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First- to fifth-grade mathematics and word reading achievement were assessed for children with mathematical
learning disability (MLD, n � 16), persistent low achievement (LA, n � 29), and typical achievement (n �
132). Intelligence, working memory, processing speed, and in-class attention were assessed in 2 or more
grades, and mathematical cognition was assessed with experimental tasks in all grades. The MLD group was
characterized by low school-entry mathematics achievement and poor word reading skills. The former was
mediated by poor fluency in processing or accessing quantities associated with small sets of objects and
corresponding Arabic numerals, whereas the latter was mediated by slow automatized naming of letters and
numbers. Both the MLD and LA groups showed slow across-grade growth in mathematics achievement.
Group differences in growth were mediated by deficits or delays in fluency of number processing, the ability
to retrieve basic facts from long-term memory and to decompose numbers to aid in problem solving, and by
the central executive component of working memory and in-class attention.
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As with literacy in the 20th century, numeracy will be needed
for everyday living in the 21st: Individuals who do not acquire
basic competencies in mathematics before leaving high school will
be disadvantaged in the workforce of the 21st century and in their
ability to function in many now routine day-to-day activities. The
associated competencies include basic arithmetic, measurement,
and simple algebraic skills, with large-scale studies of representa-
tive samples of adults suggesting that as many as 1 in 4 of them
have not mastered the mathematics expected of a sixth grader,
making them functionally innumerate (Every Child a Chance
Trust, 2009). Considerable progress has been made in terms of
identifying the mathematical deficits and the underlying cognitive
mechanisms of children at risk of innumeracy in adulthood. These
include the approximately 7% (ranging from 4% to 14%, depend-
ing on classification methods) of students who are identified as
having a learning disability in mathematics (MLD; Barbaresi,
Katusic, Colligan, Weaver, & Jacobsen 2005; Lewis, Hitch, &
Walker, 1994; Shalev, Manor, & Gross-Tsur, 2005), and another
10% of students who will experience mild but persistent learning

difficulties (Berch & Mazzocco, 2007), hereafter, low achieving
(LA). These groups represent more of a continuum (below) than
distinct categories, but more important they capture the population
of children at high risk for long-term difficulties in occupational
and everyday activities that require basic mathematical knowledge.

In terms of mathematics achievement patterns, children with
MLD score at or below the 10th percentile in most grades, whereas
LA children typically score between the 11th and 25th percentile.
The mathematical deficits and delays of these students have been
well documented in single-grade, cross-sectional, and short-term
longitudinal studies (Cawley & Miller, 1989; Cawley, Parmar,
Foley, Salmon, & Roy, 2001; Geary, 1990; Geary, Hoard, Byrd-
Craven, & Desoto, 2004; Geary, Hoard, Byrd-Craven, Nugent, &
Numtee, 2007; Goldman, Pellegrino, & Mertz, 1988; Hanich,
Jordan, Kaplan, & Dick, 2001; Jordan, Hanich, & Kaplan, 2003a;
Jordan & Montani, 1997; Murphy, Mazzocco, Hanich, & Early,
2007). The majority of the latter studies have focused on specific
arithmetical competencies (Ostad, 1997, 1999) or on the relation
between kindergarten and first-grade competence in number,
counting, and arithmetic and mathematics achievement 1 to 3 years
later (Geary, Bailey, & Hoard, 2009; Landerl, Bevan, & Butter-
worth, 2004; Locuniak & Jordan, 2008; Mazzocco & Thompson,
2005). Studies of the mechanisms (e.g., working memory) con-
tributing to these mathematical deficits have generally been short
term and largely focused on the early elementary years (Bull,
Espy, & Wiebe, 2008; Geary, Hoard, Nugent, & Byrd-Craven,
2008; Passolunghi, Mammarella, & Altoè, 2008; H. L. Swanson,
Jerman, & Zheng, 2008). In a comprehensive 3-year longitudinal
study of elementary school children’s arithmetic skills, Andersson
(2008, 2010) demonstrated persistent deficits associated with
MLD (e.g., in retrieving arithmetic facts) that could not be attrib-
uted to their below average working memory, confirming earlier
studies (Garnett & Fleischner, 1983; Geary, 1990; Goldman et al.,
1988).
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In the context of a first- to fifth-grade prospective study of
mathematics achievement, our first goal was to chart the start
points and 5-year growth trajectories of key numerical and arith-
metical competencies of children with MLD and their LA peers
relative to typically achieving (TA) children. Our second goal was
to determine the extent to which these competencies and their
growth mediate group differences in school entry mathematics
achievement and 5-year achievement growth. To isolate the nu-
merical and arithmetic deficits specific to group differences in
mathematics achievement, we assessed whether the same or dif-
ferent predictors emerged for word reading achievement and con-
trolled for the contributions of general cognitive abilities that
influence learning in many if not all academic areas. A further
control was provided by teacher assessments of students’ in-class
attention. The study contributes to our understanding of the
sources of mathematical learning disability and deficits by provid-
ing one of the longest prospective studies of these children. It is
one of the few studies that has combined multiyear assessments of
numerical and arithmetic cognition, general cognitive abilities, and
in-class attention in order to isolate deficits specific to poor math-
ematics learning.

General Cognitive Abilities

General cognitive abilities include intelligence, working mem-
ory, and processing speed that in some combination affect learning
in many academic domains, including mathematics. Their mea-
surement is thus critical for identifying more specific mathematical
cognition deficits that contribute to the poor achievement of chil-
dren with MLD and their LA peers. Measures of these abilities
tend to be moderately to strongly correlated with one another—the
source of which is vigorously debated (Ackerman, Beier, & Boyle,
2005; Conway, Cowan, Bunting, Therriault, & Minkoff, 2002)—
but each appears to assess some unique competencies (Carroll,
1993). Although the importance of these general abilities for
predicting mathematics achievement and performance on mathe-
matical cognition measures has been established, the majority of
these studies have not simultaneously assessed all of them and
most of those that have assessed all three general abilities have not
done so longitudinally (but see Andersson, 2010).

Performance on measures of intelligence and working memory
may be correlated, in part, because they both require attentional
and inhibitory control (Engle, Tuholski, Laughlin, & Conway,
1999), but these mechanisms appear to be more important for the
central executive than for intelligence. Performance on measures
of intelligence, in contrast, is much more dependent on the ability
to think logically and systematically (Embretson, 1995) and is
particularly important for understanding new ideas and dealing
with complex, nuanced domains, including mathematics. In a
study of more than 70,000 students, Deary, Strand, Smith, and
Fernandes (2007) found that intelligence assessed at age 11 years
explained nearly 60% of the variation on national mathematics
tests at age 16 years. Other studies have confirmed the importance
of intelligence for mathematics achievement, above and beyond
the influence of motivational factors, such as self-efficacy (e.g.,
Chamorro-Premuzic, Harlaar, Greven, & Plomin, 2010).

Working memory represents the ability to hold an idea or piece
of information in mind while simultaneously engaging in other
mental processes. At the core is the central executive, which is

expressed as attention-driven control of active information in two
representational systems (Baddeley & Hitch, 1974; Cowan, 1995).
These are a language-based phonological loop (Baddeley, Gather-
cole, & Papagno, 1998) and a visuospatial sketch pad (Logie,
1995). The relation between performance on measures of these
components of working memory and mathematics achievement
tests and on specific mathematical cognition tasks (below) is well
established (Andersson, 2008; DeStefano & LeFevre, 2004; Geary
et al., 2007; H. L. Swanson & Sachse-Lee, 2001), with some but
not all of these studies simultaneously controlling for intelligence
(Geary et al., 2008; McLean & Hitch, 1999).

Whether assessed concurrently or 1 or more years earlier, the
higher the capacity of the central executive, the better the perfor-
mance on measures of mathematics achievement and cognition
(Bull et al., 2008; Mazzocco & Kover, 2007; Passolunghi, Ver-
celloni, & Schadee, 2007; Toll, Van der Ven, Kroesbergen, & Van
Luit, 2011; Van der Ven, Kroesbergen, Boom, & Leseman, 2011).
The importance of the phonological loop and visuospatial sketch
pad varies with the complexity and content of the mathematics
being assessed (Bull et al., 2008; Geary et al., 2007). The phono-
logical loop appears to be important for processes that involve the
articulation of numbers, as in counting (Krajewski & Schneider,
2009), and may be related to arithmetic fact retrieval (Chong &
Siegel, 2008; Geary, 1993). The visuospatial sketch pad appears to
support learning and performance in a broader number of mathe-
matical domains, such as word problems (Geary, Saults, Liu, &
Hoard, 2000; H. L. Swanson et al., 2008).

Whatever the underlying source of the correlations among mea-
sures of processing speed, intelligence, and working memory,
processing speed may contribute to mathematics achievement and
to the development of specific mathematical competencies, inde-
pendent of the influence of working memory (Bull & Johnston,
1997) and intelligence (Taub, Floyd, Keith, & McGrew, 2008).
The key point is that simultaneous control of intelligence, working
memory, and processing speed is necessary for isolating the spe-
cific mathematical cognition deficits that contribute to the low start
points and slow achievement growth of groups of MLD and LA
children.

Mathematical Cognition

Relative to TA children, children with MLD have severe and
persistent deficits in the ability to develop long-term memory
representations of basic arithmetic facts or retrieve them once they
are learned (Andersson, 2010; Chan & Ho, 2010; Geary, 1993;
Jordan et al., 2003a; Jordan, Hanich, & Kaplan, 2003b; Russell &
Ginsburg, 1984). It is not that these children cannot remember any
facts. Rather, they remember fewer of them and when they do
retrieve they commit more errors and especially more atypical
errors, such as 5 � 4 � 40; a more common error is 24 (Geary,
1990; Jordan et al., 2003a; Mazzocco, Devlin, & McKenney,
2008). These children also have delays in the development of
procedures for solving arithmetic problems. Many of these chil-
dren eventually learn basic procedures but are one to several years
behind their TA peers; the magnitude of this deficit and the extent
of the delay appear to vary with the complexity (e.g., number of
steps) of the procedure (Andersson, 2010). The retrieval and
procedural competencies of LA children are between those of
children with MLD and TA children. Although LA children may
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not fully close the achievement gap, their competencies become
more similar to TA children than to children with MLD across
grades (Chong & Siegel, 2008; Mazzocco et al., 2008).

Although there are fewer studies, the associated results suggest
that children with MLD and, to a lesser extent, their LA peers may
have deficits in the potentially inherent systems that represent
small exact magnitudes (�4), approximate magnitudes of larger
quantities, or in mapping Arabic numerals and other mathematical
notations, such as the number line, onto these representational
systems (Butterworth, 2005; Geary et al., 2008; Holloway &
Ansari, 2009; Koontz & Berch, 1996; Landerl et al., 2004). It is not
currently known if these number representation or mapping defi-
cits contribute to these children’s fact retrieval deficit and proce-
dural delays.

We used three tasks to assess retrieval, procedural, and number
processing development. The first is the addition strategy assess-
ment, which involves a trial-by-trial categorization of how children
solve simple (e.g., 4 � 3) and more complex (e.g., 17 � 6)
problems and provides information on retrieval and procedural
competence. First graders often use counting to solve such prob-
lems, sometimes with (finger-counting strategy) and sometimes
without (verbal counting strategy) using their fingers (Siegler &
Shrager, 1984). The min and sum procedures are two common
ways that children count (Groen & Parkman, 1972). Min counting
involves stating the larger valued addend and then counting a
number of times equal to the value of the smaller one. Both
addends are counted, starting from one, with the sum procedure;
the less common max procedure involves stating the smaller
addend and counting the larger one. Counting results in the devel-
opment of long-term memory representations of basic facts, which
then support the use of memory-based processes (Siegler &
Shrager, 1984); specifically, direct retrieval of arithmetic facts and
decomposition (e.g., 6 � 7 is solved by retrieving the answer to
6 � 6 and then adding 1).

The Number Sets Test was one of two number measures used in
this study. It assesses the speed with which children process and
add sets of objects and Arabic numerals to match a target number
(e.g., whether ‘●● 3’ � ‘5’). Using signal detection methods,
Geary et al. (2009) demonstrated that a sensitivity measure,
d-prime, is correlated with mathematics but not reading achieve-
ment above and beyond the influence of general cognitive abilities.
The processes underlying this sensitivity are not yet known
and may include a combination of basic numerical processes and
representations, which have been the focus of intense study and
debate (De Smedt, Verschaffel, & Ghesquière, 2009; Holloway &
Ansari, 2008; Iuculano, Moro, & Butterworth, 2010; Iuculano,
Tang, Hall, & Butterworth, 2008; Piazza et al., 2010; Rousselle &
Noël, 2007). The possibilities include low acuity in the brain and
cognitive systems for representing exact small quantities or ap-
proximate larger ones, resulting in poor discrimination of collec-
tions of objects or symbolic representation of quantities when the
magnitudes are similar (e.g., ‘8 vs. 9’; Koontz & Berch, 1996;
Piazza et al., 2010; Price, Holloway, Räsänen, Vesterinen, &
Ansari, 2007); poor mapping of Arabic numerals onto the under-
lying representation of magnitude (De Smedt & Gilmore, 2011;
Iuculano et al., 2010; Landerl & Kölle, 2009; Rousselle & Noël,
2007); or numerosity coding (Butterworth, 2010). The latter refers
to a poor understanding of cardinal value and the idea that numbers

are composed of sets of smaller magnitude numbers (Butterworth,
2010; Geary et al., 2004).

The second assessment was a number line task (Siegler & Opfer,
2003). As with processing of simple numerals and magnitudes of
collections of items, the mechanisms that support children’s learn-
ing of the mathematical number line are debated (Feigenson,
Dehaene, & Spelke, 2004; Núñez, 2009). One view is that children
use the system for representing approximate magnitudes to under-
stand the magnitude of numerals on the line. In this view, children
are predicted to place numerals on number lines in a way that
conforms to the natural logarithm (nl) of these numbers; nl is
thought to represent acuity in distinguishing magnitudes such that
differences between smaller ones are more distinct (e.g., 2 from 3)
than differences between larger ones (e.g., 19 from 20; Feigenson
et al., 2004; Gallistel & Gelman, 1992). Whatever the underlying
representational system, the key for academic mathematics is the
insight that the distance between two consecutive whole numbers
is the same, regardless of position on the line (i.e., the line is
linear). Indeed, accuracy in making linear placements on number
lines is predictive of later mathematics achievement (Booth &
Siegler, 2006).

Current Study

As noted, the central goals were to document the first- to
fifth-grade start points and growth trajectories in number process-
ing, arithmetic fact retrieval, and arithmetic procedural competen-
cies of groups of MLD, LA, and TA children and to determine how
differences in these competences contribute to group differences in
mathematics school-entry start point and achievement growth
through fifth grade, while simultaneously controlling for general
cognitive abilities and in-class attention. As detailed below, we
used several clustering and growth curve procedures applied to
mathematics achievements scores in an attempt to identify MLD
and LA groups. The results, however, indicated the key mathe-
matics start point and growth variables were distributed as a single
group; that is, distinct MLD and LA groups did not emerge. This
result is theoretically important, as it suggests children with MLD
and their LA peers are part of the normal distribution of mathe-
matical competence but with different cutpoints for group catego-
rization (Murphy et al., 2007). Knowing that children in MLD and
LA groups in this literature may come from lower ends of a single
normal distribution, however, is not useful for the development of
eligibility criteria for special education programs and associated
remedial interventions, nor is it useful for integrating the current
findings with the extant literature on MLD. We thus sought to
create MLD and LA groups that would allow for this integration
and provide guidelines for use in educational settings.

Based on previous studies that have identified start point and
growth as critical and potentially independent aspects of mathe-
matical development (Duncan et al., 2007; Fuchs, Geary, Comp-
ton, Fuchs, & Hamlett, 2010; Geary, in press; Jordan, Kaplan,
Oláh, & Locuniak, 2006; Jordan, Kaplan, Ramineni, & Locuniak,
2009), growth curve analyses were used to identify groups of
children with low start point (i.e., low mathematics scores in
kindergarten) and slow growth; average start point and slow
growth; and, average start point and average growth. The mean
mathematics achievement scores of these groups (below) were
consistent with those found for MLD, LA, and TA groups, respec-
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tively, in previous studies (e.g., Murphy et al., 2007). Moreover,
the word reading achievement of the MLD and LA groups was
consistent with previous contrasts of groups of children with
combined MLD and poor reading achievement and children with
MLD only (e.g., Andersson, 2010; Geary et al., 2000; Hanich et
al., 2001). In other words, the groups of children identified with
the procedure used here show achievement patterns consistent with
those of similarly named groups in this literature.

Method

Participants

All kindergarten children from 12 elementary schools that serve
families from a wide range of socioeconomic backgrounds were
invited to participate. Parental consent and child assent were
received for 37% (n � 311) of these children, and 288 of them
completed the first year of testing. The mathematics curriculum
when the children began the study was Investigations in Number,
Data, and Space (Russell, Tierney, Mokros, & Economopoulos,
1999), and most continued with this curriculum throughout the
grades analyzed here.

Of the 288 children, 249 remained in the study through the end
of fourth grade (86% retention). Thirteen children were then
dropped because their mathematics achievement was in the aver-
age range (part of the control sample) and they had moved at some
point during the study and thus assessments were costly, and nine
dropped between fourth and fifth grade. The remaining 227 chil-
dren were invited to continue with the second 5-year phase of the
study, and 192 consented. Parental consent for administration of
the first-grade working memory battery (added after the initial
consent to enter the study was obtained) had been obtained for 185
of the 192. Of these children, eight had missing data on one or
more measures (e.g., due to experimental error, inattention during
testing) over the 5 years covered by this study. The net result was
complete mathematics and reading achievement scores, first- and
fifth-grade working memory assessments, and first- to fifth-grade
mathematical cognition data, inclusive, for 177 of children. These
children composed the current sample. During fifth grade, 22
children who scored below the 30th percentile on the state math-
ematics assessment in fourth grade and were thus considered at
risk were added to the overall study. They began in fifth grade and
are not included in the current analyses.

We used measures of verbal and nonverbal IQ in the analyses
(below) but also have an estimated full-scale IQ based on national
norms (Wechsler, 1999). For the retained sample, full-scale IQ was
average (M � 102, SD � 14), as were their first-grade (based on
national norms; Wechsler, 2001) standard scores for mathematics
(M � 94, SD � 13) and reading (M � 108, SD � 16). There are,
of course, ways to estimate missing values assuming the data were
lost randomly (e.g., Luke, 2004), but because the children who
dropped from the study or had missing data for other reasons had
lower full-scale IQ scores (M � 94, SD � 14) than the retained
sample, the random assumption was not met. Thus, we elected to
not estimate missing data. Despite this limitation, the retained
sample is in the average range with respect to national norms and
a substantial range of scores is maintained for these tests; intelli-
gence (74 to 149), mathematics (minimum range of 3rd to 99th

national percentile ranking per grade), and reading (minimum
range of 3rd to 99th national percentile ranking per grade).

To identify groups of MLD and LA children, we analyzed raw
kindergarten to fifth-grade mathematics achievement scores in R
(Ihaka & Gentleman, 1996) using model-based clustering (Mclust;
Fraley & Raftery, 2002, 2005, 2006). The Mclust method identi-
fies the best fitting solution, based on the Bayesian information
criterion (a preferred criterion for choosing among solutions; Ny-
lund, Asparouhov, & Muthén, 2007), for 1–9 class solutions with
various parameterizations of the covariance matrix for each num-
ber of classes (spherical, diagonal, and ellipsoidal distributions;
equal and variable class volumes; equal and variable class shapes;
and equal and variable orientations). However, the Mclust proce-
dure indicated that a one-class solution was the best fit, failing to
identify distinct groups of MLD and LA children as noted above.

To generate start point and growth variables, we ran a free curve
slope intercept model in Mplus Version 5.21 (Muthén & Muthén,
1998–2007). This model assessed the “intercept,” which can be
interpreted as each participant’s level, independent of the growth
trajectory, at the point at which level and trajectory are closest to
orthogonal (Wood, 2010). The results yielded intercept (start
point) and slope (growth) estimates that were not highly correlated
(r � .29, p � .001); based on the slope loadings (0.53, 1.06, 1.89,
2.61, 3.58, and 4.51 for kindergarten through fifth grade), the point
at which the intercept was assessed (i.e., where trajectory and level
are closest to being orthogonal) occurs just before our kindergarten
assessment. Slope and intercept scores from this model were
entered into Mclust, which again indicated that a one-class solution
was the best fit. We then used the 25th percentile for these
variables as cutoffs to identify children with a low start point and
slow growth (n � 16, six boys); average start point and slow
growth (n � 29, eight boys); and average start point and average
growth (n � 132, 68 boys). Based on mean mathematics achieve-
ment scores (below), the first and second groups were consistent
with patterns associated with MLD and LA, respectively, whereas
the final group served as a TA control.

To obtain a power of 0.80, the effect size for contrasts of the
MLD and TA groups would need to be at least 0.67 for one-tailed
tests and 0.76 for two-tailed tests, with corresponding values of
0.51 and 0.58, respectively, for the LA and TA contrasts (Cohen,
1988). Nearly all of the key effects (below) exceeded these values,
indicating adequate power for these contrasts. The values for the
MLD and LA contrasts were 0.78 (one-tailed) and 0.90 (two-
tailed) and many but not all of the effects (below) exceeded these
values, indicating nonsignificant contrasts of these two groups
need to be interpreted with caution.

The mean ages at the time of the first-grade mathematical
cognition assessment varied between 80 (SD � 3) and 82 (4)
months and differed significantly across groups (p � .05), but not
practically. The racial composition of the TA and LA groups did
not differ (�2 � 1.36, p � .50); White (80%, and 82%, respec-
tively), Asian (5%, 4%), Black (5%, 4%), and mixed race (5%,
4%), with the parents of the remaining children identifying them as
Native American, Pacific Islander, or unknown. The racial com-
position of the MLD group differed from that of the two other
groups (�2 � 37.91, p � .0002); White (36%), Black (14%), and
more than one race (50%). We did not have information on
parental socioeconomic status, but we did have information on the
percentage of children eligible for free or reduced price lunches at
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the 12 schools from which the initial sample was drawn. More
children in the MLD group than the LA or TA groups started in
schools with a higher percentage of free or reduced price lunches,
but the group differences were not significant (M � 41%, 35%,
31%, respectively, p � .25).

Standardized Measures

Intelligence. The children were administered the Raven’s
Coloured Progressive Matrices (CPM; Raven, Court, & Raven,
1993), a nontimed test that is considered to be an excellent mea-
sure of fluid intelligence, and the Vocabulary and Matrix Reason-
ing subtests of the Wechsler Abbreviated Scale of Intelligence
(WASI; Wechsler, 1999). The CPM scores were standardized
based on the 287 children who were administered the test (M �
100, SD � 15), and the WASI standard scores were converted to
the same metric. The Vocabulary subtest was used as a measure of
verbal IQ, and the mean of the CPM and Matrix Reasoning tests
was used as a measure of nonverbal IQ.

Achievement. Mathematics and reading achievement were
assessed with the Numerical Operations and Word Reading sub-
tests from the Wechsler Individual Achievement Test–II: Abbrevi-
ated (Wechsler, 2001), respectively. The easier Numerical Oper-
ations items assess number discrimination, rote counting, number
production, and basic addition and subtraction. More difficult
items include multidigit addition and subtraction, multiplication
and division, and rational number problems solved with pencil and
paper. The easier Word Reading items require matching and iden-
tifying letters, rhyming, beginning and ending sounds, and pho-
neme blending. The more difficult items assess accuracy of read-
ing increasingly difficult words.

Mathematical Tasks

Addition strategy choices. Fourteen simple addition prob-
lems and six more complex problems were horizontally presented,
one at a time, at the center of a computer monitor. The simple
problems consisted of the integers 2 through 9, with the constraint
that the same two integers (e.g., 2 � 2) were never used in the
same problem; 1⁄2 of the problems summed to 10 or less, and
the smaller valued addend appeared in the first position for 1⁄2 of
the problems. The complex items were 16 � 7, 3 � 18, 9 � 15,
17 � 4, 6 � 19, and 14 � 8.

The child was asked to solve each problem (without pencil and
paper) as quickly as possible without making too many mistakes.
It was emphasized that the child could use whatever strategy was
easiest to get the answer and was instructed to speak the answer
into a microphone that was interfaced with the computer, which in
turn recorded reaction time (RT) from onset of problem presenta-
tion to microphone activation. After each problem was solved, the
child was asked to describe how he or she had got the answer.
Based on the child’s description and the experimenter’s observa-
tions, the trial was classified based on problem-solving strategy;
the four most common were counting fingers, verbal counting,
retrieval, and decomposition. Counting trials were further classi-
fied as min, sum, or max. The combination of experimenter ob-
servation and child reports immediately after each problem is
solved has proven to be a useful measure of children’s strategy
choices (Geary, 1990; Siegler, 1987). The validity of this infor-

mation is supported by RT patterns; finger-counting trials have the
longest RTs, followed respectively by verbal counting, decompo-
sition, and direct retrieval (e.g., Geary, Hoard, & Bailey, 2011;
Siegler, 1987).

Four summary variables, two for simple problems and two for
complex ones, were created to represent children’s competence in
solving addition problems. The first variable represented the extent
to which memory-based processes were used in problem solving.
When the children correctly used memory-based strategies, they
directly retrieved the answer 62% of the time and used decompo-
sition 38% of the time. The memory-based strategy for complex
problems was decomposition, as direct retrieval was uncommon.
The second, procedural competence variable was coded such that
high scores represented frequent and accurate use of the min
procedure, whether or not the children used their fingers, and low
scores represented frequent counting errors: (2 � frequency of min
counts) � (frequency of sum counts) – (total frequency of count-
ing errors). For children who used counting on only a subset of
problems, scores were adjusted based on the percentage of count-
ing trials. The maximum scores were 28 and 12, respectively, for
simple and complex addition.

Number sets. Two types of stimuli are used: objects (e.g.,
stars) in a half-inch square and an Arabic numeral (18-pt font) in
a half-inch square. Stimuli are joined in domino-like rectangles
with different combinations of objects and numerals. These dom-
inos are presented in lines of five across a page. The last two lines
of the page show three 3-square dominos. Target sums (5 or 9) are
shown in large font at the top the page. On each page, 18 items
match the target; 12 are larger than the target; six are smaller than
the target; and six contain 0 or an empty square.

The tester begins by explaining two items matching a target sum
of 4 and then uses the target sum of 3 for practice. The measure is
then administered. The child is told to move across each line of the
page from left to right without skipping any; to “circle any groups
that can be put together to make the top number, 5 (9)”; and to
“work as fast as you can without making many mistakes.” The
child has 60 s per page for the target 5 and 90 s per page for the
target 9. Time limits were chosen to avoid ceiling effects and to
assess fluent recognition and manipulation of quantities. Perfor-
mance was consistent across target number and item content (e.g.,
whether the rectangle included Arabic numerals or shapes) and
thus combined to create an overall frequency of hits (alpha, � �
.88), correct rejections (� � .85), misses (� � .70), and false
alarms (� � .90; Geary et al., 2007). The variable used here was
based on the d-prime measure; specifically, (hits – false alarms) �
(maximum RT/actual RT). The maximums, as noted, were 120 and
180 s for targets of 5 and 9, respectively. Thus, the scores of
children who completed the test in less than the maximum time
were adjusted upward. The adjustment was made because nearly
all children completed the test in more than the maximum time
when they were younger (Geary et al., 2009), but some of them
completed the test in less time in later grades. The adjustment
enabled us to maintain the sensitivity of the test, despite faster
processing times across grades.

Number line estimation. A series of twenty-four 25-cm
number lines containing a blank line with two endpoints (0 and
100) was presented, one at a time, to the child with a target number
(e.g., 45) in a large font printed above the line. The child’s task
was to mark the line where the target number should lie (Siegler &
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Booth, 2004); a pencil-and-paper version was used in first grade
and a computerized version, where the child used the mouse to
mark the line, was used thereafter. Siegler and Opfer (2003) used
group-level median placements fitted to linear and ln models to
make inferences about the modal representation children were
using to make the placements; for individual difference analyses,
they used an accuracy measure. Accuracy is defined as the abso-
lute difference between the child’s placement and the correct
position of the number. For the number 45, placements of 35 and
55 produce difference scores of 10. The overall score is the mean
of these differences across trials. An alternative approach is to
classify whether the child used a linear or ln representation to
make the placement on a trial by trial basis (Geary et al., 2007,
2008). This is a useful approach in earlier grades, when such
variation is common, but is not as useful in later grades, when most
children appear to rely on a linear representation for most trials,
albeit individual differences in accuracy remain.

Working Memory and Processing Speed

The Working Memory Test Battery for Children (WMTB-C;
Pickering & Gathercole, 2001) consists of nine subtests that assess
the central executive, phonological loop, and visuospatial sketch
pad. All of the subtests have six items at each span level. Across
subtests, the span levels range from one to six to one to nine.
Passing four items at one level moves the child to the next. At each
span level, the number of items (e.g., words) to be remembered is
increased by one. Failing three items at one span level terminates
the subtest. Working memory spans for the central executive,
phonological loop, and visuospatial sketch pad are the mean span
scores for the corresponding subtests.

Central executive. The central executive was assessed with
three dual-task subtests. Listening Recall requires the child to
determine if a sentence is true or false and then recall the last word
in a series of sentences. Counting Recall requires the child to count
a set of 4, 5, 6, or 7 dots on a card and then to recall the number
of counted dots at the end of a series of cards. Backward Digit
Recall is a standard-format backward digit span.

Phonological loop. Digit Recall, Word List Recall, and Non-
word List Recall are standard span tasks with differing content
stimuli; the child’s task is to repeat words spoken by the experi-
menter in the same order as presented by the experimenter. In the
Word List Matching task, a series of words, beginning with two
words and adding one word at each successive level, is presented
to the child. The same words, but possibly in a different order, are
then presented again, and the child’s task is to determine if the
second list is in the same or different order than the first list.

Visuospatial sketch pad. Block Recall is another span task,
but the stimuli consist of a board with nine raised blocks in what
appears to the child as a “random” arrangement. The blocks have
numbers on one side that can only be seen from the experimenter’s
perspective. The experimenter taps a block (or series of blocks),
and the child’s task is to duplicate the tapping in the same order as
presented by the experimenter. In the Mazes Memory task, the
child is presented a maze with more than one solution and a picture
of an identical maze with a path drawn for one solution. The
picture is removed and the child’s task is to duplicate in the path
in the response booklet. At each level, the mazes get larger by one
wall.

Processing speed. Two rapid automatized naming (RAN)
tasks assessed processing speed (Denckla & Rudel, 1976; Maz-
zocco & Myers, 2003). Although the RAN does not assess all of
the multiple components of processing speed (Carroll, 1993), it
does assess the educationally relevant facility of serially encoding
arrays of visual stimuli, as with words and multidigit Arabic
numerals (Wolf, Bowers, & Biddle, 2000). The child is presented
with five letters or numbers to first determine if the child can read
the stimuli correctly. After these practice items, the child is pre-
sented with a 5 � 10 matrix of incidences of these same letters or
numbers and is asked to name them as quickly as possible without
making any mistakes. RT is measured via a stopwatch. RTs for
letter and number naming were highly correlated in each grade
(rs � .75 to .84, p � .0001), and thus we used their mean.

In-Class Attention

The Strength and Weaknesses of ADHD-Symptoms and Normal-
Behavior (SWAN) measure of in-class attention was used (J. M.
Swanson et al., 2008). The measure includes items that assess
attentional deficits and hyperactivity but the scores are normally
distributed, based on the behavior of a typical child in the class-
room. The nine item (e.g., “Gives close attention to detail and
avoids careless mistakes”) measure was distributed to the chil-
dren’s second-, third-, and fourth-grade teachers, who were asked
to rate the behavior of the child relative to other children of the
same age on a 1 (far below) to 7 (far above) scale. Scores across
grades were highly correlated (rs � .70 to .77), and thus we used
their mean (� � .88). If the child had only one or two scores these
were used, and if no scores were available (16% of the sample)
then the corresponding group mean was used.

Procedure

Assessments. The CPM and WASI were administered in the
spring of kindergarten and first grade, respectively, and the
achievement tests were administered every spring beginning in
kindergarten. The mathematical cognition and RAN tasks were
administered in the fall of first grade to fifth grade, inclusive. The
only exception was the number line task, which was administered
in the fall of first grade but in the spring of second to fifth grade,
inclusive, to reduce fall assessment times. The majority of children
were tested in a quiet location at their school site and occasionally
on the university campus or in a mobile testing van. Testing in the
van occurred for children who had moved out of the school district
or to a nonparticipating school and for administration of the
WMTB-C (e.g., on the weekend or after school). The WMTB-C
was administered in first (mean age � 84 months, SD � 6) and
fifth (M � 128 months, SD � 5) grades. The mathematical
cognition and achievement assessments required between 20 and
40 minutes and the WMTB-C required about 60 minutes per
assessment.

Analyses. In some cases, standard statistical procedures were
used, but the primary focus was on group differences in start point
and rate of first- to fifth-grade change in achievement scores, in
processing speed, and on the mathematical cognition variables.
Therefore, multilevel modeling was used (i.e., PROC MIXED).
Linear and quadratic (grade2) slopes for grade and intercept values
were random effects. The intercept values estimate the mean raw
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scores in first grade (coded 0), and the grade variables represent
rate of change from first to fifth grade; second, third, fourth, and
fifth grades were coded 1 to 4, respectively. The TA children were
the contrast group for the initial analyses, and then models were
rerun to provide a contrast of the MLD and LA groups. The
repetitive procedure allowed us to obtain pairwise contrasts for
intercept and slope values.

Results

The variables used in our analyses are summarized in Table 1,
and the results are presented in three sections. The first addresses
the goal of documenting group differences in start point and
growth for the mathematical cognition variables. Group differ-
ences in achievement start point and growth, as well as general
cognitive abilities and in-class attention, are described in the
second section, and the third addresses the goal of identifying
mediators of group differences in mathematics achievement start
point and growth.

Growth in Mathematical Cognition

Number sets. The gist is significant group differences are
evident at the beginning of first grade. The children in the MLD
and LA groups showed some catch-up to their TA peers from first
to second grade, but growth was essentially parallel across groups
after that point. The pattern is shown in Figure 1 (Panel A) and the
corresponding mixed model results in Table 2. The intercept value
is the estimate of the TA children’s first-grade score, and the
intercept on MLD and LA are the intercept differences comparing

these groups with the TA group, respectively (ps � .0001, d �
2.21, 0.88, respectively, for first-grade scores). The linear slope
variable estimates average linear grade-to-grade change for the TA
group, whereas the quadratic slope variable estimates the acceler-
ation or deceleration in the rate of change across grades. As shown
in Table 2, the TA children’s scores increased an average of 10.58
points from one grade to the next, with no significant acceleration
or deceleration.

The positive linear slope on MLD and LA effects indicate that
the average rate of change for these groups was higher than that of
the TA children, but the negative quadratic contrasts indicate the
rate of catching up decelerated across grades. In fact, examination
of Figure 1 (Panel A) suggests that most of the catch-up occurred
between first and second grade, and a mixed model including only
Grades 2 to 5, inclusive, confirmed no significant linear or qua-
dratic slope on MLD or LA effects (ps � .15). The contrast of the
MLD and LA groups confirmed the significant intercept difference
(p � .0005), but the linear and quadratic slope on MLD effects
were not significant (ps � .25), indicating parallel across-grade
changes for these two groups.

Number line. The gist is that group differences are evident at
the beginning of first grade but the gap between the TA and LA
groups closed by the end of fifth grade. The magnitude of the gap
between the TA and MLD groups narrowed by about a third across
grades but nonetheless remained significant at the end of fifth
grade. The pattern is shown in Figure 1 (Panel B), and the corre-
sponding mixed model results can be seen in Table 2. In first grade
(intercept), the TA group had smaller errors than the MLD (d�
1.55) and LA (d � 0.92) groups, but the significant linear slope on

Table 1
Summary of Measures

Variable Task Coding

Mathematical cognition

Number sets fluency Number sets Hits minus false alarms, adjusted for reaction time (RT)
Number line error Number line Mean of absolute difference between correct placement and

child’s actual placement
Simple addition retrieval Addition strategy choice The number of simple problems correctly solved (out of 14)

with direct retrieval or decomposition
Simple addition procedural

competence
Addition strategy choice Sophistication and accuracy of counting procedures used for

problem solving
Complex addition decomposition Addition strategy choice The number of complex problems (out of 6) correctly

solved with decomposition
Complex addition procedural

competence
Addition strategy choice Sophistication and accuracy of counting procedures used for

problem solving

General cognitive and in-class attention

Verbal intelligence Vocabulary subtest of WASI (Wechsler, 1999) Standard scores from national norms (M � 100, SD � 15)
Nonverbal intelligence Matrix Reasoning subtest of WASI (Wechsler,

1999); CPM (Raven et al., 1993)
Mean of scores from national WAIS norms and

standardized CPM scores (M � 100, SD � 15)
Central executive WMTB-C (Pickering & Gathercole, 2001) The mean of subtest span scores for first and fifth grade
Phonological loop WMTB-C (Pickering & Gathercole, 2001) The mean of subtest span scores for first and fifth grade
Visuospatial sketch pad WMTB-C (Pickering & Gathercole, 2001) The mean of subtest span scores for first and fifth grade
Processing speed Rapid Automatized Naming (Denckla & Rudel,

1976)
The mean of number naming and letter naming RTs for first

to fifth grade, inclusive
In-class attention SWAN (J. M. Swanson et al., 2008) Mean teacher ratings across second to fourth grade,

inclusive

Note. WASI � Wechsler Abbreviated Scale of Intelligence; CPM � Raven’s Coloured Progressive Matrices; WMTB-C � Working Memory Test Battery
for Children; SWAN � Strength and Weaknesses of ADHD-Symptoms and Normal-Behavior.
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MLD and LA effects indicate catch-up after this; the quadratic
effects reflect more catch-up between first and second grade than
in later grades. The contrast of the MLD and LA groups confirmed
the significant intercept difference (p � .05), but the linear and
quadratic slope on MLD effects were not significant (ps � .50),
indicating parallel across-grade change.

Comparison of pairwise means (honestly significant difference
test) revealed that the advantage of the TA children over the LA
children was significant in first (d � 0.97) through fourth (d �
0.60) grade, inclusive (ps � .05), but not fifth (p � .05). The TA
children maintained a significant advantage over their MLD peers
in all grades (ps � .05), but the gap decreased in magnitude from
first (d � 1.55) to fifth (d � 0.97) grade. In contrast, a consistent
gap between the MLD and LA groups was evident across first (d �
0.59) to fifth (d � 0.78) grade.

Addition procedural competence. The gist is that significant
group differences in procedural competence are evident in first
grade, but the gap closed by the beginning of second grade for
simple problems and third grade for more complex ones. Proce-
dural competence scores for simple and complex addition are

shown in Figure 1 (Panel C, Panel D, respectively), and the
corresponding mixed model results are shown in Table 2. The TA
children started first grade with higher scores than children in the
MLD and LA groups for both simple (ps � .002, d � 2.20, 0.64,
respectively) and complex (ps � .002, d � 2.66, 1.69) addition.
The significant linear grade on MLD and LA effects confirmed
catch-up for simple addition, and pairwise contrasts (HSD) re-
vealed no significant group differences from second to fifth grade
(ps � .05), inclusive. The same pattern emerged for complex
addition, except that the LA group closed the gap with the TA
group by second grade and the MLD group by third. The contrasts
of the MLD and LA groups confirmed significant intercept differ-
ences (ps � .0001, d � 1.21) and a significant linear slope on
MLD effect (ps � .02) reflected the convergence of group means;
pairwise comparisons revealed the MLD and LA groups did not
differ after first grade (ps � .05).

Addition retrieval and decomposition. Substantial group
differences in frequency of correct retrieval of simple addition
facts were evident at the beginning of first grade. The advantage of
the TA children over their LA peers widened from first to second

Figure 1. Number sets scores (Panel A) and absolute errors for number line (Panel B). Procedural competence
scores for simple (Panel C) and complex (Panel D) addition. Maximum scores of 28 and 12 would be received
if the verbal and finger-counting strategies were always executed without error and with application of the min
procedure. Percentage of the 14 simple addition problems that was correctly solved using retrieval or decom-
position (Panel E) and percentage of the six complex addition problems that was correctly solved using
decomposition (Panel F). Brackets are standard errors. Plotted using the Sciplot package in R (Morales, 2010).
MLD � mathematical learning disability; LA � low achieving; TA � typically achieving.
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grade, followed by a narrowing of the gap that nonetheless re-
mained significant in fifth grade. In comparison to children with
MLD, TA children started first grade with a substantial advantage
in use of correct retrieval and widened this advantage across
grades. The children with MLD and their LA peers began first
grade with similarly low knowledge of addition facts, but the LA
children showed more consistent growth and established an ad-
vantage over the children with MLD by the beginning of third
grade. Few of the children in any of the groups used decomposition
at the beginning of first grade, but the TA children showed rapid,
steady growth through fifth grade. A corresponding growth spurt
started 2 years later for LA children, but the children with MLD
showed little growth from first to fifth grade.

The percentage of simple addition problems correctly solved
with direct retrieval or decomposition is shown in Figure 1 (Panel
E), and the mixed model results are shown in Table 2; the analyses
were based on raw scores, not percentages. For simple addition,
the TA group started with an advantage over the MLD (d � 1.3)
and LA (d � 0.84) groups. All of the groups improved across
grades, but the negative linear slope on MLD and LA effects
indicate that the advantage of the TA children widened. The
quadratic slope effect (�0.68) indicates that the rate of the TA
children’s across-grade improvement slowed and the quadratic
slope on LA effect indicates the same, but with a less dramatic
change in the across-grade slope (i.e., �.68 � .42 � �.26). The
quadratic slope on MLD effect (i.e., �.68 � .73 � .05) indicates
the rate of change tended to accelerate across grades, but the effect
was not significant (p � .10); in other words, the across-group
contrasts were significantly different but the quadratic slope effect
was not significantly different from 0 for the MLD group.

Pairwise comparisons confirmed the TA advantage over the
MLD and LA groups in all grades. Relative to first grade, the gap
between the TA and MLD groups increased from 1.3 to 2.0 SDs,
whereas the gap between the TA and LA group decreased from
0.84 to 0.45 SDs. An advantage for the LA group over the MLD
group emerged in third grade and remained through fifth (ps �
.05, d � 1.07, 0.54, 0.82, respectively).

As shown in Figure 2 (Panel F), first graders rarely used
decomposition to solve complex addition problems. The signifi-

cant intercept effect in the last column of Table 2 indicates the TA
children used decomposition to correctly solve 0.42 of the six
complex problems, on average. The negative intercept on MLD
and LA effects indicates that children in these groups almost never
used decomposition in first grade; for example, the estimate for the
MLD children is 0.02 problems (i.e., 0.42 – 0.40), on average. The
linear and quadratic slope effects indicate the TA children’s use of
decomposition increased significantly across grades and that this
rate of improvement decelerated across grades. The pattern is
clearly shown in Figure 1, with substantial gains from first to
second grade and continuing but less dramatic grade-to-grade
changes thereafter. The significant negative linear slope on MLD
and LA effects reflects less average grade-to-grade increase in the
correct use of decomposition relative to that for the TA children.
However, this trend is qualified by the significant quadratic slope
on LA effect, specifically suggesting the LA children began to
catch up with the TA children.

Indeed, the pattern in Figure 2 (Panel F) suggests similar grade-
to-grade increases in use of decomposition for the TA and LA
children after first grade. A mixed model that only estimated
change from second to fifth grade, inclusive, revealed a nonsig-
nificant linear slope on LA effect (p � .10) and a trend for a
positive quadratic slope on LA effect (p � .067). That is, the linear
increases were similar across the TA and LA groups, and there was
a trend for the slope for the LA group to increase across grades
relative to that of the TA group. The pattern for the MLD children
is more complex, as their use of decomposition did not differ from
0 until third grade and then increased slightly thereafter; this is
reflected in the significant quadratic slope on MLD effect.

In any case, pairwise comparisons indicated that the TA children
correctly used decomposition to solve complex addition problems
more often than their LA and MLD peers from second to fifth
grades (ps � .05), inclusive. Their advantage over the LA children
decreased from second (d � 1.22) to fifth (d � 0.61) grade and
increased over the children with MLD (d � 1.64, 1.90 for second
and fifth grade, respectively). Pairwise differences across the LA
and MLD groups were significant for fourth (d � 1.02) and fifth
(d � 1.03) grade (ps � .05).

Table 2
Mixed Model Results for Growth and Group Membership Effects for Mathematical Cognition Tasks

Estimate
Number sets

fluency
Number line

error
Simple addition

procedure
Complex addition

procedure
Simple addition

retrieval
Complex addition

decomposition

Intercept 34.89� 11.87� 18.91� 7.11� 3.63� 0.42�

Linear slope (grade) 10.58� �5.42� 2.33� 1.93� 4.87� 1.80�

Quadratic slope (grade2) �0.04 0.87� �0.31 �0.30� �0.68� �0.24�

Intercept on MLD �21.42� 10.24� �16.17� �9.32� �3.29� �0.40
Intercept on LA �9.49� 5.94� �5.62� �3.12� �2.53� �0.46�

Slope on MLD 3.87� �3.64� 12.13� 4.61� �3.55� �1.76�

Slope on LA 2.20 �3.06� 4.43� 0.93 �1.79� �1.56�

Quadratic slope on MLD �1.12� 0.38 �2.28� �0.55a 0.73� 0.26�

Quadratic slope on LA �0.75� 0.44� �0.83 �0.02 0.42� 0.35�

Variance intercept 85.45� 32.58� 6.11 6.67� 6.94� 0.16
Variance grade 8.35 15.55� 2.86 0.61 4.15� 1.81�

Variance quadratic grade 0.38 0.40� 0.07 0 0.23� 0.12�

Note. MLD � mathematical learning disability; LA � low achieving.
a p � .057.
� p � .05.
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Group Differences in Achievement, General Cognitive
Ability, and In-Class Attention

The just described group differences in start point and growth on
the mathematical cognition tasks identify potential mediators of
the group differences in mathematics achievement start point and
growth described below. In this section, we turn our attention to
group differences in intelligence, working memory, processing
speed, and in-class attention to identify other potential mediators
of group differences in mathematics achievement.

Achievement. The first- to fifth-grade Numerical Operations
and Word Reading scores shown in Table 3 are national percen-
tiles (Wechsler, 2001), and the corresponding raw scores are
shown in Figure 2 (Panel A, Panel B, respectively); pairwise
contrasts (honestly significant difference test) are shown as sub-
scripts in Table 3. Consistent with the earlier described classifica-
tion procedure, the MLD group had a significantly lower intercept
than the TA group and a more shallow linear slope (p � .0001);
there was a significant quadratic slope effect (p � .05), but this did
not differ across groups. The intercept differences across the TA

and LA groups were small but significant (p � .05), and the slope
effect was more substantive (p � .0001). By design, the intercepts
differed significantly across the MLD and LA groups (p � .005)
but the slopes did not (p � .50).

Word reading scores are also plotted in Figure 1 (Panel B), and
associated analyses confirmed the TA and LA groups did not differ
on intercept values or for linear or quadratic slopes (ps � .10).
Both groups had significantly higher intercepts than the MLD
group (ps � .0001). The linear (estimate � 5.5, p � .005) and
quadratic (estimate � �0.7, p � .053) slope effects contrasting the
TA and MLD groups were significant. In combination, they indi-
cate that the latter group showed some catch-up with the former
group and that the rate of catch-up declined across grades. The
linear slope contrast across the LA and MLD group also suggested
some catch-up, but the effect was only a trend (p � .092); the
quadratic contrast of these groups was not significant (p � .50).

Intelligence. The TA children had higher verbal IQ scores
than the children in the two other groups (ps � .05; honestly
significant difference test), who in turn did not differ (see Table 3).

Figure 2. Raw Numerical Operations (Panel A) and Word Reading (Panel B) scores. Brackets are standard
errors. Plotted using the Sciplot package in R (Morales, 2010). MLD � mathematical learning disability; LA �
low achieving; TA � typically achieving.

Table 3
Intelligence and Achievement Scores

Group N Verbal IQ Nonverbal IQ

Grade

First Second Third Fourth Fifth

WR NO WR NO WR NO WR NO WR NO

MLD 16 90a (13) 95a (25) 23a (14) 10a (7) 26a (24) 10a (10) 30a (19) 7a (7) 31a (17) 10a (12) 31a (18) 8a (8)
LA 29 99a (15) 98ab (11) 61b (25) 28b (20) 65b (24) 19a (13) 56b (20) 19b (13) 54b (21) 14a (11) 54b (20) 19a (14)
TA 132 106b (14) 104b (10) 68b (28) 40b (25) 68b (26) 49b (28) 62 (24) 48c (27) 62b (23) 53b (26) 63b (22) 57b (26)

Note. Group means with different subscripts differ significantly (p � .05) when using the honestly significant difference test. Parenthetical values are
standard deviations. MLD � mathematical learning disability; LA � low achieving; TA � typically achieving; WR � Word Reading; NO � Numerical
Operations.
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The TA children also had a higher mean nonverbal score than the
children with MLD, but no other group contrasts were significant.

Working memory. Across groups, mean span scores in-
creased substantially from first to fifth grade for the phonological
loop (d � 1.08), visuospatial sketch pad (d � 1.90), and central
executive (d � 1.66; see Table 4). A mixed analysis of variance
yielded significant effects for group, F(2, 174) � 43.10; year, F(1,
174) � 637.31; and component, F(2, 348) � 184.04 (ps � .0001).
There was a trend for the group by year interaction (p � .065), and
the group by component and year by component interactions were
significant (ps � .01), as was the three-way, F(4, 348) � 5.57, p �
.0002. The latter emerged because first-grade phonological spans
were higher than visuospatial spans for the LA and TA groups (ps
�.01) and marginally so for the MLD group (p � .01), as
contrasted with nonsignificant differences in fifth grade for the LA
group (ps � .25) and a reversal of this pattern for the TA group
(p � .01).

The significances of the group-level contrasts (honestly signif-
icant difference test) are indicated by subscripts for the corre-
sponding mean scores in Table 4. With the exception of the
visuospatial sketch pad in fifth grade, the spans for the MLD group
were lower than those of the LA group in both grades (ds � 0.55
to 1.50). The LA and TA groups had comparable phonological
loop spans in both grades, but the TA group had advantages on the
visuospatial sketch pad (d � 0.55, 0.80, for first and fifth grade,
respectively) and central executive (d � 0.80, 0.67) in both grades.
The advantage of the TA group over the MLD group was signif-
icant for all components of working memory in both grades (ds �
0.73 to 2.00).

Processing speed. Mean RAN RTs are plotted in Figure 3.
The mixed models confirmed the TA group had a lower intercept
(faster start point RTs) than the MLD and LA groups, but the linear
and quadratic slope effects on MLD were significant (ps � .0001)
and reflected across-grade catch-up. There was a trend for a linear
slope on LA effect (p � .07), also indicating catch-up. The
contrast of the LA and MLD groups confirmed a significant
intercept on MLD effect and significant linear and quadrate slope
effects on MLD (ps � .001); the advantage of the LA group
disappeared across grades. Pairwise comparisons of means re-
vealed no differences between the LA and TA groups in any grade
(ps � .05); the TA group had an advantage over the MLD group
in first (d � 1.88), second (d � 1.0), and fourth (d � 0.73) grades.

Based on the potential number-processing deficits of children
with MLD and their LA peers a follow-up repeated-measures

analysis of variance was conducted, with type (i.e., number vs.
letter) and grade as within-subjects factors and group as a between-
subjects factor. Group differences in processing speed were con-
firmed, but the type by group (p � .50) and grade by type by group
(p � .50) interactions were not significant, indicating the group
differences in processing speed were not specific to numbers.

In-class attention. The groups differed significantly on the
SWAN measure, F(2, 174) � 30.67, p � .0001. The TA group
(M � 5.20, SD � 1.02) had higher scores than the MLD (M �
3.43, SD � 0.79, d � 1.96) and LA (M � 4.07, SD � 1.03, d �
1.01) groups (honestly significant difference test, ps � .05), who
in turn did not differ.

Mediational Analyses

The mediational analyses focused on the sources of the group
differences in mathematics achievement start point (intercept) and
growth (slope). To do this, we contrasted the intercept difference

Table 4
Mean Working Memory Spans

Group

First-grade working memory spans Fifth-grade working memory spans

Phonological
loop

Visuospatial
sketch pad

Central
executive

Phonological
loop

Visuospatial
sketch pad

Central
executive

M SD M SD M SD M SD M SD M SD

MLD 2.3a 0.7 2.0a 0.6 1.4a 0.4 3.6a 0.5 3.3a 0.8 2.3a 0.4
LA 3.4b 0.6 2.6b 0.6 1.9b 0.5 3.9b 0.6 3.8a 0.8 2.9b 0.4
TA 3.4b 0.5 2.9c 0.5 2.3c 0.5 4.0b 0.6 4.4b 0.7 3.2c 0.5

Note. Group means with different subscripts differ significantly (p � .05) when using the honestly significant difference test. MLD � mathematical
learning disability; LA � low achieving; TA � typically achieving.

Figure 3. Mean letter and number naming reaction times. Brackets are
standard errors. Plotted using the Sciplot package in R (Morales, 2010).
MLD � mathematical learning disability; LA � low achieving; TA �
typically achieving.
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for Numerical Operations comparing the TA and MLD groups and
the slope difference comparing the TA group with a combined
MLD/LA group. The procedures followed Baron and Kenny
(1986), using Sobel’s (1988) test. If the hypothesized mediational
effect is significant and reduces the group contrast to nonsignifi-
cance (p � .05) then full mediation is implied; partial mediation is
implied if the group contrast remains significant.

First, a stepwise regression was used to identify the best poten-
tial set of mediators for the intercept and slope variables. Because
the former estimates mathematical achievement at the beginning of
schooling, potential mediators were restricted to tasks that were
administered in kindergarten and first grade and that showed
significant differences across the TA and MLD groups. The cor-
responding variables included the number sets scores, number line
error, simple addition retrieval, procedural competence for simple
and complex addition, verbal and nonverbal IQ, the three compo-
nents of working memory, and RAN RT. These variables were
also used to predict kindergarten Word Reading scores. These
scores were chosen because they are the closest to the estimated
intercept point for Numerical Operations and provide a means of
determining if the predictors are unique to beginning mathematics.
Potential predictors of the Numerical Operations slope variable
included these variables as well as slope measures for simple
addition retrieval and complex addition decomposition (estimated
with the same free curve slope intercept models used for Numer-
ical Operations), in-class attention, and fifth-grade working mem-
ory scores. We did not run a Word Reading contrast for the
Numerical Operations slope because the Word Reading differ-
ences across the MLD and TA groups narrowed across grades, not
widened as with Numerical Operations.

A set of three predictors emerged for the Numerical Operations
intercept scores, F(3, 173) � 38.80, p � .0001, R2 � .40; in order
of selection, number sets scores (	 � .40, t � 4.92, p � .0001),
complex addition decomposition (	 � .20, t � 2.76, p � .01), and
simple addition retrieval (	 � .15, t � 2.19, p � .05). A different
set of predictors emerged for Word Reading scores, F(5, 171) �
32.75, p � .0001, R2 � .49; RAN RT (	 � �.33, t � �5.02, p �
.0001); nonverbal IQ (	 � .22, t � 3.54, p � .0005); phonological
loop (	 � .15, t � 2.13, p � .05); central executive (	 � .16, t �
2.22, p � .05); and verbal IQ (	 � .13, t � 1.98, p � .05). A set
of five predictors emerged for the Numerical Operations slope
scores, F(5, 171) � 46.63, p � .0001, R2 � .58; number sets
scores (	 � .14, t � 2.03, p � .05); in-class attention (	 � .23, t �
3.76, p � .0005); simple addition retrieval (	 � .30, t � 5.11, p �
.0001); first-grade central executive (	 � .24, t � 3.70, p �
.0005); and the slope variable estimated for complex addition
decomposition (	 � .17, t � 2.85, p � .005).

These potential mediators were first tested sequentially and
independently. The sequence followed the order of selection from
the stepwise regression. If the first variable fully mediated the
group difference, the procedure was stopped. Otherwise, the pro-
cedure continued until a full mediator was found or it was deter-
mined that no single variable fully mediated the group difference.
In this situation, all of the potential mediators were assessed
simultaneously.

Numerical operations intercept. The first variable tested,
number sets scores, emerged as a full mediator (z � 5.91, p �
.0001) of the intercept difference across the TA and MLD groups.
As a contrast, RAN RT emerged as a full mediator (z � 3.65, p �

.0005) of the group difference in Word Reading scores. Number
sets scores and RAN RT scores were significantly correlated (r �
�.51, p � .0001), but the relation between the former variable and
Numerical Operations intercept scores remained significant after
controlling for RAN RTs; the magnitude of the relation between
numbers sets scores and Numerical Operations intercept scores did
not change significantly (p � .10) when comparing estimates
before (	 � .67, t � 9.97) to after (	 � .58, t � 7.48) controlling
for RAN RTs. The strength of relation between RAN RT and
Word Reading scores declined (p � .05) comparing estimates
before (	 � �.58, t � �8.22) to after (	 � �.44, t � �5.51)
controlling for number sets scores, but the latter relation remained
highly significant (p � .0001).

Numerical operations slope. Each of the five predictors
emerged as a partial mediator of the group difference (MLD/LA
vs. TA; zs � 3.87, ps � .0001), and the group contrast remained
significant (t � 6.84, p � .001), with the simultaneous control of
all five predictors. However, before control of these partial medi-
ators, 49% of the variance in Numerical Operations slope scores
was explained by the group contrast, as compared to 9% after
control, a significant reduction (t � 14.41, p � .0001).

Discussion

Our first goal was to determine the start points and 5-year
growth trajectories for groups of MLD and LA children, as con-
trasted with their TA peers, on several key mathematical compe-
tencies. Our second goal was to determine if group differences in
start point and growth in these competencies contributed to group
differences in mathematical achievement above and beyond the
influence of general cognitive abilities and in-class attention. We
flesh out the results with respect to these goals, following brief
discussion of classification issues.

Classification of MLD and LA Children

Our failure to find distinct MLD and LA groups with the cluster
and growth curve analyses suggests the children composing these
groups are part of the normal distribution of mathematics achieve-
ment. Nevertheless, selection for special education or related in-
terventions must be based on selection criteria, whether or not the
chosen students form qualitatively distinct groups. The study of the
deficits and delays of these children and how to remediate them is
also facilitated by using specific cut points, albeit these are nec-
essarily arbitrary. In this literature, children with MLD tend to
have grade-to-grade mathematics achievement scores at or below
the 10th national percentile (Jordan et al., 2003b; Jordan & Mon-
tani, 1997; Murphy et al., 2007), and this was the case with our
MLD sample. The low start point of this group confirms the
importance of basic school-entry quantitative competencies (Dun-
can et al., 2007; Jordan et al., 2009). The current results indicate
the factors underlying their low start point and their slow growth
overlap but are not identical, and they also indicate that their slow
growth is related to several specific mathematical-cognition defi-
cits and delays and not to across-the-board deficits (below). Our
results also confirm that children with MLD are typically poor
readers (Geary, 1993; Jordan et al., 2003b), and we extend this
literature with the finding that their low entry-level word reading
ability is mediated by a different mechanism (speed of retrieving
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letters and numbers from long-term memory; Denckla & Rudel,
1976) than their low entry-level mathematics achievement.

Low achieving children often have average intelligence and
reading ability but nevertheless persistently score below the 25th
percentile on mathematics achievement tests (Jordan et al., 2003b;
Murphy et al., 2007), and this was again the case with our sample.
Our LA group was characterized by typical entry-level mathemat-
ics achievement but grade-to-grade growth that paralleled that of
their MLD peers. In terms of identification for special education or
other interventions, our findings and those of related studies (Lo-
cuniak & Jordan, 2008) suggest that children at risk for MLD are
in the lower quartile of basic quantitative competencies in kinder-
garten, but, at this time, identification of LA children will require
documentation of two or more years of below average growth in
mathematics achievement after school entry.

Start Point and Growth in Mathematical
Competencies

The most extensively studied mathematical competencies of
children with MLD and their LA peers are their difficulties in
committing basic arithmetic facts to long-term memory or retriev-
ing these facts once they have been learned (Andersson, 2010;
Cawley et al., 2001; Chan & Ho, 2010; Geary, 1993; Jordan et al.,
2003a; Ostad, 1997, 1999) and their use of developmentally im-
mature procedures for solving these problems (Chong & Siegel,
2008; Geary et al., 2004). The current study confirms these find-
ings and documents their developmental trajectories across the
elementary school years. Butterworth and colleagues (Butterworth,
2005; Landerl et al., 2004), in contrast, have argued that the core
deficit can be traced to difficulty in accessing representations of
numerical magnitude (but see Butterworth, 2010). Our results
address this hypothesis as well.

Retrieval deficits. The retrieval deficits of our children with
MLD do not appear to be as severe as those documented by Jordan
et al. (2003a), whose sample showed little to no growth in their
ability to retrieve facts across second and third grade, but they
were substantive. The retrieval deficit of our children with MLD
was characterized by very slow growth, relative to their TA and
LA peers, especially through third grade. Although there was
growth in the ability to retrieve basic facts, the children with MLD
did not catch up with their TA peers, and their trajectory suggests
that they will not do so, as found by Andersson (2010) for up
through sixth grade and Ostad (1997) through seventh. The re-
trieval start point for our LA group was similar to that of the
children with MLD, but their growth trajectory was similar to that
of TA children from second grade forward. Nevertheless, their
performance in fifth grade was comparable to that of TA second
graders.

We caution that, despite normal growth from second grade
forward, these results do not mean LA children cannot have
retrieval deficits or, if they do, that it is more of a developmental
delay. Indeed, the poor retrievers in Jordan et al.’s (2003a) study
had mathematics achievement scores somewhat higher than those
of our LA group but had been identified using a forced retrieval
task (i.e., the children were instructed to remember only the
answers to simple addition and subtraction problems). With the use
of this task, Jordan et al. and others (Geary et al., 2011) have
identified a subgroup of LA children with retrieval deficits that

appear to be as trenchant as or more so than those of children with
MLD. The combined studies suggest many LA children identified
based on mathematics achievement tests can learn basic facts
nearly as well as their TA peers, although they may be delayed in
doing so, but a subgroup of them may have more persistent deficits
that are only identifiable using Jordan’s forced retrieval task (Jor-
dan et al., 2003a; Jordan & Montani, 1997).

In any event, the LA children’s third-to-fifth grade improvement
in their ability to solve simple problems with direct retrieval was
complemented by an increase in the use of decomposition to solve
complex problems, consistent with reliance on memory retrieval
for use of both of these strategies. Our data, however, do not speak
to the source of this improved performance. One possibility is
developmental change in the mechanisms that support memory
formation and retrieval (Cho, Ryali, Geary, & Menon, 2011;
Rivera, Reiss, Eckert, & Menon, 2005), but brain imaging studies
will be needed to explore this possibility. Although the retrieval
competencies of the children with MLD were slowly improving,
these did not result in a parallel increase in the use of decompo-
sition. The children with MLD may not have a firm conceptual
understanding of how to decompose numbers to aid in their prob-
lem solving, as suggested by Geary et al. (2004) and Butterworth
(2010), but again this hypothesis remains to be directly confirmed.

Procedural delays. The early deficits of the MLD and LA
groups in the accurate use of the min counting procedure to solve
simple and complex problems are clearly a developmental delay, 1
year for simple problems and 1 to 2 years for slightly more
complex ones. The pattern confirms Geary’s (1993) prediction,
and our 5-year assessment extends the results of other empirical
studies (Chong & Siegel, 2008; Geary et al., 2004). Equally
important, the sharp increase in procedural skills contrasts with
slow retrieval growth and suggests that different mechanisms
underlie the development of these competencies.

We note, however, that our procedural competence variables
assess only one type of procedure. Studies that have assessed
competence in solving more complex problems, as in use of
trading to solve multidigit problems (e.g., 64 – 19 � ?), have
revealed that children with MLD commit more procedural errors
than their TA peers, but it is not clear if these are developmental
delays or more persistent deficits (Andersson, 2010; Raghubar et
al., 2009). Either way, this is not the final word, as critical related
competencies, including children’s conceptual understanding of
the base-10 system and their ability to solve fractions, are only
beginning to be studied. Available evidence suggests substantive
deficits for children with MLD and many of their LA peers
(Andersson, 2010; Chan & Ho, 2010; Mazzocco & Devlin, 2008).

Number deficits. Children with MLD are sometimes de-
scribed as having a poor number sense (Gersten, Jordan, & Flojo,
2005), although precise definition and measurement of this con-
cept have eluded the field (see Berch, 2005) and debate continues
regarding the underlying mechanisms (e.g., Butterworth, 2010;
Iuculano et al., 2008; Núñez, 2009). Among the proposed compo-
nent skills are fast implicit recognition of numerical relations (e.g.,
that 9 � 5, 52 � 39) and fluent manipulation, mapping, and
integration of these relations to meet current task demands (But-
terworth, 2005). On the basis of performance of TA children and
children with dyscalculia (identified based on low performance on
a timed arithmetic test) on tasks that assess very basic number
competencies, Landerl et al. (2004) suggested “understanding of
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numerosity, and a poor capacity to recognize and discriminate
small numerosities . . . may prevent dyscalculics developing the
normal meanings for numerical expressions and lead to their
difficulties in learning and retaining information regarding num-
bers” (p. 122).

Although more complex than the tasks used by Landerl et al.
(2004), the number sets variable falls under the number sense
umbrella, as scores are likely to be based on the speed and
accuracy of accessing the quantities of small sets of objects and
Arabic numerals and combining them to match a target quantity.
The ability to map Arabic numerals onto corresponding quantities
may be a related critical skill (Rousselle & Noël, 2007). Geary et
al. (2009) demonstrated that performance on this task was predic-
tive of mathematics but not reading achievement above and be-
yond the influence of general cognitive abilities. This finding and
the task demands of test items suggest individual differences on
this measure are driven in part by variation in very basic number-
related abilities, but at this time the specific nature of these abilities
is not fully known. Number line tasks are sometimes included as
a number sense measure, because they involve an understanding of
relative magnitude and require a mapping of magnitudes onto the
line (Berch, 2005), although this too is debated (Núñez, 2009).

Our finding for the Number Sets Test suggests that the MLD
and LA groups are at below average and very low ends of the
normal distribution of some aspects of number sense, respectively.
The results may be consistent with Landerl et al.’s (2004) hypoth-
esis that one core deficit associated with poor mathematics
achievement is slow access to representations of numerical mag-
nitude, but this conclusion is tentative until the suite of component
processes underlying performance on the test is better understood.
Whatever the processes, the children in MLD and LA groups
showed growth in these competencies but no indication of catching
up to the TA children. Their slow growth and lack of catch-up
stand in clear contrast to their developing procedural competen-
cies, suggesting again different underlying mechanisms and a
persistent disadvantage on basic “number sense” measures (De
Smedt et al., 2009; Holloway & Ansari, 2008; Iuculano et al.,
2008; Piazza et al., 2010; Rousselle & Noël, 2007). Whether poor
access to numerosities or slow manipulation of them contributes to
their fact retrieval deficit, as hypothesized by Butterworth (2005),
cannot be directly determined with this study. Whatever the un-
derlying mechanisms, performance on the number sets task is
important, as it mediated the mathematics achievement start point
difference across the TA and MLD groups and contributed to the
slow mathematics achievement growth of the LA and MLD
groups.

The developmental pattern was somewhat different for the num-
ber line task. Rather than show parallel development across grades,
the LA children slowly caught up with their TA peers by the end
of fifth grade. The children with MLD narrowed the gap by fifth
grade but had not completely closed it. Because we used the same
0 to 100 number line in all five grades, we do not know if a gap
would reemerge if the number line where expanded to 0 to 1000
(Booth & Siegler, 2006; Siegler & Opfer, 2003). We suspect it will
and will test this hypothesis in follow-up assessments. For now, we
can conclude that children with MLD are substantially delayed in
the ability to map quantities associated with Arabic numerals onto
the mathematical number line. To the extent that development of
competence with the number line is dependent on the system for

representing approximate magnitudes, our results are consistent
with those of Piazza et al. (2010), who found a 5-year delay in the
development of the acuity of the approximate number system in
children with dyscalculia. Whatever the source of this develop-
mental delay, it may differ to some extent from the source of their
relatively poor number sets fluency scores. Definitive conclusions
must await studies that assess the relation between performance on
our two number tasks and tasks that assess very basic number
competencies (Koontz & Berch, 1996; Landerl et al., 2004).

Sources of Achievement Deficits

School-entry performance on the mathematical cognition tasks
contributed to individual and group differences for Numerical
Operations start point and growth trajectory, as found by Jordan et
al. (2009; see also Fuchs et al., 2010). Our results extend theirs by
demonstrating these early mathematical cognition competencies
are important above and beyond the contributions of general
cognitive learning abilities, remain important throughout the ele-
mentary school years, and are largely unrelated to word reading
ability. More precisely, the mathematical achievement deficits of
the children with MLD and their LA peers cannot be attributed to
the general cognitive abilities assessed in this study, with two
exceptions, the central executive component of working memory
and in-class attention. These exceptions replicate previous findings
and thus will not be considered further (Andersson, 2010; Bull et
al., 2008; Fuchs et al., 2006; Mazzocco & Kover, 2007; Passol-
unghi et al., 2007; H. L. Swanson & Sachse-Lee, 2001). The
contributions here are with the isolation of the specific quantitative
competencies that predicted group differences in mathematics
achievement start point and achievement growth above and be-
yond more general factors.

The mediation analyses revealed that the low start point of the
children with MLD was fully mediated by poor scores on the
Number Sets Test. The implication is that some combination of
poor access to representations of quantities associated with small
sets and Arabic numerals, deficits in the mechanisms that enable
children to map numerals to quantities, or poor ability to add these
representations is a core deficit of children with MLD and a deficit
that should be addressed in kindergarten. The mediation analyses
indicated slow mathematics achievement growth was related to
performance on the Number Sets Test and to poor addition fact
retrieval and infrequent use of decomposition, as well as to the
central executive and in-class attention. Addressing low start point
might involve specific instruction on basic quantitative competen-
cies, especially on understanding numbers and the relations among
them. This would include knowing the number word and Arabic
numeral symbols for numbers, the magnitudes they represent, and
fluency in translating between these representations. Addressing
slow growth will likely require several simultaneous types of
remedial intervention, specifically, instruction on specific mathe-
matical competencies (Gersten et al., 2008), building working
memory (Diamond, Barnett, Thomas, & Munro, 2007), and im-
proving on-task behavior in the classroom (e.g., Glynn, Thomas, &
Shee, 1973).

Summary and Limitations

Other than that for in-class attention, we did not have measures
of more nuanced in-class behavior or instructional information or
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intrapersonal measures of mathematical self-efficacy or anxiety.
This limits the breadth of our conclusions. The exclusion of the
110 children with some missing data is another limitation, al-
though if anything our effects might have been larger with their
inclusion, given that their ability scores were lower than those of
the sample we analyzed. The Numerical Operations Test assesses
basic computational abilities and not mathematical reasoning and
problem solving (e.g., word problems), although these types of
tests are highly correlated (rs � 0.7; Wechsler, 1992). In any case,
we are currently administering problem-solving measures and will
present results in a follow-up analysis. Despite these limitations,
the study provides one of the longest and most comprehensive
studies of MLD and LA groups to date and documents the growth
trajectories of key mathematical competencies and the relation
between these and group differences in mathematics achievement
start point and grade-to-grade growth.
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