assessment of the
processes behind tipping points responsible for the multi
stability of the climate system are also far from being
accomplished.

Such limitations are extremely relevant for problems
of paleoclimatological relevance such as the onset and
decay of ice ages or of snowball-conditions, for contingent
issues like anthropogenic global warming, as well as in the
perspective of developing a comprehensive knowledge on
the dynamics and thermodynamics of general planetary
atmospheres, which seems a major scientific challenge of
the coming years, given the extraordinary development
of our abilities to observe exoplanets (Dvorak , 2008).
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Climate science at large has always been extremely
active in taking advantage of advances in basic mathe-
matical and physical sciences, and, in turn, in provid-
ing stimulations for addressing new fundamental prob-
lems. The most prominent cases of such interaction are
related to the development of stochastic and chaotic dy-
namical systems, time series analysis, extreme value the-
ory, radiative transfer, and fluid dynamics, among oth-
ers. At this regard, one must note that the year 2013
has seen a multitude of initiatives all around the world
dedicated to the theme Mathematics of Planet Earth

(see http://mpe2013.org), and, in this context, climate-
related activities have been of great relevance.

In this review we wish to present some interdisciplinary
research lines at the intersection between climate science,
physics and mathematics, which are extremely promising
for advancing, on one side, our ability to understand and
model climate dynamics, and represent correctly climate
variability and climate response to forcings. On the other
side, the topics presented here provide examples of how
problems of climatic relevance may pave the way for new,
wide-ranging investigations of more general nature.

The literature related to the scientific interface men-
tioned above is enormous, and the selection of the mate-
rial we present here is partial and non-exhaustive. We
leave almost entirely out of this review very impor-
tant topics such as extreme value theory (Ghil et al.,
2011), multiscale techniques (Klein, 2010), adjoint meth-
ods and data assimilation (Wunsch, 2012), partial differ-
ent equations (Cullen, 2006), linear and nonlinear sta-
bility analysis (Vallis , 2006), general circulation of the
atmosphere (Schneider , 2006), macroturbulence (Love-
joy and Schertzer , 2013), networks theory (Donges et al.,
2009), and many relevant applications of dynamical sys-
tems theory to geophysical fluid dynamical problems (Di-

jkstra, 2013; Kalnay , 2003).

Let us now mention what we are going to cover in
this review and give a motivation to the specific perspec-
tive we have chosen. We are motivated by the desire
of bridging the gap between some extremely relevant re-
sults in mathematical physics, statistical mechanics, and
theoretical physics, and open problems and issues of cli-
mate science, hoping to stimulate further investigations
and interdisciplinary activities. Our selection of topics
will focus on the concepts of energy, entropy, symmetry,
coupling, fluctuations, and response.

We will first concentrate on the properties of invis-
cid and unforced flows relevant for geophysical fluid dy-
namics (GFD). In section II, we provide an overview of
a very powerful formulation of hydrodynamics based on
the formalism introduced by Nambu (1973) and present
its applications in a geophysical context, suggesting how
these ideas help clarifying somewhat hidden properties
of fluid flows, and how the Nambu formulation of GFD
could lead to a new generation of numerical models, to
be used in a variety of weather and climate applications

In section III, starting from the classical investigation by
Onsager (1949) of the dynamics of point vortices, we will
show how to develop an equilibrium statistical mechani-
cal theory of turbulence for GFD flows and will discuss its
relevance for interpreting observed climatic phenomena.

Equilibrium methods allow investigating many proper-
ties of GFD flows. Nonetheless, at this point we cannot
ignore anymore the elephant in the room, i.e., the fact
that the dynamics of the climate system cannot be as-
similated to an inviscid and unforced GFD flow, because
forcing and dissipative processes are of extreme relevance.
Thus, we move towards the paradigm of non-equilibrium
systems. In section IV, taking inspiration from the points
of view of Prigogine (1961) and of Lorenz (1967), we ex-
plore how through classical non-equilibrium thermody-
namics one can construct tools for assessing the energy
budget and transport of the climate system, define and
estimate the efficiency of the climate machine, and study
the irreversible processes by evaluation the climatic ma-
terial entropy production. This allows for characterizing
the large scale properties of climate, for developing tools
for auditing climate models, for gathering information on
tipping points, and for exploring the properties of gen-
eral planetary atmospheres. In section V, we address
the non-equilibrium statistical mechanics formulation of
climate dynamics, and explore how the formalism of re-
sponse theory allows for addressing in a rigorous frame-
work the climatic response to perturbations, taking in-
spiration from the work of Ruelle (1997). We will show
how it is possible to construct operators useful for the
prediction - in an ensemble sense - of climate change. A
last aspect of GFD we want to discuss in a statistical
mechanical setting is the derivation of parametrizations
providing a surrogate description of the effect of fast,
small scale variables, which are hard to represent explic-
itly in numerical models, on the larger scale, slow vari-
ables of more direct climatic relevance. Thus, in section
VI, we present averaging and homogenization techniques,
describe how projector operator methods due to Mori

(1965) and Zwanzig (1961) provide powerful tools for de-
riving parametrizations and firm ground to the inclusion
of stochastic terms and memory effects, and discuss how
response theory can be used to derive similar results.

Finally, in section VII we draw our conclusions and
present some perspectives of future research.

II. BEYOND THE HAMILTONIAN PARADIGM: NAMBU

REPRESENTATION OF GEOPHYSICAL FLUID

DYNAMICS

Hamiltonian formalism constitutes the backbone of
most physical theories. In the case of a discrete au-
tonomous system, the basic idea is to provide a full de-
scription of the degrees of freedom by defining a set of
canonical variables q and of the related momenta p (q,
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p ∈ RN , i.e., they are N -dimensional vectors), and by
identifying the time evolution to a flow in phase space
such that the canonical Hamiltonian function H acts as
a streamfunction, q̇ = ∇pH, ṗ = −∇qH, where H(q, p)
corresponds to the energy of the system, whose value is
constant in time. The flow is inherently divergence-free
(solenoidal), so that the phase space does not contract
nor expands, as implied by the Liouville Theorem (Lan-
dau and Lifshits , 1996). The time evolution of any func-
tion X(q, p) can be expressed as:

d

dt
X = Ẋ = {X,H}P = ∇qX · ∇pH−∇pX · ∇qH, (1)

where {, }P are the so-called Poisson brackets and · indi-
cates the usual scalar product. As suggested by Noether’s
theorem, the presence of symmetries in the system im-
plies the existence of so-called physically conserved quan-
tities Xi, such that Ẋi = 0 = {Xi,H}P . An autonomous
system possesses time invariance and its energy is con-
stant, while in a system possessing translational invari-
ance, the total momentum M is also constant. A system
can possess many constants of motions, called Casimirs,
apart from energy, but the Hamiltonian plays a special
role as it is the only function of phase space appearing
explicitly in the definition of the evolution of the system
(Landau and Lifshits , 1996).
Nambu (1973) presented a generalization of canonical

Hamiltonian theory for discrete systems. The dynamical
equations are constructed in order to satisfy Liouville’s
Theorem and are written in terms of two or more con-
served quantities. The Nambu approach has been ex-
tremely influential in various fields of mathematics and
physics and is viable to extension to the case of con-
tinuum, so that it can be translated into a field the-
ory. The construction of a Nambu field theory for geo-
physical fluid dynamics went through two decisive steps.
The first was the discovery of a Nambu representation
of 2D and 3D incompressible hydrodynamics (Névir and

Blender , 1993). The second important step was the find-
ing that the Nambu representation can be used to design
conservative numerical algorithms in geophysical models,
and that classical heuristic methods devised by Arakawa
for constructing accurate numerical models actually re-
flected deep symmetries coming from the Nambu struc-
ture of the underlying dynamics of the flow (Salmon,
2005).
The physical basis for the relevance of the Nambu the-

ory for describing and simulating conservative geophysi-
cal fluid dynamics comes from the existence of relevant
conserved quantities apart energy when forcing and dis-
sipative terms are disregarded from the evolution equa-
tions. Such a property is found in several models rel-
evant for studying geophysical flows, and are valid for
2D and 3D hydrodynamics, Rayleigh-Bénard convection,
quasi-geostrophy, shallow water model, and extends to
the fully baroclinic 3D atmosphere. In other terms, the

Nambu representation provides the natural description
of geophysical fluid dynamics and is superior to the more
traditional approaches based essentially on Euler equa-
tions, just like the action-angle representation of the dy-
namics of a spring is superior to the simple description
provided by the second Newton’s law of motion.

A. Hydrodynamics in 2D and 3D

In incompressible hydrodynamics enstrophy (in 2D)
and helicity (3D) are known as integral conserved quan-
tities besides energy (Kuroda, 1991). Névir and Blender

(1993) adapted Nambu’s formalism to incompressible
nonviscous hydrodynamics by using enstrophy and he-
licity in the dynamical equations.

1. Two-dimensional hydrodynamics

The evolution of two-dimensional incompressible invis-
cid and unforced flows described by the velocity field u

is governed by the vorticity equation

∂ω

∂t
= ∂tω = −u · ∇ω (2)

where customary symbols are used for indicating partial
derivatives, the vorticity ω can be expressed, in Cartesian
coordinates (x, y), as ω = vx − uy, and incompressibility
is described by ∇ ·u = 0, where ∇ ·U = ∂xUx + ∂yUy is
the divergence of the vector field U . As a result, we can
write u = S∇ψ = (−∂yψ, ∂xψ) , where S is the sym-
plectic matrix [0,−1; 1, 0], ψ is the streamfunction, and
∇φ = (∂xφ, ∂yφ) is the gradient of the function φ. Note
that ω = ∇2ψ. In this section, we consider a compact
domain (e.g., a square of side L) with periodic boundary
conditions.

The Hamiltonian H is the kinetic energy

H =
1

2

∫

u
2 dA = −

1

2

∫

ωψ dA, (3)

and is a functional of velocity. In general, a functional
F [φ] maps a function φ of the phase space into a num-
ber. The functional derivative δF/δφ the change of the
functional F with respect to a change in the function φ.
The functional derivative can be defined by considering
the first term in the expansion

F [φ+ δφ]−F [φ] = δF [φ] =

∫

δF

δφ(x)
δφ(x)dx+ . . . (4)

The functional derivative δH/δω for (3) is explicitly
calculated by

δH =

∫

∇ψ · δ∇ψ dA =

∫

∇ · (ψδ∇ψ) dA−

∫

ψδω dA
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Since the first integral vanishes due to the boundary con-
ditions, and since ω = ∇2ψ, we obtain δH/δω = −ψ.
Equation (2) says that vorticity is transported across

the domain by a non-divergent flow. One can prove easily
that any functional of the vorticity is conserved

C =

∫

s(ω) dA. (5)

where the integration is performed over the whole domain
of the system. The most familiar of such functional is the
total enstrophy of the flow:

E =
1

2

∫

ω2 dA (6)

The functional derivative of the enstrophy is simply
δE/δω = ω.
Since u = S∇ψ = (−∂yψ, ∂xψ), the 2D vorticity equa-

tion can be expressed as

∂ω

∂t
= −J (ψ, ω) = −J

(

δE

δω
,
δH

δω

)

, (7)

with the antisymmetric Jacobi operator

J (a, b) = ∂xa ∂yb− ∂ya ∂xb = −J (b, a). (8)

Relating ψ and ω to the functional derivatives of two
conserved quantities amounts to expressing the evolution
equation in a Nambu form using the enstrophy E .

The time-evolution of an arbitrary functional of vor-
ticity F = F [ω] is determined by

dF

dt
= −

∫

δF

∂ω
J

(

δE

δω
,
δH

δω

)

dA = {F , E ,H} (9)

which defines a Nambu bracket for the three functionals
involved. The bracket is anti-symmetric in all arguments,
{E ,H,F} = −{H, E ,F}, etc. Using rearrangements of
these functionals and partial integration it can be shown
that the Nambu bracket is cyclic

{F , E ,H} = {E ,H,F} = {H,F , E} (10)

The cyclicity of this bracket is a main ingredient in
Salmon’s application of Nambu mechanics (Salmon,
2005) to construct conservative numerical codes (see Sec-
tion II.B.2).
In the following the relationship between Nambu me-

chanics and Hamiltonian theory of two-dimensional flows
is briefly summarized. As mentioned above, a Hamilto-
nian description of the dynamics is obtained when we can
write

dF

dt
= {F ,H}P (11)

with an antisymmetric Poisson bracket, to be seen in gen-
eral as an antisymmetric map in the space of functionals,

such that {A,B}P = −{B,A}P . Deriving such a bracket
amounts to defining the dynamics of the system.
The Poisson bracket for 2D hydrodynamics (Salmon,

1988; Shepherd , 1990) is easily obtained from the Nambu
bracket if the dependency δE/δω = ω is evaluated

{F ,H}P = {F , E ,H} =

∫

ωJ (Fω,Hω) dA (12)

where we indicate Hω = δH/δω; here cyclicity is used,
see Eq. 10.
The Poisson bracket used in Eulerian hydrodynamics is

degenerate because of the presence of an infinite number
of so-called Casimirs, i.e., the functionals defined in Eq.
5, which are automatically conserved so that {C, H}P =
0. In this case, we talk about noncanonical Hamiltonian
mechanics.
The relationship (12) demonstrates that noncanonical

Hamiltonian mechanics is embedded in Nambu mechan-
ics. The main extension is that in Nambu mechanics two
functionals acting as an Hamiltonian, the enstrophy and
the energy, are used (7), and that the Nambu bracket (9)
is nondegenerate and void of Casimir functionals.

2. Three-dimensional incompressible hydrodynamics

The dynamics of incompressible unforced and inviscid
fluid flows in three dimension is determined by the vor-
ticity ω = ∇× u evolution equation:

∂ω

∂t
= ω · ∇u− u · ∇ω (13)

where u is the velocity field and ∇ · u = 0. Note that in
cartesian coordinates we have that the curl of U (∇×U)
can be expressed as (∇×U)i = ǫijk∂jUk where ǫijk is the
standard totally antisymmetric Levi-Civita symbol and
∇ · U = ∂xUx + ∂yU + ∂zUz is the divergence in three
dimensions. Similarly to the two-dimensional case, the
total energy

H =
1

2

∫

u
2 dV = −

1

2

∫

ω ·A dV (14)

is conserved, where we have introduced A as the vector
potential such that u = −∇ × A. Note that in deriv-
ing the second identity we use integration by parts and
consider periodic boundary conditions. It is important
to note that the total helicity

h =
1

2

∫

ω · u dV (15)

is also conserved, while e.g., the enstrophy is not. Fol-
lowing the procedure detailed in Eq. 4, we derive that
the functional derivative of the energy with respect to
the vorticity is given by δH/δω = −A and for helicity
δh/δω = u (compare the 2D version (5)).
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The Nambu form of the vorticity equation is

∂ω

∂t
= K

(

δh

δω
,
δH

δω

)

= −K (u,A) (16)

with

K(U1,U2) = −∇× [(∇×U1)× (∇×U2)] (17)

Considering that ω = ∇ × u and using some standard
vector calculus identities, we obtain that Eq. 16 agrees
with Eq. 13. We can derive the evolution equations for
functional F = F [ω] as follows:

dF

dt
= −

∫
(

∇×
δF

δω

)

×

(

∇×
δh

δω

)

·

(

∇×
δH

δω

)

dV

= {F , h,H} (18)

where the last equation defines the Nambu bracket for
3D incompressible hydrodynamics based on the vorticity
equation. Helicity is no longer a hidden conserved quan-
tity but enters the dynamics on the same level as the
Hamiltonian. Therefore, the Nambu mechanics is able
to account explicitly for conservation laws of the system,
and, correspondingly, to its symmetries.

B. Geophysical fluid dynamics

A Nambu representation can be constructed also for
some of the most important mathematical models rele-
vant for geophysical fluid dynamics on large scales: the
quasi-geostrophic potential vorticity equation (Névir and
Sommer , 2009), the shallow water model (Salmon, 2005;
Sommer and Névir , 2009), and the baroclinic stratified
atmosphere (Névir and Sommer , 2009). Other models
of geophysical relevance can also be treated in this way,
as, most notably, the Rayleigh-Bénard equations for two-
dimensional convection, which have been studied in detail
in Bihlo (2008) and Salazar and Kurgansky (2010). We
will not treat this latter case in this review.

1. Quasi-geostrophic approximation

Quasi-geostrophic (QG) theory is one of the most im-
portant and most studied pieces of geophysical fluid dy-
namics and is of crucial relevance for studying the large-
scale dynamics of the Earth’s atmosphere and ocean, and,
more recently, of planetary atmospheres (Holton, 2004;
Klein, 2010; Pedlosky , 1987). QG dynamics is relevant
when, within a good approximation, the fluid motions are
1) hydrostatic and 2) the Coriolis acceleration balances
the horizontal pressure gradients. This is typically real-
ized, e.g., in the atmospheric midlatitudes. In absence
of dissipative processes and of forcings, QG dynamics is
described by the material conservation of the QG poten-
tial vorticity. We consider customary Cartesian coordi-
nates plus time (x, y, z, t), where x indicates the zonal

direction, y the meridional direction, and z the vertical
direction as defined by gravity as in Holton (2004). The
evolution equation reads as follows:

∂Q

∂t
+

1

f0
J (Φ, Q) = 0 (19)

where J is the Jacobian (8). Q is the QG approximation
of Ertel’s potential vorticity

Q = ωg +
f0
N2

∂2Φ

∂z2
+ f (20)

with the geostrophic vorticity ωg = 1/f0∇
2
hΦ, geopoten-

tial Φ, ∇2
h is the Laplacian operator limited to the x

and y directions, Brunt-Väisälä frequency N , and Cori-
olis parameter f = f0 + βy. The geostrophic veloc-
ity ug has nonzero components only along the x and
y directions, so that we can write ug = (uh

g , 0), where

uh
g = 1/f0S∇hΦ = 1/f0(−∂yΦ, ∂xΦ), where ∇h is the

gradient operator limited to the x and y directions.
The first conserved integral is the total energy of the

system

H =
1

2

∫

[

(

∇hΦ

f0

)2

+

(

1

N

∂Φ

∂z

)2
]

dV (21)

where the first term is the density of kinetic energy and
the second term is the density of potential energy. At
each level z the geopotential acts as a stream function in
defining the geostrophic velocity field, while the vertical
derivative of the geopotential is proportional to the tem-
perature fluctuations of the system (Holton, 2004). The
second conserved integral is the potential enstrophy

E =
1

2

∫

Q2dV (22)

which is defined similarly to the enstrophy in Eq. 6. One
can prove that QG dynamics can be written in a Nambu
form as follows:

∂Q

∂t
= −J

(

δE

δQ
,
δH

δQ

)

(23)

Thus, the mathematical structure is analogous to the
two-dimensional vorticity equation (9). Moreover, we
can construct the evolution of any functional F [Q] by
defining the Nambu bracket as follows:

dF

dt
= −

∫

δF

δQ
J

(

δE

δQ
,
δH

δQ

)

dV = {F , E ,H} (24)

with δE/δQ = Q and δH/δQ = −Φ/f0.

2. Shallow water model

Roughly speaking, shallow water equations are useful
two-dimensional approximations of Navier-Stokes equa-
tions often used for describing some fluid motions where
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the horizontal scale of motion is much larger than its ver-
tical extent, such as in the case of tidal waves or tsunami
in the ocean, or Rossby and Kelvin waves in the atmo-
sphere. Here the single layer model is summarized (Som-

mer and Névir , 2009). The dynamics is given by the
evolution of the vorticity ω and the divergence µ = ∇ ·u
of the horizontal velocity u

∂tω = −∇ · (ωu) (25)

∂tµ = k · ∇ × (ωau) +∇2(u2/2 + ghT ) (26)

∂thT = −∇ · (hu) (27)

where hT is the total height of the fluid. The shallow
water model possesses two conserved integrals, the total
energy, given by the sum of kinetic and potential energy

H =
1

2

∫

ρ
(

hTu
2 + gh2T

)

dA (28)

and potential enstrophy

E =
1

2

∫

ρq2dA (29)

with the absolute potential vorticity q = ωa/hT , ωa =
ω + f . The functional derivatives of the conserved inte-
grals are δH/δω = −ρψ, δH/δµ = −ργ, δH/δhT = ρΨ,
δE/δω = ρq, δE/δµ = 0, δE/δhT = −(1/2)ρq2, where ρ is
the density of the fluid, ψ is the streamfunction, γ the ve-
locity potential for hv = S∇ψ+∇γ, Ψ = (1/2)u2 + ghT
is the Bernoulli function,

The Nambu representation of the shallow water model
was derived by Salmon (2005) and is a bit more cumber-
some than in, e.g., QG case. Sommer and Névir (2009)
present a numerical simulation of these equations on a
spherical grid, and Névir and Sommer (2009) published
the multilayer shallow water equations. In the case of a
single layer shallow water equations, the dynamics of any
functional F is determined by the sum of three Nambu
brackets

d

dt
F = {F ,H, E}ω,ω,ω+{F ,H, E}µ,µ,ω+{F ,H, E}ω,µ,hT

(30)
The first bracket is

{F , ,H, E}ω,ω,ω =

∫

J(Fω, ,Hω)EωdA (31)

where Xω = δX/δω. Such first bracket is analogous to
the 2D Nambu bracket (9) (apart from the sign). For
the other brackets we refer to (Salmon, 2005; Sommer

and Névir , 2009). Salmon (2007) calculated the Nambu
brackets based on the velocities instead of vorticity.

3. Baroclinic atmosphere

Névir and Sommer (2009) published the equations de-
termining the dynamics of a baroclinic dry atmosphere
in Nambu form (denoted as Energy-vorticity theory of
ideal fluid mechanics). The Nambu representation en-
compasses the Eulerian equation of motion in a rotating
frame, the continuity equation, and the first law of ther-
modynamics. The Nambu dynamics uses three brack-
ets for energy, helicity, energy-mass, and energy-entropy.
Due to its special role in all three brackets the integral of
Ertel’s potential enstrophy is coined as a super-Casimir.
The Nambu form shows an elegant structure where

fundamental processes are combined by additive terms.
Incompressible, barotropic or baroclinic atmospheres are
associated to additive contributions. Thus approxima-
tions are simply attained by the neglect of terms.
In absence of forcings and of dissipative processes, the

momentum equation, the continuity equation and the
first law of thermodynamics equation are (Peixoto and

Oort , 1992)

∂tu = −u · ∇u− 2Ω× u−
1

ρ
∇p−∇Φ (32)

∂tρ = −∇ · (ρu) (33)

∂ts = −u · ∇s (34)

where u is velocity, Ω the angular velocity of the earth, Φ
is the sum of the gravitational and centrifugal potential
of the earth, ρ is density and s is the specific entropy
per unit mass, determined by the equation of state of the
gas.
These equations possess four conservation laws. The

first is the total energy

H =

∫

ρedV ; e =
1

2
u
2 + i+Φ (35)

where e is the specific total enery and i is its internal
energy component. The absolute helicity is

ha =

∫

ua · ωadV (36)

where the absolute velocity is ua = u+Ω× r and ωa =
∇ × v + 2Ω. with the angular velocity of the earth Ω,
and r is the position vector. The total mass and entropy
are given by

M =

∫

ρdV, S =

∫

ρsdV (37)

and the total potential enstrophy is defined starting from
Ertel’s potential vorticity Π

Eρ =

∫

ρΠ2dV, Π =
ωa · ∇θ

ρ
, (38)
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analogously to the definition in the QG context given in
Eq. 22. The functional derivatives of the conservation
laws are δH/δu = ρu, δH/δρ = (1/2)u2+ i+p/ρ−Ts+
φ, δH/δσ = T , δM/δu = 0, δM/δρ = 1, δM/δσ =
0, δS/δu = 0, δS/δρ = s, δS/δσ = 1, δha/δu = ωa,
δha/δρ = 0, and δha/δσ = 0, where T is temperature,
and σ = ρs.
An arbitrary functional F of u, ρ and σ evolves ac-

cording to the sum of three brackets which are defined
below

d

dt
F = {F , ha,H}h + {F ,M,H}m + {F , S,H}s (39)

The three brackets are defined below. The first one is
the so-called helicity bracket:

{F , ha,H}h = −

∫
[

1

ρ

δF

δu
·

(

δha
δu

×
δH

δu

)]

dV ; (40)

the second is the so-called mass bracket:

{F ,M,H}m = −

∫
[

δM

δρ

δF

δu
· ∇

δH

δρ

+
δF

δρ
∇ ·

(

δM

δρ

δH

δu

)]

dV + cyc(F ,M,H); (41)

where cyc indicates permutations in cyclic order of the ar-
guments. The third one is the so-called entropy bracket:

{F ,S,H}s = −

∫
[

δS

δρ

δF

δu
· ∇

δH

δσ

+
δF

δσ
∇ ·

(

δS

δρ

δH

δu

)]

dV + cyc(F ,M,H) (42)

For a barotropic flow the first law of thermodynamics is
physically not relevant and the entropy bracket is dis-
carded in (39) because the functional derivatives with
respect to σ vanish. The continuity equation remains un-
approximated and the pressure gradient term is replaced
by the gradient of enthalpy. Note the different brackets
for helicity (40) and vorticity (18) in 3D hydrodynamics.

C. Conservative algorithms and numerical models

Salmon (2005, 2007) recognized that the existence of
a Nambu bracket with two conserved integrals allows the
design of high-precision numerical algorithms for study-
ing geophysical flows. The idea is in fact simple: just like
in the usual case we aim at writing numerical codes able
to conserve energy when dissipation and forcing are ne-
glected, Nambu mechanism provides encouragement and
conceptual support for expanding this point of view by
encompassing other important physical quantities. The
approach is useful in GFD turbulence simulations be-
cause these flows are characterized by the existence of
conservation laws besides total energy. In particular, the

conservation of enstrophy inhibits spurious accumulation
of energy at small scales.
For the numerical design of conservative codes based

on a Nambu structure the following remarks are noted:

• A Nambu form of the continuous physical system
is required.

• The quantities used in the Nambu bracket are con-
served.

• The discrete form of the Jacobian needs to preserve
antisymmetry (11).

• The approach is applicable to any kind of dis-
cretization, e.g. for finite differences, finite vol-
umes, or spectral models.

• Arbitrary approximations of the conservation laws
are possible; these approximations are conserved
exactly.

• For the barotropic vorticity equation the classic
Arakawa Jacobian could be retrieved by equally
weighting the cyclic permutations of the Nambu
bracket. In other terms, Arakawa found heuristi-
cally a discrete Nambu representation of barotropic
dynamics (Dubinkina and Frank , 2007).

In recent years, various authors have provided promising
examples of actual implementations of GFD codes which
take into explicit consideration the underlying Nambu
dynamics of the unforced and inviscid case. Salmon

(2007) presents the first numerical simulation of a shallow
water model derived from the Nambu brackets formalism.
The simulation is on a square rectangular grid and the
design on an unstructured triangular mesh is outlined.
Sommer and Névir (2009) report the first simulation

of a shallow water atmosphere using Nambu brackets.
The authors use an isosahedric grid (as in the ICON
model, ICOsahedric Non-hydrostatic model, of the Ger-
man Weather Service and the Max Planck Institute for
Meteorology, Hamburg). The construction of the algo-
rithm is as follows (Sommer and Névir , 2009):

1. First the continuous versions of the Nambu-
brackets and conservation laws need to be obtained.

2. On the grid, the following expressions need to be
calculated: functional derivatives, discrete opera-
tors (div and curl), discretization of the Jacobian
and the Nambu brackets.

3. Finally, the prognostic equations are obtained by
inserting the variables in the brackets. Various op-
tions are available for the time stepping is arbi-
trary; Sommer and Névir (2009) use a leap-frog
with Robert-Asselin filter.
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FIG. 1 Enstrophy tendencies in the enstrophy conserving
ICON shallow water model and the Nambu model of Sommer
and Névir (2009) (courtesy of Matthias Sommer, Ludwig-
Maximilians-Universität München). Note that the tendency
in the Nambu model is of the order of the numerical accuracy.

The authors find quasi-constant enstrophy and energy
compared to a standard numerical design (Fig. 1).
Along these lines, Gassmann and Herzog (2008) sug-

gest a radically new concept for a global numerical
simulation of the non-hydrostatic atmosphere using the
Nambu representation for the energy-helicity bracket
{F , ha,H} (Névir , 1998). Their suggestion incorporates
a careful description of Reynolds averaged subscale pro-
cesses and budgets. Gassmann (2013) describes a global
non-hydrostatic dynamical core based on an icosahedral
nonhydrostatic model on a hexagonal C-grid. The model
conserves mass and energy in a noncanonical Hamil-
tonian framework,even if some still unsolved numerical
problems occur when the non-hydrostatic compressible
equations are in a Nambu bracket form. The use of dy-
namical cores constructed according to the sophisticated
version of fluid dynamics discussed here might provide
crucial for improving the ability of atmospheric models
in representing correctly the global budgets of physically
relevant quantities also in the case when forcing and dis-
sipative processes are taken into account. As discussed
by Lucarini and Ragone (2011) for the case of energy,
this is far from being a trivial task.

D. Perspectives

Like Hamiltonian mechanics, the Nambu approach is
a versatile tool for the analysis and simulation of dynam-
ical systems. Here some possible research directions are
outlined.
Modular modeling and approximations: In sev-

eral applications a Nambu representation can be found by
adding brackets which conserve a particular Casimir, this
is already mentioned by Nambu (1973); see the baroclinic
atmosphere (Névir and Sommer , 2009) and the classifi-

cation by Salazar and Kurgansky (2010). The dynam-
ics is determined by these ’constitutive’ Casimirs (a no-
tion coined in (Névir and Sommer , 2009)) which are not
conserved in the complete system. Decomposition leads
to subsystems where the constitutive Casimirs are con-
served. An example is helicity which is constitutive in
the baroclinic atmosphere and only conserved in the 3D
incompressible flow. The decomposition is directly asso-
ciated with approximations (Névir and Sommer , 2009).
Composition allows a process-oriented model design.

Statistical Mechanics: The statistical mechanics of
fluids is characterized by the existence of conservation
laws besides total energy (Bouchet and Venaille, 2012),
see also section III in this review. Thus these conserva-
tion laws have a two-fold impact: They determine the
dynamics in a Nambu bracket and the canonical proba-
bility distribution in equilibrium.

Dynamics of Casimirs: Casimir-functions of a con-
servative system are ideal observables to characterize the
dynamics in the presence of forcing and dissipation. This
might prove especially interesting when studying the re-
sponse of a system to perturbations in the context of
the Response theory proposed by (Ruelle, 1997, 1998a,b,
2009) and recently used in a geophysical context by var-
ious authors with promising results (Abramov and Ma-

jda, 2008; Eyink et al., 2004; Lucarini , 2009; Lucarini
and Sarno, 2011); see also section V in this review.

As illuminating example, we mention the recent work
of Pelino and Maimone (2007) and Gianfelice et al.

(2012), who have used recurrence maps of extremes of
energy and a Casimir in a Lorenz-like map to assess pre-
dictability of the system and study the properties of the
invariant measure.

III. EQUILIBRIUM STATISTICAL MECHANICS FOR

GEOPHYSICAL FLOWS

We have seen in the previous section that different
models of geophysical flows have a specific mathemat-
ical structure: they are Hamiltonian systems, and have
an infinite number of conserved quantities - the Casimirs.
The previous section has shown how one could take ad-
vantage of these features and construct theoretically rich
representation of the dynamics and provide proposals for
constructing new numerical codes of GFD flows. This
section goes in the direction of constructing a probabilis-
tic description of GFD flows, basically taking the point of
view that due to the large amount of degrees of freedom
involved, one can consider the state of the atmosphere
and the ocean as random variables. Here we shall review
the progress that has been made by using the simplest
class of possible probability distributions: the equilib-
rium distributions which depend only on the conserved
quantities. However, most of the standard applications of
equilibrium statistical mechanics deal with dynamics on
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a finite dimensional phase space (e.g., a gas with a finite
number of molecules), with a finite number of dynamical
invariants (often just the energy). The equations describ-
ing the dynamics of geophysical flows violate both these
constraints. Several solutions have thus been proposed:
they are reviewed briefly in the next sections, going from
the main fundamental ideas to selected geophysical ap-
plications.

A. Finite-dimensional models: Point vortices

1. Negative temperature states and clustering of vortices

Onsager (1949) was the first to understand that the co-
herent structures and persistent circulations that appear
ubiquitously in planetary atmospheres and in the Earth’s
oceans could be explained on statistical grounds. His
work focused on 2D incompressible, inviscid fluids given
in equation 2. To make the system tractable, he intro-
duced an approximation of the vorticity field in terms of
N point vortices with circulation γi and position ri(t):

ω(r, t) =
∑N
i=1 γiδ(ri(t) − r), where δ(x) is the usual

Dirac’s delta distribution. Introducing the Hamiltonian
H = −

∑

i<j γiγjG(ri, rj), where G is the Green func-
tion of the Laplacian (the response to an impulse source:
∆G(ri, rj) = δ(ri − rj)), the dynamics reads simply

γi
dxi
dt

=
∂H

∂yi
, γi

dyi
dt

= −
∂H

∂xi
. (43)

This is a canonical Hamiltonian system with a finite num-
ber of degrees of freedom, for which the standard meth-
ods of statistical mechanics apply directly. In particular,
the microcanonical probability measure, acting as invari-
ant - e.g. unaltered by the dynamics - measure of the
system, assigning a uniform probability to all the config-
urations with the same energy, is given by

ρ{ri}1≤i≤N ) =
δ(H({ri}1≤i≤N )− E)

Ω(E)
, (44)

where Ω(E) is the structure function, which measures
the volume in phase space occupied by configurations
with energy E. It is easily proved that, for a bounded
domain, and hence a finite volume phase space, this func-
tion reaches a maximum for a given value of the energy.
Hence, the thermodynamic entropy S(E) = kB lnΩ(E)
decreases for a range of energies, and the statistical tem-
perature 1/T = ∂S/∂E becomes negative. Negative tem-
peratures, although counter-intuitive, have since been
commonly encountered in the study of other systems with
long-range interactions (Dauxois et al., 2002), and corre-
spond to self-organized states. Here, the energy increases
when two same-sign vortices move closer, while it de-
creases for opposite signs. When the temperature is neg-
ative, configurations with maximum energy are favored.

Hence, negative temperature equilibrium states exhibit-
ing clusters of same-sign vortices are expected. This be-
havior has been confirmed by numerical simulations with
up to N = 6724 point vortices: see Fig. 2.

FIG. 2 Time evolution for a numerical simulation of two-
sign point vortices (shown in red and blue), for positive tem-
peratures (upper panel) and negative temperatures (lower
panel) (Yatsuyanagi et al., 2005). For negative tempera-
tures, we observe the clustering of same-sign vortices, while
for positive temperatures, positive and negative vortices are
distributed homogeneously in the domain.

2. Mean-field equation

The above argument is qualitative; to characterize the
coherent structures which are expected to emerge from
the clustering of same-sign vortices, we introduce the
probability density ρi(r, t) for a vortex with strength γi
to be found at point r at time t. It satisfies the normaliza-
tion

∫

ρi(r, t)dr = 1. We define a coarse grained vorticity
field ω(r, t) =

∑

i γiρi(r, t). This probability density is
expected to converge towards its statistical equilibrium:
the equilibrium distribution maximizes the statistical en-
tropy S = −

∑

i

∫

ρi(r) ln ρi(r)dr. The solution of this

variational problem is given by ρi(r) = eβ(γiψ(r)+µi)/Z
where β and βµi are the Lagrange parameters associ-
ated with conservation of global energy and normaliza-
tion of each ρi, respectively, and ψ = ∆−1ω is the coarse-
grained stream function, while the normalization factor
Z is called the partition function. Averaging over this
equilibrium distribution gives the coarse-grained vortic-
ity field, which satisfies the mean-field equation:

ω(r) =
1

Z

∑

i

γie
β(γiψ(r)+µi). (45)

This is an equation of the form ω = F (ψ), characteris-
tic of the steady-states of the 2D Euler equations. A
well-known particular case is that of N vortices with
circulation 1/N and N vortices with circulation −1/N .
In that case, the mean-field equation can be recast as
ω = A sinh(βΨ), with Ψ = ψ−(µ+−µ−)/2 (Montgomery

and Joyce, 1974).
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The theory can be generalized in a straightforward
manner to quasi-geostrophic (QG) flows (Miyazaki et al.,
2011). DiBattista and Majda (2001) have given solu-
tions of the mean-field equation for a two-layer model
- i.e., a QG model where the stream function is de-
fined only at two discrete value of the vertical coordi-
nate and the temperature is defined at the interface be-
tween such level (Holton, 2004) - where the point vor-
tices stand for hetons, introduced by Hogg and Stommel

(1985) as a model of individual convective towers in the
ocean. They have shown that a background barotropic
current (the barotropic governor) confines potential vor-
ticity and temperature anomalies, thereby suppressing
the baroclinic instability, in agreement with numerical
simulations (Legg and Marshall , 1993).

The point vortex model suffers from a number of lim-
itations inherent to the approach. First of all, when we
let the number of vortices tend to infinity (the thermo-

dynamic limit), we have to introduce an ad-hoc scaling
of the Lagrange parameters to retain the organized, neg-
ative temperature states. Besides, there is no unique
way to approximate a vortex patch by a finite number of
vortices. A consequence is also that the area of vorticity
patches cannot be conserved in this singular formulation.
We shall see in section III.C that dealing directly with
the vorticity field will solve these issues, while predict-
ing a relation between vorticity and stream function very
similar to the one obtained above.

B. Finite-dimensional models: truncated Fourier modes

1. 2D Turbulence

Rather than a discretization in physical space, one may
consider a finite number of modes in Fourier space, as
proposed by Lee (1952) and Kraichnan (1967) in the
context of the Euler equations. For 2D flows — for sim-
plicity, we consider here a rectangular geometry with pe-
riodic boundary conditions; the case of a spherical ge-
ometry can be found in Frederiksen and Sawford (1980)
— writing the vorticity field as a truncated Fourier series
ω(x) =

∑

k ω̂(k)e
ik·x, the evolution in time of the Fourier

coefficients follows an equation of the form ∂tω̂(k) =
∑

p,qAkpqω̂(p)ω̂(q), where the summation is restricted

to a finite set of wave vectors B = {k ∈ 2π/LZ3, kmin ≤
k ≤ kmax} and Akpq takes care of the quadratic non-
linearity terms. This dynamics preserves two quadratic
quantities: the energy E =

∑

k|ω̂(k)|
2
/(2k2) and the en-

strophy Γ2 =
∑

k|ω̂(k)|
2
. Kraichnan (1967) suggested to

consider the canonical probability distribution:

ρ({ω̂(k)}k∈B) =
e−β̃E−αΓ2

Z
, (46)

In particular, the average energy at absolute equilibrium

is given by

〈E〉 = −
∂ lnZ

∂β̃
=

1

2

∑

k∈B

1

β̃ + 2αk2
, (47)

which corresponds to an equipartition spectrum for the
general invariant β̃E + αΓ2: E(k) = πk/(β̃ + 2αk2). In-
viscid numerical runs indeed relax to this spectrum (Bas-
devant and Sadourny , 1975; Fox and Orszag , 1973). Note
that the Lagrange parameters α and β̃ cannot take ar-
bitrary values; they are constrained by the realizability

condition — for the Gaussian integral defining Z to con-
verge. Here, this condition reads: β̃ + 2αk2min > 0 and
β̃ + 2αk2max > 0. In particular, when α > 0, negative
temperatures can be attained. In this regime, which cor-
responds to 〈Γ2〉/(2〈E〉) small enough (Kraichnan and

Montgomery , 1980), the energy spectrum is a decreasing
function of k. When β̃ → −2αk2min, a singularity appears
at k → kmin, which means that the energy is expected to
concentrate in the largest scales. Hence, statistical me-
chanics for the truncated system predicts that when the
enstrophy is small enough compared to the energy, we
expect the energy to be transferred to the large scales.
Kraichnan (1967) gives other arguments to support and
refine this view; in particular he shows the existence of
two inertial ranges, with a constant flux of energy and
enstrophy, respectively, with the energy spectrum scal-
ing as E(k) ∼ Cε2/3k−5/3 and E(k) ∼ C ′η2/3k−3 re-
spectively, where ε and η are the energy and enstrophy
fluxes. In particular, the equilibrium energy spectrum at
large scales is shallower than the energy inertial range
spectrum. Assuming a tendency for the system to relax
to equilibrium — although the equilibrium is never at-
tained in the presence of forcing and dissipation — we
thus expect the flux of energy to be towards the large
scales; a process referred to as the inverse cascade of 2D
turbulence. Similarly, the transfer of enstrophy in the
corresponding inertial range should be towards the small
scales. The dual cascade scenario has been confirmed
both by numerical simulations (Boffetta, 2007) and lab-
oratory experiments (Paret and Tabeling , 1997).

2. Quasi-Geostrophic Turbulence

The dynamical equations of QG flow are very similar
to the Euler equations, replacing vorticity by potential
vorticity (see section II.B.1). In particular, they con-
serve similar quadratic invariants, and the theory can be
extended in a straightforward manner (Holloway , 1986;
Salmon, 1998). We will discuss in this section the effect
of stratification and β effect.
Perhaps the simplest framework to consider the role

of stratification is the two-layer QG case. As in section
III.B.1, a canonical probability distribution can be con-
structed, taking into account the three invariants: the
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total energy E and the potential enstrophies of each
layer, Z1 and Z2. The corresponding partition function
can be computed, and the spectrum studied in the var-
ious regimes, with similar results. In particular, nega-
tive temperature states are accessible, which correspond
to condensation of the energy on the largest horizon-
tal scales and the Fofonoff (1954) solutions mentioned
below. Maybe more interestingly, although the vari-
ous forms of energy (kinetic energy K1,K2 in each layer
and potential energy P ) are not individually conserved,
we can compute their average value at equilibrium, as
Salmon et al. (1976) did. Alternatively, the standard
decomposition in terms of the barotropic and baroclinic
modes (constructed by taking the average and the differ-
ence of the streamfunctions in the two layers), with their
kinetic energies KT and KB , can be used. As Salmon

et al. (1976) highlighted, the Rossby deformation scale
kD = 2π/RD plays an important role. RD = NH/f0,
where H is the vertical extent of the domain and f0 is
the reference Coriolis parameter, defines the typical hor-
izontal scale of perturbations of vertical extent equal to
H, with N/f0 ≫ 1 defining the typical geometric as-
pect ratio. At scales smaller than the deformation scale
(k ≫ kD), the two layers behave essentially as two in-
dependent copies of 2D turbulence; the energy spectrum
in each layer is the same as in the 2D case, the correla-
tion at statistical equilibrium is low, and there is about
as much energy in the barotropic mode and the baro-
clinic mode: 〈KT (k)〉/〈KB(k)〉 ∼ 1. Besides, the po-
tential energy is small compared to the kinetic energy:
〈P (k)〉/〈KT (k)〉 = O(kD/k). At scales larger than the
deformation radius (k ≪ kD), the system rather behaves
as a unique barotropic layer: the amount of energy in
the two layers is about the same, but the energy is es-
sentially in the barotropic mode, with negligible energy
in the baroclinic mode, and a statistical correlation be-
tween the two layers of order 1. This theoretical anal-
ysis goes in strong support of the standard picture of
two-layer QG turbulence, developed on phenomenolog-
ical grounds (Rhines (1979); Salmon (1978), see also
Vallis (2006, chap. 9) and Fig. 3), and is in agree-
ment with numerical simulations (Rhines , 1976). These
results have been extended to an arbitrary number of
layers and to continuously stratified flows by Merryfield

(1998). Although the equilibrium mean, vertically inte-
grated stream function remains similar to the two-layer
case, the distribution of the statistics on the vertical dif-
fers as higher-order moments are considered. The ratio
of potential to kinetic energy for instance, can become
significantly underestimated, especially in the limit of
strong stratification (kD → 0) where the two-layer model
does not capture well the possibility that an important
fraction of the energy may be trapped near the bottom.

The second dominant effect in geophysical flows, in
addition to stratification, is rotation. The Coriolis force
introduces a linear term in the equations, which does not

Baroclinic Energy

Barotropic Energy

Wind or

Solar Input

Loss to

Boundary

Layer Friction

Scattering Into

3D Turbulence

k0 kD k3D

FIG. 3 Energy (solid arrows) and potential enstrophy (dashed
arrows) flux diagram for two-layer quasi-geostrophic turbu-
lence, taking inspiration from Salmon (1978). The energy
injected in the baroclinic mode at large scales is cascaded
downscale until the deformation scale is reached, then it is
transferred to the barotropic mode and cascaded upscale like
in 2D turbulence, in agreement with the predictions of equi-
librium statistical mechanics.

affect directly the previous analysis of the nonlinear en-
ergy transfers: the conserved quantities remain the same
and the statistical theory is easily extended by replacing
relative vorticity with absolute vorticity. However, the
variation of the Coriolis force with latitude is responsi-
ble for the appearance of Rossby waves, which modify the
physical interpretation of the predicted cascade of energy.
As anticipated by Rhines (1975) and verified numerically
(e.g., Vallis and Maltrud , 1993), the Rossby waves deflect
the inverse energy cascade: they dominate over nonlinear
effects in a part of Fourier space and prevent access to
low wavenumbers along one direction in Fourier space.
This leads to the preferential formation of zonal flows.

3. Beyond balanced motion

Although the large-scale motions of the atmosphere
and oceans of the Earth are very close to geostrophic
and hydrostatic balance, these relations break up when
moving down to the mesoscale, and the transfers of en-
ergy due to turbulence, or the non-linear interaction of
inertia-gravity waves, might not follow the inverse cas-
cade scenario described in sections III.B.1-III.B.2. As a
matter of fact, a downscale transfer of energy is needed
in the ocean to feed enhanced vertical mixing (e.g., Led-
well et al., 2000) or small-scale dissipation in the ocean
interior (Nikurashin et al., 2013). Such processes are nec-
essary to close the energy budget of the ocean (Wunsch

and Ferrari , 2004). It is therefore natural to ask how
equilibrium statistical mechanics can help understand-
ing how energy is exchanged by nonlinear interactions
between the slow, balanced motions and the fast, wave
motions.

Errico (1984) first observed a tendency for unforced in-
viscid flows described by hydrostatic primitive equations
to reach an energy equipartition state, in which the en-
ergy in the fast wave modes is comparable to that in the
slow balanced modes. The study by Warn (1986), in the
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context of the shallow water equations, essentially con-
firms that QG flows are not equilibrium states, and that
a substantial part of the energy may end up in the fast
(surface) wave modes at statistical equilibrium, implying
a direct cascade of energy to the small scales. Bartello

(1995) has obtained analytically the equilibrium energy
spectrum for the Boussinesq equations (neglecting the
nonlinear part of potential vorticity), in the presence of
rotation, confirming the direct cascade of energy. In par-
ticular, there is no negative temperature states in this
case, due to the presence of the inertia-gravity waves. In
fact, numerical simulations (Pouquet and Marino, 2013)
indicate that turbulence with rotation and stratification
might have at the same time an inverse and a direct cas-
cade of energy. A natural interpretation would be that
vortical modes are responsible for the inverse cascade
while waves cascade energy downscale simultaneously.
Bartello (1995) had discussed the possibility of a wave-
vortical mode decoupling on the basis of resonant triadic
interactions. Without any assumptions on the dynamics,
another interpretation in the statistical mechanics frame-
work uses an analogy with metastable states: restricting
the equilibrium probability distribution to the slow man-
ifold yields an inverse cascade, while taking into account
the whole phase space including the waves results in a
direct cascade (Herbert et al., 2014).

C. The mean-field theory for the continuous vorticity field

1. Mean-field theory

Above, we have considered finite-dimensional models
conserving at most two quadratic quantities, the energy
and the enstrophy. In fact, the majority of the flows con-
sidered above — and in particular 2D and QG flows —
conserve an infinite family of invariants, called Casimir
invariants: for any function s,

∫

s(ω)dr is conserved (see
Eq. 5). The specific case sn(x) = xn corresponds to the
moments of the vorticity distribution. Instead, the con-
servation of sσ(x) = δ(x− σ) implies that the area γ(σ)
where the vorticity takes value σ is conserved. This is due
to the absence of a vortex stretching term, in contrast
with full 3D flows; here the vorticity (or potential vortic-
ity, in the QG case) patches are stirred in such a way that
their area remains conserved. The theory developed by
Miller (1990) and Robert and Sommeria (1991) (see also
Bouchet and Venaille (2012) for a review) introduces a
coarse-grained vorticity field ω, which corresponds to the
macroscopic state of the flow. This coarse-grained vor-
ticity field can be predicted based on the invariants using
statistical mechanics. To do so, we introduce ρ(σ, r), the
probability density for the vorticity field to take value σ
at point r. The coarse-grained vorticity field is given by
ω(r) =

∫∞

−∞
σρ(σ, r)dσ. The invariants of the system are

the energy

E [ρ] =

∫

D2

drdr′
∫

R2

dσdσ′σσ′G(r, r′)ρ(σ, r)ρ(σ′, r′),

(48)

with G the Green function of the Laplacian, and the
Casimir invariants

Gn[ρ] =

∫

D

dr

∫

R

dσσnρ(σ, r), (49)

or equivalently, the vorticity levels

Dσ[ρ] =

∫

D

drρ(σ, r). (50)

The idea of the theory is to select the probability dis-
tribution ρ which maximizes a mixing entropy S [ρ] =
−
∫

D

∫

R
drdσρ(σ, r) ln ρ(σ, r), under the constraints of

conservation of the invariants, and pointwise normaliza-
tion N [ρ](r) =

∫

R
dσρ(σ, r) = 1. Hence, we are inter-

ested in the variational problem:

max
ρ,N [ρ](r)=1

{S [ρ] | E [ρ] = E, ∀n ∈ N,Gn[ρ] = Γn}, (51)

or equivalently,

max
ρ,N [ρ](r)=1

{S [ρ] | E [ρ] = E, ∀σ ∈ R,Dσ[ρ] = γ(σ)}.

(52)

The solutions of this variational problem correspond to
the most probable states for a given set of conserved
quantities.
The critical points of the variational problem (52)

are simply given by δS −
∫

drζ(r)δN (r) − ˜̃βδE −
∫

dσα(σ)δDσ = 0, where β̃ and α(σ) are the Lagrange
multiplier associated with the conservation constraints.
Easy computations yield the solution

ρ(σ, r) =
1

Z
eβ̃σψ(r)−α(σ), (53)

so that the coarse-grained vorticity is given by

ω = F (ψ), with F (ψ) =
1

β̃

δ lnZ

δψ
, (54)

and Z(ψ) =
∫

R
dσeβ̃σψ−α(σ). To compute the equilib-

rium states of the system, one should solve the partial
differential equation (54), referred to as the mean-field

equation, and check afterwards that the obtained critical
points are indeed maxima of the constrained variational
problem by considering the second derivatives. This will
automatically ensure that the equilibrium states are non-
linearly stable steady states (Chavanis, 2009).
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FIG. 4 Maximum entropy states as a function of the aspect
ratio for a rectangular domain, in the linear (strong mixing)
ω-ψ limit (Chavanis and Sommeria, 1996). For τ < τc, the
equilibrium is a monopole, while for τ > τc, it is a dipole.

2. Equilibrium states for 2D and barotropic flows

The mean-field equation (54) is in general difficult to
solve; one issue is that the ω - ψ relation is in general
nonlinear. Most of the analytical solutions have been ob-
tained in the linear case, by decomposing the fields on
a basis of eigenfunctions of the Laplacian on the domain
D. This technique was first introduced in a rectangular
domain by Chavanis and Sommeria (1996), who showed
that the statistical equilibrium is either a monopole or a
dipole, depending on the aspect ratio (Fig. 4). The
same method was extended to the case of barotropic
flows, replacing vorticity by potential vorticity. Tak-
ing into account the β effect, Fofonoff (1954) flows are
obtained as statistical equilibria in a rectangular basin
(Naso et al., 2011; Venaille and Bouchet , 2011). Such so-
lutions correspond to flows with two gyres (anticyclonic
in the northern basin, cyclonic in the southern basin) in
a rectangular basin, see Fig. 5. The relative vorticity is
confined to a boundary layer, whose with decreases with
the total energy or when the β effect (i.e., the relative
strength of the gradient of the planetary vorticity) in-
creases. The flow is westward in the interior of the basin,
with an eastward compensating flow near the boundaries.

Different geometries can be studied: in a rotating
sphere, the equilibria, in the linear limit, can be either
solid-body rotations, dipole flows (Herbert et al., 2012)
or quadrupoles, taking into account conservation of an-
gular momentum (Herbert , 2013). In the latter case, a
perturbative treatment of the nonlinearity in the ω - ψ
relationship leads to the same flow topology, but sharper
vortex cores (Qi and Marston, 2014). Bouchet and Si-

monnet (2009) have also considered the role of a small
nonlinearity in the ω - ψ relationship for a rectangular

domain of aspect ratio close to 1, with periodic boundary
conditions, thereby obtaining two topologies for the equi-
librium states: dipole and unidirectional flows. Adding
a small stochastic forcing generates transitions from one
to the other equilibrium.

3. Stratified flows

In addition to the 2D and quasi-2D cases mentioned
above, the theory has also been applied to stratified flu-
ids (essentially in the quasi-geostrophic regime). Herbert
(2014) has obtained and classified the statistical equi-
libria of the two-layer QG model in the framework of
the Robert-Miller-Sommeria theory, and updated the dis-
cussion of the vertical distribution of energy at statisti-
cal equilibrium (see section III.B.2): in particular, it is
shown that even at statistical equilibrium, there will re-
main some residual energy in the baroclinic mode, unless
the initial vertical profile of fine-grained enstrophy is uni-
form. In the context of continuously stratified flows, Ve-
naille (2012) has taken up the thread initiated by Merry-

field (1998) (see section III.B.2) and shown that bottom-
trapped currents are indeed statistical equilibria of the
Robert-Miller-Sommeria theory. Still in the continuous
case, Venaille et al. (2012) have also studied the vertical
distribution of energy at statistical equilibrium, focusing
on the tendency to reach barotropic equilibrium states;
as also observed in the two-layer model, the constraint
of conservation of fine-grained enstrophy prevents com-
plete elimination of energy in the baroclinic mode. As
the β effect increases, barotropization is facilitated, until
we enter a regime dominated by waves. It is well known
that baroclinic dynamics is hindered by strong values β
(Holton, 2004).

D. Subgrid scale parameterization

Results from equilibrium statistical mechanics have
found practical applications in the development of pa-
rameterization methods. Holloway (1992) suggested to
replace the usual sub-grid scale parameterizations in
ocean models, where, e.g., viscous forces are represented
with terms of the form ν∗∆u), where ν∗ is the eddy
viscosity. He proposed to replace such formula with
ν∗∆(u−u∗), so that viscosity relaxes the system towards
the statistical equilibrium state u∗. Such a parameteri-
zation has been implemented, tested and commented in a
number of studies (Cummins and Holloway , 1994, e.g.).
For more perspective on this type of subgrid-scale param-
eterizations, the reader is referred to (Holloway , 2004)
and (Frederiksen and O’Kane, 2008).

Along similar lines, Kazantsev et al. (1998) have pro-
posed more generally to treat the subgrid scales so as
to maximize the entropy production, inspired by the
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Figure 8. Experiment using the smoothed average 5 field in ISRDl instead of random field as 
initial condition. Now the field has very little transient component. The fields are averaged 
from 10 T,, and then smoothed. Shown here are (a) relative vorticity 5, (b) absolute vorticity 
q, (c) streamfunction IJJ and (d) scatter-plot of q - I). 

consistent with the theory. Roughly measuring from the scatter-plots, we obtain Apl 

CL- -0.37 where E is the average of p’s in the two experiments, A~J, is the increase in 

t,r, from 32 x 32 to 128 x 128 experiments. Therefore, we have: 

AE 3Ak -- --- 
E - - 2 CL - 55-5%* 

Both energies are the components contained in the time mean fields. Hence, when 

R, = 3.18 x 10e3 in the initial random flows, then as resolution is increased from 

FIG. 5 Convergence towards the statistical equilibrium in inviscid truncated barotropic flow on a β-plane (Wang and Vallis,
1994). Left: Stream function. Right: scatterplot of the q-ψ relation.

relaxation equations formulated in the Robert-Miller-
Sommeria theory as an algorithm to construct equilib-
rium states (Chavanis and Sommeria, 1997). Note also
that it has been shown in direct numerical simulations
of ideal 3D turbulence that the small scales thermalize
progressively, and act as a sort of effective viscosity in
the ideal system, leading to the appearance of transient
Kolmogorov scaling laws (Cichowlas et al., 2005). This
seems to be consistent with the above suggestions for
subgrid scale parameterizations.

IV. CLIMATE AS A FORCED-DISSIPATIVE

THERMODYNAMIC SYSTEM

In the previous sections the focus has been on identify-
ing symmetry properties and conservation laws of GFD
flows and relate these to dynamical features and statis-
tical mechanical properties. Neglecting forcing and dis-
sipation has led us to study reversible equations whose
statistical properties can be described using equilibrium
statistical mechanics.
Indeed, this provides the backbone of the properties of

GFD flows and are of great relevance for studying more
realistic physical conditions. Nonetheless, at this stage,
a reality-check is necessary. The atmosphere and the
oceans are out-of-equilibrium systems, which exchange
irreversibly matter and energy from their surrounding
environment and re-export it in a more degraded form at
higher entropy. For example, Earth absorbs short-wave
radiation (low-entropy solar photons emitted at a tem-
perature of ≈ 6000 K) which is then re-emitted to space
as infrared radiation (high entropy thermal photons emit-
ted at at a temperature ≈ 255 K). In addition to that,
spatial gradients in chemical concentrations and temper-
ature as well as their associated internal matter and en-
ergy fluxes can be established and maintained for long
time within non-equilibrium systems (e.g. the temper-

ature contrast between the polar and equatorial regions
and the associated large-scale, atmospheric and oceanic
circulation). In this and in the next sections we will take
such a point of view.

The basis of the physical theory of climate was estab-
lished in a seminal paper by (Lorenz , 1955), who eluci-
dated how the mechanisms of energy forcing, conversion
and dissipation are related to the general circulation of
the atmosphere. Oceanic and atmospheric large scale
flows results from the conversion of available potential
energy - coming from the differential heating due to the
inhomogeneity of the absorption of solar radiation- into
kinetic energy through different mechanisms of instabil-
ity due to the presence of large temperature gradients
(Charney , 1947; Eady , 1949). Such instabilities create
a negative feedback, as they tend to reduce the tem-
perature gradients they feed upon by favoring the mix-
ing between masses of fluids at different temperatures.
Furthermore, in a forced and dissipative system like the
Earth’s climate, entropy is continuously produced by irre-
versible processes (deGroot and Mazur , 1984; Prigogine,
1961). Contributions to the total material entropy pro-

duction, which is related to the non-radiative irreversible
processes (Goody , 2000; Kleidon, 2009), come from: dis-
sipation of kinetic energy due to viscous processes, tur-
bulent diffusion of heat and chemical species, irreversible
phase transitions associated to various processes relevant
for the hydrological cycle, and chemical reactions relevant
for the biogeochemistry of the planet.

It is important to note that the study of the climate en-
tropics has been revitalized after Paltridge (1975, 1978)
proposed a principle of maximum entropy production
(MEPP) as a constraint on the climate system. While
the scientific community disagrees on the validity of such
a point of view - see, e.g., Goody (2007) - the discussion
revolving around MEPP has led the scientific community
to refocus on the importance of a thermodynamical ap-
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proach – as complementary to the dynamical one – in
providing physical insights for student the climate sys-
tem. In this paper we will not discuss MEPP and other
non-equilibrium variational principles (for an updated re-
view see Dewar et al., 2013).

A. Climatic energy budget and energy flows

1. Energy Budget

We first focus on developing equations describing the
energy budget of the climate system. The total specific
(per unit mass) energy of a geophysical fluid is given by
the sum of internal, potential, kinetic and latent energy.
This can be expressed as e = u2/2+ i+φ+Lq for the at-
mosphere, where u is the velocity vector, i = cvT is the
nertanl energy, with cv is the specific heat at constant
volume for the gaseous atmospheric mixture and T is its
temperature, Φ is the gravitational (plus centrifugal) po-
tential, L is the latent heat of evaporation, and q is the
specific humidity. In this formula, we neglect the heat
content of the liquid and solid water and the heat asso-
ciated to the phase transition between solid and liquid
water. The approximate expression for the specific en-
ergy of the ocean reads e = u2/2+ i+Φ, where i = cWT
is the specific heat at constant volume of water (we ne-
glect the effects of salinity and of pressure), while we can
consider e = cST +φ as the specific energy for solid earth
or ice. The conservation of energy and the conservation
of mass imply that (Peixoto and Oort , 1992):

∂ρe

∂t
= −∇ · (Jh + FR + FS + FL)−∇(τ · u) (55)

where ρ is the density; p is the pressure; Jh = (ρe+ p)u
is the total enthalpy transport; FR, FS, and FL are the
vectors of the radiative, turbulent sensible, and turbulent
latent heat fluxes, respectively; and τ is the stress tensor.
By expressing Eq. (55) in spherical coordinates (r, λ, ϕ),
and assuming the usual thin shell approximation r =
R + z, z/R ≪ 1, where R is the Earth’s radius and z is
the vertical coordinate of the fluid, we have (Peixoto and

Oort , 1992):

[Ė] = −
1

R cosϕ

∂TT
∂ϕ

+ [FTOAR ] (56)

where [X](ϕ, t) ≡
∫

X(λ, ϕ, t)dλ, FTOAR is the net radi-
ation at the top of the atmosphere (with the convention
that the value is positive when there is an excess of incom-
ing over outgoing radiation) and the meridional enthalpy
transport has been defined as:

TT (ϕ, t) ≡

∫∫

Jhϕ(ϕ, λ, z, t)R cosϕdzdλ. (57)

Equation (56) relates the rate of change of the vertically
and zonally integrated total energy to the divergence of

the meridional transport by the atmosphere and oceans
and the zonally integrated radiative budget at the top-
of-the-atmosphere. Integrating along ϕ ({X} =

∫

Xdϕ),
the expression for the time derivative of the net global
energy balance is straightforwardly derived:

{[FTOAR ]} = {[Ė]}. (58)

Similar relationships can be written for the atmosphere,

FIG. 6 Global annual mean earths energy budget for 2000-
2005 (Wm−2). From Trenberth and Fasullo (2012).

ocean and land provided that energy fluxes of sensible, la-
tent heat as well as radiative fluxes are taken into account
at the surface (Peixoto and Oort , 1992). A schematic
view of the surface and TOA energy fluxes for present
day Earth (Trenberth and Fasullo, 2012) can be see in
Fig. 6. Under steady state conditions, the long term

average Ė = 0. Therefore from equation (58) the sta-
tionarity condition implies that

{[FR]toa} = 0. (59)

Equation (59) describes the basic fact that he climate
system, at steady state, does not on the average receives
nor emits energy.
These constraints can be used for auditing climate

models. At observational level non-zero energy balances
are found at TOA and at the surface (Trenberth and Fa-

sullo, 2012; Wild et al., 2013), due to the fact the the
actual Earth is not at a stationary state, most notably
because of the ongoing greenhouse gas forcing. However,
a physically consistent climate model should feature a
vanishing net energy balance when its parameters are
held fixed and statistical stationarity is eventually ob-
tained. Lucarini and Ragone (2011) analyzed the behav-
ior of more than twenty atmosphere-ocean coupled cli-
mate models (PCMDI/CMIP3 intercomparison project,
http://www-pcmdi.llnl.gov/) under steady state condi-
tions (preindustrial scenario) and found that models’ en-
ergy balances are wildly different with global balances
spanning between −0.2 and 2 Wm−2, with a few ones

http://www-pcmdi.llnl.gov/
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a)

b)

c)

d)

FIG. 7 Mean and standard deviation of globally averaged
top-of-the-atmosphere radiative budget (a), atmosphere en-
ergy budget (b), ocean (c) and land energy budget (d) for
inter-comparable CMIP3 (red) and CMIP5 (blue) climate
models control simulations. Updated from Lucarini and
Ragone (2011).

featuring imbalances larger than 3 Wm−2. The anal-
ysis of similar budgets for the last generation of cli-
mate models (CMIP5 intercomparison project, Taylor

et al. (2012)) does not show a significant improvement
(Fig. 7). Spurious energy biases may be associated with
non-conservation of water in the atmospheric branch of
the hydrological cycle (Liepert and Lo, 2013; Liepert and

Previdi , 2012) and in the water surface fluxes (Hasson
et al., 2013; Lucarini et al., 2008), with the fact that
dissipated kinetic energy is not re-injected in the system
as thermal energy (Becker , 2003; Lucarini and Fraedrich,
2009), as well as with nonconservative numerical schemes
(Gassmann, 2013).

2. Meridional enthalpy transport

The next step in constructing the energetics of the cli-
mate system is the study of the large scale transport of
various forms of energy. The meridional distribution of
the radiative fields at the top-of-the-atmosphere poses a
strong constraint on the meridional general circulation
(Stone, 1978). As clear from equation (56), the station-
arity condition (59) leads to the following indirect rela-
tionship for TT :

TT (ϕ) = −2π

∫ π/2

ϕ

R2 cosϕ′(FR)toa(ϕ′). (60)

In other terms, the flux TT transports enthalpy from the
low-latitudes, which feature a positive imbalance between
the net input of solar radiation – determined by planetary
albedo, determined mostly by i.e., clouds (Donohoe and

Battisti , 2012) and by surface properties – and the output
of longwave radiation, to the high-latitudes, where a cor-
responding negative imbalance is present. Atmospheric
and oceanic circulations act as responses needed to equi-
librate such an imbalance (Peixoto and Oort , 1992).
The climatic meridional enthalpy transport TT (ϕ) re-

duces the temperature difference between the low and
high latitude regions with respect to what imposed by the
radiative-convective equilibrium picture. Stone (1978)
showed that TT depends essentially on the mean plan-
etary albedo and on the equator-to-pole contrast of the
incoming solar forcing, while being mostly independent
from dynamical details of atmospheric and oceanic cir-
culations. As emphasized by Enderton and Marshall

(2009), if one assumes drastic changes in the meridional
distributions of planetary albedo differences emerge with
respect to Stone’s theory. A comprehensive thermody-
namic theory of the climate system able to predict the
peak location and strength of the meridional transport,
the partition between atmosphere and ocean (Rose and

Ferreira, 2013) and to accommodate the variety of pro-
cesses contributing to it, is still missing.
Besides theoretical difficulties, observational estima-

tions of TT , TA and TO also poses non-trivial challenges.
For simplicity, we here refer to TT . There is still not
an accurate estimate of such a fundamental quantity for
testing the output of climate models, despite the efforts
of several authors (Fasullo and Trenberth, 2008; Mayer

and Haimberger , 2012; Trenberth and Caron, 2001; Tren-
berth and Fasullo, 2010; Wunsch, 2005). The precision
of the estimates relies on the knowledge of the boundary
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fluxes FR, FS, and FL and on the reanalysis datasets.
Wunsch (2005), by using measurements of the radiative
fluxes at the top of the atmosphere and previous esti-
mates of the oceanic enthalpy transport, gave a range
of values of 3.0 − 5.2 PW (1 PW = 1015 W) for the
maximum of the total poleward transport in the North-
ern Hemisphere (NH) and 4.0 − 6.7 PW for the max-
imum of the total poleward transport in the Southern
Hemisphere (SH). Trenberth and Fasullo (2010), by com-
bining measurements of top-of-the-atmosphere radiative
fields with different reanalyses and ocean datasets, found
the range to be 4.7 − 5.1 PW for the SH maximum and
4.6 − 5.6 PW for NH. Mayer and Haimberger (2012),
using two reanalysis datasets (ERA-40 and the more re-
cent ECMWF reanalysis ERA-Interim), constrained the
two peaks in narrower confidence intervals: 5.1−5.6 PW
in the SH (4.4 − 4.9 PW in the NH) for the ERA-40
data and 5.1 − 5.6 PW in the SH (4.4 − 4.9 PW in the
NH) for the ERA-Interim data. Unfortunately reanaly-
sis datasets are affected by mass and energy conserva-
tion (e.g. +1.2 Wm−2 at the top-of-the-atmosphere and
+6.8 Wm−2 over oceans in ERA- Interim, (Mayer and

F . 7. The required total heat transport from the TOA radiation
FIG. 8 Annual meridional enthalpy transports of ocean
(dashed), atmosphere (dash-dotted) and total (solid) esti-
mated from satellite and reanalysis data (PW ). From Tren-
berth and Caron (2001).

Haimberger , 2012)) problems that may potentially bias
the transport estimates. Furthermore, these estimates
are dependent on the analysis method and the model
used – Trenberth and Caron (2001), using other reanaly-
sis dataset (NCEP), found a value of the maxima 0.6 PW
larger in the NH than those found with the ECMWF re-
analysis. Estimates from Trenberth and Caron (2001) are
shown in Fig. 8.

The use of numerical climate model does not help to
reduce such uncertainties Lucarini and Ragone (2011)
analyzed a large dataset of coupled climate mod-
els (PCMDI/CMIP3, http://www-pcmdi.llnl.gov/) and
found a large spread in the meridional enthalpy trans-
ports peaks with discrepancies of the order of 15-20 %
around a typical value of about 5.5 PW. State-of-the-art

climate models (CMIP5 intercomparison project, Taylor
et al. (2012)) show little improvement in terms of mu-
tual agreement (Fig. 9). Donohoe and Battisti (2012)
attributed such a large spread in TT to intermodel dif-
ferences in the meridional contrast of absorbed solar ra-
diation, which, in turn, is mainly due to the inter-model
difference in the shortwave optical properties of the atmo-
sphere; for an intercomparison of the cloud distribution is
different climate models see Probst et al. (2012). Figure
9 also shows that, while the disagreement among models
for the peak of the atmospheric transport is compara-
ble to that for the peak of the total transport, enormous
differences emerge when comparing oceanic transports.

Interesting information emerge when looking at the po-
sition of the peaks of the transport. Stone (1978) pre-
dicted that the position of the maximum of TT is well
constrained by the geometry of the system and weakly de-
pendent of longitudinal homogeneities, and, accordingly
in Fig. 9 both CMIP3 and CMIP5 models feature small
spread in the position of the peak of TT , with minute dif-
ferences between the two hemispheres, except one outlier.
Similarly, the spread among models is small with respect
to the position of the peak of TA in both hemispheres
and of TO in the Northern Hemispheres, while a larger
uncertainty exists in the position of the peak of TO in the
Southern Hemisphere.

B. The maintenance of thermodynamical

disequilibrium

The basic understanding of the maintenance of the at-
mospheric general circulation was achieved nearly sixty
years ago by Lorenz (1955, 1967) through the concepts
of available potential energy and atmospheric energy cy-
cle. The concept of available potential energy, first intro-
duced by Margules (1905) to study storms, is defined as
A =

∫

cp(T − Tr)dV , where Tr is the temperature field
of the reference state, obtained by an isentropic redis-
tribution of the atmospheric mass so that the isentropic
surfaces become horizontal and the mass between the two
isentropes remains the same. By its own definition, this
state minimizes the total potential energy at constant
entropy. Such a definition is somewhat arbitrary and
different definitions lead to different formulations of at-
mospheric energetics (Tailleux , 2013). For example, the
choice of a reference state maximizing entropy at con-
stant energy (Dutton, 1973) leads in a natural way to
the concept of exergy. Exergy is the part of the internal
energy measuring the departure of the system from its
thermodynamic and mechanical equilibrium, i.e.,a state
of maximum entropy at constant energy., and is a com-
monly used concept in heat engines theory (Rant , 1956).

Lorenz (1967) proposed the following picture of the
transformation of energy in the atmosphere. We de-
fine E = P + K, where K = (1/2)

∫

dV ρu2 repre-

http://www-pcmdi.llnl.gov/
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FIG. 9 Value and position of the peak of the poleward merid-
ional enthalpy transport in the pre-industrial scenario for the
whole climate (a), atmosphere (b) and ocean (c) for the some
of the CMIP3 (red) and CMIP5 (blue) general circulation
models. Updated from Lucarini and Ragone (2011).

sents the total kinetic energy and P =
∫

dV ρ(cV T + Φ)
the dry static energy and V is the atmospheric do-
main. Under hydrostatic approximation one can show
that

∫

dzρ(cvT + gz) =
∫

dzρ(cvT + RT ) =
∫

dzρcpT
(see e.g. Lorenz , 1967).. In the Lorenz framework one
considers the hydrological cycle as a forcing to the at-
mospheric circulation. This amounts to separating the
budget of the moist static energy and of the part related
to the phase changes of water. See Peixoto and Oort

(1992), Chap. 13. We obtain:

Ṗ =−W (P,K) + Ψ̇ +D, (61)

K̇ =−D +W (P,K), (62)

where D =
∫

dV ρǫ2 > 0 is the dissipation of kinetic
energy due to turbulent cascades to small scales and
to the wind shear associated to falling hydrometeors,
W (P,K) = −

∫

dV ρu · ∇p is the potential-to-kinetic

energy conversion rate, and Ψ̇ =
∫

dV ρq̇nf is the non-
frictional diabatic heating due to the convergence of tur-
bulent sensible heat fluxes, condensation/evaporation in-
side the atmosphere, and convergence of radiative fluxes.
The conversion term W can be interpreted as the in-
stantaneous work performed by the system. In this re-
spect, Eq. (61) represents the statement of the first law
of thermodynamics for the atmosphere. Equations (61)-
(62) imply that Ė = Ṗ + K̇ = Ψ̇ and therefore the fric-
tional heating D does not increase the total energy since
it is just an internal conversion between kinetic and po-

tential energy. Stationarity implies that Ṗ = K̇ = 0 and
therefore D = W , which is referred to as the intensity
of the Lorenz energy cycle. One has to note that the
latter can be expressed as the average rate of generation
of available potential energy, G =

∫

dV ρq̇nf (1− T/Tr),
where Tr is the temperature field of the reference state
(Lorenz , 1967).
The strength of the Lorenz energy cycle is a fundamen-

tal non-equilibrium property of the atmosphere, which,
just as the meridional enthalpy transport (Sect. IV.A.2),
is known with a certain degree of uncertainty for the
present climate. Reanalysis datasets (with all associ-
ated problems, see Sect. IV.A.2) constrain D in the range
1.5 − 2.9 Wm−2 (Li et al., 2008). On the other hand,
general circulation models feature values of D ranging
from 2 to 3.5 Wm−2 (Marques et al., 2011). Numerical
simulations show that a CO2 doubling causes a decrease
of G of nearly 10% (Lucarini et al., 2010a). Warm-
ing patterns can alter G either by affecting the gross
static stability (stronger stability implies a weaker en-
ergy cycle, as clear from the theory of baroclinic insta-
bility) or the meridional temperature/diabatic heating
distribution. Hernandez-Deckers and von Storch (2012)
show that the decrease in G is mostly associated with
changes in the gross static stability changes rather than
with meridional temperature gradient changes.
Another aspect to be considered is that the intensity

of the Lorenz energy cycle is formulated assuming hy-
drostatic conditions. Therefore, the Lorenz energy cy-
cle in itself neglects any systematic transfer of potential
into kinetic energy occurring through non-hydrostatic,
small scale motions (Steinheimer et al., 2008). Along
these lines, Pauluis and Dias (2012) suggest that small
scales processes such as precipitation may significantly
contribute to D, which might therefore be considerably
underestimated when computed for models that do not
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treat explicitly convection.
In the case of the ocean, available potential energy

is generated through thermohaline forcings due to the
correlation of density inhomogeneities and density forc-
ings (e.g. through heat and freshwater fluxes) at sur-
face. In addition to that, mechanical energy enters the
ocean through direct transfer of kinetic energy by sur-
face winds (and though tidal effects). Kinetic energy is
dissipated through a variety of frictional processes, occur-
ring mostly at the bottom of the ocean, and, similarly,
available potential energy is lost through diffusion mostly
due to small scale eddies (?). The understanding of the
details of the oceanic Lorenz energy cycle is still at a
relatively early stage. Estimates of dissipation and gen-
eration terms range within (1− 2)× 10−2 Wm−2 (Oort

et al., 1994; Storch et al., 2012; Tailleux , 2013).

1. Atmospheric heat engine and efficiency

Johnson (2000) proposed an interesting construction
for further elucidating the idea the the climate can be
seen as a heat engine. We define the total diabatic heat-
ing q̇ = q̇nf + ρǫ2 and splitting the atmospheric domain
V into the subdomain V + in which q̇ = q̇+ > 0, and V −,
where q̇ = q̇− < 0, it can be seen from equation (61)
that:

W =

∫

V +

q̇+ρdV +

∫

−

q̇−ρdV ≡ Φ+ +Φ−, (63)

with Φ+ > 0 and Φ− < 0 by definition. Therefore the
atmosphere can be interpreted as a heat engine, in which
Φ+ and Φ− are the net heat gain and loss, and W the
mechanical work. The efficiency of the atmospheric heat
engine,i.e.,the capability of generating mechanical work
given a certain heat input, can therefore be defined as:

η =
(Φ̇+ + Φ̇−)

(Φ̇+)
=

W

Φ̇+
. (64)

The analogy between the atmosphere and a (Carnot)
heat engine can be pushed further if we introduce
the total rate of entropy change of the system, Ṡ =
∫

dV ρq̇/T = Ṡ+ + Ṡ−. In a steady state the following
expression holds:

Ṡ =
Φ̇+

T+
+

Φ̇−

T−
= 0, (65)

where T± ≡ Φ̇±/
∫

V ± dV ρq̇±/T from which it follows
that η = 1 − T−/T+. Johnson’s approach provides a
self-consistent treatment of the heat engine of a geophys-
ical fluid and extends closely related thermodynamical
theories of hurricane dynamics (Emanuel , 1991).
In Emanuel’s theory a mature hurricane is depicted as

an ideal Carnot engine driven by the thermal disequi-
librium between the sea-surface temperature Ts and the

cooling temperature T0 with an efficiency 1 − T0/Ts ≈
1/3. A similar approach was extended also to moist con-
vection (Emanuel and Bister , 1996; Rennò and Ingersoll ,
1996) for determining the the wind speed reached by the
convective system for a certain rate of heat input Fin
from the sea, W = Fin(1 − T0/Ts). Such an approach
has been used to study large scale, open systems like the
Hadley cell (Adams and Rennò, 2005) and the monsoonal
circulation (Johnson, 1989).

2. Entropy production in the Climate System

We wish now to emphasize a different aspect of the
climate’s thermodynamics, namely the study of its ir-
reversibility by the investigation of its material entropy
production, i.e.,the entropy produced by the geophysi-
cal fluid, neglecting the change in the properties of the
radiative fields (Goody , 2000; Ozawa et al., 2003). The
entropy budget of the fluid can be rewritten as:

Ṡ = −

∫

dV
∇ · FR

T
+ Ṡmat, (66)

so that we separate the contribution coming from the ab-
sorption of the radiation from other effects related to the
other irreversible processes occurring in the fluid. Note
that, in the previous formula, we refer to the entropy
budget of the whole climate, not of the atmosphere, as
done, instead, in the previous section.
The material entropy production, Ṡmat can be ex-

pressed as Ṡdiff + Ṡfric + Ṡhyd, i.e., the sum of contri-
butions associated with heat diffusion, frictional heating
and the hydrological cycle (due to diffusion of water and
phase-changes) respectively. Detailed estimates of the
entropy budget of the climate system and of the mate-

rial entropy production (Ṡmat ≈ 50 mWm−2 K−1) can
be found in (Goody , 2000; Pascale et al., 2011). Oceanic
entropy production due to small-scale mixing in the in-
terior gives a small contribution (≈ 1 mWm−2 K−1) to

Ṡmat (Pascale et al., 2011). Therefore we will limit the
discussion to processes occurring in the interior and at
the boundaries of the atmosphere.

Entropy production due to heat diffusion Ṡdiff =

−
∫

dV∇ · JS/T is generally small (≈ 2 mWm−2 K−1,
(Kleidon, 2009)) and associated mostly with dry atmo-
spheric convection occurring nearby the surface and with
vertical mixing in the mixed layer of the ocean. The

entropy production due to frictional heating - Ṡfric =
∫

dV ρǫ2/T ≈ 10 mWm−2 K−1 (Fraedrich and Lunkeit ,
2008; Pascale et al., 2011) - is associated with turbu-
lent energy cascades bringing kinetic energy from large
scales down to scales (millimeters or less for geophys-
ical flows) where viscosity can efficiently operate. Fi-
nally, Ṡhyd is due to irreversible processes associated with
the hydrological cycle – evaporation of liquid water in
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unsaturated air, condensation of water vapor in super-
saturated air and molecular diffusion of water vapour
(Pauluis and Held , 2002a,b) and requires the knowledge
of relative humidity H and the molecular fluxes of water
vapor Jv = FL/L:

Ṡhyd =
∫

dV (C − E)R(lnH

+ Jv · ∇pw)−
∫

z=surf
dAJv,zR lnH. (67)

where C and E indicate condensation and evaporation,
respectively, and pw is the partial pressure of the water
vapor. The importance of Ṡdiff and Ṡhyd in the context
of thermodynamic theories of moist convection is exten-
sively discussed in Pauluis and Held (2002b) and Pauluis

(2010). The impact of water vapor on the production of
kinetic energy in deep convection can be described as
a steam engine and it is to lower the maximum possi-
ble amount of work which can produced by an equiva-
lent Carnot cycle (Emanuel and Bister , 1996; Rennò and

Ingersoll , 1996) acting between the same temperature
reservoirs. An indirect estimate of (67) can be obtained
from the entropy budget for water

ṠW =

∫

VW

dV ρW ṡ
w =

∫

VW

dV ρW
q̇W
T

+ Ṡhyd

as discussed in Pauluis and Held (2002b), where ṠW is
the rate of change of entropy of water and q̇W the neat
heating amount of heat per time that the water sub-
stance receives from its environment (i.e. through evap-

oration and condensation). At steady state ṠW = 0 and

so Ṡhyd =
∫

VW

dV ρW q̇W /T ≈ 37 mWm−2 K−1 (Pas-

cale et al., 2011). Therefore, it is possible to compute
the material entropy production by considering the ex-
clusively heat exchanges and the temperature at which
such exchanges take place, thus bypassing the need for
looking into the complicated details of phase separation
processes.

Furthermore, in climate models aphysical entropy
sources due to diffusive/dispersive numerical advection
schemes and parameterizations are also present (Egger ,
1999; Johnson, 1997). In particular, Woollings and

Thuburn (2006) showed that dispersive dynamical cores
can lead to negative numerical entropy production. More
generally, it has been argued that parameterizations of
sub-grid turbulent fluxes of heat, water vapor and mo-
mentum should conform to the second law of thermo-
dynamics, and therefore should lead to locally positive
definite entropy production, this being generally not the
case (Gassmann, 2013).

C. Applications and future perspectives

1. Auditing Climate Models

At steady state, we have that Ṡ = 0. Hence, from Eq.
66 we derive:

Ṡmat =

∫

−dV
∇ · FR

T
. (68)

Usually, this is referred to as indirect formula for com-
puting the material entropy production (Goody , 2000),
because it provides an alternative way for estimating the
material entropy production of the geophysical fluid by
only looking at the correlation between radiative heating
rates and temperature fields). Therefore, this formula al-
lows for computing the material entropy production due
to fluid motions bypassing all the complex fluid dynam-
ical behavior of the system. See Lucarini and Pascale

(2014) for an in-depth discussion of different ways for
computing the material entropy production and of the
effect of coarse graining the thermodynamic fields. Start-
ing from Eq. (68) it is possible to derive for Earth condi-
tions an approximate formula for the long term average
of the material entropy production, and to disentangle
the contributions due to horizontal and vertical processes

(Lucarini et al., 2011) as Ṡmat ≈ Ṡvmat + Ṡhmat, where

Ṡhmat = −

∫

A

dA
∇h ·Υ

TE
= −

∫

A

dA
FTOAR

TE
(69)

where Υ =
∫

dzρ(z)Jh is the vertically integrated atmo-
spheric enthalpy flux introduced in Eq. (55), FTOAR =

FTOA,SWR − FTOA,LWR , where SW and LW refer to
the short- and long-wave contributions, respectively, and

TE =
(

FTOA,LWR /σ
)1/4

is the emission temperature at a

given location. The contribution to the material entropy
production coming from vertical processes can instead be
written as:

Ṡvmat =

∫

A

dA
(

F surfR

)

(

1

Ts
−

1

TE

)

(70)

where F surfR = F surf,SWR + F surf,LWR is the net radi-
ation at surface (defined as positive when the there is
a net incoming radiation into the atmosphere) , SW
and LW refer to the short- and long wave components,
and, Ts is the surface skin temperature defined as Ts =
(

F surf,LWR /σ
)1/4

∼ Tsurf (Lucarini et al., 2011). Equa-

tions (69)-(70) allow one to compute the material en-
tropy production due to internal irreversible processes
making use only of 2D radiative fields at the boundaries
of the relevant planetary fluid envelope (surface and top
of the atmosphere). This makes Eqs. (69)-(70) suitable
for the post-processing of data hosted in publicly avail-
able archives of GCMs output, intercomparison studies,
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and studies of observational datasets of the Earth and
other planets (where radiative data are the only avail-
able source of information). Instead, direct computa-

tions of Ṡmat require the knowledge of the full 3-D time-
dependent heating and temperature fields, making their
applicability nontrivial for numerical models and unfea-
sible for observations.

Figure 10 shows a scatter-plot of the globally averaged
annual mean values of the vertical and horizontal compo-
nents of the material entropy production computed from
the outputs of several GCMs from the CMIP3 dataset
in pre-industrial and post-industrial conditions (updated
from (Lucarini et al., 2011), limiting to the models for
which the data availability made possible the compari-
son). The post-industrial case corresponds to the first
100 years after the stabilization of the CO2 in the A1B
climate change scenario. Issues related to the effective
non-stationarity of the system have been treated as in
(Lucarini and Ragone, 2011).

Comparing with the direct computation (Pascale et al.,

2011) of Ṡmat for the case of Had-CM3 (model 13) in the
pre-industrial case shows that the relative error on the
estimate is less than 5% (Lucarini et al., 2011). The typ-
ical values of the annual material entropy production in
pre-industrial conditions range for most models between
47 and 53 mWm−2K−1, matching well the approximate
estimate by (Ambaum, 2010). The contribution due to
vertical processes is dominant by about one order of mag-
nitude with respect to the contribution due to horizon-
tal processes. This suggests that from the point of view
of the entropy production, the climate system approxi-
mately behaves as a collection of weakly coupled vertical
columns where mixing takes place (Lucarini and Pascale,
2014).

In increased CO2 concentration conditions, the rate of
material entropy production increases for all the models
between 10% and 20%. Such a change is dominated by
the increase in the vertical component, while the hori-
zontal component sees in most cases a reduction of up
to 10%, despite the fact that large scale horizontal en-
thalpy transports increase for all models (Lucarini and
Ragone, 2011). This implies - see Eq. (69) - a projected
strong reduction in the large scale gradients of emission
temperature, thus suggesting that in warmer conditions
the climate system becomes more homogeneous in terms
of meridional and zonal temperature differences. This
fits well with what reported in (Lucarini et al., 2010a,b)
in terms of climate response to global warming-like con-
ditions, and hints to a dominant role of the latent heat
release due to convective processes in the response to the
climate change (Lucarini and Ragone, 2011).

Figure 11a shows the spatial distribution of the in-
tegrand of Eq. (70) for the Had-CM3 model in pre-
industrial conditions (Lucarini et al., 2011), i.e.,the local
contribution to the vertical component of material en-
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FIG. 10 a) Scatter plot of contributions to the rate of material
entropy production due to horizontal (x-axis) and vertical (y-
axis) processes. Each point corresponds to a GCM from the
CMIP3 dataset in pre-industrial (black) and post-industrial
(red) scenarios (updated from (Lucarini et al., 2011)). b)
Difference between the SRESA1B scenario run (average of
the last 30 years of the XXIII century and the pre-industrial
climatology.

tropy production. Overall, the local material entropy
production due to vertical processes seems to be a good
indicator of the geographical distribution of convective
activity: the highest values are observed in the warm
pool of the western Pacific and Indian Ocean and in land
areas characterized by warm and moist climates, while
relatively low values are instead observed in the cold
tongue of the eastern Pacific, near western boundary cur-
rents, and in the temperate and cold oceans, as well as
on deserts and middle and high latitudes of terrestrial
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FIG. 11 (a) Spatial distribution of the contribution to the
rate of material entropy production due to vertical processes
in pre-industrial scenario for Had-CM3 (model 13 in figure
10). (b) Anomalies in the post-industrial scenario with re-
spect to the pre-industrial case for the same model (updated
from (Lucarini et al., 2011)).

areas. Note that also in this case the role of latent heat
releases is fundamental in determining the characteris-
tics of the system, showing how the hydrological cycle is
a crucial component of a thermodynamically consistent
representation of the climate system.

Figure 11b shows the difference between the post-
industrial and pre-industrial cases. The local vertical
component of material entropy production increases al-
most everywhere, with negative anomalies confined to
polar regions and to limited areas of the Southern Hemi-
sphere, with very small values. The positive anomalies
are extremely high in the tropical regions, particularly
in the eastern and western Pacific ocean. Note that the
pattern of increase does not strictly follow the pattern
of the absolute value in the pre-industrial case. In par-
ticular the maximum of the increase is located eastward
to the maximum of the entropy production in the pre-
industrial case, a signature of a shifting of the warm pool
and a modification of the Walker circulation (Bayr et al.,
2014; DiNezio et al., 2013; IPCC , 2013). High values are
also found in the Indian ocean, suggesting an increase
of the convective activity connected with the Monsoon
(IPCC , 2013; Turner and Annamalai , 2012). Significant
local maxima are also observed in the Gulf of Mexico and
along the Gulf Stream, and in the Mediterranean Sea.

The local entropy production due to vertical processes
behaves as a robust indicator of the impact of the cli-
mate change on large-scale features connected to convec-
tive activity. The pattern of increase is correlated to the
pattern of variation of the surface temperature only to a
minor extent. The reason is that this indicator contains
in a synthetic way the information of the change in the
surface temperature, in the vertical stability of the atmo-
sphere, and in the intensity of the energy fluxes connected
to the vertical processes. Therefore, it could be used in
order to define robust indexes for large-scale processes
for which strong convection is an important component.
Moreover, the range of variation due to climate change
of the local vertical entropy production is rather high if
compared to the range of variation of standard fields like
surface temperature or pressure. Therefore, one could
expect a better signal-to-noise ratio and a more distinc-
tive signature of climate change from indicators based
on this quantity compared with what obtained with in-
dicators based on simpler observables, similarly to what
discussed by Lucarini et al. (2010a,b) and by Boschi et al.

(2013) in the context of the identification of multi-stable
regimes of the climate system.

2. Bistabiliy and tipping points

Based on the evidence supported by Hoffman and

Schrag (2002) and from numerical models (Budyko, 1969;
Ghil , 1976; Sellers, 1969), it is expected that the Earth is
potentially capable of supporting multiple steady states
for the same values of some parameters such as, for ex-
ample, the solar constant. Such states are the presently
observed warm state (W), and the entirely ice covered
Snowball Earth state (SB). This is due to the presence
of two disjoint strange (chaotic) attractors. The W→SB
and SB→W transitions are due, mathematically, to the
catastrophic disappearance of one of the two strange at-
tractors (Arnold , 1992) and, physically, to the positive
ice-albedo feedback. The SB condition, which might be
a common feature also of Earth-like planets, hardly al-
lows for the presence of life, so this issue is of extreme
relevance for defining habitability condition in extrater-
restrial planets.

PLASIM (Fraedrich et al., 2005), a general circulation
model of intermediate complexity, was used by Boschi

et al. (2013) and by Lucarini et al. (2013) to reconstruct
an extensive portion of the region of multistability in
the plane described by the parameters (S∗, [CO2]). The
surface temperature Ts(S

∗, [CO2]) is shown in Fig. 12.
The boundary of the domain in the parametric space
where two states are admissible correspond to the tipping
points of the system.

The thermodynamical and dynamical properties of the
W and SB states are largely different. In the W states,
surface temperature are 40 − 60 K higher than in the
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FIG. 12 Material entropy production (mWm−2 K−1) as a
function of solar constant S∗ and the CO2 concentration. The
transition SB→WandW→SB are marked with dashed arrows
starting from the tipping point regions (courtesy of Robert
Boschi, Universität Hamburg).

corresponding SB state and the hydrological cycle dom-
inates the dynamics. This leads to a material entropy
production (Fig. IV.C.2) larger by a factor of 4 – order
of (40− 60)× 10−3 Wm−2 K−1 vs. (10− 15)× 10−3 W
m−2 K−1 – with respect to the corresponding SB states
(Boschi et al., 2013). The SB state is eminently a dry
climate, with entropy production mostly due to sensible
heat fluxes and dissipation of kinetic energy.

The response to increasing temperatures of the two
states is rather different: the W states feature a decrease
of the efficiency of the climate machine, as enhanced la-
tent heat transports reduces energy availability by damp-
ening temperature gradients, while in the SB states the
efficiency is increased, because warmer states are asso-
ciated to lower static stability, which favors large scale
atmospheric motions (Fig. IV.C.2). The entropy produc-
tion increases for both states, but for different reasons:
the system become more irreversible and less efficient in
the case of W states, while stronger atmospheric motions
lead to stronger dissipation and stronger energy trans-
ports in the case of SB states. A general property which
has been found is that, in both regimes, the efficiency
η increases for steady states getting closer to tipping
points and dramatically drops at the transition to the
new state belonging to the other attractor (Fig. IV.C.2).
In a rather general thermodynamical context, this can
be framed as follows: the efficiency gives a measure of
how far from equilibrium the system is. The negative
feedbacks tend to counteract the differential heating due
to the stellar insolation pattern, thus leading the system
closer to equilibrium. At the bifurcation point, the nega-
tive feedbacks are overcome by the positive feedbacks, so
that the system makes a global transition to a new state,
where, in turn, the negative feedbacks are more efficient

in stabilizing the system (Boschi et al., 2013).

a)

b)

FIG. 13 a): Rate of material entropy production (10−3

Wm−2 K−1) vs. emission temperature TE(K) for Ω = Ωearth

(magenta) and Ω = 0.5Ωearth (black). b): as in a) figure but
for efficiency (courtesy of Robert Boschi, Universität Ham-
burg).

Another interesting aspect is the determination of em-
pirical functional relations between the main thermody-
namical quantities and globally averaged emission tem-
perature TE = (LWtoa/σ)

1/4, as shown in Fig. IV.C.2.
This would permit to express non-equilibrium thermody-
namical properties of the system in terms of parameters
which are more directly accessible through measurements
(Lucarini et al., 2013).

3. Applications to planetary sciences

The discovery of hundreds of planets outside the solar
system (exoplanets) (Seager and Deming , 2010) is ex-
tending the scope of planetary sciences towards the study
of the so-called exoclimates (Heng , 2012a). A large num-
ber of the exoplanets discovered so far are tidally locked
to their parental star, experiencing extreme stellar forc-
ing on the dayside where temperature up to 2000 K can
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be reached. Starlight energy, deposited within the at-
mosphere at the planet’s dayside, is then transported by
atmospheric circulation to the night side. Such a system,
similarly to the Earth’s climate, works like a heat engine
(Sect. IV.A.2, Sect. IV.B).

The strength of the day-to-night enthalpy flux con-
trols the ratio of outgoing longwave energy fluxes from
the night and day side ξ = LWnight/LWday, called ef-
ficiency of heat redistribution in the astrophysical liter-
ature. Observations through infrared light curves show
that the hotter the planet, the more inefficient is the
atmospheres at redistributing stellar energy leading to
larger day-night temperature differences. Numerical sim-
ulations (Perna et al., 2012) show that ξ varies between
0.2 (low heat redistribution) and 1 (full heat redistribu-
tion) and depends critically on the atmospheric optical
properties and the intensity of the stellar irradiance. Re-
lating this definition of efficiency with the many different
definitions used to characterize global circulations (Am-

baum, 2010; Johnson, 2000; Perna et al., 2012; Schubert
and Mitchell , 2013) and understanding their differences
would be useful to provide a link between energy conver-
sion and energy transport in planetary atmospheres.

A thorough understanding of dissipative processes
is fundamental for dealing with planetary atmospheres
(Goodman, 2009; Pascale et al., 2013). Dissipative pro-
cesses are poorly known on Solar System planets and on
exoplanets. Let us make some examples. In hot Jupiters
temperatures may be very high (≥ 1500 K), allowing for
thermal ionization (governed by the Saha equation) and
thus fast-moving (in hot Jupiters winds ∼ 1 km s−1) elec-
tric charges. This induces an electric current towards the
interior of the planet, where energy is then converted into
heat by ohmic dissipation.. Another dissipative mecha-
nism believed to be a common feature in planetary atmo-
spheres is shock wave breaking (Batygin and Stevenson,
2010; Heng , 2012b). Note that the indirect method (Eq.
68) could, in principle, be applied in order to infer in-
formation about the dissipative processes in the interior
of exoplanets (Schubert and Mitchell , 2013), where ra-
diative fluxes are the only piece of information we can
access.

V. CLIMATE RESPONSE AND PREDICTION

In the previous section, we have investigated the cli-
mate as a non-equilibrium physical system and have em-
phasized the intimate relation between forcing, dissipa-
tion, energy conversion, and irreversibility. The same
approach can be brought to a more theoretical level by
taking the point of view of non-equilibrium statistical
mechanics.

Non-equilibrium statistical mechanics provides the
natural setting for investigating the mathematical prop-
erties of forced and dissipative chaotic systems, which live

in a non-equilibrium steady state (NESS). In this state,
typically, the phase space contracts, entropy is gener-
ated, and the predictability horizon is finite. Deviations
from this behavior are possible, but extremely unlikely.
Conceptually, non-equilibrium steady states are gener-
ated when a system is put in contact with reservoirs at
different temperatures or chemical potentials, and one
disregards the transient behaviors responsible for the re-
laxation processes (Gallavotti , 2006). This fits well the
description of the non-equilibrium properties of the cli-
mate system given in section IV.

The science behind non-equilibrium statistical me-
chanical systems is still in its infancy, so that, as op-
posed to the equilibrium case, we are not able to predict
the properties of a system given the parameters describ-
ing its internal dynamics and the boundary conditions,
except in special cases where the dynamics is trivial.

It is then important to choose a suitable mathemat-
ical setting for being able to state some useful general
results and compare numerical experiments with theory.
The mathematical paradigm we will consider is the one of
so-called Axiom A systems (Eckmann and Ruelle, 1985;
Ruelle, 1989), which, according to the Chaotic Hypothe-

sis (Gallavotti , 1996), can be considered as good effective

models of chaotic systems with many degrees of freedom.

In general, we can say that an (time-continuous) Ax-
iom A system (Eckmann and Ruelle, 1985; Ruelle, 1989)
obeys an evolution equation of the form ẋ = F (x),
x ∈ Rn, and possesses an invariant measure ρ(dx) sup-
ported on its attractor, which is, roughly speaking, the
set of points where the system is asymptotically attracted
to.

If forcing and dissipation are present, the attractor is
strange, i.e., it does not look locally at all like a smooth
manifold, so that we cannot write ρ(dx) = ρ(x)dx, where
ρ(x) is the density. Instead, in the very intuitive lan-
guage of Lorenz, it looks like the Cartesian product of
a smooth manifold and a fractal set. The smooth man-
ifold corresponds to the unstable directions of the flow,
which make the system chaotic, while the Cantor set cor-
responds to the contracting directions, which result from
dissipation. The invariant measure ρ(dx) gives the weight
to be used in phase space to compute the expectation of
any observable A, which agrees, thanks to ergodicity, to
the long-time average, so that

〈A〉 = ρ(A) =

∫

ρ(dx)A(x) = lim
T→∞

1

T

∫ T

0

dtA(x(t))

with probability 1 with respect to the choice of the initial
conditions.The invariant measure of an Axiom A system
is of Sinai-Ruelle-Bowen (SRB) type (Eckmann and Ru-

elle, 1985; Ruelle, 1989; Young , 2002). This has many
consequences, including the fact that the measure is sta-
ble against weak stochastic forcing, see also the discussion
in Lucarini (2012).
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Ruelle (1997, 1998a,b, 2009) recently proved that in
the case of an Axiom A system, its SRB measure, despite
the geometrical complexity of the attractor supporting it,
has also an extremely fascinating degree of regularity. In
fact, there is a smooth dependence of the SRB measure
to small perturbations of the flow, and it is possible to
derive corresponding explicit formulas. This approach is
especially useful for studying the impact of changes in
the internal parameters of a system or of small modu-
lations to the external forcing, and various studies have
highlighted the practical relevance of Ruelle theory for
studying what we may call the sensitivity of the system
to small perturbations. We will here recapitulate some
features of the Ruelle response theory and argue that it
is a potentially useful tool for studying various classes of
GFD problems, and, most notably for addressing rigor-
ously and in an unified perspective climate change pre-
diction, climate response, and climate sensitivity.

A. Response formulas and Fluctuation-Dissipation Theorem

Let us consider an Axiom A dynamical system whose
evolution equation can be written as ẋ = F (x) and
let’s assume that it possesses an invariant SRB measure
ρ(0)(dx). Ruelle (1997, 1998a,b, 2009) has shown that
if the system is weakly perturbed so that its evolution
equation can be written as:

ẋ = F (x) + Ψ(x)T (t) (71)

where Ψ(x) is a weak time-independent forcing and T (t)
is its time modulation, it is possible to write the mod-
ification to the expectation value of a general smooth
observable A as a perturbative series:

ρ(A)t =
∞
∑

n=0

ρ(n)(A)t, (72)

where ρ(0)(A)t = ρ(0)(A) is the expectation value of A
according to the unpertubed invariant measure ρ0 related
to the dynamics ẋ = F (x), while ρ(n)(A)t with n ≥ 1
represents the contribution due to nth order processes
(Lucarini , 2008).
Limiting our attention to the linear case we have:

ρ(1)(A)t =

∫ +∞

−∞

dτ1G
(1)
A (τ1)T (t− τ1), (73)

where the first order Green function can be expressed as
follows:

G
(1)
A (τ1) =

∫

ρ0(dx)Θ(τ1)Ψ(x) · ∇A(x(τ1)), (74)

where Θ is the usual Heaviside distribution (Θ(x) = 1 if
x > 0, Θ(x) = 0 if x < 0), whose derivative is the Dirac’s

delta. Equations 73 and 74 are key ingredients for study-
ing climate response. Before continuing in this direction,
we want to use these equations to discuss the celebrated
Fluctuation-Dissipation Theorem (FDT) (Kubo, 1957).
In systems possessing a smooth invariant measure

(which, as discussed above, is not typically the case
for Axiom A systems), like when equilibrium conditions
apply or stochastic forcing is imposed, we can write
ρ0(dx) = ρ0(x)dx, where ρ0(x) is the so-called density.
In this case, we can rewrite Eq. (74) as follows:

ρ(1)(A)t =

∫ +∞

−∞

dτ1Θ(τ1)×

∫

dxρ0(x)B(x)A(x(τ1))T (t− τ1), (75)

where B(x) = −∇ ·
(

ρ0(x)Ψ(x)
)

/ρ0(x). In other terms,
one can predict the response at any time horizon t from
the knowledge of the lagged correlation between the cho-
sen observable A and the observable B, which depends on
the invariant measure ρ0 and on the perturbation vector
field Ψ. See Colangeli and Lucarini (2014) for a detailed
discussion on the physical meaning of B. Equation (75)
provides a very general form of the FDT (Lacorata and

Vulpiani , 2007; Ruelle, 1998a), which extends the results
by (Kubo, 1957). Recently, the FTD for system possess-
ing a smooth invariant measure result has been extended
to the nonlinear case (Lucarini and Colangeli , 2012).
The more common forms of the FDT can be obtained

by taking one or more of the following assumptions: :

• the perturbation flow is the form Ψ(x) = ǫx̂i;

• the observable is of the form A(x) = xj .

where xk is the kth component of the x vector and x̂k
is the corresponding unit vector. In this case, Eq. (75)
takes the form:

ρ(1)(xj)t = −ǫ

∫ +∞

−∞

dτ1Θ(τ1)×

∫

dxρ0(x)∂i log[ρ
0(x)]xj(τ1)T (t− τ1), (76)

If one takes the additional simplifying assumption that
unperturbed invariant measure has a Gaussian form, so
that ρ0(x) = 1/Z exp(−β̃

∑N
j=1 x

2
j/2), where β̃ > 0 and

Z is a normalizing factor, we obtain:

ρ(1)(xj)t = ǫβ̃

∫ +∞

−∞

dτ1Θ(τ1)

∫

dxρ0(x)xixj(τ1)T (t− τ1)

= ǫβ

∫ +∞

−∞

dτ1Θ(τ1)Ci,j(τ1)T (t− τ1), (77)

where Ci,j is the lagged correlation between xi and xj in
the unperturbed state.
Unfortunately, the link between linear response of the

system to external perturbations and its internal fluctua-
tions seems more elusive when the unperturbed state has
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a singular invariant measure. Ruelle (2009) shows that
since the unperturbed invariant ρ(0)(dx) is singular, the
response of the system contains two contributions, such
that the first may be expressed in terms of a correlation
function evaluated with respect to the unperturbed dy-
namics along the space tangent to the attractor (unstable
manifold) and is formally identical to what given in Eq.
(75). This part of the response decays rapidly due to
decay of correlations due to chaos. On the other hand,
the second term, which has no equilibrium counterpart,
depends on the dynamics along the stable manifold, and,
hence, it may not be determined from the unperturbed
dynamics and is also quite difficult to compute numer-
ically. These properties suggest the basic fact, already
suggested heuristically by Lorenz (1979), that in the case
of non-equilibrium systems internal and forced fluctua-
tions of the system are not equivalent, the former being
restricted to the unstable manifold only.

Despite such a serious mathematical difficulty, the ap-
plication of FDT, even in extremely simplified, quasi-
Gaussian, approximation, has enjoyed a good success in
climate (Gritsun and Branstator , 2007; Langen and Alex-

eev , 2005) even if it is clear that the ability of FDT in
predicting the response to perturbation depends critically
on the choice of the observable of interest, on the length
of the integrations needed for constructing the approxi-
mation of the invariant measure, and, of course, on the
validity of the linear approximation (Cooper and Haynes ,
2011; Cooper et al., 2013).

There are, in fact, various ways to circumvent the prob-
lem of the rigorous non-equivalence between forced and
free fluctuations. Apart from the obvious smoothing ef-
fect due to unavoidable physical or numerical noise, when
considering smooth, coarse-grained observables(like this
of climatic interest), one expects to see little influence of
the fine structure of the invariant measure of chaotic de-
terministic systems, as projections from high-dimensional
spaces to lower dimensional ones are involved(Marconi

et al., 2008) and coarse-graining effects can be invoked
(Wouters and Lucarini , 2013). One expects that the
FDT will perform better in predicting the response of the
system if one considers as observable A quantities like the
globally averaged surface temperature rather than, e.g.,
the surface temperature in an individual grid point. Fur-
ther comments can be found at the end of section VI

B. Computing the Response

1. Spectroscopic method

If we select T (t) = ǫ cos(ω0t) = ǫ/2(exp(−iω0t +
exp(iω0t)) as modulating factor of the perturbation field

Ψ(x), from equation Eq. (73) we derive:

ρ̃(1)(A)t = ǫ/2

∫ +∞

−∞

dτ1G
(1)
A (τ1) exp(−iω0(t− τ1))

+ ǫ/2

∫ +∞

−∞

dτ1G
(1)
A (τ1) exp(iω0(t− τ1))

= ǫ/2 exp(−iω0t)χ
(1)
A (ω0) + c.c. (78)

where χ
(1)
A (ω0) is the Fourier Transform of G

(1)
A (t), usu-

ally referred to as linear susceptibility, evaluated at fre-
quency ω = ω0, and c.c. indicates complex conjugate.
Therefore, under the hypothesis of linearity, by perform-
ing an ensemble of experiments where the forcing is of the
form T (t) = ǫ cos(ω0t), we can extract the linear suscep-
tibility at frequency ω by selecting the ω0 component of
the Fourier transform of the signal ρ̃(1)(A)t obtained by
taking the ensemble average of the difference between the
time series of A in the perturbed and unperturbed case.
By changing systematically the frequency ω of the forc-

ing, one can reconstruct the susceptibility χ
(1)
A (ω) on a

chosen interval of frequencies. It is useful to recapitulate
some useful features of the susceptibility:

• Resonances in the susceptibility function corre-
spond to spectral ranges where the system is ex-
tremely sensitive to forcings. In Fig. 14 we show
the real and imaginary part of the susceptibility
for z variable of the (Lorenz , 1963) model for the
classical values of the parameters (m = 1, σ = 10,
r = 28, β = 8/3) and a given choice of the forc-
ing (Ψ(x) = [0;x; 0]⊤, T (t) = 2ǫ cos(ωt)). We find
that for ω ∼ 8.3, a very peaked spectral feature is
apparent. Such a resonance is due to the Unstable
Periodic Orbits (UPO) of the system with the cor-
responding period (Eckhardt and Ott , 1994). UPOs
populate densely the attractors of chaotic systems
and constitute the so-called skeleton of the dynam-
ics. In the case geophysical flows, UPOs have been
associated to modes of low-frequency variability
(Gritsun, 2008). One can, more qualitatively, asso-
ciate resonance to positive feedbacks acting on time
scales corresponding to the resonant frequency.

• While |χ
(1)
A (ω)| measures the amplitude of the re-

sponse of the system to perturbation at frequency

ω, arctan(ℑ{χ
(1)
A (ω)}/ℜ{χ

(1)
A (ω)}) gives the phase

delay between the forcing and the response, be-

cause ℜ{χ
(1)
A (ω)} (ℑ{χ

(1)
A (ω)}) gives the compo-

nent of the response that is in phase (out of phase)
with the forcing. Depending on the forcing, on the
system, and on the observable, this angle can vary
significantly even in a relatively small range of fre-
quencies, as a result of resonances.

• The two components ℑ{χ
(1)
A (ω)} and ℜ{χ

(1)
A (ω)}

are connected by integral equations, the so-called
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Kramers-Kronig relations (Lucarini , 2008, 2009;
Lucarini et al., 2005; Ruelle, 2009; ?). Such re-
lations have their foundation in the causality of the
Green function (due to the presence of the Heavi-
side distribution in Eq. 74) and establish a funda-
mental connection between the response at differ-
ent time scales:

ℜ{χ
(1)
A (ω)} =

2

π
P

∫

dω′ω
′ℑ{χ

(1)
A (ω′)}

ω′2 − ω2
; (79)

ℑ{χ
(1)
A (ω)} = −

2ω

π
P

∫

dω′ω
′ℜ{χ

(1)
A (ω′)}

ω′2 − ω2
. (80)

where P indicates that the integral is taken in prin-
cipal part (?). In particular one finds that:

ℜ{χ
(1)
A (0)} =

2

π

∫

dω′ℑ{χ
(1)
A (ω′)}

ω′
, (81)

which provides a link between the static response
- the sensitivity - and the out-of-phase response
at all frequencies. A large literature exists in op-
tics, acoustics, condensed matter physics, particle
physics, signal processing on the theory and on the
many applications of Kramers-Kronig relations and
on the related sum rules, which provide integral
constraints related to the asymptotic behavior of
the susceptibility (Lucarini et al., 2005).

In Fig. 15 we present the real and imaginary part of
the susceptibility of the mean energy e of the celebrated
Lorenz (1996) model:

dxi
dt

= xi−1(xi+1 − xi−2)− xi + F (82)

where i = 1, 2, ....., N , and the index i is cyclic so that
xi+N = xi−N = xi, and e = 1/N

∑N
j=1 x

2
j/2. The

quadratic term in the equations simulates advection, the
linear one represents thermal or mechanical damping
and the constant one is an external forcing. See details
on the experiments in Lucarini and Sarno (2011), per-
formed using N = 40 and F = 8. The system is per-
turbed by the vector field Ψ(x) = [1; . . . ; 1]⊤ modulated
by T (t) = 2ǫ cos(ωt). The resulting real and imaginary

part of χ
(1)
e (ω) are reported in Fig. 15, together with

the output of the data inversion performed via Kramers-
Kronig relations. Once we obtain the susceptibility, as
discussed in (Lucarini and Sarno, 2011), it is possible to
derive the corresponding Green function by applying the
inverse Fourier Transform. This is the first application
of the Kramers-Kronig theory in a geophysical context.

2. Broadband forcing

If, instead, we select T (t) = δ(t), we derive from Eq.

(74) that ρ(1)(A)t = G
(1)
A (t), i.e.,the Green function cor-
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FIG. 14 Measured real (blue line) and imaginary (red line)
part of the susceptibility z variable of the Lorenz 63 model.
Data from Lucarini (2009)
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FIG. 15 Measured real (blue line) and imaginary (red line)
part of the susceptibility for the average energy of the Lorenz
96 model. The rigorous extrapolation of the susceptibility
obtained via Kramers-Kronig analysis is reported (real part:
black line; imaginary part: magenta line). Data from Lucarini
and Sarno (2011)

.

responds to the relaxation of an ensemble of trajecto-
ries of the system after a finite displacement along Ψ(x).

Obviously, we have that ρ̃(1)(A)ω = χ
(1)
A (ω), where the

˜ symbol, indicates, as customary, that a Fourier Trans-
form has been applied, so that the Fourier Transform of
the signal is the linear susceptibility. Therefore, using
just one ensemble of experiments where the perturbation
is described by an impulsive forcing, we can gather the
same information on the response of the system which,
in the previous case required an accurate sampling of dif-
ferent frequencies.
Let us look at the problem from a slightly more general

point of view. We apply the Fourier Transform to both
sides of Eq. (73) and obtain:

ρ̃(1)(A)ω = χ
(1)
A (ω)T̃ (ω) (83)

Choosing a sine or cosine function with argument ω0t for
the function T (t) amounts to selecting as T̃ (ω) the sum
of two δ’s centered in ω = ±ω0. Therefore, the input
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(forcing) allows only a small portion of the information
to derived on the system from the output (response). Let
us assume that we choose the modulation T (t) such that
T̃ (ω) is not vanishing for any ω, so that we have a broad-
band modulation, where e.g. |T̃ (ω)| for large values of ω
decreases like a power law. If we perform an ensemble of
simulations of the forced system, measure ρ̃(1)(A)ω, we
can invert Eq. 73 and readily derive:

χ
(1)
A (ω) =

ρ̃(1)(A)ω

T̃ (ω)
(84)

Therefore, one single set of experiments is, in fact all we
need to do to learn about the linear response properties
of the system for the observable A. If we want to predict
the response at finite and infinite time of the system to
forcing with the same spatial pattern Ψ(x) but with dif-

ferent time modulation R(t), we can derive G
(1)
A (t) from

χ
(1)
A (ω) obtained via Eq. (84), and then plug it into Eq.

(73). Alternatively, one can write:

ρ̃(1)(A)Rω = ρ̃(1)(A)Tω
R̃(ω)

T̃ (ω)
(85)

where the upper indices R and T have been inserted for
clarity, and then compute the inverse Fourier transform
to derive the response at all times, or, if we apply the
inverse Fourier transform to Eq. 84, we can compute the
response to the R perturbation as:

ρ(1)(A)Rt =

∫ +∞

−∞

dτ1G
(1)
A (τ1)R(t− τ1). (86)

C. Prediction via Response theory

The real test of the quality of an experimentally de-

rived linear Green function G
(1)
A is the assessment of

its ability to support predictions about the system’s re-
sponse to any temporal pattern of forcing R(t). The real
benefit of the broadband approach described here relies

on exploiting linearity, and so deriving G
(1)
A from just one

ensemble of simulations, each performed with the same

modulation T (t). Computing the G
(1)
A per se might be,

in fact of little relevance.
At this regard, we have performed additional experi-

ments on the Lorenz (1996) model mirroring what pre-
sented in section V.B.1. In this case, we have chosen as
time modulation T (t) = ǫΘ(t), whose spectrum is indeed
broadband (T̃ (ω)/ǫ = πδ(ω)+iP[1/ω], where P indicates
the principal part) (?). In this case, we have:

G(1)
e (t) =

d

dt
ρ(1)(e)t. (87)

Using about 1/100 of the computing time needed in Lu-

carini and Sarno (2011), we have produced an estimate
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FIG. 16 Linear Green function G
(1)
e (t) for the average energy

e of the Lorenz (1996) model obtained by considering a step-
like perturbation and using Eq. (87). Compare with Fig. 4
in Lucarini and Sarno (2011)
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tion T (t) = ǫ sin(2πt) (ǫ = 0.25). Observed response ρ(1)(e)t
(blue line) vs. prediction obtained using the linear Green

function G
(1)
e (t) shown in Fig. 16.

of the Green function of comparable quality; see Fig. 16.
Additionally, we decided to check the predictive power
of the reconstructed Green function given in Fig. 16 by
testing its performance in predicting, through Eq. (73),
the response of the system to a perturbation having tem-
poral pattern given by T (t) = ǫ sin(2πt) (ǫ = 0.25). The
results are presented in Fig. 17. The agreement between
the measured value of ρ(1)(e)t and the value predicted

using
∫

dτG
(1)
e (τ)T (t − τ) is remarkable. One must em-

phasize that the agreement is comparable if one selects
ǫ = 1, thus moving away from the linear regime.

D. Climate Response, Climate Change prediction

Let us take inspiration from the previous example in
order to get some results of stricter geophysical rele-
vance: we want to perform predictions on the impact
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a)

b)

FIG. 18 Studying climate change using response theory. a)
Change in TS after an instantaneous doubling of the CO2

concentration. The lightly colored band indicates the two-
standard deviation range around the ensemble mean. Insert:
Green function of the TS . b) Comparison between GCM simu-
lations (blue) and response theory prediction (red) for 1% per
year increase of the CO2 concentration up doubling. Lightly
colored band as in a).

of increases in the CO2 concentration on the globally
averaged surface temperature as simulated by a climate
model, the simplified yet Earth-like PLASIM (Fraedrich
et al., 2005). In what follows we present some new results
(see also discussion in Ragone et al. (2014)), with the goal
of proving the feasibility of the proposed methodology.

• ẋ = F (x) is the system of equations describing the
discretized version of a given model of the contin-
uum PDEs describing the evolution of the climate
in a baseline scenario with set boundary conditions
and values for, e.g., the CO2 concentration and the
value of the solar constant. We assume, for sim-
plicity, that system model does not feature daily or
seasonal variations in the radiative input at the top

of the atmosphere.

• Let us choose for the observable A the globally av-
eraged surface temperature of the planet TS .

• We study the perturbed system ẋ = F (x) +
f(t)Ψ(x). Let us choose as perturbation field Ψ(x)
the convergence of radiative fluxes due to change
in the logarithm of the atmospheric CO2 concen-
tration. We want to be able to predict at finite
and infinite time the response of the the system
to one of the standard CO2 forcing scenario given
by the IPCC by performing an independent set of
perturbed model integrations.

• The test perturbation is modulated by the function
f(t) = ǫΘ(t), where ǫ is such that we double the
amount of CO2 concentration in the atmosphere.
Our goal is to predict the climate response to the
customary 1% increase of CO2 concentration from
the baseline value to its double. We select as base-
line concentration [CO2] = 360 ppm.

• We perform 200 simulations, each lasting 200 years
for both scenarios of CO2 forcing. Our exper-
iments are performed using PLASIM (Fraedrich
et al., 2005) with a T21 spatial resolution, 10 ver-
tical layers in the atmosphere, and swamp ocean
having depth of 50 m.

From the time series of the ensemble mean of the change
of TS - ρ(1)(TS)t - resulting from the sudden increase in

the CO2, we derive the Green function G
(1)
TS

(t) using Eq.
(87). See Fig 18 a). Climate sensitivity is, in fact, defined
by Eq. (81). Given the chosen pattern of forcing, we can
rewrite is as follows:

∆T = ℜ{χ
(1)
TS

(0)} =
2

π

∫

dω′ℜ{ρ̃(1)(TS)ω′}, (88)

which relates climate response at all frequencies to its
sensitivity.
In order to test the predictive power of the response

theory, we then convolute the Green function with the
temporal pattern of forcing of the second set of experi-
ments.
We choose as test experiment the classical IPCC sce-

nario of 1% per year exponential increase of CO2 concen-
tration up to doubling of the initial concentration (real-
ized in τ ∼ 70 years, and constant concentration after-
wards. Since our relevant control parameter is the log-
arithm of the CO2 concentration, the second pattern of
forcing g(t) is, in fact, a ramp increasing linearly with
time from 0 to ǫ in τ ∼ 70 years, with constant value
equal to ǫ for larger times. The results are presented
in Fig. 18 b), where we compare the predicted pattern
of increase (blue line), obtained using Eq. 86, with the
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measured one (black line). The agreement is remarkable,
both on the short and on the long time scales, while a
some discrepancy exists between 20 and 50 years lead
time, where strong nonlinear effects due to ice-albedo
feedback are dominant (not shown).
Apparently, despite all the nonlinear feedbacks of the

climate model, the response to changes in the logarithm
of CO2 concentration can be accurately described by lin-
ear response theory at all time scales. Nonlinearity in the
underlying equations and presence of strong positive and
negative feedbacks do not rule out the possibility of con-
structing accurate methods for predicting the response.
In fact, the methods described here could be extended to
the nonlinear case by looking at the response in the fre-
quency domain (Lucarini , 2008, 2009), even if the data
quality requirement is obviously stricter.
The result presented here suggests that many of the

scenarios of greenhouse gases concentration included in
the IPCC reports (IPCC , 2001, 2007, 2013) may in fact
be partly redundant, as for certain variables might be
accurately described by linear response theory starting
from just one scenario. Equations 84 - 85 constitute the
basis for predicting climate response at all scales.
Obviously, with a given set of forced experiments, it

is possible to derive the sensitivity to the the given forc-
ing for as many climatic observables as desired. It is
important to note that, for a given finite intensity ǫ of
the forcing, the accuracy of the linear theory in describ-
ing the full response depends also on the observable of
interest. Moreover, the signal to noise ratio and, con-
sequently, the time scales over which predictive skill is
good may change a lot from variable to variable. The
results presented in this section extend to a more general
setting and with stronger foundation the excellent intu-
ition by Hasselmann et al. (1993) on the use of the linear
response for addressing the problem of the so-called cold

start of coupled atmosphere-ocean models.
Here we have shown results from just one observable

primary climatic interest. The analysis of other observ-
ables will shed light on the mechanisms determining the
climate response to the forcing due to changes n the at-
mospheric composition. As an example, the analysis of
the response of large-scale meridional gradients of tem-
perature at surface and in the middle troposphere will
provide information on changes in the midlatitude circu-
lation. The existence of approximate functional relation-
ship between the susceptibilities of different observables
(Lucarini , 2009) would provide the key for defining rigor-
ously the so-called emergent constraints (Bracegirdle and

Stephenson, 2012).
In practical terms, the applicability of response the-

ory corresponds to having smooth dependence of climate
properties with respect to some given parameters. In-
deed, this is not the case in the vicinity of tipping points
(see Fig. 12). Response theory, may, nonetheless, suggest
rigorous ways for defining and detecting tipping points,

because one expects that these are associated to a diver-
gence of the linear response.

Finally, in order to talk about predictability, we need
to specify what are the time scales over which we expect
to have satisfactory predictive skills. In fact, linear re-
sponse theory allows for deriving some scaling laws for
addressing this matter. The main obstacle for achieving
a good degree of predictability is the uncertainty on the
estimate of response signal given in Eq. (83) from the
outcomes of the numerical experiments because of the
finiteness of the ensemble and of the duration of each nu-
merical simulation. See a detailed discussion of this issue
in Ragone et al. (2014).

VI. MULTISCALE SYSTEMS AND

PARAMETRIZATIONS

The climate system features non-trivial behavior on a
large range of temporal and spatial scales (Fraedrich and

Bttger , 1978; Lucarini , 2013; Peixoto and Oort , 1992;
Vallis , 2006) When representing such a complex system
in a numerical simulation, the ratio of smallest to largest
time scale determines the number of required time steps,
and the number of interactions between scales that have
to be calculated at each step can increase exponentially
with the range of spatial variables. It is therefore clear
that, no matter which are the available computing re-
sources, we are able to simulate explicitly only the vari-
ables relevant for given ranges of spatial and temporal
scales. Different choices of such ranges correspond to dif-
ferent approximate theories of geophysical fluid dynamics
aimed at describing specific phenomenologies, a promi-
nent case being that of quasi-geostrophic theory (Klein,
2010).

A manifestation of the inability to treat ultraslow vari-
ability can be found in the usual practice in climate mod-
eling of choosing fixed or externally driven boundary con-
ditions, such as done when assuming a fixed extent for the
land-based glaciers, and, consequently, for the sea-level,
or imposing a specific path of CO2 concentration for the
atmosphere. Instead, the impossibility of treating accu-
rately fast processes requires the construction of so-called
parametrizations able to account, at least approximately,
for the effect of the small scales on the large scales, as
a function of the properties of the large scale variables,
such in the case of several important physical processes,
such as, e.g., deep and shallow atmospheric convection,
gravity wave drag, clouds, mixing in the ocean.

Parametrizing small scale processes is important be-
cause such unresolved processes impact the dynamics of
larger scales in terms of error growth, predictability, and
climatic biases. Presently, most of the parametrizations
used in climate models are deterministic, i.e., for given
state of the resolved variables, the effect of the unresolved
scale on the resolved scales is uniquely determined. We
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often refer to these as bulk parametrizations. More re-
cently, it has been emphasized that such a point of view
should be modified for taking into account the fact that
that many different states of the unresolved variables are
compatible with a given state of the resolved variables.
This leads to considering the possibility of using stochas-
tic parametrizations (Palmer and Williams, 2009), which
show promising abilities in reducing biases and reproduc-
ing more effectively the uncertainties associated to per-
forming mode reduction.
When large time-scale separation exists between the

resolved and non-resolved variables, the problem of
parametrization can be cast as follows. We consider a
system of the form Ż = F (Z), Z ∈ RN and we divide
the state vector Z = (X,Y ), where X are the slow com-
ponents we are interested into and Y are the fast compo-
nents we want to parametrize. We rewrite the evolution
equation as follows:

dX

dt
= GX(X,Y ) = FX(X) + ΦX(X,Y )

dY

dt
= GY (X,Y ) = FY (Y ) + ΦY (X,Y ) (89)

where we have split the dynamics of each set of variables
into the autonomous part and into the coupling terms.
The basic goal is to be able to write as an equation of
the form

dX

dt
= FX(X) +MX(X) + η(X) (90)

where MX and η corresponds to the deterministic and
stochastic components of the parametrization, respec-
tively. A now classic example of empirical construction
and of testing of stochastic parametrizations is given by
Wilks (2005), see Fig. 19.
It must be emphasized that many of the approaches

used so far have been based on the existence of a time
scale separation between microscopic and macroscopic
processes, following, conceptually, the pioneering point
of view proposed by Hasselmann (1976). If one does as-
sume such a vast time-scale separation between the slow
variables X and the fast variables Y , averaging and ho-
mogenization methods (Arnold , 2001; Kifer , 2004; Pavli-
otis and Stuart , 2008) allow for deriving an effective au-
tonomous dynamics for the X variables, able to encom-
pass the impact of the dynamics of the Y variables. The
motivation most often stated for the applicability of this
theory to climate science is the setting considered by Has-
selmann, where fast weather systems influence slow cli-

mate dynamics.
Unfortunately, in many practical cases of interest in

geophysical fluid dynamics, such a scale separation does
not exist - see, e.g., the classical study by Mitchell (1976)
- so that there is no spectral gap able to support univo-
cally the identification of the X and Y variable. In fact,
when the resolution of a numerical model is changed, all

FIG. 19 Diagram describing how to parametrize the effect of
the fast variables on the tendency of the slow variables X.
The solid line U - see y− axis - corresponds to MX in Eq. 90,
while the variability associated to the cloud of points needs
to be represented via a stochastic term like η in Eq. 90. From
Wilks (2005).

the parametrizations have to be re-tuned, because the set
of resolved variables has changed.

Here we will focus on analytical methods that allow
one to derive reduced models from the dynamical equa-
tions of a full model. Projector operator techniques have
been introduced in statistical mechanics with the goal of
effectively removing the Y variables. In particular, con-
siderable interest has been raised by the Mori-Zwanzig
approach, through which a formal - albeit practically in-
accessible - solution for the evolution of theX variables is
derived (Mori , 1965; Zwanzig , 1961, 2001). These equa-
tions in general contain both a correlated noise term and
a memory term. Some attempts have been made to make
approximation to the Mori-Zwanzig projected equations
to obtain practically useful equations. In applications of
stochastic mode reduction in climate science, the mem-
ory term is usually not taken into account. This term
could however be very relevant in systems without a time-
scale separation, as for example in the parametrization
of cloud formation in an atmospheric circulation model.
The presence of memory in such systems has been dis-
cussed by Bengtsson et al. (2013); Davies et al. (2009);
Piriou et al. (2007). Note that, when we consider cou-
pled systems where asynchronous is used, memory effects
are implicitly present in the dynamics.

Besides considering the limit of infinite time scale sep-
aration, another point of view can be taken, namely con-
sidering the limit of weak coupling between the dynam-
ical processes occurring at different scales. In this limit,
the dynamics retains the correlated noise and memory
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dependence that appeared in the Mori-Zwanzig reduced
equations. The advantage of looking at this limit is how-
ever that the noise autocorrelation function and memory
kernel can now be written as simple correlation and re-
sponse functions of the unresolved dynamics.

A. Averaging and homogenization

When applying averaging and homogenization tech-
niques, one considers dynamical systems where a small
parameter ǫ controls the time scale separation between a
slow and fast evolution in the system. The prototypical
set of equations for such a problem is

dX

dt
=GX(X,Y )

dY

dt
=GY (X,Y ) =

1

ǫ
G̃Y (X,Y )

The parameter ǫ controls the time scale separation be-
tween the variables X and Y , which becomes infinite as
ǫ→ 0.
As the time scale separation becomes large, on the typ-

ical time scale for the variable Y , X will remain almost
constant. The fast variable Y will obey an evolution de-
fined by (X,Y ) for the current fixed value of X. On the
much longer time scale connected to the slow system, the
evolution of X integrates out the rapid fluctuation of Y .
As in the law of large numbers, the overall effect of all
these integrated fluctuations can be substituted by one
single value. It can be shown that for finite time T , the
following applies:

• the trajectory X(t) converges to a solution of:

dX̄

dt
= ḠX̄(X̄)

where ḠX(X̄) = ρX̄(GX(X̄, Y )) is the averaged
value of the tendency;

• the average is taken over the invariant measure ρX
of the Y variable of the dynamical system

dY

dt
=GY (X̄, Y )

resulting when X̄ is considered as a fixed forcing
parameter.

Let us consider a simple example system.

dX

dt
=(1− Y 2)x

dY

dt
=−

1

ǫ
Y +

√

2

ǫ

dW

dt

The Y system is here independent of X. The invariant
measure of the fast y system is a Gaussian distribution

with zero mean and unit variance. Taking the average of
GX(X,Y ) = (1 − Y 2)x under the invariant measure of
Y , we see that the averaged equation in this case is the
uninteresting equation Ẋ = 0.
This simple example immediately motivates the use of

homogenization methods. Here one scales the equation
to a longer time scale θ = ǫt, the so called diffusive time
scale and then performs the asymptotic expansion. Sim-
ilarly to how correctly rescaling the sums of the law of
large number leads to the more interesting central limit
theorem, which describes the fluctuations around the av-
erage value, also in the setting of time scale separated
systems, we get stochastic behavior on the diffusive time
scale. For the example considered above, we get a weak

convergence to a reduced stochastic differential equation
for the X variable instead of the trivial dynamical system
obtained before (Pavliotis and Stuart , 2008).
The theory for averaging and homogenization in time-

scale separated stochastic differential equations is well
understood, with results for both one way and two way
couplings between the levels (Bakhtin and Kifer , 2004).
As usual, the theory is more complicated for determin-
istic systems. Examples of dynamical systems can be
constructed where for a large set of initial conditions of
Y , the solution for X does not converge to the averaged
solution (Kifer , 2008). Furthermore, if the Y system has
long time correlations, such as in a system with regime
behavior, the homogenized system may converge badly
and an extension based on a truncation of the transfer
operator has been proposed (Schütte et al., 2004).
Abramov (2012) has recently presented a study of un-

certainty and predictability of the slow dynamics for a
system of geophysical relevance. A study of averaging
and homogenization for idealized climate models, with a
range of examples, can be found in Monahan and Culina

(2011). Another rather successful attempt in this direc-
tion is given in Majda et al. (2001). In Strounine et al.

(2010) stochastic mode reduction is applied to a three-
level quasi-geostrophic model whereas in Arnold et al.

(2003) the authors perform mode reduction on a simple
coupled atmosphere-ocean model. Another application
of homogenization to a toy model for the large-scale dy-
namics of the atmosphere can be found in (Frank and

Gottwald , 2013). Averaging for the case where one deals
with partial differential equations, as is relevant for cli-
mate modeling, is discussed by Dymnikov (2012).
A study of homogenization for geophysical flows was

performed in Bouchet et al. (2013). The slow system is
considered to be the evolution of zonal jets of a barotropic
flow, which is forced by noise. The fast degrees of freedom
are those representing the fast non-zonal turbulence. Ho-
mogenization has also been applied in (Dolaptchiev et al.,
2012) to the Burgers equation, where the slow variables
are taken to be averages over large grid boxes and the
fast variables are the subgrid variables.
When one wants to consider very large time scales (for
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examples times of the order of exp(1/ǫ)), one needs to
look beyond the central limit type theorems of homog-
enization and consider so called large deviation results.
These describe for example the transitions between dis-
connected attractors of the averaged equations (Kifer ,
2009) and are of great relevance for studying tipping
points (Lenton et al., 2008), going beyond simple one-
dimensional approximate theories (see, e.g., discussion
in Lucarini et al. (2012)).

B. Projection operator techniques

Projection operator techniques do not constitute a
mode reduction per se, but are a way to rewrite the dy-
namical equation of a multi-level equations to depend
only on a subset of variables. A projection is carried out
on the level of the observables to remove unwanted, irrel-
evant and usually fast degrees of freedom. The price one
has to pay for this apparent reduction is the appearance
of additional terms that are as difficult to compute as the
original system. It can however be a useful starting point
for further approximations. These of techniques are also
known as the Mori-Zwanzig approach (Mori et al., 1974;
Zwanzig , 1960, 1961).

If a dynamical system is defined on a manifold M, one
defines a projection P from the space of observable func-
tions on the full phase space M to a space of observables
which are considered to contain only the interesting dy-
namics. Many different choices are possible; if the mani-
fold M consists for example of a product of submanifolds
K of relevant and L of irrelevant variables, one can take
a conditional expectation with respect to a measure on
M, given the value of the relevant variables X ∈ K:

(PA)(X) =

∫

N
A(X,Y )ρ(X,Y )dY
∫

N
ρ(X,Y )dY

.

Another possible choice is a projection onto a set of func-
tions on M, such as linear functions of the coordinates
in a Euclidean phase space. In general, one can think at
various ways of performing coarse graining.

Let us go back to our general formulation of a dy-
namical system of the form Ż = F (Z), Z ∈ RN .
The evolution of an observable A(Z) can be written as
Ȧ(Z) = F (Z)·∇ZA(Z), which can be written as Ȧ = LA,
often referred to as Liouville equation. The evolution op-
erator L is split into its projection PL onto the relevant
space of observables and the complementQL := (1−P)L.
As described by Zwanzig (2001), a generalized Langevin
equation can then be derived based on Dyson’s formula
for operator exponentials

etL = etQL +

∫ t

0

e(t−s)LPLesQLds (91)

We write the Liouville equation for an observable A as

dA(t)

dt
= LA(t) = etLLA = etLPLA+ etLQLA

The factor exp(tL) in the second term can be further
expanded by making use of Eq. (91). This gives the
following equation

dA(t)

dt
= etLPLA+ (etQL +

∫ t

0

ds e(t−s)LPLesQL)QLA

Zwanzig (2001) proposes the following interpretation of
this equation. The first term on the right hand side cor-
responds to the regular, deterministic dynamics of the
system. The second term can be seen as describing a
contribution from correlated noise, dependent on the ini-
tial conditions of the irrelevant degrees of freedom. The
third term (under integral) represents the memory of the
system due to the presence of irrelevant variables that
have interacted with the relevant ones in the past. In
other term, the price we pay by separating somewhat
arbitrarily relevant from irrelevant degrees of freedom s
that the irrelevant degrees of freedom act as a stochastic
component and, somewhat counter-intuitively, as proxies
for the past state of the relevant degrees of freedom. Note
that we have done nothing more than manipulating the
original evolution equation Ȧ = LA. Correspondingly,
the Mori-Zwanzig equation in itself does not simplify the
problem. In order to derive a set of equations that are
useful for numerical simulations, assumptions need to be
made about the dynamical system.
Several approximations to the Mori-Zwanzig equations

have been proposed in the literature. There are the short
and long memory approximations made in the method of
optimal prediction (Bernstein, 2007; Chorin and Stinis ,
2006; Chorin and Hald , 2013; Chorin et al., 1998, 2000,
2002, 2006; Defrasne, 2004; Hald and Kupferman, 2001;
Park et al., 2007).
In the limit of an infinite time-scale separation be-

tween the relevant and irrelevant variables, the stochas-
tic component of the parametrization can be represented
as a white noise term, while the memory (also known
as non-Markovian) term vanishes, as the irrelevant vari-
ables decorrelate quickly. Therefore, in such a limit the
Mori-Zwanzig decomposition is equivalent to the homog-
enization method of section VI.A. For a comparison of the
short memory approximation of Mori-Zwanzig to homog-
enization for climate-relevant models, see (Stinis, 2006).
We also refer the reader to recent results of Chekroun

et al. (2013a,b), where general mathematical results for
the procedure of mode reduction, with thorough geomet-
rical and dynamical interpretations, are given.
Applications of the Mori-Zwanzig approach to fluid dy-

namics can be found in (Chandy and Frankel , 2009; Hald
and Stinis , 2007; Hou, 2007; Stinis, 2007). A simple
approximation to Mori-Zwanzig has been applied to jet
formation on a β plane in (Tobias and Marston, 2013).
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C. Weakly coupled systems

We now consider dynamical systems consisting of two
systems with a weak coupling. In this case an expansion
of the dynamics can be made in orders of the coupling,
giving insight into what properties of the coupled systems
determines the memory kernel and correlated noise that
appeared in the Mori-Zwanzig approach (Wouters and

Lucarini , 2012, 2013), because no assumptions are taken
regarding time-scale separation.
A possible application of this theory in climate science

can be found in the interaction between cloud forma-
tion and large scale atmospheric flow, where there is no
distinct time scale separation, but instead the coupling
could be considered as weak. The weak coupling limit of
a tropical ocean-atmosphere model has also been consid-
ered in the literature (Neelin and Jin, 1993).

Let us go back to Eq. 89. In this setting, the back-
ground vector field F consists of a Cartesian product
(FX , FY )

⊤ of the vector fields FX and FY defining the
autonomous X and Y dynamics. The perturbing vec-
tor field δF is a coupling (ΨX ,ΨY )

⊤ between the two
systems. We rewrite the full dynamical system as:

dX

dt
= FX(X) + ǫΨX(X,Y )

dY

dt
= FY (Y ) + ǫΨY (X,Y ) (92)

where ǫ is added in order to clarify what kind of pertur-
bative expansion we consider. For simplicity of presen-
tation, for now we consider the case where ΨX(X,Y ) =
ΨX(Y ) and ΨY (X,Y ) = ΨY (X). We will come back to
the general case later.
Given that the coupling term ǫΨ can be seen as a small

perturbation to the uncoupled system, one can make use
of response theory to study the change of long time means
under a change in the coupling parameter ǫ. We can
therefore use the response formalism described in Section
V. After lengthy calculations, one obtains the explicit
expression for

ρ(A)t = ρ0(A)t + ρ(1)(A)t + ρ(2)(A)t +O(Ψ3) (93)

FIG. 20 Diagram describing the mean field effect of the Y
variables on the X variables. Term M in Eq. (94).

FIG. 21 Diagram describing the impact of fluctuations of the
Y variables on the X variables. Term σ in Eq. (94).

FIG. 22 Diagram describing the non-Markovian effect of the
on the X variables on themselves, mediated by the Y vari-
ables. Term h in Eq. (94).

As shown by Wouters and Lucarini (2012), if one col-
lects these first and second order responses to the cou-
pling Ψ, an identical change in expectation values from
the unperturbed ρ0 up to third order in Ψ can be ob-
tained by adding a Y -independent forcing to the ten-
dency of the X variables as follows:

dX(t)

dt
=FX(X(t)) +M + σ(t)

+

∫ ∞

0

dτh(τ,X(t− τ)) (94)

where M = ρ0,Y (ΨX) is an averaged version of the
Y to X coupling, σ is a stochastic term, mimicking the
two time correlation properties of the unresolved vari-
ables and h is a memory kernel that introduces the non-
Markovianity. A diagrammatic representation of pro-
cesses responsible that these three additional terms are
parametrizing is given in Figs. 20-22. Figure 20 refers
to the mean field effect, which is captured by the first
order correction, and corresponds to the deterministic
parametrization. Figure 21 describes the effect of the
fluctuations of the unresolved variables, which results
into an effective stochastic term in the parametrization.
Finally, figure 22 clarifies how memory effects enter into
the picture of the parametrization: the resolved variables
at a given time impact the resolved variables at a later
time through a transfer of information mediated by the
unresolved variables. The memory effect is present due to
the finite time scale difference between resolved and un-
resolved variables, which also ensures that the stochastic
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contribution shown in Fig. 21 cannot be represented by a
white noise process. In Wouters and Lucarini (2013) this
reduced equation was shown to be related to an expan-
sion in the coupling strength of a Mori-Zwanzig equation.

If the coupling functions ΨX and ΨY are allowed to
be dependent on both X and Y , the above analysis
can still be carried out. In practical terms, this ac-
counts for the possibility that the coupling terms are
function of both the variables we want to parametrize
and of those we want to keep explicitly represented in our
model. For the case of separable couplings ΨX(X,Y ) =
ΨX,1(X)ΨX,2(Y ) and ΨY (X,Y ) = ΨY,1(X)ΨY,2(Y ) the
average term becomes X dependent and the noise term
becomes multiplicative instead of additive. An expres-
sion for more general couplings can be derived be de-
composing the coupling functions into a basis of sepa-
rable functions, see (Wouters and Lucarini , 2012), and
then the same procedure can be applied.

VII. SUMMARY AND CONCLUSIONS

The goal of this review paper is the provision of an
overview of some ideas emerging at the interface between
climate science, physics, and mathematics, with the ob-
jective of contributing to bridging the gap between dif-
ferent scientific communities. The topics have been se-
lected by the authors with the goal of covering (at least
partially) relevant aspects of the deep symmetries of geo-
physical flows, of the processes by which they convert
and transport energy, and generate entropy, and of con-
structing relevant statistical mechanical models able to
address fundamental issues like the response of the cli-
mate system to forcings, the representation of the in-
teraction across scales, the definition of relevant physical
quantities able to describe succinctly the dynamics of the
system. This review also informs the development and
testing of climate models of various degrees of complex-
ity, by analyzing their physical and mathematical well-
posedness and for constructing parametrizations of unre-
solved processes, and by putting the basis for construct-
ing diagnostic tools able to capture the most relevant
climate processes.

The Nambu formulation of geophysical fluid dynam-
ics explored in section II emphasizes the existence, in
the inviscid and unforced case, of non-trivial conserved
quantities that are embedded in the equations of motion.
Such quantities play a fundamental role, analogous to en-
ergy’s, in the description of the state and of the dynamics
of the system and can be regarded as observables of great
relevance also in the case where dissipation and forcing
are present. Moreover, the Nambu formalism suggests us
ways for devising very accurate numerical schemes, which
do not have spurious diffusive behavior.

The symmetry properties of the flow in the inviscid
limit allow the construction of the ensembles describing

the equilibrium statistical mechanical properties of the
geophysical flows (section III), where the vorticity - in
the two dimensional case - plays the role of the most
important physical quantity. Starting from the classi-
cal construction due to Onsager of the gas of interact-
ing vortices, the theory leads us to construct a theory of
barotropic and baroclinic QG turbulence.

Taking the point of view of non-equilibrium systems,
we have that thanks to the presence of gradients of phys-
ical quantities like temperature and chemical concentra-
tions - in first instance due to the inhomogeneity of the
incoming solar radiation, of the optical properties of the
geophysical fluids, and of the boundary conditions - the
climate system can transform available potential energy
into kinetic energy via internal instabilities, resulting in
organized fluid motions. In section IV the analysis of
the energy and entropy budgets of the climate system is
shown to provide a comprehensive picture of climate dy-
namics, new tools for testing and auditing climate mod-
els and measuring climate change, for investigating of the
climate tipping points, and for studying the properties of
general planetary atmospheres.

Section V introduces some basic concepts of non-
equilibrium statistical mechanics, connecting the macro-
scopic properties described in the previous section to the
features of the family of chaotic dynamical systems which
constitute the backbone of the mathematical description
of non-equilibrium systems. For such systems, the re-
lationship between internal fluctuations and response to
forcings is studied with the goal of developing methods
for predicting climate change. After clarifying the condi-
tions under which the FDT is valid, we present some new
results such as a successful climate prediction for decadal
and longer time scales. In this sense, we show that the
problem of climate change is mathematically well-posed.
Non-equilibrium statistical mechanics is also the sub-

ject of section VI, where we show how the Mori-Zwanzig
formalism supports the provision of rigorous methods for
constructing parametrizations of unresolved processes. It
is possible to derive a surrogate dynamics for the coarse
grained variable of interest for climatic purposes, incor-
porating, as result of the coupling with the small scale,
fast variables, a deterministic, a stochastic, and a non-
Markovian contribution, corresponding to memory ef-
fects, which add to the unperturbed dynamics. The same
results can be obtained using the response theory de-
scribed in section V, thus showing that the construction
of parametrizations for weather and for climate models
should have common ground.

Among the many topics and aspects left out of this
review, we need to mention recent developments aimed
at connecting the complementary, rather than oppos-
ing (Lorenz , 1963) and (Hasselmann, 1976) perspectives
on complex dynamics dynamics, which focus on deter-
ministic chaos and stochastic perturbations to dynami-
cal systems, respectively. We refer in particular to the
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idea of constructing time-dependent measures for non
autonomous dynamical systems (Chekroun et al., 2011)
through the introduction of the so-called pullback attrac-

tor, which is the geometrical object the trajectories ini-
tialized in a distant past tend to at time t with proba-
bility 1 as a result of the contracting dynamics. Such an
object is not invariant with time, as a result of the time-
dependent forcing, but, under suitable conditions on the
properties of the dynamical system, the supported mea-
sure has at each instant properties similar to those of the
(invariant) SRB measure one can construct for, e.g. au-
tonomous Axiom A dynamical (Ruelle, 1989). Such an
approach allows for treating in a coherent way the pres-
ence of modulations in the dynamics of the system, with-
out the need of applying response formulas or of assuming
time-scale separations, and in particular allows for ana-
lyzing the case where the forcing is stochastic, leading to
the concept of random attractor (Arnold , 1988). On a
different line of research, it is instead possible to use Ru-
elle response theory for computing the impact of adding
stochastic noise on chaotic dynamical systems (Lucarini ,
2012). One finds the rate of convergence of the stochas-
tically perturbed measure to the unperturbed one, and
discovers the general result that adding noise enhances
the power spectrum of any given observables at all fre-
quencies. The difference between the power spectrum of
the perturbed and unperturbed system can be used, mir-
roring an FDT, for computing the response of the system
to deterministic perturbations.

The methods, the ideas, the perspectives presented in
this paper are partially overlapping, partially comple-
mentary, partly in contrast. In particular, it is not obvi-
ous, as of today, whether it is more efficient to approach
the problem of constructing a theory of climate dynam-
ics starting from the framework of hamiltonian mechan-
ics and quasi-equilibrium statistical mechanics or taking
the point of view of dissipative chaotic dynamical sys-
tems, and of non-equilibrium statistical mechanics, and
even the authors of this review disagree. The former ap-
proach can rely on much more powerful mathematical
tools, while the latter is more realistic and epistemolog-
ically more correct, because, obviously, the climate is,
indeed, a non-equilibrium system. Nonetheless, the ex-
perience accumulated in many other scientific branches
(chemistry, acoustics, material science, optics, etc.) has
shown that by suitably applying perturbation theory to
equilibrium systems one can provide an extremely ac-
curate description of non-equilibrium properties. Such a
lack of unified perspective, of well-established paradigms,
should be seen as sign of the vitality of many research
perspectives in climate dynamics.
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Appendix A: Glossary

For the benefit of the reader, we report here the most
relevant symbols used in this paper, indicating if the same
symbol is used with different meaning.

H Hamiltonian functional
{•, •}P Standard Poisson Brackets
u Velocity vector (two- or three-dimensional)
ua Absolute velocity vector (including planetary rota-

tion)
∇· Divergence operator (two- or three-dimensional)
∇h· Horizontal divergence operator for three-

dimensional vectors
∇ Gradient operator (two- or three-dimensional)
∇h Horizontal gradient operator for three-dimensional

fields
ψ streamfunction
ω Vorticity function (two-dimensional dynamics)
ω Vorticity vector (three-dimensional dynamics)
ωa Absolute vorticity vector (including planetary vor-

ticity)
S Symplectic matrix [0, -1; 1, 0];
J Jacobian operator
X Generic functional
δX/δa Functional derivative of X with respect to the

function a.
{•, •, •} Nambu brackets
µ Horizontal divergence of the velocity field
hT Total thickness of the fluid (shallow water equa-

tions)
h Helicity
ha Absolute helicity (including planetary rotation)
f = f0 + βy Planetary vorticity in β−plane approxi-

mation (y indicates the South-North coordinate)
Φ Geopotential
Q Quasi-geostrophic potential vorticity
q Potential vorticity for shallow water equations (Sec-

tion II); specific humidity (Section IV)
N Brunt-Väisälä frequency
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ρ Density of the fluid (Sections II and IV); Invariant
measure of the system (Sections III, V, and VI).
Ω Earth’s angular velocity vector
Π Ertel’s potential vorticity
E Enstrophy functional
Eρ Potential enstrophy functional
S Entropy functional
M Mass functional
Z partition function
RD = 2π/kD Rossby deformation radius
S Mixing entropy
e Specific energy per unit mass
i Specific internal energy per unit mass
p pressure
H relative humidity
g Gravity
T Temperature
Cv, CW Specific heat at constant volume
p pressure
s (σ = ρs) specific entropy per unit mass (per unit

volume)
Ω(E) structure function
L Latent heat of vaporization (Section IV); Liouville

operator (Section VI)
FR Vector of radiative flux.
FS Vector of turbulent sensible heat flux.
FL Vector of turbulent latent heat flux.
τ Surface stress tensor
E Total energy
P Total static potential energy
K Total kinetic energy
W Conversion rate between potential and kinetic en-

ergy
D Rate of dissipation of the kinetic energy
Φ̇+ Net positive heating rate taking place at average

temperature T+

Φ̇− Net negative heating rate taking place at average
temperature T−

η Climate efficiency
Ṡmat Rate of material entropy production of the cli-

mate system
Ṡfric Rate of material entropy production due to fric-

tion
Ṡdiff Rate of material entropy production due to dif-

fusion
Ṡhyd Rate of material entropy production due to the

hydrological cycle
Ṡvmat Rate of material entropy production of the cli-

mate system due to vertical processes
Ṡhmat Rate of material entropy production of the cli-

mate system due to horizontal processes
ρ(1)(A) First order correction to the expectation value

of the observable A
G

(1)
A (t) First order Green function for the observable

A

χ
(1)
A (ω) First order susceptibility function for the ob-

servable A
∆T Climate Sensitivity
P = 1 − Q Projection operator performing coarse

graining on the dynamics and eliminates irrelevant de-
grees of freedom; Q is the complementary operator
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ficiencies of an idealized global climate model, Clim. Dyn.,
25, 801–813.

Ambaum, M. H. P. (2010), Thermal Physics of the Atmo-
sphere, 256 pp., Wiley, New York.

Arnold, L. (1988), Random Dynamical Systems, Springer,
New York.

Arnold, L. (2001), Hasselmann’s program revisited: The
analysis of stochasticity in deterministic climate models,
Stochastic climate models, 49, 141–158.

Arnold, L., P. Imkeller, and Y. Wu (2003), Reduction of de-
terministic coupled atmosphere-ocean models to stochas-
tic ocean models: a numerical case study of the lorenz-
maas system, Dynamical Systems, 18 (4), 295–350, doi:
10.1080/14689360310001607979.

Arnold, V. (1992), Catastrophe theory, 3d edition, Springer,
Berlin.

Bakhtin, V., and Y. Kifer (2004), Diffusion approximation for
slow motion in fully coupled averaging, Probability Theory
and Related Fields, 129 (2), 157–181, doi:10.1007/s00440-
003-0326-7.

Bartello, P. (1995), Geostrophic adjustment and inverse cas-
cades in rotating stratified turbulence., J. Atmos. Sci., 52,
4410–4428.

Basdevant, C., and R. Sadourny (1975), Ergodic proper-
ties of inviscid truncated models of two-dimensional in-
compressible flows, J. Fluid Mech., 69, 673–688, doi:
10.1017/S0022112075001620.

Batygin, K., and D. J. Stevenson (2010), Inflating hot jupiters
with ohmic dissipation, The Astrophysical Journal Letters,
714 (2), L238–L24.

Bayr, T., D. Dommenget, T. Martin, and S. Power (2014),
The eastward shift of the walker circulation in response
to global warming and its relationship to enso variability,
Clim. Dyn., doi:10.1007/s00382-014-2091-y.

Becker, E. (2003), Frictional heating in global climate models,
Mon. Weather Rev., 131, 508–520.

Bengtsson, L., M. Steinheimer, P. Bechtold, and J.-F. Ge-
leyn (2013), A stochastic parametrization for deep con-
vection using cellular automata, Quarterly Journal of the
Royal Meteorological Society, 139 (675), 15331543, doi:
10.1002/qj.2108.

Bernstein, D. (2007), Optimal prediction of burgerss equa-
tion, Multiscale Modeling & Simulation, 6 (1), 27–52, doi:
10.1137/060651720.

http://dx.doi.org/10.1080/14689360310001607979
http://dx.doi.org/10.1080/14689360310001607979
http://dx.doi.org/10.1007/s00440-003-0326-7
http://dx.doi.org/10.1007/s00440-003-0326-7
http://dx.doi.org/10.1017/S0022112075001620
http://dx.doi.org/10.1017/S0022112075001620
http://dx.doi.org/10.1007/s00382-014-2091-y
http://dx.doi.org/10.1002/qj.2108
http://dx.doi.org/10.1002/qj.2108
http://dx.doi.org/10.1137/060651720
http://dx.doi.org/10.1137/060651720


38

Bihlo, A. (2008), Rayleigh-Bénard convection as a Nambu-
metriplectic problem, J. Phys. A, 41, 292,001.

Boffetta, G. (2007), Energy and enstrophy fluxes in the double
cascade of two-dimensional turbulence, J. Fluid Mech., 589,
253–260.

Boschi, R., V. Lucarini, and S. Pascale (2013),
Bistability of the climate around the habitable
zone: a thermodynamic investigation, Icarus, doi:
http://dx.doi.org/10.1016/j.icarus.2013.03.017.

Bouchet, F., and E. Simonnet (2009), Random changes
of flow topology in two-dimensional and geophysi-
cal turbulence, Phys. Rev. Lett., 102, 94,504, doi:
10.1103/PhysRevLett.102.094504.

Bouchet, F., and A. Venaille (2012), Statistical mechanics of
two-dimensional and geophysical flows, Phys. Rep., 515,
227, doi:10.1016/j.physrep.2012.02.001.

Bouchet, F., C. Nardini, and T. Tangarife (2013), Kinetic
Theory of Jet Dynamics in the Stochastic Barotropic and
2D Navier-Stokes Equations, Journal of Statistical Physics,
153, 572–625, doi:10.1007/s10955-013-0828-3.

Bracegirdle, T. J., and D. B. Stephenson (2012), On the ro-
bustness of emergent constraints used in multimodel cli-
mate change projections of arctic warming, Journal of Cli-
mate, 26 (2), 669–678, doi:10.1175/JCLI-D-12-00537.1.

Budyko, M. (1969), The effect of solar radiation variations on
the climate of the earth, Tellus, 21, 611–619.

Chandy, A. J., and S. H. Frankel (2009), The t-model as a
large eddy simulation model for the navier-stokes equa-
tions, Multiscale Modeling & Simulation, 8 (2), 445–462,
doi:10.1137/090760787, WOS:000277582900005.

Charney, J. G. (1947), The dynamics of long
waves in a baroclinic westerly current, Journal
of Meteorology, 4 (5), 136–162, doi:10.1175/1520-
0469(1947)004¡0136:TDOLWI¿2.0.CO;2.

Chavanis, P.-H. (2009), Dynamical and thermodynamical sta-
bility of two-dimensional flows: variational principles and
relaxation equations, Eur. Phys. J. B, 70, 73–105, doi:
10.1140/epjb/e2009-00196-1.

Chavanis, P.-H., and J. Sommeria (1996), Classification of
self-organized vortices in two-dimensional turbulence: the
case of a bounded domain, J. Fluid Mech., 314, 267–297,
doi:10.1017/S0022112096000316.

Chavanis, P.-H., and J. Sommeria (1997), Thermody-
namical approach for small-scale parametrization in
2D turbulence, Phys. Rev. Lett., 78, 3302–3305, doi:
10.1103/PhysRevLett.78.3302.

Chekroun, M. D., E. Simonnet, and M. Ghil (2011),
Stochastic climate dynamics: Random attractors
and time-dependent invariant measures, Physica D:
Nonlinear Phenomena, 240 (21), 1685 – 1700, doi:
http://dx.doi.org/10.1016/j.physd.2011.06.005.

Chekroun, M. D., H. Liu, and S. Wang (2013a), On stochastic
parameterizing manifolds: Pullback characterization and
Non-Markovian reduced equations, ArXiv e-prints.

Chekroun, M. D., H. Liu, and S. Wang (2013b), Non-
Markovian Reduced Systems for Stochastic Partial Differ-
ential Equations: The Additive Noise Case, ArXiv e-prints.

Chorin, A., and P. Stinis (2006), Problem reduction, renor-
malization, and memory, Communications in Applied
Mathematics and Computational Science, 1 (1), 1–27, doi:
10.2140/camcos.2006.1.1.

Chorin, A. J., and O. H. Hald (2013), Stochastic Tools in
Mathematics and Science, no. 58 in Texts in Applied Math-
ematics, 3rd ed., Springer, New York.

Chorin, A. J., A. P. Kast, and R. Kupferman (1998), Optimal
prediction of underresolved dynamics, Proceedings of the
National Academy of Sciences, 95 (8), 4094–4098, PMID:
9539695.

Chorin, A. J., O. H. Hald, and R. Kupferman (2000), Opti-
mal prediction and the MoriZwanzig representation of ir-
reversible processes, Proceedings of the National Academy
of Sciences, 97 (7), 2968–2973, doi:10.1073/pnas.97.7.2968,
PMID: 10737778.

Chorin, A. J., O. H. Hald, and R. Kupferman (2002), Optimal
prediction with memory, Physica D: Nonlinear Phenomena,
166 (34), 239–257, doi:10.1016/S0167-2789(02)00446-3.

Chorin, A. J., O. H. Hald, and R. Kupferman (2006), Pre-
diction from partial data, renormalization, and averaging,
Journal of Scientific Computing, 28 (2-3), 245–261, doi:
10.1007/s10915-006-9089-5.
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