V.I. Arnold V.V. Kozlov A.I. Neishtadt

Mathematical Aspects of Classical and Celestial Mechanics

Second Edition

With 81 Figures

Mathematical Aspects of Classical and Celestial Mechanics

V.I. Arnold V.V. Kozlov A.I. Neishtadt

Translated from the Russian by A. Iacob

Contents

Chapter 1. Basic Principles of Classical Mechanics	1
§1. Newtonian Mechanics	1
1.1. Space, Time, Motion	1
1.2. The Newton-Laplace Principle of Determinacy	2
1.3. The Principle of Relativity	4
1.4. Basic Dynamical Quantities. Conservation Laws	6
§ 2. Lagrangian Mechanics	9
2.1. Preliminary Remarks	9
2.2. Variations and Extremals	10
2.3. Lagrange's Equations	12
2.4. Poincaré's Equations	13
2.5. Constrained Motion	16
§ 3. Hamiltonian Mechanics	20
3.1. Symplectic Structures and Hamilton's Equations	20
• •	
3.2. Generating Functions	22
3.3. Symplectic Structure of the Cotangent Bundle	23
3.4. The Problem of n Point Vortices	24
3.5. The Action Functional in Phase Space	26
3.6. Integral Invariants	27
3.7. Applications to the Dynamics of Ideal Fluids	29
3.8. Principle of Stationary Isoenergetic Action	30
§ 4. Vakonomic Mechanics	31
4.1. Lagrange's Problem	32
4.2. Vakonomic Mechanics	33

Co	n	te	n	ts

4.4. Hamilton's Equations in Redundant Coordinates 37 § 5. Hamiltonian Formalism with Constraints 38 5.1. Dirac's Problem 38 5.2. Duality 40 § 6. Realization of Constraints 40 6.1. Various Methods of Realizing Constraints 40 6.2. Holonomic Constraints 41 6.3. Anisotropic Friction 42 6.4. Adjoining Masses 43 6.5. Adjoining Masses and Anisotropic Friction 46 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 § 4. Final Motions in the Three-Body Problem 67 <th>4.3. The Principle of Determinacy</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>36</th>	4.3. The Principle of Determinacy						36
§ 5. Hamiltonian Formalism with Constraints 38 5.1. Dirac's Problem 38 5.2. Duality 40 § 6. Realization of Constraints 40 6.1. Various Methods of Realizing Constraints 40 6.2. Holonomic Constraints 40 6.3. Anisotropic Friction 41 6.3. Anisotropic Friction 42 6.4. Adjoining Masses 43 6.5. Adjoining Masses 43 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.3. Binary Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions Acco	4.4. Hamilton's Equations in Redundant Coordinates	3					37
5.2. Duality 40 § 6. Realization of Constraints 40 6.1. Various Methods of Realizing Constraints 40 6.2. Holonomic Constraints 41 6.3. Anisotropic Friction 42 6.4. Adjoining Masses 43 6.5. Adjoining Masses and Anisotropic Friction 46 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 1. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 67 4.3. Attributions of Motion. The Jacobi Integral 69 3.4. Singularities and Heutire	§ 5. Hamiltonian Formalism with Constraints						38
§ 6. Realization of Constraints 40 6.1. Various Methods of Realizing Constraints 40 6.2. Holonomic Constraints 41 6.3. Anisotropic Friction 42 6.4. Adjoining Masses 43 6.5. Adjoining Masses and Anisotropic Friction 46 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 53 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68	5.1. Dirac's Problem	•					
6.1. Various Methods of Realizing Constraints 40 6.2. Holonomic Constraints 41 6.3. Anisotropic Friction 42 6.4. Adjoining Masses 43 6.5. Adjoining Masses and Anisotropic Friction 46 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 § 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 53 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 <	5.2. Duality		•				
6.2. Holonomic Constraints 41 6.3. Anisotropic Friction 42 6.4. Adjoining Masses 43 6.5. Adjoining Masses and Anisotropic Friction 46 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 § 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 49 1.3. Collisions and Regularization 53 1.3. Collisions and Regularization 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.1. Classification of Final Motions According to Chazy 67 4.3. Hurber Solutions 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and							
6.3. Anisotropic Friction 42 6.4. Adjoining Masses 43 6.5. Adjoining Masses and Anisotropic Friction 43 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 § 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.3. Binary Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem <							
6.4. Adjoining Masses 43 6.5. Adjoining Masses and Anisotropic Friction 46 6.6. Small Masses 47 Chapter 2. The <i>n</i> -Body Problem 49 § 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69	6.2. Holonomic Constraints		•	•		•	
6.5. Adjoining Masses and Anisotropic Friction 46 6.6. Small Masses 47 Chapter 2. The n-Body Problem 49 § 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 64 3.1. Central Configurations 65 3.2. Homographic Solutions 67 4.1. Classification of Final Motions According to Chazy 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
6.6. Small Masses 47 Chapter 2. The n-Body Problem 49 § 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the n-Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Eregodic Theorems in Celestial Mechanics							-
Chapter 2. The <i>n</i> -Body Problem49§ 1. The Two-Body Problem491.1. Orbits491.2. Anomalies531.3. Collisions and Regularization551.4. Geometry of the Kepler Problem57§ 2. Collisions and Regularization582.1. Necessary Conditions for Stability582.2. Simultaneous Collisions592.3. Binary Collisions592.3. Binary Collisions602.4. Singularities of Solutions in the <i>n</i> -Body Problem62§ 3. Particular Solutions643.1. Central Configurations653.2. Homographic Solutions653.3. The Amended Potential and Relative Equilibria66§ 4. Final Motions in the Three-Body Problem674.1. Classification of Final Motions According to Chazy674.2. Symmetry of Past and Future68§ 5. The Restricted Three-Body Problem695.1. Equations of Motion. The Jacobi Integral695.1. Equations of Motion and the Hill Region715.3. Hill's Problem72§ 6. Ergodic Theorems in Celestial Mechanics756.1. Stability in the Sense of Poisson756.2. Probability of Capture76Chapter 3. Symmetry Groups and Reduction (Lowering the Order)781. E. Noether's Theorem78							
§ 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the S	6.6. Small Masses	٠	٠	•	•••	•	47
§ 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the S							
§ 1. The Two-Body Problem 49 1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the S	Chapter 2 The n-Body Problem						49
1.1. Orbits 49 1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 75 6.4. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3.	-						
1.2. Anomalies 53 1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 59 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 § 1. Symmetries and Linear First Integrals							
1.3. Collisions and Regularization 55 1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order)	1.1. Orbits \ldots \ldots \ldots \ldots \ldots \ldots	•	•	•	• •	•	
1.4. Geometry of the Kepler Problem 57 § 2. Collisions and Regularization 58 2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 § 1. Symmetries and Linear First Integr							
 § 2. Collisions and Regularization							
2.1. Necessary Conditions for Stability 58 2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 1. E. Noether's Theorem 78							
2.2. Simultaneous Collisions 59 2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 § 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78	§ 2. Collisions and Regularization	•	·	·	•••	·	
2.3. Binary Collisions 60 2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 1. E. Noether's Theorem 78							
2.4. Singularities of Solutions in the <i>n</i> -Body Problem 62 § 3. Particular Solutions 64 3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 78 § 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78							
 § 3. Particular Solutions							
3.1. Central Configurations 65 3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 § 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78							
3.2. Homographic Solutions 65 3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78							
3.3. The Amended Potential and Relative Equilibria 66 § 4. Final Motions in the Three-Body Problem 67 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future 68 § 5. The Restricted Three-Body Problem 69 5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78							
 § 4. Final Motions in the Three-Body Problem							
 4.1. Classification of Final Motions According to Chazy 67 4.2. Symmetry of Past and Future							
 4.2. Symmetry of Past and Future							
 § 5. The Restricted Three-Body Problem							
5.1. Equations of Motion. The Jacobi Integral 69 5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 71 § 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78	4.2. Symmetry of Past and Future	•	•	•	•••	•	
5.2. Relative Equilibria and the Hill Region 71 5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 § 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78							
5.3. Hill's Problem 72 § 6. Ergodic Theorems in Celestial Mechanics 75 6.1. Stability in the Sense of Poisson 75 6.2. Probability of Capture 76 Chapter 3. Symmetry Groups and Reduction (Lowering the Order) 78 § 1. Symmetries and Linear First Integrals 78 1.1. E. Noether's Theorem 78							
 § 6. Ergodic Theorems in Celestial Mechanics							
 6.1. Stability in the Sense of Poisson	8.6 Ergodic Theorems in Celestial Mechanics	•	·	·	•••	•	
 6.2. Probability of Capture	6.1. Stability in the Sense of Poisson	•	•	•	•••	•	
Chapter 3. Symmetry Groups and Reduction (Lowering the Order)	6.2 Probability of Capture	•	·	•	•••	•	
 § 1. Symmetries and Linear First Integrals 1.1. E. Noether's Theorem 78 	0.2.1100a0minty of Capture	•	•	•	•••	•	70
 § 1. Symmetries and Linear First Integrals 1.1. E. Noether's Theorem 78 			_				
1.1. E. Noether's Theorem	Chapter 3. Symmetry Groups and Reduction (Lowering t	he (Orc	ler).	•	78
1.1. E. Noether's Theorem	§ 1. Symmetries and Linear First Integrals						78
		•	•			•	
		•				•	

Contents

	1.3. Symmetries in Vakonomic Mechanics	84
	1.4. Symmetries in Hamiltonian Mechanics	
§ 2.	Reduction of Systems with Symmetry	
0	2.1. Lowering the Order (the Lagrangian Aspect)	
	2.2. Lowering the Order (the Hamiltonian Aspect)	
	2.3. Examples: Free Motion of a Rigid Body and the Three-Body	,
	Problem	96
§ 3.	Relative Equilibria and Bifurcations of Invariant Manifolds	101
	3.1. Relative Equilibria and the Amended Potential	101
	3.2. Invariant Manifolds, Regions of Possible Motions, and	
	Bifurcation Sets	102
	3.3. The Bifurcation Set in the Planar Three-Body Problem	104
	3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a	
	Heavy Rigid Body with a Fixed Point	105
Cha	pter 4. Integrable Systems and Integration Methods	107
81	Brief Survey of Various Approaches to the Integrability of	
3 1.	Hamiltonian Systems	107
	1.1. Quadratures	
	1.2. Complete Integrability	
	1.3. Normal Forms	
82	Completely Integrable Systems	
3 2.	2.1. Action-Angle Variables	114
	2.2. Noncommutative Sets of First Integrals	
	2.3. Examples of Completely Integrable Systems	
83	Some Methods of Integrating Hamiltonian Systems	
3 2.	3.1. Method of Separation of Variables	
	3.2. Method of L - A (Lax) Pairs	
84	Nonholonomic Integrable Systems	
3	4.1. Differential Equations with Invariant Measure	
	4.2. Some Solved Problems of Nonholonomic Mechanics	
Cha	pter 5. Perturbation Theory for Integrable Systems	138
§ 1.	Averaging of Perturbations	
	1.1. The Averaging Principle	
	1.2. Procedure for Eliminating Fast Variables in the Absence of	
	Resonances	
	1.3. Procedure for Eliminating Fast Variables in the Presence of	
		145
	1.4. Averaging in Single-Frequency Systems	
	1.5. Averaging in Systems with Constant Frequencies	
	1.6. Averaging in Nonresonant Domains	
	ç	156
	1.8. Averaging in Two-Frequency Systems	101

Contents

	1.9. Averaging in Multi-Frequency Systems	165
§ 2.	Averaging in Hamiltonian Systems	167
_	2.1. Application of the Averaging Principle	167
	2.2. Procedures for Eliminating Fast Variables	
§3.	The KAM Theory	
	3.1. Unperturbed Motion. Nondegeneracy Conditions	
	3.2. Invariant Tori of the Perturbed System	183
	3.3. Systems with Two Degrees of Freedom	186
	3.4. Diffusion of Slow Variables in Higher-Dimensional Systems,	
	and its Exponential Estimate	189
	3.5. Variants of the Theorem on Invariant Tori	191
	3.6. A Variational Principle for Invariant Tori. Cantori	194
	3.7. Applications of the KAM Theory	197
§4.	Adiabatic Invariants	200
-	4.1. Adiabatic Invariance of the Action Variable in Single-	
	Frequency Systems	200
	4.2. Adiabatic Invariants of Multi-Frequency Hamiltonian Systems	205
	4.3. Procedure for Eliminating Fast Variables. Conservation Time	
	of Adiabatic Invariants	207
	4.4. Accuracy of the Conservation of Adiabatic Invariants	
	4.5. Perpetual Conservation of Adiabatic Invariants	210
Cha	pter 6. Nonintegrable Systems	212
§1.	Near-Integrable Hamiltonian Systems	
	1.1. Poincaré's Methods	213
	1.2. Creation of Isolated Periodic Solutions is an Obstruction to	
	Integrability	215
	1.3. Applications of Poincaré's Method	218
§ 2.	Splitting of Asymptotic Surfaces	220
	2.1. Conditions for Splitting	221
	2.2. Splitting of Asymptotic Surfaces is an Obstruction to	
	Integrability	
	2.3. Applications	
§3.	Quasi-Random Oscillations	
	3.1. The Poincaré Map	
	3.2. Symbolic Dynamics	
	3.3. Nonexistence of Analytic First Integrals	237
§4.	Nonintegrability in the Neighborhood of an Equilibrium Position	
	(Siegel's Method)	238
§ 5.	Branching of Solutions and Nonexistence of Single-Valued First	
	Integrals	241
	5.1. Branching of Solutions is an Obstruction to Integrability	241
	5.2. Monodromy Groups of Hamiltonian Systems with Single-	
	Valued First Integrals	244

Contents

	248
	248 250
Chapter 7. Theory of Small Oscillations	251
 § 1. Linearization	
under Imposition of Constraints	253
2.3. Normal Forms of Quadratic Hamiltonians	
3.1. Reduction to Normal Form	
the Neighborhood of an Equilibrium Position under Resonance 2 3.3. Stability of Equilibria in Systems with Two Degrees of Freedom	258
under Resonance	264
 § 4. Normal Forms of Hamiltonian Systems Near Closed Trajectories 2 4.1. Reduction to the Equilibrium of a System with Periodic 	266
- ·	266
Form	267
a Closed Trajectory under Resonance	
§ 5. Stability of Equilibria in Conservative Fields	271
Comments on the Bibliography	274
Recommended Reading	276
Bibliography	278
Index	286