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Heart rate and blood pressure are the most important vital signs in diagnosing disease.
Both heart rate and blood pressure are characterized by a high degree of short term
variability from moment to moment, medium term over the normal day and night as
well as in the very long term over months to years. The study of new mathematical
algorithms to evaluate the variability of these cardiovascular parameters has a high
potential in the development of new methods for early detection of cardiovascular
disease, to establish differential diagnosis with possible therapeutic consequences. The
autonomic nervous system is a major player in the general adaptive reaction to stress and
disease. The quantitative prediction of the autonomic interactions in multiple control loops
pathways of cardiovascular system is directly applicable to clinical situations. Exploration
of new multimodal analytical techniques for the variability of cardiovascular system may
detect new approaches for deterministic parameter identification. A multimodal analysis
of cardiovascular signals can be studied by evaluating their amplitudes, phases, time
domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic
system. The causal effects, gains, and dynamic relationships may be studied through
dynamical fuzzy logic models, such as the discrete-time model and discrete-event
model. We expect an increase in accuracy of modeling and a better estimation of the
heart rate and blood pressure time series, which could be of benefit for intelligent
patient monitoring. We foresee that identifying quantitative mathematical biomarkers for
autonomic nervous system will allow individual therapy adjustments to aim at the most
favorable sympathetic-parasympathetic balance.

Keywords: heart rate variability, cardiovascular system, mathematical modeling, fuzzy logic, nonlinear dynamics,

linear models, baroreflex

INTRODUCTION
According to the World Health Organization (2011), hyperten-
sion and cardiovascular events continue to constitute the leading
global diseases affecting more than 20% of the world’s population
(Harris, 2011). Although very important progress in the treat-
ment and prevention of these diseases has been found, intense
contemporary research efforts are aiming to unravel new diag-
nostic tools. Accumulating experimental evidence indicates that
markers of autonomic nervous system such as heart rate vari-
ability (HRV) may contribute to cardiovascular diagnosis and
have prognostic value (Asl et al., 2008; Ramirez-Villegas et al.,
2011).

A biomarker generally refers to a key molecular or cellular
event that is linked to a health outcome. Biomarkers are quan-
tifiable and objective features of biological processes (Lee et al.,
2007). Biomarkers may detect specific disease stages and pro-
cesses allowing individual therapy adjustments. The development
of mathematical algorithms as biomarkers to describe biologi-
cal processes represents an active research area of quantitative

biology and medicine. Blood pressure and heart rate are vital signs
characterized by a high degree of temporal variability that is con-
trolled by neurohumoral factors. The autonomic nervous system
plays an important role in the regulation of blood pressure and
heart rate through variations in its sympathetic and parasym-
pathetic activity (Kezdi and Geller, 1968; Gootman and Cohen,
1970). Heart rate and blood pressure variability have frequently
been used as biomarker of sympatho-vagal balance (Pagani et al.,
1986). Sympathetic and parasympathetic systems activities are
regulated through baroreflex mechanisms that tightly control
blood pressure and heart rate. The baroreflex sensitivity (BRS)
is a measure of baroreflex function and is defined as alter-
ations in beat-to-beat interval (milliseconds) per unit change
in blood pressure (mm Hg). BRS is influenced by various neu-
roendocrine systems, including central renin angiotensin system
(Campos et al., 2004, 2006a) and melatonin (Campos et al.,
2013b). Interplay between these systems might be responsible for
the circadian alterations in cardiovascular function (Baltatu et al.,
2002; Campos et al., 2006b, 2013a).
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BRS may be determined pharmacologically through injec-
tion of vasoactive substances (such as phenylephrine and sodium
nitroprusside) and invasive determination of arterial pressure
(Campos et al., 2013b). Non-invasive methods for BRS evalua-
tion may be through measurement of heart rate/blood pressure
changes in response to deep breath, Valsalva maneuver (forced
expiration against resistance), or tilt testing (passive body move-
ment from a supine position to an upright tilt). These tests
provide an index of cardiovagal function of baroreflex (Levin,
1966; Wheeler and Watkins, 1973; Borst et al., 1982; Cooke
et al., 1998; Shields, 2009). However, they may be altered by
some factors, including rating and depth of breathing, position
of the subject, and the presence of some diseases, such as dia-
betic neuropathy (Sundkvist et al., 1982; Low, 1993). Continuous
monitoring of heart rate offers the possibility of evaluating the
spontaneous adaptations of BRS as result of dynamic variations
of blood pressure (Baltatu et al., 2001; Gouveia et al., 2009).
Spectral analysis of blood pressure and HRV is applied to eval-
uate spontaneous BRS (Head et al., 2001). Low and high fre-
quency spectral components of the blood pressure oscillations
are related with the frequency oscillations in R-R interval due
to baroreflex activity (La Rovere et al., 2008). These methods
for BRS evaluation have different clinical implications such as
in diagnostic and clinical management of cardiovascular diseases
(La Rovere et al., 2008).

HEART RATE VARIABILITY
Heart rate can be defined as the number of cardiac cycles per unit
of time. Cardiac cycle includes a period of relaxation (diastole)
and a period of contraction (systole) of the heart, representing
the time period necessary for the given event to repeat itself.
The time interval between two successive R waves in the electro-
cardiogram (ECG) equals one cardiac cycle. Thus, the ECG can
measure heart rate through the recording of electrical potentials
generated by the heart’s electrical activity. The frequency (f ) is
the inverse of the period (T), thus, f = 1/T. HRV is the variation
of beat-to-beat intervals, also known as R-R intervals. The HRV
indexes are obtained by analyzing the intervals between R waves,
which can be captured by instruments including electrocardio-
graph, digital-to-analog converter and cardio frequency meter
from surface electrodes that are placed at specific points on the
body (Rajendra Acharya et al., 2006).

Time domain and frequency domain are two types of methods
commonly used to analyze cardiovascular variability. Both meth-
ods apply to linear data structure. Time domain uses continuous
monitoring of cardiovascular parameters while frequency domain
uses spectral analysis to express heart rate oscillation (Task force,
1996).

TIME DOMAIN INDEXES OF CARDIOVASCULAR VARIABILITY
Linear HRV analysis in time domain employs statistical methods.
Data needs to be normalized before analysis. In order to make a
comparison between different data sets, these have to be acquired
over similar periods of time. The mostly used periods of time are
24 h (long term) and 5–30 min (short term). The time domain
indexes are based on normal sinus beat-to-beat intervals (normal-
to-normal, or NN), and the most commonly used are:

(a) standard deviation of all NN intervals (SDNN, milliseconds;
Table 1). Its values depend on the length of the recording
data: longer the length higher SDNN values. Therefore, a
comparison of SDNN values of different length may lead to
inappropriate interpretation (Task force, 1996). Low SDNN
values are a predictor of high mortality in cardiovascular
diseases (Kleiger et al., 1987; Task force, 1996; Nolan et al.,
1998);

(b) root mean square of the successive differences (RMSSD,
milliseconds; Table 1). It is an indication of short-term
HRV components (Task force, 1996), reflects parasympa-
thetic activity and is correlated with sudden death in epilepsy
(DeGiorgio et al., 2010) and fibrillation (Dash et al., 2009).

(c) adjacent successive NN intervals differing more than 50 ms
(NN50; Table 1) and its percentage (pNN50). It indicates
short-term HRV components and reflects parasympathetic
activity (Task force, 1996). The values of NN50 have been
correlated with autonomic neuropathy in diabetic patients
(Ewing et al., 1991).

(d) triangular index, calculated from the number of all NN inter-
vals divided by the maximum of the density distribution
(Table 1). Estimate the overall HRV over 24 h (Task force,
1996) and it is influenced mainly by low frequencies (Malik
et al., 1989).

(e) triangular interpolation of NN interval histogram (TINN;
Table 1). It represents the baseline width of the distribution
measured as a base of a histogram triangle approximating the
RR interval distribution (Malik and Camm, 1993; Vanderlei
et al., 2009). Estimate overall HRV over 24 h (Task force,
1996) and it is influenced mainly by low frequencies (Malik
et al., 1989).

FREQUENCY DOMAIN INDEXES OF CARDIOVASCULAR VARIABILITY
Linear HRV analysis in frequency domain employs mathematical
algorithms for frequency assignment. Physiological data collected
as a time series can be considered as a sum of sinusoidal oscilla-
tions with different frequencies. The conversion of time domain
analysis to frequency domain can be done through a mathemat-
ical transformation developed nearly two centuries ago (1807)
by a French mathematician named Jean Baptiste Joseph Fourier
(1768–1830). This process, called spectral analysis, allows signal
decomposition originated from time series (tachogram) in its dif-
ferent frequency components, or in the so-called frequency bands.
Noteworthy is that frequency refers to the number of times that a
particular phenomenon occurs related to time. Typically, the unit
for frequency is Hertz (Hz), which is equivalent to one cycle per
second.

From continuous recordings of heart rate, the total power (TP)
is decomposed into three distinct bands in humans:

1. high frequency band (HF; Table 1) with frequency ranging
from 0.15 to 0.40 Hz, related to the heart rate variations asso-
ciated with the respiratory cycle, commonly called respiratory
sinus arrhythmia. It is usually modulated by the parasympa-
thetic nervous system (Kuusela et al., 2003; Rajendra Acharya
et al., 2006). HF is also known as “respiratory” band because
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Table 1 | Time and frequency domain measures of heart rate variability (Kamen and Tonkin, 1995; Task force, 1996; Brennan et al., 2001).

Time and frequency domain heart rate variability indexes

Variable Units Description Formula
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SDNN ms Standard deviation of NN intervals SDNN =
√

1
N − 1

N∑
j = 1

(RRj − RR)2

RMSSD ms Root mean square of successive NN
differences

RMSD =
√

1
N − 1

N − 1∑
j = 1

(RRj + 1 − RRj )
2

NN50 count # Number of successive NN differences
larger than 50 ms

Number of (RRj + 1 − RRj ) > 50

pNN50 % NN50 count divided by the total
number of all NN intervals

pNN50 = NN50
N − 1

× 100

Triangular index Number of all NN intervals divided by
the maximum of the density
distribution

N
Y

, where Y is the maximum of the NN

sample density distribution

TINN ms Robust range of NN duration M-N, where M and N represent
respectively maximum and minimum NN
width, obtained by triangular interpolation
of NN histogram

Poincare plot SD1 ms Standard deviation perpendicular to
the line-of-identity axis

SD12 = 1
2

SDSD2, where SDSD is the

standard deviation of successive NN
interval differences

Poincare plot SD2 ms Standard deviation along the
line-of-identity axis

SD22 = 2SDNN2 − 1
2

SDSD2
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}

fFB Hz Peak frequency Frequency with maximum amplitude in FB

pFB ms2 Absolute power power in FB

FB norm % Normalized power
pFB

pTF − pVLF
× 100

FB, frequency bands; VLF, very low frequency; LF, low frequency; HF, high frequency; TF, total frequency.

it corresponds to the R-R fluctuations caused by breathing
(Bernardi et al., 1989; Ori et al., 1992; Bernardi et al., 1995);

2. low frequency band (LF; Table 1) with frequency ranging
from 0.04 to 0.15 Hz is modulated by both sympathetic
and parasympathetic nervous systems (Kuusela et al., 2003;
Rajendra Acharya et al., 2006);

3. very low frequency band (VLF; Table 1) with frequency rang-
ing from 0.003 to 0.04 Hz, it is a variable which depends on
the renin-angiotensin system, whose regulation is also affected
by sympathetic and parasympathetic nervous systems (Taylor
et al., 1998; Kuusela et al., 2003; Acharya et al., 2004). The
lower frequency of the VLF band depends on window length.
It was demonstrated an association of VLF with mortality after
cardiac infarction (Bigger et al., 1992).

In the analysis of fetal heart rate (FHR) tracings, these frequency
bands are usually adjusted to VLF (0–0.03 Hz), LF (0.03–0.15 Hz),
and HF (0.5–1 Hz), and hold the same physiological associations

as in human adults. FHR recordings additionally exhibit a MF
frequency band related to the fetal movements and maternal
breathing (Signorini et al., 2003).

These frequency bands are not applicable for smaller animals
such as rats and mice. In rats, the components of VLF to HF of
HRV power spectra vary between 0.0 and 3.0 Hz (Task force, 1996;
Baltatu et al., 2001; Bezerra et al., 2001; Ushizima et al., 2001; Silva
et al., 2009), while in mice, the components of LF to HF vary
between 0.1 and 5.0 Hz (Ishii et al., 1996; Joaquim et al., 2004;
Baudrie et al., 2007).

Measurement of spectral components is typically made in
absolute power (ms2). However, the values of LF and HF can also
be expressed in normalized units (NU) representing the value of
each component relative to the TP minus the VLF component
(Task force, 1996).

Both time and frequency domain methods for variability eval-
uation analyze linear properties of the data, as described above.
These methods have limitations, as they require windowing of the
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data and it uses deterministic algorithms that are valid only to
periodic phenomena. Therefore, there is a need to identify a hier-
archy of models, each suited for a different type of investigation
or to different parts of the system and devise strategies to couple
them, using a multiscale framework. Systems of differential-
algebraic equations can be employed to study systemic behavior
and auto-regulation mechanisms.

Heart period and blood pressure are coupled in a closed
loop. The coupling between heart period and blood pressure
via baroreflex regulation can be evaluated using cross-correlation
analysis (Silvani et al., 2008, 2011), regression analysis by the
events technique (Gouveia et al., 2009) and causal estimates
(Acharya et al., 2004; Porta et al., 2011). Cross-correlation
analysis gives a correlation coefficient between variations of
heart period and blood pressure (Silvani et al., 2011). Geoffrey
Head et al. demonstrated that cross-spectral coherence trans-
fer function between heart period and blood pressure could
be used effectively to reproducibly estimate BRS (Head et al.,
2001). The transfer function gives information about coher-
ence, gain and phase relation of both signals (Baltatu et al.,
2001). Coupling between heart period and systolic blood pres-
sure in healthy subjects varies among wake-sleep states (Silvani
et al., 2008). It was suggested that cross-correlation function is
applicable to study the balance between central autonomic and
baroreflex control of heart rate. For instance, there are posi-
tive and negative correlations between heart period and blood
pressure values that result from baroreflex and central auto-
nomic controls, respectively (Silvani et al., 2011). However, in
cases of BRS impairment, cross-correlation is likely to be sta-
tistically not significant, due to autonomic balance alterations.
To address this shortcoming, the so called events technique
based on baroreflex events, was proposed to maximize simul-
taneously the number of beats considered for BRS estimation
and the correlation between the corresponding systolic blood
pressure and RR values, in order to provide a more accurate
baroreflex slope estimate (Gouveia et al., 2009). This technique
has shown to accurately detect baroreflex alterations, associ-
ated with postural changes (Gouveia et al., 2009) and drug-
induced BRS stimulation (Beloka et al., 2009). This technique
has also been demonstrated to be capable of providing segments
of short and of long beat length, which were associated with
parasympathetic and the sympathetic ANS activities, respectively
(Gouveia et al., 2010).

One of the disadvantages is that cross-correlation and linear
regression methods are able to estimate only the linear com-
ponent of heart period and systolic blood pressure coupling
(Silvani et al., 2008; Gouveia et al., 2009). The causal relation-
ship theory between heart period and systolic blood pressure
was introduced by Oppenheim (Oppenheim and Schafer, 1975).
This led to studies to find the dominant causal direction in the
interactions between heart period and systolic blood pressure.
Cross-conditional entropy was used to study heart pulse-systolic
blood pressure causality during head-up tilt test in heart trans-
planted patients, and compared with classical approach of linear
methods. The head-up tilt induced progressive shift from the
prevalent causal direction to the reverse causality in healthy sub-
jects (Porta et al., 2011). Although cross-conditional entropy is a

tool to determine the causality, it is unable to account for the com-
bined exogenous influences of respiration on R-R interval and
systolic blood pressure variability (Baselli et al., 1994; Cooke et al.,
1999; Westerhof et al., 2006; Porta et al., 2011).

NON-LINEAR INDEXES OF CARDIOVASCULAR VARIABILITY
The nonlinear theory has been growing among physiologists and
physicians aiming to explain the workings of biological phenom-
ena, highly complex, dynamic, and interdependent, where the
system behavior differs from the behavior of its parts or elements
(Huikuri et al., 2003).

The exponent of power-law, approximate entropy (ApEn)
analysis and detrended fluctuation (DFA) are nonlinear methods
recently introduced to the study of HRV.

Entropy is a measure of randomness or disorder, as included
in the second law of thermodynamics, namely the entropy of a
system that tends toward the maximum. Different states of a sys-
tem tend to evolve from ordered configurations to less organized
settings, but statistically more likely. Referring to the time series
analysis, the ApEn provides a measure of the degree of irregular-
ity or randomness within a series of data. Entropy was originally
used by Pincus (1991) as a measure of system complexity, where
smaller values indicate greater regularity, and higher values lead
to more disorder, randomness, and complexity of the system. For
instance with a drop in the ApEn, heart rate becomes more regular
with age in both men and women (Ryan et al., 1994).

The DFA is a technique that characterizes the variation pattern
through measuring scales. DFA has been specifically developed
to distinguish between intrinsic fluctuations generated by the
complex system and those caused by external or environmental
stimuli acting on the system (Peng et al., 1995). The variations
that arise due to extrinsic stimulation are presumed to cause a
local effect, while the intrinsic variations due to the dynamics of
the system are assumed to exhibit a long-term correlation.

The analysis of the Poincare plot or Lorenz plot is consid-
ered as based on nonlinear dynamics by some authors (Kamen
and Tonkin, 1995; Voss et al., 2007; Vanderlei et al., 2010). The
Poincare plot is a two-dimensional graphical representation of the
correlation between consecutive RR intervals, where each interval
is plotted against the next one (Lerma et al., 2003), and its anal-
ysis can be done qualitatively (visually) by evaluating the shape
formed by its attractor, which shows the degree of complexity of
the RR intervals (Woo et al., 1992), or quantitatively, by fitting an
ellipse to the figure formed by the plot from where the indexes
are taken: SD1, SD2, and SD1/SD2 ratio (Tulppo et al., 1996;
Vanderlei et al., 2010). SD1 represents the dispersion of points
perpendicular to the line of identity and appears to be an index of
instantaneous beat-to-beat variability (i.e., the short-term vari-
ability which is mainly caused by respiratory sinus arrhythmia),
while the SD2 represents the dispersion of points along the line of
identity and it characterizes long-term HRV. The SD1/SD2 ratio
shows the relationship between short and long-term RR interval
variations (Gamelin et al., 2006; Rajendra Acharya et al., 2006).
Despite the fact that Poincaré plot is primarily considered a non-
linear technique, it has been shown that SD1 and SD2 can be
obtained as a combination of linear time domain HRV indexes
(Brennan et al., 2001, Table 1). Therefore, alternative measures
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are still needed to characterize nonlinear features in Poincaré plot
geometry.

FUZZY LOGIC CONCEPTS
The possibility of using mathematical methods and theories for
data analysis has opened up a range of possibilities for the study
of pathophysiological behaviors of cardiovascular variability (Hu
et al., 2009; Sassi et al., 2009; Gieraltowski et al., 2013). Large
volume of data can be more easily assessed and analyzed with
fuzzy logic. In order to better understand the onset and devel-
opment of important pathologies, the autonomic nervous system
activity can be explored through dynamical fuzzy logic models,
such as the discrete-time model and the discrete-event model.
Fuzzy logic approaches are able to perform non-linear mapping
or predictions involving more than one cardiovascular parameter
and to explore possible relations among these parameters, which
normally would not be considered as a possibility. Fuzzy logic
represents a flexible system that adequately describes nonlinear
and complex systems since the resulting function can be writ-
ten as a weighted linear combination of the system inputs and,
therefore, it can resemble a nonlinear function as needed. For
this reason, fuzzy logic methods are a feasible solution to con-
sider in the absence of prior mathematical description between
input-output variables (Kovacic and Bogdan, 2006).

Considering the Sugeno Fuzzy Logic formulation, the system
output z can be modeled from

z =

N∑
i = 1

wizi

N∑
i = 1

wi

,

where N corresponds to the number of fuzzy rules and zi =
n∑

j = 1
aixj + ci is a linear combination of the system inputs xj, j =

1, . . . n. The rule weights are obtained as wi =
n∏

j = 1
�Fi

j
(xj) where

�Fi
j

is the membership function of rule i and input xj. Although

membership functions may assume different shapes, the Gaussian
function is rather a popular choice in the literature due to its
symmetry and dependence on mean and variance, which corre-
spond respectively to the center and the width of the membership
function.

Fuzzy logic has the singular characteristic to combine empir-
ical knowledge (described as linguistic rules) and knowledge
directly extracted from the data (Sadegh-Zadeh, 1999), enabling
an easier way to interpret the outcomes in a physiological per-
spective. This mathematical model may be a reliable method to
evaluate the influence of the autonomic nervous system over car-
diovascular control in healthy and diseased subjects (Carvalho
et al., 2002).

The main advantage of the use of fuzzy logic systems comes
from their power to deal adequately with the uncertainty (Zadeh,
1975; Kovacic and Bogdan, 2006). In particular, this approach tol-
erates imprecise data, and it is focused on the “plausibility” of
occurrence rather than the traditional binary response “0” or “1.”

For example, while a given measurement of a certain biological
variable such as stress may convey a person as being “content,”
the same measurement may reveal a status of “dissatisfaction” for
another one. Thus, biological variables that vary from person to
person and are closely influenced by external and internal changes
direct themselves toward fuzzy logic model of analysis, where
the application of methods of investigation based on zero and
one, true and false does not apply (Zadeh, 1975). Cardiovascular
signals are characterized by a great intra- and inter-individual
variability, besides imprecise measurements due to limited res-
olution of acquisition systems. Additionally, it is believed that
traditional statistical methods may not capture all the informa-
tion needed to describe disease in its complexity and dynamics
(Grossi, 2005). In this context, fuzzy logic may be a more reliable
alternative to traditional methods.

APPLICATIONS OF FUZZY LOGICS TO THE ANALYSIS OF
CARDIOVASCULAR VARIABILITY
Fuzzy logic approaches have been recently used in the cardiovas-
cular field in different contexts including applications in signal
processing and monitoring, classification, prediction or control.
One approach consists of extracting the relevant features from
one or more cardiovascular signals, which are then integrated into
a fuzzy logic scheme aiming at the identification of the presence
or the quantification of a pathological state.

Fuzzy logic methods have been successfully integrated in con-
trol systems. For instance during anesthesia, mean arterial pres-
sure was controlled based on the error between desired and
measured values, allowing it to control the balance between the
unconsciousness and the side effects caused by the hypnotic
drug (Meier et al., 1992). Also during anesthesia, hemodynamic
changes were successfully modeled considering drug dose level
alterations as inputs of the fuzzy system (Nunes and Amorim,
2008). In hemodialysis condition, fuzzy logic has also shown
to be capable of effectively control blood pressure trends, using
ultra-filtration rate as input (Mancini et al., 2007). Such a system
allowed an overall reduction of 40% of the most severe episodes
in hypotension-prone subjects.

Abnormal cardiac rhythms have been identified using artificial
neural network and fuzzy interactions based on nonlinear heart
period R-R features, such as spectral entropy, Poincare SD1/SD2,
and Lyapunov exponent (Acharya et al., 2004). Also based on
R-R features, fuzzy logic was used for ECG beat classification
to detect arrhythmic and ischemic heartbeats (Tsipouras et al.,
2007). Fuzzy logic approaches showed efficiency in improving
oscillometric cuff pressure measurements by properly detecting
outliers and noise artifacts (Lin et al., 2003).

With the goal of evaluating autonomic nervous system func-
tion, fuzzy logic has been used to choose the optimum subset
of time, frequency and nonlinear variables related to sympa-
thetic and parasympathetic activities on HRV (Petkovic et al.,
2013). Fuzzy logic approach has been used in a classifica-
tion scheme to jointly evaluate results of several autonomic
tests, e.g., head-up tilt test and active postural change, using
both time and spectral analysis of heart rate and of dias-
tolic blood pressure series (Carvalho et al., 2002). Similar
fuzzy logic schemes were used for the information fusion of
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relevant features extracted from multimodal cardiovascular sig-
nals, such as heart period R-R and systolic blood pressure, for
the detection of life threatening states in cardiac care units
(Kannathal et al., 2006).

Recently, fuzzy logic methods have been employed to effec-
tively describe blood pressure and heart period R-R coupling
and, therefore, have the potential to improve time domain
BRS estimation (Liu et al., 2008; Gouveia and Bras, 2012).
The autoregressive linear analysis approach for BRS estimation
has limitations when cardiovascular regulation is depressed. Liu
et al. proposed a hybrid model consisting of a parallel mod-
ular structure with an autoregressive and a fuzzy logic sys-
tem, to study simultaneously linear and non-linear heart rate
and blood pressure coupling mechanisms (Liu et al., 2008).
This approach illustrates the utility of combining more tradi-
tional methods with fuzzy logic, which could be of advantage
in diseased conditions when cardiovascular system regulation is
afflicted.

Time domain BRS methods based on spontaneous data typi-
cally assume blood pressure and heart period R-R linearity and
provide single slope estimation, regardless of the blood pres-
sure value (Beloka et al., 2009; Gouveia et al., 2009). In this
context, fuzzy logic methods can contribute to establish a BRS
dependent of blood pressure level, similarly to time domain
blood pressure pharmacological methods. Recently, fuzzy logic
has been used to analyze spontaneous R-R series as a function of
blood pressure values, comparing performances in real and sur-
rogate data (Gouveia and Bras, 2012). As an illustrative example,
Figure 1 shows fuzzy logic curves and the membership functions
for a healthy subject. The fuzzy logic curve obtained from real
data is much less flatter than that obtained from isodistribution
surrogate data (gained by shuffling the RR data) and exhibits
significantly lower average modeling errors (Figure 1A). Also,
the non-uniform location of the membership functions suggests
that different systolic blood pressure values contribute differently
to RR modeling (Figure 1B). These results indicate that fuzzy
logic is able to model R-R changes connected to blood pressure
alterations, besides the mean value and, thus, has the potential
to improve time domain BRS estimation in spontaneous con-
ditions. It remains to be assessed the clinical impact of these
findings and inherent repercussion on BRS estimation. Finally,
Figure 2 illustrates the flexibility of fuzzy logic-based modeling
in the identification of heterogeneous shapes and patterns in
systolic blood pressure and RR association for a set of several
subjects.

Given the complexity of the mechanisms regulating heart
rate and its non-linear characteristics, it is reasonable to assume
that HRV analysis based on non-linear methods would gener-
ate valuable knowledge on the systems involved in the HRV
regulation. The mainly used non-linear method of HRV anal-
ysis is Poincaré plot, which although simple and easy to use,
it does not reflect the number of samples at each point of the
graph, leading to errors of judgment of its plots (Hnatkova
et al., 1995). The use of fuzzy logic and the consequent use
of a “plausibility” rather than a binary logic may help to
overcome the drawbacks found in the traditional methods of
analysis.

FIGURE 1 | Fuzzy functions obtained for one healthy subject: (A) Fuzzy

curve in solid line was obtained from real data (represented in gray)

and Fuzzy curve in dashed line was estimated from an isodistribution

surrogate realization; (B) membership functions obtained from real

data.

FIGURE 2 | Fuzzy surfaces obtained for a set of 23 subjects in Lying

condition [EuroBaVar dataset (Gouveia and Bras, 2012)], with a curve

in each subplot according to one subject. Subplot (A) shows the fuzzy
curves obtained from real data and subplot (B) shows the fuzzy curves
estimated from an isodistribution surrogate data.

CONCLUDING REMARKS
Fuzzy logic is a suitable choice when the system deals with
uncertainty data, when linguistic interpretation is needed and
when data “plausibility” should be taken into account. Fuzzy
logic has been successfully used in different scenarios for
the analysis of cardiovascular variability, with special empha-
sis on control and classification systems. Recent studies point
out fuzzy logic also as a modeling alternative for cardiovas-
cular time series, with potential impact on the estimation of
joint parameters, e.g., arterial BRS. Therefore, fuzzy logic is
a promising approach for the analysis of cardiovascular sys-
tem and its regulatory mechanisms in normal and diseased
conditions.

We expect an increase in accuracy of modeling and a bet-
ter estimation of the heart rate and blood pressure time series,
which could be of benefit for intelligent patient monitoring. We
foresee that identifying quantitative mathematical biomarkers for
autonomic nervous system will allow individual therapy adjust-
ments to aim at the most favorable sympathetic-parasympathetic
balance.
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