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Mathematical Chemistry!  
Is It? And if so, What Is It? 

Douglas J. Klein 

Abstract: Mathematical chemistry entailing the development of novel mathe-
matics for chemical applications is argued to exist, and to manifest an extreme-
ly diverse range of applications. Yet further it is argued to have a substantial 
history of well over a century, though the field has perhaps only attained a de-
gree of recognition with a formal widely accepted naming in the last few dec-
ades. The evidence here for the broad range and long history is by way of nu-
merous briefly noted example sub-areas. That mathematical chemistry was on-
ly recently formally recognized is seemingly the result of its having been 
somewhat disguised for a period of time – sometimes because it was viewed as 
just an unnamed part of physical chemistry, and sometimes because the rather 
frequent applications in other chemical areas were not always viewed as math-
ematical (often involving somewhat ‘non-numerical’ mathematics). Mathemat-
ical chemistry’s relation to and distinction from computational chemistry & 
theoretical chemistry is further briefly addressed. 

Keywords: mathematical chemistry, physical chemistry, computational chemistry, 
theoretical chemistry. 

1. Introduction 
Chemistry is a rich and complex science, exhibiting a diversity of reproduci-
ble and precisely describable predictions. Many predictions are quantitative 
numerical predictions and also many are of a qualitative (non-numerical) 
nature, though both are susceptible to sophisticated mathematical formaliza-
tion. As such, it should naturally be anticipated that there is a ‘mathematical 
chemistry’, rather likely with multiple roots and with multiple aims. Mathe-
matical chemistry should focus on mathematically novel ideas and concepts 
adapted or developed for use in chemistry (this view being much in parallel 
with that for other similarly named mathematical fields, in physics, or in 
biology, or in sociology, etc.). This definition distinguishes mathematical 
chemistry somewhat from simple routine mathematics for chemical problems 
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and even from rather complex mathematics used repeatedly in some stand-
ardized manner (perhaps in the form of a ‘canned’ computer program). Fur-
ther refinement of the idea of ‘mathematical chemistry’ is then of natural 
interest. 
 It is perhaps not surprising that ‘mathematical chemistry’ has come to be 
so named, two journals inaugurated, and a society founded, all with much 
research activity having occurred. Indeed much of this activity is evident 
from: Rouvray’s editorial forward (1987, for the first issue of the Journal of 
Mathematical Chemistry); Löwdin’s (1990), Mackey’s (1997), and Mallion’s 
(2005) commentaries on what ‘mathematical chemistry’ should become; 
Trinajstić & Gutman’s (2002), King’s (2000), Haberditzl’s (1979), and Bala-
ban’s (2005) presented ‘reviews’ of the field; as well as a few briefer com-
menting letters (Pauling 1987, Prelog 1987, Karle 1987). And yet further 
there are related relevant comments (Thomson 1918, Primas 1983, March 
1983, Laughlin 2000) on the connection and interaction between chemical 
theory and physics as well as mathematics. Most all of these earlier works 
focus on some special recently developed area within mathematical chemis-
try, and thereby typically leave a biased view of the field as a whole. A few of 
the letters or shorter articles, while making a general definition, however 
describe and illustrate the field so briefly that the full richness of the field is 
not clearly perceived. And yet further some of the articles seem to indicate 
that mathematical chemistry has only been born within the last two or three 
decades. 
 Thence a more comprehensive view of ‘mathematical chemistry’ seems 
called for and is here attempted, seeking to indicate the full range and long 
history. Though the support for this view is found to be difficult to clearly 
and fully achieve, the current presentation is far more complete than that in 
the few earlier mentioned articles, which seem often to agree in the formal 
definition, yet omit mention of sizable portions of the field perhaps giving 
only a few very narrowly selected examples, often also limited to rather re-
cent decades. Here emphasis is placed on the field’s breath-taking broadness 
and long history of well over a century. The contrast to several earlier reviews 
is evident because the field of mathematical chemistry appears to have been 
somewhat ‘disguised’, at least for a period of time, with then huge portions 
simply unmentioned in several of the earlier reviews. The support for the 
present view of strength and history is documented here by way of a listing 
of around two dozen sub-areas of chemical research, each illustrated with a 
modest (incomplete) selection of representative publications (see Appendix), 
which are arguably part of mathematical chemistry. Some earlier contribu-
tions are merely alluded to by way of a few important names, while the ex-
plicitly identified publications are largely focused within the last 100 years. 
The various identified researchers, books, and articles variously exhibit the 
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use (or proposed use) of novel mathematical ideas in application to chemis-
try. Thence a more balanced, a more truthful, and more comprehensive view 
of the full field of mathematical chemistry is attained.  

2. Mathematical Chemistry Detailed 
Again, mathematical chemistry focuses on mathematically novel ideas and 
concepts adapted or developed for chemistry. The mathematics may be from 
any of many diverse mathematical areas, including: differential equations; 
partial differential equations; group theory (geometric or not); Lie algebras; 
combinatorics; graph theory; the theory of partially ordered sets and lattices; 
linear algebra and matrix theory; probability theory and statistics; number 
theory; algebraic and combinatorial geometry; topology; functional analysis; 
Von Neumann and C* algebras; rigged Hilbert spaces; homological category 
theory; fundamental logic and meta-mathematics; and more. That is, there is 
no a priori reason to exclude certain areas of mathematics, though some areas 
might naturally prove more fruitful for chemistry. 
 Overall there are very many non-trivial chemical applications of novel 
mathematics from each of the broad chemical ‘fields’ of analytical, inorganic, 
organic, biochemical, and physical chemistry. But such work viewed as part 
of mathematical chemistry is here illustrated at a finer scale of narrower 
chemical ‘areas’, as now are listed: 
• Foundational equilibrium thermodynamics was begun long ago in a 

mathematical mode, e.g., by A. Avogadro and H.L. LeChatelier and most 
especially by R. Clausius, then also by J.H. van ‘t Hoff, W. Ostwald, S. 
Arrhenius, J.W. Gibbs, W. Nernst, F. Haber, and G.N. Lewis. This early 
work received several Nobel prizes. More recently there are many more 
examples of mathematical researches, by M.E. Fisher (1972) and B. 
Widom (1965 and 1974) on critical-point scaling related to critical-point 
exponents (as further clarified with renormalization-group Nobel-prize-
winning arguments of K. Wilson, and others, mostly in physics). Yet also 
there is F. Weinhold’s (1975a,b,c,d) development of a geometric Rie-
mannian metric for thermodynamic manifolds, and there are many other 
results. (For references, see Appendix 1.) 

• Equilibrium statistical mechanics was also begun a little over a century 
ago by Gibbs and many others (often physicists, like Maxwell and 
Boltzmann), all in a highly mathematical mode. Later (mathematical) de-
velopments arise with J. Mayer’s (1938a,b) and others graphical cluster 
expansions for statistical-mechanical thermodynamic properties, with E. 
Montroll’s (1941) powerful transfer-matrix methodology for the solu-
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tion of partition functions when interactions are ‘local’, and with Lars 
Onsager’s (1944) mathematical tour de force (transfer-matrix) solution of 
the 2-dimensional Ising model. And still there is much further ongoing 
activity, though there is much more also. (For references, see Appendix 
2.) 

• Electrochemistry has an even longer history dating back to H. Davy, M. 
Faraday and G. Kirchhoff. (Especially Kirchoff’s work is accepted as 
mathematical, while the mathematically uneducated Faraday ended up 
founding ‘field theory’.) More recent mathematical contributions are en-
countered with P.W. Debye and E. Hückel (1923a,b) in their theory of 
ionic solutions (and activity coefficients), or with R. M. Fuoss and L. 
Onsager (1957) and others in the theory of conduction in ionic solu-
tions, or with R. Marcus (1956, 1965, 1977, 1993) in his Nobel-Prize 
winning work on structure-mediated charge transfer. Yet further there is 
important work on electrochemical processes, and a recent interest in 
molecular electronic conduction, particularly for application in nano-
devices. (For references, see Appendix 3.) 

• Chemical kinetics dating back to the 19th century has been pursued 
more recently in terms of many different example cases. Some such are 
found with the various (mathematical) modelings of the Belousov-
Zhabotinsky reaction (as a prototypical complex spatio-temporally oscil-
latory case), or with Ilya Prigogine’s work in this general area, for which 
there was awarded a Nobel prize. A notable development is M. Eigen 
(1971) and others mathematical characterization of ‘evolution-complicit’ 
hyper-cycles. Also, there is work by L. Peusner (1986) and others on 
‘network thermo-processes’, or Clark’s work on reaction-diffusion pro-
cesses, or more recent extensive work concerning chaotic reaction dy-
namics, as reviewed by Scott (1991) and Rice et al. (2005). (For refer-
ences, see Appendix 4.) 

• Non-equilibrium thermodynamics, beyond chemical kinetics and ordi-
nary diffusion, this area has many contributions by physicists, but also 
includes Lars Onsager’s (1931) Nobel-prize winning development of his 
reciprocal relations amongst thermodynamic response functions. More 
recently there are various (mathematical) works developing the quantita-
tive dynamics of entropy-production particularly in the linear-response 
regime approaching equilibrium, and there is Prigogine and Henin’s 
(1969, 1973) radical subdynamics, and yet further Ernst Ruch’s (1975, 
1992) work on his fundamental partial-ordering ‘structural principal’ 
which concerns complementarities of distinction/identity and of or-
der/disorder. (For references, see Appendix 5.) 

• Spectroscopic theory with a strong mathematical flavor developed 
enormously during the 20th century, with foundational work on rota-
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tional, vibrational, rovibrational, vibronic, and electronic spectra, as well 
as molecular excitonic spectra, electron-spin resonance, and nuclear 
magnetic resonance. The Nobel prize to G. Herzberg was for (implicitly 
mathematical) deductions from electronic spectra of features of electron-
ic potential curves or surfaces. With the availability of suitable high-
performance electronics there has further followed mathematical (and 
experimental) development of general Fourier-transform, multi-photon, 
nonlinear, and multi-dimensional spectroscopies (which indeed have gar-
nered a Nobel prize). Further there are different (e.g., mass) spectrosco-
pies based on other than electromagnetic waves. (For references, see Ap-
pendix 6.) 

• Mathematical crystallography developed classically with the identifica-
tion of the Bravais lattices and crystal classes, followed by the seminal 
identification of crystallographic space groups by Schoenflies and Fedo-
rov. More recent mathematical work is nicely exemplified by Shubnikov 
and co-worker’s colored crystals (Shubinikov & Belov 1964), by the 
network descriptions of Wells (1954a,b, 1972) and others, and for the 
theory of quasi-crystals by Mackay (1975, 1982), Penrose (1978), and 
others (with a Nobel prize going to D. Schectman, for his ‘recalcitrant’ 
experimental identification of these). An especially nice (and extremely 
useful) pure mathematical development is that of J. Karle and P. Haupt-
mann (1953, 1957a,b, 1960), who shared a Nobel prize for their joint 
work on the inversion of x-ray scattering data to crystal structures. (For 
references, see Appendix 7.) 

• Diffractive methods include both electron and x-ray diffraction meth-
odologies, and in application to (the common case of) crystals has much 
overlap with mathematical crystallography. L. Pauling received a Nobel 
prize in chemistry for his deduction of the alpha-helix structure of pro-
teins, while earlier (Nobel-prize-winning) work is usually viewed as part 
of physics, though there have been at least three further Nobel prizes in 
applications to molecules of biologic importance, with the theoretical 
(mathematical) deductions here being central. Further work on the in-
terpretation of molecular or electron scattering may be viewed to be re-
lated (and rewarded with a couple Nobel prizes). (For references, see 
Appendix 8.) 

• Ab initio quantum chemistry developed following the founding of 
quantum mechanics (in physics), though ultimately the development of 
computer technology also played a central role. Mathematical work in-
cludes Roothaan’s (1951) and Hall’s (1951) development of a (discre-
tized) matrix-based SCF theory, many-body perturbation theory build-
ing thereon, facile orbital development numerous molecular-integral 
evaluations, the theory of reduced density matrices (and associated natu-
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ral orbitals) by P.O. Löwdin (1955) and others, J. Čížek’s (1966) power-
ful coupled-cluster method, the development of a promising quantum 
Monte Carlo technology, and rather numerous other developments, with 
an evident cap-stone in the overall field being extensive program realiza-
tion, for example, with J. Pople’s Nobel-prize-winning efforts. (For ref-
erences, see Appendix 9.) 

• Density functional theory, which computes from just the electron den-
sity, is viewed by many as part of ab initio quantum chemistry, with early 
work (by L. Thomas, E. Fermi, J. C. Slater, and others) primarily in 
physics. Work in the field was carried into chemistry in a general formal 
mathematical mode with Mel Levy’s (1979) and many others’ proofs and 
clarifications of fundamental aspects, initiating with the (Nobel-prize-
winning) work of W. Kohn and co-workers. But especially significant is a 
marriage with classically based chemical electronegativity and hard-
ness/softness ideas, all as seminally reviewed in Parr and Yang’s (2000) 
text. Again there is a cap-stone of extensive program development. (For 
references, see Appendix 10.) 

• Group-theoretic methodology, mostly following the advent of quantum 
mechanics (detailed in early summary works of Weyl (1928), Wigner 
(1931), and Yutsis et al. (1962)) includes work on the symmetric group 
(of permutations) by F.A. Matsen (1964), I.G. Kaplan (1975), and oth-
ers, then work on the unitary group by J. Paldus (1974, 1975) and others, 
and yet further work on general Lie group (or Lie algebraic) uses by C. 
Wulfman and others. With a more classical geometric scope there is 
much work on point groups, indicated in F.A. Cotton’s (1963) popular 
text, and also note the extensive development of ligand-field theory. Fur-
ther there is work on alternancy (or particle-hole) symmetries, on color 
symmetries, on generalizations thereto, and finally on non-rigid-
molecule groups. (For references, see Appendix 11.) 

• Molecular dynamics concerns the quantum mechanical characterization 
of the motion of nuclei, as in Wilson et al.’s seminal book (see Appendix 
5), and it is further nicely exemplified with the Jahn-Teller (1937) effect, 
with H.C. Longuet-Higgins’ phase (more often termed the ‘Berry’ 
phase), and with A.D. Liehr’s (1963a,b) related elegant characterizations. 
More recently there is R.D. Levine and R.B. Bernstein’s (1973) develop-
ment of very broadly useful information-theoretic ‘surprisal’ methods. 
There is much work with conceptual import (as of reaction paths or of 
semi-classical ideas), related characterizations of potential energy hyper-
surfaces, and much work on molecular scattering, as well as some work 
on ‘chaotic’ dynamics. (For references, see Appendix 12.) 

• Solid-state chemistry has much overlap with crystallography and further 
is perhaps dominated by the enormous amount of work in solid-state 
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physics. Still there are numerous mathematical chemical articles (by 
chemists) including H.C. Longuet-Higgins (1959) and L. Salem’s work 
on Peirels distortions, and J.A. Pople and S.J. Walmsley’s (1962) devel-
opment of solitonic excitations, to be followed up by seminal work on 
these topics by Su, Schreiffer, and Heeger (1980) (with this work as ap-
plied to further experimental work on polyacetylene and other organics 
associated to a Nobel prize for A.J. Heeger, H. Shirakawa, and A.G. 
MacDiarmid). There is further mathematical work on molecular exci-
tons, on Burdett’s characterizations of band structure, and on yet other 
notable aspects of solid-state theory. (For references, see Appendix 13.) 

• Stereochemistry has a long history back beyond Van ‘t Hoff and LeBel, 
and is related closely to some previous noted areas. But also this area in-
cludes Pauling’s (1931) fundamental molecular geometric hybridization 
rules, informative analyses of inversions or internal rotations or pseu-
dorotations (as in cyclopentane), and Lipscomb’s (1958, 1973) Nobel-
prize winning work as well as that of others treating boranes (as a proto-
typical case manifesting the effects of non-classical bonding) and related 
novel structures. Also there is continuing work with isomers, with mo-
lecular geometry characterization, with the Ruch-Schönhofer (1970) chi-
rality characterization, with degrees of achirality and asymmetry, with 
extensions of chirality characterizations, with molecular shape, and with 
molecular knottedness. (For references, see Appendix 14.) 

• Polymer statistics concerns the conformation-mediated and structure-
mediated properties of polymers (especially high polymers), with foun-
dational mathematical chemical (Nobel-prize-winning) work both by 
P.J. Flory (1953, 1969) and by P.G. DeGennes (1979), particularly as to 
the manner of polymer size-scaling as a function of their length, and oth-
er control parameters. Monte-Carlo methods have been developed and 
have proved useful. But there are many further mathematical approaches. 
Also, the field has further blossomed with the development of den-
drimers, supramolecular structures, and other large-scale morphological 
characterizations. (For references, see Appendix 15.) 

• Chemical reaction-network analysis, though long around in an informal 
mode in synthetic organic chemistry, has systematically (and thence 
mathematically) been developed to elucidate organic synthetic strategies 
in the work of the groups of E.J. Corey (Corey et al. 1974, 1977), J.E. 
Dubois (1973), T. Wipke (Wipke & Rogers 1984, Wipke & Vladutz 
1990), J.B. Hendrickson (1976, 1986), I. Ugi (Ugi & Gillespie 1971, 
Dugundji & Ugi 1973), N.S. Zefirov et al. (2002), S. Fujita (2001), P.J. 
Stadler et al. (1995, 1996), and of several others. Recently there is rather 
intense effort toward a general theory of ‘complex networks’. And there 
is work on the mathematical characterization of special reaction-network 
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graphs, as of degenerate rearrangements or of substitution reactions 
(which mathematically form a partial ordering). (For references, see Ap-
pendix 16.) 

• Chemical nanotechnology has recently emerged as an interesting and 
greatly burgeoning separate field, following the development of carbon 
nanotubes and focused on organic syntheses of novelly interconnected 
nanostructures; there being notable theoretical work and different math-
ematically oriented articles, some concerning general theory. As exam-
ples for particular nanostructures, there are considerations of nano-
knots, nano-links, nanotubes, their caps, nano-tori, nano-cones, nano-
belts, Möbius nano-strips, and various negatively curved structures, and 
yet further there are more elaborate molecular devices, such as molecular 
motors. Most recently there is incredible activity (with reviews) concern-
ing graphene (including a Nobel prize). (For references, see Appendix 
17, Sumners 1988 in Appendix 15, and Flapan 2000 in Appendix 14). 

• Semi-empirical quantum chemistry includes Pauling and Wheland’s 
classically related resonating valence-bond theory, with many more re-
cent developments, as reviewed in various chapters by Klein & Trinajstić 
(1990), Cooper (2001), and Shaik & Hiberty (2007). Also there is the 
‘alternative’ molecular-orbital approach with much mathematical work 
by E. Hückel (1931), Charles Coulson, H.C. Longuet-Higgins 
(1974a,b,c,d,e), E. Heilbronner, and many colleagues achieving funda-
mental Hückel-model-based theorems for the case of conjugated pi-
electron networks. Besides ligand-field theory already mentioned (under 
group theory) there is Woodward and Hoffmann’s Nobel-prize winning 
orbital-symmetry conservation rules for concerted reactions (Woodward 
& Hoffmann 1965a,b, 1970, Hoffmann & Woodward 1965), and K. Fu-
kui’s (Nobel-prize-winning) work concerning frontier orbitals, though 
also there are many other important results. Parr’s (1964) survey book 
nicely reveals a gradation between this field and ab initio quantum chem-
istry. (For references, see Appendix 18 and Coulson 1940 in Appendix 
11). 

• Structure generation and enumeration is addressed in G. Pólya’s 
(1937) foundational combinatorial theory of enumeration under group-
mediated equivalences – all, in fact, developed to enumerate chemical 
isomers. Now there are various refinements and extensions, regarding al-
ternant formulations, subsymmetry classification, reaction-mode enu-
merations, Balasubramanian’s (1981, 1985, 1993) non-identity irreduci-
ble-representation enumerations, property characterizations, and com-
prehensive structure generations. It is argued by Bytautas & Klein (1998) 
that this field relates intimately to the idea of chemical nomenclature. 
Much of the mathematics (up to about 1986) is reviewed in Read’s dis-
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cussion (Pólya & Read 1987), and A. Kerber makes a more comprehen-
sive mathematical survey (and a more chemically oriented, more concise 
survey in a special issue of MATCH). (For references, see Appendix 19.) 

• Physical organic theory is typically defined in terms of the (‘physical’) 
measurements considered, but it might arguably be better defined as the 
area dealing with the quantification of the idea of ‘functional groups’ in 
organic chemistry. Work goes back over a century to deal with constitu-
tional additivities for enthalpies, magnetic susceptibilities, and other 
(physical) properties. There is also extensive theoretical work on ‘linear 
free energy relationships’, and the area overlaps extensively with a few 
others already mentioned. (For references, see Appendix 20.) 

• Chemical classification includes the long-standing area of chemical 
nomenclature, with cap-stone formalizations (which then are implicitly 
mathematical) available from IUPAC. But there are also the classifica-
tions into: categories of chemical bonding (and its mediation by electro-
negativities and hardnesses); different functional-group classes; different 
isomer classes; families of elements in Mendeleev’s periodic chart; classes 
of ‘acid’ and ‘base’; and different classes of ‘aromaticity’. Much of this 
merges into chemical nomenclature. Also note that much of this classifi-
cation can be elegantly viewed mathematically in terms of ‘partially or-
dered sets’. (For references, see Appendix 21, Mislow 1977 in Appendix 
14 and Ugi et al. 1970 in Appendix 14). 

• Chemo-metrics and QSAR have roots back into the 19th century, 
though these namings are more recent. The field has recently extensively 
developed with systematic statistical methodology in drawing correla-
tions (e.g., with consideration of a variety of multivariate regression 
techniques, sometimes developed in a purely chemical context). There 
has been an immense development of a diversity of different sorts of 
available quantities (which can be other experimental properties, quan-
tum-chemically computed characteristics, or simply molecular graph in-
variants) so as to make structure/property or structure/activity correla-
tions, such as involved in toxicity evaluations, and particularly in drug 
design. (For references, see Appendix 22.) 

• Molecular biology extends classical biochemistry to deal with larger 
molecules: enzymes, proteins, DNAs, and RNAs. There are then many 
fundamental theoretical works dating back over half a century, with a few 
Nobel prizes in recognition of them. Following Watson and Crick’s No-
bel-prize-winning seminal decipherment of the DNA-double-helix struc-
ture, there have been numerous quite mathematical works dealing with 
molecular sequence codes. But also there are many other aspects to this 
general area, concerning prebiotic evolution immunochemistry, protein 
chemistry, cell chemistry, and neurochemistry, as well as brain chemistry 
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and function. Further there is intense on-going activity dealing with en-
zyme conformation and protein folding. (For references, see Appendix 
23.) 

• Chemo-informatics is an extension of ‘chemo-metrics’ (a term popular-
ized in analytical chemistry) and is presently expanding rapidly, and is al-
so related to the area of chemical nomenclature and related classifica-
tions. But particularly, it also encompasses topics of chemical data min-
ing, molecular similarity comparisons, molecular pattern recognition, 
(virtual or theoretical) combinatorial chemistry and biomimetics, as well 
as of various theoretical aspects of the immense rapidly expanding related 
frontier areas of molecular biology, genomics, proteomics, and general 
bio-informatics – all deserving of a separate extensive discussion. (For 
references, see Appendix 24.) 

• Chemical graph theory has come to be so identified over the last few 
decades, and significantly overlaps with polymer statistics, stereochemis-
try, semi-empirical quantum-chemistry, nanotechnology, structure gen-
eration, chemo-metrics/QSAR, and chemo-informatics, all already men-
tioned. But there are numerous other works, e.g., just in the particular ar-
ea of fullerenes (yet again involving a Nobel prize, to Kroto, Smalley, and 
Curl) including: combinatoric methodology to apply the conjugated-
circuits scheme (Herndon 1974, Randić 1977a,b); Manolopolous & 
Fowler’s (1992) important development of ‘topological coordinates’ for 
a simple geometric realization of fullerene structures; Brinkmann’s pow-
erful methodology for generating fullerenes (and related structures) 
(Brinkmann & Dress 1997, 1998, Brinkmann & Greinas 2003, Brink-
mann et al. 1999 in Appendix 17); characterizations of fullerene trans-
formations (Brinkmann & Fowler 2003, Brinkmann et al. 2003); and 
numerous other theorematic and algorithmic fullerenic results. For a 
more embracing (older) overview of chemical graph theory see Trinajstić 
1992 (or more briefly several earlier reviews (Trinajstić & Gutman 2002, 
King 2000, Balaban 2005) or an intended follow up article). (For refer-
ences, focused largely just on fullerenes, see Appendix 25.) 

Note that certainly there are many more examples within the frequently 
overlapping listed areas, likely with very important examples missing. Yet 
there is quite a variable degree of importance for the articles collected in the 
Appendix, and sometimes just secondary sources (reviews or books) are 
quoted – and undoubtedly biases of this reviewer are manifested. Much more 
could be said about mathematical results for very many of these areas – such 
incompleteness should not be construed as indicating exclusions of various 
results from mathematical chemistry, but rather as an indication of the great 
difficulty of making a comprehensive review. Each one of the areas are often 
only sparsely sampled and could be extensively expanded upon.  
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3. Comparisons and Qualifications  
Comparison to earlier discussions may be made. Primas (1983) (over 2 dec-
ades ago) expansively described a quite abstract mathematical view of math-
ematical chemistry, or at least the part concerned with ‘fundamental’ quan-
tum mechanics, which might be then taken to indicate that this is all of math-
ematical chemistry. Trinajstić & Gutman (2002), Balaban (2005), Gutman 
(2006) and King (2000) discuss mathematical chemistry with a focus on 
chemical graph theory, though it may be seen that the references quoted in 
these three articles and in the chemical-graph-theory area here are all more or 
less disjoint. Hauberditzl’s survey (1979) as well as March’s (1983) and 
Laughlin et al.’s (2000) comments again focus on quantum chemical aspects. 
The comments of Mackey (1997), Mallion (2005), Pauling (1987), Prelog 
(1987), and Karle (1987) each admittedly focus on different special areas (and 
seemingly do not have the intent of addressing mathematical chemistry in its 
fullness). Löwdin (1990) illustrates his ideas with very few of the areas in our 
listing, indicating just two areas, quantum chemistry and chemical graph 
theory, though this first area is likely intended to include our ‘ab initio quan-
tum chemistry’, ‘semiempirical quantum chemistry’, and ‘solid-state chemis-
try’. Balaban (2005), Rouvray (1987), Löwdin (1990), King (2000), and Klein 
(1986), perhaps along with Primas (1983), all define mathematical chemistry 
formally similarly as we have. Yet further seemingly even D’Arcy Thompson 
(1918) indicates much the same definition (in his visionary ‘Growth and 
Form’ where he goes on to focus on his view for mathematical biology). 
Rouvray (1987) makes no attempt at examples, while perhaps the best at-
tempt to indicate the great broadness is but a brief letter (1986), with only 
very few examples. As an overall indication of mathematical chemistry the 
present listing is comparatively very comprehensive and complete. The vari-
ous works identified in the listings here are generally arguably mathematical.1 
 The present overall view to be taken from the listing here given is that 
mathematical chemistry is incredibly overwhelming. Some of the indicated 
areas historically derive more from physics than others, and in some of these 
areas significant work by physicists has then been referenced in the listing 
here, though all the listed applications are arguably ‘chemical’ – applying to 
chemical systems. Most of the researchers indicated in the listings here are 
primarily identified as chemists, though some (e.g., Gibbs, Hückel, Jahn, 
Teller, deGennes, and Wigner) are often identified as physicists, some (De-
bye, Prigogine, and Fisher) are often identified both as chemists and as phys-
icists, while others (Hauptmann, Pólya, Kerber, Brinkmann, and F. Zhang) 
are identified as mathematicians, and a few (e.g., MacKay, Shubnikov, and 
Belov) are perhaps best described as crystallographers (whose field has a long 
independent tradition between chemistry, physics, and mineralogy). Some 
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(like K. Ruedenberg or M. Randić) are commonly identified to a field (chem-
istry in these cases) other than that of their doctoral degree. There is no fun-
damental reason why mathematical chemistry cannot be done by scientists 
other than those trained exclusively as chemists. The type of mathematics 
used can be varied, and even the use of physics should be allowed – indeed 
even encouraged, as this extends and deepens the results, and interconnects 
the fields (chemistry and physics). But all such work dealing with (novel) 
mathematically formalized descriptions of chemical systems is properly part 
of ‘mathematical chemistry’, which then reflects the awesome richness and 
complexity of chemistry itself. 
 Thus the present view differs notably from earlier announced views of 
mathematical chemistry, questions remain as to its relation to more tradition-
al areas of chemistry – such as theoretical chemistry, computer chemistry, or 
physical chemistry. 

4. Where Does Mathematical Chemistry Fit? 
Though mathematical chemistry is seemingly widespread with a long history, 
it is also evident that there must be intimate relations to ‘theoretical chemis-
try’ and ‘computer chemistry’. Particularly, the distinction between mathe-
matical, theoretical, and computational chemistry might be deemed a delicate 
matter. But (in common with typical usages in physics and biology) one may 
look upon these distinctions as involving the three-way interplay of:  
• the degree of adherence to mathematical formalism (say with explicit 

theorems and proofs in mathematical chemistry); 
• the use of ‘scientific induction’ in theoretical chemistry, with the associ-

ated immediacy of general chemical predictions; 
• the extent of usage of the computer. 
Especially Coulson in 1960, but also later Primas (1983), Löwdin (1990), 
Roberts (1996), and King (2000) emphasized the distinction of ‘mathematical 
chemistry’ from ‘computational chemistry’. Perhaps Coulson’s (1960) de-
scription is clearest and most dramatic, with ‘computational chemistry’ being 
(in some sense) ascribed as somewhat like experimental chemistry – just 
involving seemingly ever more complicated computer ‘experiments’, with the 
‘experimental apparatus’ being the computer.2 That is, an experiment often 
seeks to test a theory with there often being much effort using extensive 
apparatus to draw forth the numerical data – while also computational chem-
istry makes much the same effort with extensive apparatus (namely the com-
puter, and associated software) to draw forth data – and neither the experi-
mentalist nor the computer chemist need understand the underlying theory 
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or mathematics. As a related incidental point, the leaving of H.C. Longuet-
Higgins and J.S. Griffith from theoretical (or mathematical) chemistry is said 
to have been born of their aversion to an ever more dominating view that 
theoretical chemistry was to evolve to naught but computational chemistry 
(March 2002). One point of some possible confusion concerns the develop-
ment of novel computer algorithms3 (Metropolis et al. 1953), which proceed 
by way of (mathematical) derivation (though their use is by way of computa-
tion), so that the derivation is properly part of mathematical chemistry. 
Again once the algorithm is in hand, there remains a problem of program-
ming it, and at a yet later stage running it in production runs, with this last 
stage having evolved out of what is here argued to be mathematical chemis-
try. In further support of the view of computational chemistry’s experimental 
aspects, Coulson (1960) (as well as John Roberts (1996)) emphasized that 
after a ‘computer experiment’ which has generated great tabulations of num-
bers, there typically still remains a need of theoretical (perhaps mathematical-
ly refined) interpretation and understanding. Presumably now with ever 
more voluminous computer data to interpret, there is a consequent ever in-
creasing need of theory (and mathematics) – there surely being a useful 
mathematics concerning ‘data mining’. Overall in its developmental stage it is 
deeply mathematical, while in ‘production runs’ a program’s use is more like 
that of an instrument in an experimental lab. Moreover, the data so generated 
only adds to the need for theoretical and mathematical chemistry. 
 The question as to the distinction between ‘mathematical chemistry’ and 
‘theoretical chemistry’ is delicate, with a large degree of overlap. In fact per-
haps even half the articles noted in the preceding listings of different mathe-
matical chemistry areas may be reasonably argued to belong more to theoret-
ical chemistry than mathematical chemistry – though still the quoted articles 
and books may be seen to have some (often strong) novel mathematical 
component. Again a difference with ‘computational chemistry’ is that it tends 
to deal more with individual cases (such as also does experimental chemis-
try), while ‘mathematical chemistry’ generally adheres more to ‘mathematical 
deduction’ (perhaps even with formal theorems and proofs) often of wide 
generality, while ‘theoretical chemistry’ uses more ‘scientific induction’. Here 
‘mathematical deduction’ is understood to be by way of strict logic, while 
‘scientific induction’ is by way of analogy and repeated agreements of indi-
vidual predictions with experimental measurements. Of course, there are 
always articles which partake of more than one of these aspects – e.g., compu-
tations which are then interpreted and perhaps a novel theoretical explanation 
given, or theoretical articles which introduce novel mathematics but further 
rely on experimental interpretation or fitting to cement the relevance. For an 
article with different parts each closer to a different area (mathematical, theo-
retical, or computer chemistry), it may be proper to classify it to more than 
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one of these areas. And some articles classifiable to one or more of these 
areas might also involve experimental chemistry. 
 That there is overlap between theoretical, mathematical, computational, 
and experimental chemistry should not be taken as a criticism of these dis-
tinctions. These simply correspond to different activities of which different 
scientists partake, and some may partake of two or more, perhaps intimately 
intermixed – while others may focus almost entirely on one of these aspectu-
al activities. That is, the distinction of these aspects gives a more complete 
characterization of what goes on in chemistry in a quite different manner 
than the categorization into the various chemical divisions and fields of the 
preceding section. Notably this categorization of theoretical, mathematical, 
computational, and experimental cuts across all of science much outside of 
chemistry. 
 The relations of mathematical chemistry to the different main fields of 
chemistry and especially to physical chemistry and chemical physics bear 
further examination. But these relations have much to do with broad histori-
cal trends of development not only in chemistry, but also in physics and in 
mathematics. This then entails extensive further discussion, all as is to be 
addressed in a future separate article. 
 It seems that some of the previous articles on mathematical chemistry 
have sought to exclude or preclude mathematics mediated by physics (or by 
physical chemistry). But no ‘substantive’ reason has been made for such an 
exclusion – the exclusions being introduced by way of definitional fiat, or 
more subtly by way of quoted examples of mathematical chemistry. It is 
certain that many of the exemplary physical-chemistry-related (or chemical-
physics-related) articles noted in the preceding listing here are highly math-
ematical and often of a novel character, while revealing very interesting things 
about chemical systems (e.g., as judged in several cases by awards of Nobel 
prizes). That such often beautiful work comes from physical chemistry 
should not count against the work as being part of mathematical chemistry. 
 Somewhat similarly, that mathematicians do not immediately pick up on 
much mathematical chemistry should not necessarily discount it either. 
Mathematical fundamentalness can be obscured due to the chemical context 
and applications, so that even if something is mathematically very fundamen-
tal, it may take some time to be so recognized. As an example, note Lars 
Onsager’s solution (1944, in Appendix 2) of the 2-dimensional Ising model, 
which mathematicians seem not to have noted for some decades, till especial-
ly following work by E. Lieb (1969a,b), Yang & Yang (1966a,b), and R.H. 
Baxter (1969, 1970, 1972) (and by many others) combining Onsager’s work 
with further early ideas of H.A. Bethe (1931), where-after it was seen (e.g., 
Biggs 1977, Takhtadzhan & Fadeev 1979) as entailing novel fundamental 
mathematics. Another example is Ruch & Schönhofer’s (1970, in Appendix 
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14) symmetry chirality characterizations, which was later recognized by 
Dress (1979, in Appendix 14), Fulton & Harris (1991), and Kerber (Gugisch 
et al. 2000, Kerber 1999, in Appendix 19) to entail novel fundamental math-
ematics. Another more minor case is that of Eyring & Polanyi’s ideas (1931, 
in Appendix 12) about ‘navigation’ (or reaction) on complex potential-
energy hyper-surfaces, as has recently been seen (Porter & Critanovic 2005) 
to be mathematically fundamental in a general theory of dynamical systems. 
Sometimes it can be just an incidental albeit challenging integral evaluation 
(Onsager & Samaras 1934) only much later done (Lossers 2005) in pure 
mathematics. Again the view here is that mathematical chemistry includes 
novel mathematical results for chemistry, regardless of whether the results 
are mediated by way of physics. It seems that often the mathematical novelty 
is recognized in mathematics only after some individual recognized mathe-
matician makes a point of this, so that without such a stimulus, the recogni-
tion in mathematics might even take much longer. 
 A mirror attitude to that of excluding physical-chemical mathematical 
articles is that mathematical and theoretical chemistry are entirely subsumed 
within physical chemistry (and chemical physics). And though one finds 
physical chemists or chemical physicists that seem to think this, this attitude 
is comparably inappropriate. That is, there is no reason to imagine that novel 
mathematical (and again often beautiful) work from other subdivisions of 
chemistry should not be counted as theoretical or mathematical. Indeed the 
example (of the preceding paragraph) concerning Ruch and Schönhofer’s 
work (1970, in Appendix 14) can be argued to come more from organic (or 
general) chemistry than from physical chemistry. Moreover many of the 
ideas identified in the listing of different mathematical chemistry areas are 
not generally viewed as part of physical chemistry. As a related point it is 
here suggested that the disguise of the field of mathematical chemistry has 
been fed by the (misguided) attitude that mathematical chemistry is sub-
sumed within physical chemistry and chemical physics. This is taken up in a 
follow-up article – especially as regards chemical graph theory. 
 Though the broadness of mathematical chemistry should be clear from 
our detailed listings of areas, this broadness of view is in (often sharp) con-
trast to most of the earlier mentioned reviews of mathematical chemistry 
(Rouvray 1987, Löwdin 1990, Mackey 1997, Mallion 2005, Trinajstic & Gut-
man 2002, King 2000, Haberditzl 1979, Balaban 2005, Pauling 1987, Prelog 
1987, Karle 1987, Primas 1983, March 1983), which end up often making a 
tight focus on the areas which are to comprise mathematical chemistry. Again 
mathematical chemistry is seen to overlap with all the traditional fields of 
chemistry. 
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5. Conclusion 
To answer the question in the title, it is concluded that mathematical chemis-
try certainly ‘is’, which is to say that ‘it exists’, and moreover that it properly 
is an extremely broad field, with even a long and incredibly rich history of 
over a century of developments. Here it is argued that often many of the 
older mathematical developments are elsewhere categorized in other man-
ners, so that often the field has been somewhat disguised. A substantial part 
of mathematical chemistry has been embedded in physical chemistry (where 
the connection to physics rather than mathematics has been emphasized), 
and other substantial portions of mathematical chemistry have been embed-
ded in chemical structure, notation, and concepts – where often the non-
numerical and non-geometrical nature of the relevant mathematics has led 
many to view such ideas as non-mathematical. Again, the present grand view 
has notable difference in comprehensiveness as compared to several previous 
presumably general commentaries (Rouvray 1987, King 2000, Haberditzl 
1979, Balaban 2005),4 while the present definition of ‘mathematical chemis-
try’ is quite similar to other earlier commentaries (Rouvray 1987, Löwdin 
1990, Thompson 1918),4 which however provide very much less overall detail 
than with the documentation presently marshalled here. Mathematical chem-
istry is seen to contact all ‘classical’ chemical fields: inorganic, organic, ana-
lytical, biochemical, and physical. Evidently some areas of mathematical 
chemistry have much contact with chemical physics, physics, mathematical 
physics, or even with biology or mathematical biology. At the same time 
computational chemistry has here and elsewhere (Mackey 1997, Haberditzl 
1979, Coulson 1960) been distinguished from mathematical and theoretical 
chemistry. 
 Some historical questions remain to be clarified, e.g., as to why it has tak-
en so long to make an explicit recognition of the field of mathematical chem-
istry. This and other questions relating to the manner of its development and 
to the areas of mathematics naturally distinctively close to classical chemical 
structure theory (such as graph theory) are to be addressed in a second arti-
cle, building from the presently established broad view. As a plausible con-
clusion, one could argue that university curricula include mathematical chem-
istry – say as indicated in the Figure 1. 
 The curriculum could plausibly encompass computer chemistry as part of 
mathematical chemistry – most especially the part involving program devel-
opment. 
 Especially mathematical and theoretical chemistry reflect the overall rich-
ness and complexity of chemistry itself. Evidently the general philosophical 
aim in science in making precise and unambiguous statements (of fact, of 
theory, or of prediction) is to implement a mathematical framework. Indeed 
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this is somewhat a tautology – if one grants that mathematics is the realm of 
precision and clarity of statement (with numerics being just one form in 
which to so cast such statements). Notably this view of science is in complete 
concert with Leonardo da Vinci’s statement (White 2001): “No human inves-
tigation can be called true science which has not passed through mathemati-
cal demonstrations”. And also note Galileo’s statement (1623): “The great 
book of nature is written in the mathematical language, ... without whose 
help it is impossible to comprehend a single word of it”. And in a similar vein 
Immanuel Kant wrote (1900-2000, vol. 4, p. 470): “I believe that one may 
ascribe to every study of nature only so much scientific character as it con-
tains mathematics”. 

Organic 
Chem

Inorganic 
Chem

Bio-
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Mathl
Chem

Physical 
Chem

Analytl
Chem

 

Figure 1: Inclusion of mathematical chemistry in university cur-
ricula 

Thence it is emphasized that mathematics is an integral part of fundamental 
science in general, and chemistry in particular, so that a subdiscipline such as 
mathematical chemistry5 is naturally anticipated – or perhaps even demanded. 
Reflecting chemistry as a whole, it is not surprising that the field is rich and 
diverse. Mathematical and theoretical chemistry are seen to be at the founda-
tion of the science of chemistry. Indeed, as indicated in our discussion of the 
appearance of mathematical chemistry in different chemical fields, the general 
relevance of mathematical chemistry is well recognized in terms of the nu-
merous examples of associated Nobel prizes awarded. 
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Notes 
1 Sometimes it seems likely that some of the quoted articles might be argued to be 

non-mathematical. Some such further discussion of just what is ‘mathematical’ is 
taken up in a synoptic history, where for example, there is discussion of an early 
article of Crum Brown (1864) on chemical notation, which many at the time con-
sidered fundamental chemistry but not mathematical, whereas we argue that it is 
mathematical – just not numerical. Of the quoted articles in the present exemplar 
section, articles which many might consider not so mathematical include those 
concerning acids and bases (Brønsted 1923, Lewis 1923, 1938, Usanovich 1939 in 
Appendix 21), which nevertheless here are argued to manifest a fundamental 
mathematical germ. Lewis (1938, p. 302, in Appendix 21) enunciates his ideas in 
terms of four formal definitional (arguably axiomatic) conditions. He allows the 
idea of degree of acidity, but notes (on page 299) “how impossible it is to arrange 
our acids in any single monotonic order”, so that one perceives an indication of a 
‘partial ordering’, such as is elaborated in a more formally mathematical frame-
work (Klein 1995, Klein & Babic 1997, in Appendix 21). Overall, if something of a 
concrete or substantive nature has been enunciated, then it should be susceptible 
to mathematical formalization. Or perhaps the converse statement is better to 
make, that if it is not susceptible to mathematical formalization, then it is not real-
ly substantive. Perhaps it would be appropriate to leave a few of the articles out of 
the listing of mathematical articles, though the position taken here is that the 
foundational work which is being formalized has some element of the mathemati-
cal content. Another area which many might question as mathematical concerns 
‘classification’ (e.g., as complicit in the mentioned chemical nomenclature). But 
classification is fundamentally mathematical, if made precise – this often entailing 
not only equivalence classes, but also various hierarchical orderings of these clas-
ses. Such matters are neatly (and often deeply) considered in isomer classification 
(as in Mislow 1977, in Appendix 14), substance classification, and nomenclature. 

2 In addition to computer chemistry having similarities to experiment, there are 
sharp differences. In computational chemistry the ‘real world’ of chemistry is sub-
stituted by a ‘virtual computer world’ controlled by the theoretical model em-
ployed. Still in either case the ‘studied world’ is itself so complex that it is often 
studied by a rather explicitly trial and error method, e.g., perhaps involving Monte 
Carlo sampling. Often significant guidance from theory is non-trivially employed, 
though this may be done in the usual experimental context also. Indeed tech-
niques for guidance in one field (computer chemistry or experimental chemistry) 
might often be profitably transferred to the other field. 

3 A nice example here is the development of the Metropolis Monte-Carlo algorithm 
(Metropolis et al. 1953) for sampling state ‘configurations’ to appear in a statisti-
cal-mechanical partition function (and then entering into different statistical me-
chanical expectations). In fact there are numerous other examples involving deri-
vations of ‘unbiased’ Monte-Carlo sampling techniques, e.g., Wall’s ‘slithering 
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snake’ algorithm (Wall & Mandel 1975, in Appendix 15), or various constrained-
diffusion algorithms for quantum Monte-Carlo electronic structure (Reynolds et 
al. 1982, Ceperley 1991; ten Haaf et al. 1995, in Appendix 9).  

4 King (2000) seems to imagine a wide range to mathematical chemistry when in 
passing he ascribes the development of quantum mechanics in the early 20th centu-
ry as a development in mathematical chemistry. In the current article here a less 
extreme, more pragmatic (more conventional) view is taken: when both experi-
ment and theory are done primarily by physicists (i.e., scientists in physics de-
partments) who think that they are doing physics, this is identified as physics. 
Ambiguities remain (e.g., with thermodynamics or statistical mechanics), but so it 
is. Returning to King’s review, once past the comment about quantum mechanics, 
it is quite lop-sided in an opposite way, in illustrating mathematical chemistry 
such that there is essentially no mention of most of the areas detailed in the pre-
sent article. Perhaps 90% of his discussion is drawn from ‘chemical graph theory’, 
and then almost all from within a special sub-area of this – without clearly indicat-
ing this narrow focus. 

5 Again it is noted that there is some qualification in that it is demanded that math-
ematical chemistry involve novel mathematics. The general argument expounded 
for the development of science demands only that mathematics be part of (sub-
stantive) science, without the demand that the mathematics be novel. But granted 
mathematics appearance in science, it seems that extensive scientific development 
should ultimately lead to some novel mathematics arising at some point along the 
way. Again in chemistry much of the more evident less trivial mathematics has of-
ten been perceived to be filtered through physics, though in principle this is some-
thing that is independent of the novelty. In some of our examples the mathemat-
ics might be argued not to be so novel – but here we let our idea of ‘novelty’ be 
colored by its chemical application. For instance, in the discussion of physical or-
ganic theory, various ‘linear free-energy relationships’ were identified as mathe-
matical chemistry (thence with some novelty), though this mainly involves ex-
pressing logarithms of quantities (equilibrium constants or rate constants) as a 
linear combination of structural characteristics. What is novel in this case is not so 
much the logarithms or linear combinations, but rather the manner in which the 
(graph-theoretic) structural features are treated. That is, though the ‘intrinsic’ 
mathematics might not be novel, the area or manner of its application might be 
novel – perhaps so much so that some fundamental mathematics is reinvented (in 
a new context). Indeed such a phenomenon may be seen to occur even within 
mathematics proper, and an even standard sort of modus operandi in mathematics 
is to borrow (or more colloquially ‘steal’) from one area to build in another. 
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