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is paper describes the development of a multidimensional population balancemodel (PBM) which can account for the dynamics
of a continuous powder mixing/blending process. e PBM can incorporate the important design and process conditions and
determine their effects on the various critical quality attributes (CQAs) accordingly. e important parameters considered in this
study are blender dimensions and presence of noise in the inlet streams. e blender dynamics have been captured in terms of
composition of the ingredients, (relative standard deviation) RSD, and (residence time distribution) RTD. PBM interacts with
discrete element modeling (DEM) via one-way coupling which forms a basic framework for hybrid modeling. e results thus
obtained have been compared against a full DEM simulation which is a more fundamental particle-level model that elucidates the
dynamics of the mixing process. Results show good qualitative agreement which lends credence to the use of coupled PBM as an
effective tool in control and optimization of mixing process due to its relatively fewer computational requirements compared to
DEM.

1. Introduction and Background

Although the pharmaceutical industries must satisfy strict
production speci�cation norms imposed by regulatory
authorities, mainly due to inefficient control strategies [1,
2] and the nonpredictive effects of input parameters, the
�nal products obtained are oen nonuniform with a high
level of variability with respect to product quality [3].
Moreover, the behavior of powder processing units are not
well characterized as compared to the �uid processing units
due to the absence of set of governing equations derived
from the �rst principles which can describe granular �ow
under speci�c conditions. e interactions of the particles
with surrounding particles, �uid, or equipment wall is quite
complex to understand, model and manage. Bulk material
behavior is decided by the interactions among individual
particles at microscale, which is chaotic. Hence oen the
pharmaceutical industries have to follow a univariate trial

and error approach for their process development. However
efforts are being made in order to introduce science-based
holistic development of process and product by using Quality
by Design (QbD) and Process Analytical Technology (PAT)
tools [4, 5].

Continuous manufacturing offers many advantages such
as better process understanding and control. Several other
chemical industries (e.g., Petroleum Re�neries, Petrochem-
icals and Food) have adapted state of the art simulation
techniques and satisfy their �nal product requirements due
to their continuousmodes of production andwell understood
�ow processes [1]. A batch process with multipurpose equip-
ment was shown to bemore efficient thanwith single purpose
equipment [6] because of more adaptibility of the equipment
for various purposes. Continuous manufacturing processes
are suitable for easy scale-up operations [2], improve product
quality, and reduce the operating cost [7, 8]. Risks which are
otherwise associated with solid handling and nonpredictive
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manufacturing also are mitigated [9]. It is important to
understand each and every unit operation which will form a
part of the continuous process in order to achieve the desired
operational level. Common manufacturing steps which one
can come across in a typical pharmaceutical industry are
feeding, mixing, granulation, milling, tableting, and coating.
Continuous processes can be designed and optimized with
the help of �ow sheet modeling, which has been shown to be
a robust and detailed tool for simulating a real plant [10].

Mixing is one of the most important unit operations
because the blend quality is primarily decided by this step.
Mixing is brought about due to the particle velocities and
velocity gradient within the blender when two or more
distinct bulk material particles come into intimate contact.
Segregation however can occur and induces variability in
the mixture composition [11]. A model-based approach is a
good way to understand the blender dynamics provided the
parameters lie within the design range and are well de�ned.
Various soware packages and programming languages (e.g.,
ASPEN, gPROMS, DEM, MATLAB) are available to aid in
this effort.

Among the several other modeling approaches which
exist in literature, for example, Monte-Carlo methods [12],
continuum and constitutive models [13], statistical models
[14, 15], compartment models [16, 17], RTD models [18,
19] and hybrid models [20, 21], discrete element modeling
(DEM) is one of the fundamental modeling approaches that
is able to capture the particle level physics. In DEM, each
particle is treated as a discrete entity where the trajectory of
the particles is tracked and the collision between particles
is modeled. A �nite number of particles are considered
to interact via several contact and non-contact forces. e
translational and rotational motion of each particle follows
Newton’s Laws of Motion. DEM has been used as a tool
for capturing the mixing dynamics by various kinds of
systems [22–25]. It was coupled with computational �uid
dynamics for describing particle-�uid interactions [26, 27]
and continuum models [27]. Various rotational mixers [28–
30], helical mixers [31, 32] and rotor type mixers [33–35]
have been studied with the help of DEM. It has been used
as an effective tool in order to study various particulate and
multiphase systems but it still needs further developments in
order to address the current research needs [27, 36] which
would in turn help to understand the nature of particle-
particle or particle-�uid interactions and dynamic behavior
of granular materials.

is paper addresses model development of a continuous
mixing process using gPROMS (tm) as the platform. is
work builds upon a previous study by the authors [37] which
followed a steady state approach to develop a population
balancemodel (PBM) to describe the dynamics of themixing
process. In the present work a dynamic and novel hybrid
mixing model which combines DEM with PBM has been
compared with the data from a full DEM simulation run
on EDEM (tm) (DEM Solutions Ltd.). e critical quality
attributes have not been obtained directly from EDEM.
e output of EDEM has been post processed in order
to extract the CQAs. Moreover due to high computational
time requirement, DEM is not an effective tool for control

and optimization. Hence in this work an offline coupling
between DEM and PBM has been considered. DEM sim-
ulation can give information regarding particle properties
(particle velocity) which are on particle level. ese particle
level information can be fed to the PBM from which the
macroscopic variables (RSD, RTD, blend composition, etc.)
affecting the entire unit operation (mixing) can be extracted.
In this way the model incorporates multiscale information
and illustrates one-way coupling where DEM provides the
velocity information and is combined with the PBM which
simulates key blend attributes as a function of time and thus
applies themicroscopic properties fromparticle level in order
to capture macroscopic properties which characterize the
mixing performance of the entire blender.

gPROMs (tm) is a robust and fast equation-oriented
[38, 39] soware package which allows both steady state
and dynamic simulation runs. e process model can be
built by developing fundamental mathematical expressions
relating various physical and chemical variables/parameters
without specifying the order in which these equations need
to be solved. e motivation behind this work is to present a
more dynamic system which updates the particle properties
at regular interval of time and generates the CQAs taking
information fromDEM, that can also be simulated in a realis-
tic time period to facilitate design, control, and optimization.

2. Mathematical Model Development

A population balance model (PBM) has been developed
for capturing the dynamics of mixing. Population balance
models have been used in case of other particulate handling
processes such as crystallization [40, 41] and granulation
[42–45] but not for mixing till date.

2.1. Population Balance Equation. e generalised form of
Population Balance Equation is given as [46]𝜕𝜕𝜕𝜕𝜕𝜕𝐹𝐹 (𝐱𝐱𝐱 𝐱𝐱𝐱 𝜕𝜕) + 𝜕𝜕𝜕𝜕𝐱𝐱 𝐹𝐹 (𝐱𝐱𝐱 𝐱𝐱𝐱 𝜕𝜕) 𝑑𝑑𝐱𝐱𝑑𝑑𝜕𝜕  + 𝜕𝜕𝜕𝜕𝐱𝐱 𝐹𝐹 (𝐱𝐱𝐱 𝐱𝐱𝐱 𝜕𝜕) 𝑑𝑑𝐱𝐱𝑑𝑑𝜕𝜕 = ℜformation − ℜdepletion. (1)

Here, 𝐹𝐹(𝐱𝐱𝐱 𝐱𝐱𝐱 𝜕𝜕) is the population distribution function, 𝐱𝐱 is
the vector of internal state variables on which the population
distribution function depends on, and 𝐱𝐱 is the vector of
external coordinates used to depict spatial position.e term(𝜕𝜕𝜕𝜕𝜕𝐱𝐱)𝜕𝐹𝐹(𝐱𝐱𝐱 𝐱𝐱𝐱 𝜕𝜕)(𝑑𝑑𝐱𝐱𝜕𝑑𝑑𝜕𝜕)𝜕 accounts for the rate of change of
particle distribution due to change in an internal coordi-
nate (e.g., particle size). e term (𝜕𝜕𝜕𝜕𝜕𝐱𝐱)𝜕𝐹𝐹(𝐱𝐱𝐱 𝐱𝐱𝐱 𝜕𝜕)(𝑑𝑑𝐱𝐱𝜕𝑑𝑑𝜕𝜕)𝜕
accounts for the rate of change of particle distribution
with respect to spatial coordinates. ℜformation and ℜdepletion
stand for particles forming and depleting, respectively. In
this work, free-�owing particles have been considered and
hence therewill be no size change associated due to formation
or depletion which would have been the case if the �ow
was cohesive thus potentially leading to particle aggregation.
Formation and depletion terms may be added easily as per
our previous study [37]. However, the focus of this study is
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the multi-scale coupling of PBM with DEM of free-�owing
particles and the population balance equation is reduced to:𝜕𝜕𝜕𝜕𝜕𝜕𝐹𝐹 (𝐳𝐳𝐳 𝜕𝜕) + 𝜕𝜕𝜕𝜕𝐳𝐳 𝐹𝐹 (𝐳𝐳𝐳 𝜕𝜕) 𝑑𝑑𝐳𝐳𝑑𝑑𝜕𝜕  = 0. (2)

2.2. Multidimensional Population Balance Equation for Con-
tinuous Mixing. A multi-dimensional formulation of the
PBE is considered. erefore, the equation for continuous
mixing (see (3)) can be written as𝜕𝜕𝜕𝜕𝜕𝜕𝐹𝐹 𝑛𝑛𝐳 𝑛𝑛𝐳 𝑛𝑛𝐳 𝜕𝜕 + 𝜕𝜕𝜕𝜕𝑛𝑛 𝐹𝐹 𝑛𝑛𝐳 𝑛𝑛𝐳 𝑛𝑛𝐳 𝜕𝜕 𝑑𝑑𝑛𝑛𝑑𝑑𝜕𝜕 + 𝜕𝜕𝜕𝜕𝑛𝑛 𝐹𝐹 𝑛𝑛𝐳 𝑛𝑛𝐳 𝑛𝑛𝐳 𝜕𝜕 𝑑𝑑𝑛𝑛𝑑𝑑𝜕𝜕 = In�ow −Out�ow. (3)

𝑛𝑛 is the spatial coordinate in the axial direction and 𝑛𝑛 is
the spatial coordinate in radial direction. e model deals
with mixing of two components A and B such that 𝑛𝑛 = 𝑛
represents component A and 𝑛𝑛 = 𝑛 is for component B.𝐹𝐹(𝑛𝑛𝐳 𝑛𝑛𝐳 𝑛𝑛𝐳 𝜕𝜕) is the particle number density which varies with
spatial location inside the blender and type of particle. e
terms 𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝜕𝜕 and 𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝜕𝜕 represent the velocities in axial
and radial directions, respectively. In�ow and out�ow terms
are added accordingly to account for particles entering and
exiting the mixer. In�ow is the rate at which the components
are fed to the system. It is a constant value over time. If
there are 𝑛𝑛max × 𝑛𝑛max compartments then out�ow can be
represented as ∑𝑛𝑛𝑛=𝑛 ∑𝑛𝑛max𝑛𝑛=𝑛 𝐹𝐹(𝑛𝑛𝐳 𝑛𝑛max𝐳 𝑛𝑛𝐳 𝜕𝜕)𝑦𝑦𝑓𝑓, where 𝑦𝑦𝑓𝑓 is the
forward axial velocity.

2.3. Modeling Technique and Model Outputs. e mixer has
been divided into multiple zones both in the axial and radial
directions. Mixing can occur in both axial and radial direc-
tion by convection and dispersion. In a continuous blender,
mixing takes place when the particles are moved about by the
motion of the blades with the dispersive component being
negligibly small as compared to the convective one. Such
assumptions have been �usti�ed in literature as well �17].
Particles are treated as discrete entities and their exchange
between any two compartments is simulated. e space is
discretized into several compartments and it is assumed that
homogenous mixing occurs in each of the compartments.
Particles move from compartment to compartment in both
axial and radial directions and this is governed by the axial
and radial velocities. e exchange of mass between the
compartments has been represented as number of particles.
Particles can either move forward to the compartment ahead
of it or backward to the compartment behind it. On the other
hand, radial mixing conserves the total number of particles
at a �xed axial location at any given point of time. Hence

the mass balance of a single component can be simpli�ed
according to𝜕𝜕𝐹𝐹 𝑛𝑛𝐳 𝑛𝑛𝐳 𝑛𝑛𝐳 𝜕𝜕𝜕𝜕𝜕𝜕 = 𝑦𝑦𝑓𝑓 𝐹𝐹𝑛𝑛𝐳𝑛𝑛−𝑛𝐳𝑛𝑛𝐳𝜕𝜕 − 𝐹𝐹𝑛𝑛𝐳𝑛𝑛𝐳𝑛𝑛𝐳𝜕𝜕Δ𝑛𝑛+ 𝑦𝑦𝑏𝑏 𝐹𝐹𝑛𝑛𝐳𝑛𝑛+𝑛𝐳𝑛𝑛𝐳𝜕𝜕 − 𝐹𝐹𝑛𝑛𝐳𝑛𝑛𝐳𝑛𝑛𝐳𝜕𝜕Δ𝑛𝑛+ 𝑦𝑦𝑟𝑟 𝐹𝐹𝑛𝑛𝐳𝑛𝑛𝐳𝑛𝑛+𝑛𝐳𝜕𝜕 + 𝐹𝐹𝑛𝑛𝐳𝑛𝑛𝐳𝑛𝑛−𝑛𝐳𝜕𝜕 − 𝑛𝐹𝐹𝑛𝑛𝐳𝑛𝑛𝐳𝑛𝑛𝐳𝜕𝜕Δ𝑛𝑛 . (4)
e above equation can be written for component A and B.
Here, 𝑦𝑦𝑓𝑓 refers to the forward velocity in the axial direction,𝑦𝑦𝑏𝑏 refers to backward velocity in the axial direction, and 𝑦𝑦𝑟𝑟
refers to the radial velocity.

is model does not require any of the particle properties
such as diameter, density, geometry, and so on as input pro-
vided the velocities can be measured either experimentally
or from detailed numerical simulations such as DEM. Once
velocity parameters are selected, the simulation can be used
to provide information about the dynamics and the outcome
of the process. It can be used to predict mixing performance
in terms of a relative standard deviation (RSD) of sample
along the axial length at end time point, RSD at discharge
as a function of time, blend composition at discharge, and
residence time distribution (RTD).

It can be noted that DEM will capture the particle
properties in the velocity values. So if the particle size
distribution is changed the velocity distribution is also going
to change, which in turnwill change the response of the PBM.
Hence the various particle properties can be varied in order
to determine how it will affect the CQAs.

e mixing performance is de�ned in terms of certain
critical quality attributes such as relative standard deviation
(RSD), composition of A, which can be active ingredient
of interest for a given process (𝐶𝐶𝐴𝐴), and residence time
distribution (RTD). ese CQAs should be regulated and
controlled in order to achieve the desired mixing efficiency.
ese parameters can be found as

𝐶𝐶𝐴𝐴 = ∑𝑛𝑛max𝑛𝑛=𝑛 𝐹𝐹 𝑛𝐳 𝑛𝑛max𝐳 𝑛𝑛𝐳 𝜕𝜕∑𝑛𝑛max𝑛𝑛=𝑛 ∑𝑛𝑛max𝑛𝑛=𝑛 𝐹𝐹 𝑛𝑛𝐳 𝑛𝑛max𝐳 𝑛𝑛𝐳 𝜕𝜕 . (5)

In the above equation, the numerator stands for the total
number of particles of component A which come out of the
last compartments at any point of time. e denominator
represents total number of particles of both the components
A and B coming out of the last compartments at any point of
time. Since the model involves mixing of two components, so
the value of 𝑛𝑛max is 2. 𝑛𝑛max and 𝑛𝑛max stand for the maximum
number of grids in axial and radial direction, respectively.

e homogeneity of samples retrieved from the out�ow is
measured by calculating the variability in the concentration.
e relative standard deviation (RSD) of tracer concentration
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T 1: DEM simulation parameters.

Particle properties
Shear modulus 2𝐸𝐸𝐸Nm−2
Poisson’s ratio 0.33
Density 1500 kgm−3
Diameter 2mm
Normal size distribution with SD 0.2
Particle-particle interactions
Coefficient of restitution 0.1
Coefficient of static friction 0.5
Coefficient of rolling friction 0.01
Blender walls
Material Steel
Shear modulus 7.93𝐸𝐸𝐸𝐸Nm−2
Poisson’s ratio 0.33
Density 8000 kgm−3
Blades
Material Steel
Shear modulus 7.93𝐸𝐸𝐸𝐸Nm−2
Poisson’s ratio 0.33
Density 8000 kgm−3
Particle-blade interactions
Coefficient of restitution 0.1
Coefficient of static friction 0.4
Coefficient of rolling friction 0.01
Particle-wall interactions
Coefficient of restitution 0.1
Coefficient of static friction 0.4
Coefficient of rolling friction 0.01

measures the degree of homogeneity of the mixture and is
given as

RSD = ∑𝑁𝑁𝑖𝑖=𝐸 𝑐𝑐𝑖𝑖 − 𝑐𝑐avg2/ (𝑁𝑁 − 𝐸)𝑐𝑐avg . (6)𝑁𝑁 represents total number of compartments (𝑁𝑁 = 𝑁𝑁max ×𝑦𝑦max). i is the index to represent the compartment. 𝑐𝑐𝑖𝑖 is the
concentration of component A at any compartment i. 𝑐𝑐avg is
a spatial average of component A concentration.

Residence time distribution 𝐸𝐸(𝐸𝐸) is a measure of the time
spent by the particles within the blender. In other words it
captures the non-ideality associated with the �ow. RTD can
be found as 𝐸𝐸 (𝐸𝐸) = 𝑐𝑐 (𝐸𝐸)∫∞𝐸 𝑐𝑐 (𝐸𝐸) 𝑑𝑑𝐸𝐸 . (7)

In the above equation, 𝑐𝑐(𝐸𝐸) stands for concentration of
componentA in the outlet stream at any time t. It is important
to make the following assumptions in order to �nd the
RTD: (i) the �ow in the blender is well mixed� (ii) the
powder elements entering the blender simultaneously �ow
with constant velocity and leave the blender at same time.

F 1: Snapshot of the mixer geometry on EDEM.

2.4. Numerical Technique. e formulated PBM is a multi-
dimensional hyperbolic partial differential equation (PDE).
e PDE was �rst discretized using a central �nite difference
scheme of order 6 which was followed by using an implicit
backward differential formula (BDF) technique to integrate
the system of ordinary differential equations (ODEs). Both
the discretization and integration were performed using
gPROMS (tm) in-built functions, which are state-of-the art
schemes that ensures stability of the overall system and
minimal numerical errors and numerical diffusion.

3. Results and Discussion

All simulations were performed using a desktop computer
with a 2.94GHz Intel (Core i7) processor with 8GB RAM.

3.1. DEM Simulation. In EDEM (tm), a commercial blender
(Gericke GCM250 (tm)) with impeller blades in alternating
forward and backward orientation was simulated.e details
regarding the mixer blade geometry has been elaborated by
Dubey et al. [47]. Figure 1 gives a snapshot of the mixer
geometry on EDEM (tm). e length and diameter of the
mixer were 330mm and 100mm, respectively. Equal number
of particles each of component A and B were introduced into
the mixer using two feeders discharging particles on either
side of the inlet. Table 1 gives the details about the particle
properties, particle-particle, particle-blade, and particle-wall
interaction parameters used in the simulation. A feed rate of
1990 particles per second and an impeller speed of 250 rpm
were maintained. Normal particle size distribution with a
mean radius of 1mm with 5% standard deviation were used.
e simulation was run for 260 seconds. e simulation was
postprocessed to obtain the axial velocities, radial velocities,
and particle IDs. In a DEM simulation, each particle is
assigned a unique number known as the particle ID. ese
datawere then used to obtain theRSDas a function of blender
length and time, rate of out�ow, component A composition
at discharge, and RTD.

In order to calculate the net out�ow, a bin was formed at
the discharge.e IDs of the particles present in this bin were
obtained at each time step for one time frame. Few particle
IDs might get repeated between any two consecutive time
step because some particles stay in the bin for more than one
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time step. A code was written to �nd the out�ow in terms of
total number of particles being discharged per time step. e
code compared the particle IDs of every two consecutive time
step, eliminated the particle IDs encountered in the previous
time step, and increased the particle count by one whenever
a new particle ID appeared. us the total rate of particle
�ow at the outlet was calculated. In the next step, the particle
IDs were obtained separately for each particle of component
A and B at the discharge so that the individual �owrates
could be calculated. From this information, component A
composition and RSD can be calculated for every time
step with the help of (5) and (6), respectively. In order to
determine the variation of RSD with the blender length,
the blender was divided into 10 × 10 bins both axially and
radially. e individual numbers of particles for components
A and B in each bin were obtained at the last time step. RSD
values averaged over the blender length were calculated using
(6).

In order to calculate RTD, the blender run was simulated
until themass hold-up in the blender reached a near-constant
value, indicating that a steady state has been achieved. e
hold-up starts at zero at the beginning of the simulation
and will rise quasi-linearly in the beginning as the particles
collect inside the blender. Once the particles start exiting the
blender, the curve will �atten and it turns into a horizontal
line when steady state is reached. At this point the number
of particles entering the blender is about the same as those
exiting. In theDEM simulation with the parameters shown in
the paper, steady state was typically achieved at around 50s.
Aer the steady state was achieved, the particles that were fed
to the blender within a 1-second window were tagged. ese
particles were tracked until they crossed the weir at the outlet
of the mixer. e time taken by each tagged particle to cross
the weir was recorded as the residence time of the particle.
e simulations were run at steady state for time intervals
long enough so that at least 95 percent of the tagged particles
were retrieved at the outlet. A histogram was created using
1-sec time bins and the number of particles in each time bin
was plotted against time. e RTD, 𝐸𝐸𝐸𝐸𝐸𝐸, was calculated by
normalizing the area under the concentration-time curve.

3.2. gPROMs-Based PBM Simulation. In gPROMs, the
domain was discretised into 10 bins each in axial and radial
coordinate axes. e width of the bin along the axial and
radial coordinates were 33mm and 10mm, respectively. It is
important to determine and suitably incorporate the velocity
values (i.e., the axial and radial velocities) into the PBM. Each
compartment has its own radial and axial velocity values.
e DEM output values (axial and radial particle velocity)
have been extracted aer every 5 seconds (starting from𝐸𝐸 𝑡 0 till the �nal time point 𝐸𝐸 𝑡 𝑡𝑡0 s) as excel sheets
and then imported in the gPROMS model as foreign object.
Figure 2 gives a snapshot of the radial velocity values as
obtained from EDEM for different compartments at one of
the time points 𝐸𝐸 𝑡 1𝑡0 s. Similarly the axial velocities were
obtained. e velocity values were updated every 5 seconds
in the gPROMs model for a total time of 260 seconds. It
should be noted that a more frequent update of velocities

could be implemented (given that in DEM the velocities
are calculated each time in the order of micro-seconds.
However, this study focussed on the computational efficiency
of themodel without compromising on toomuch accuracy of
results. Equal number of component A and B particles were
introduced in the blender. Equations (5)-(6) were used to
determine the critical quality attributes. In order to determine
the RTD, �rst component B stream was allowed to run
through the blender. A pulse input of component A particles
was introduced at 𝐸𝐸 𝑡 𝑡0 seconds aer the steady state was
reached.

3.2.1. Hybrid PBM-DEMModel. CombiningDEMwith PBM
requires detailed understanding of both the models and
the establishment of a well de�ned interface between them.
e model generated CQAs as explained earlier depend on
the input parameter space. In the following sections, we
investigate the robustness of the hybrid model by varying
few of these parameters (i.e., dimensions of the blender and
introduction of noise in the feed rate).

3.2.2. Effect of the Blender Dimensions. Knowledge of mini-
mumblender length and diameter required to ful�ll the CQA
requirements is essential from an equipment design point of
view. Figures 3(a) and 3(b) represent the RSD versus time
(at the mixer outlet) and RSD versus axial length (at the end
time point), respectively for change in blender length while
diameter is kept constant. e RSD decreases with time as
well as over the axial length of the blender. e axial length
has been represented in terms of compartment number (1
to 10). It can be seen from the graphs that RSD decreases
with increase in the blender length. is is because as length
increases, mixture is retained within the blender for a longer
time thus giving it more time to get mixed. And the �nal
product obtained is more uniform with reduced variability.
Similarly Figures 4(a) and 4(b) show how RSD varies with
change in diameter of the blender when the length is �xed. It
is seen that the mixture variability increases with increase in
the diameter. Similar results have been obtained in a previous
study by the authors [37].

3.2.3. Effect of Noise. is section investigates how a mixer
will respond to a possible perturbation in input �owrates.
e usual source of disturbance at the inlet of the mixture
is re�lling of the feeder [48]. e �owrate �uctuations at
the blender inlet should be minimized so that the properties
of the output stream from the blender are not affected. It
has been shown that a continuous mixer can dampen out
variability from the feeder [49]. Noise was added by adding
a variance term to �owrate of the inlet stream which selects
a value over a normal distribution. e standard deviation of
the normal distribution has been varied in order to get an idea
of the maximum allowable perturbation such that the output
stream properties are not changed. Figure 5 shows how the
fractional composition of component A varies at the outlet
with time as the degree of perturbation changes. It can be seen
that all the cases except the one where the standard deviation
is 0.3 almost overlap. Figures 6(a) and 6(b) represent how the
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F 2: EDEM snapshot showing radial powder velocities in the mixer at time 𝑡𝑡 𝑡 𝑡𝑡𝑡 s.
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F 3: (a) RSD versus time at mixer outlet for change in blender length and (b) RSD versus axial length at the time end-point for change
in blender length.

RSD changes with change in degree of perturbation. From
Figure 6(a), it can be seen that the RSD deviates slightly for
standard deviation of 0.3 whereas the rest overlap. Change
in RSD with respect to time is not very evident as degree of
perturbation changes because RSD approaches zero from a
high initial value for all the cases.

is means that the developed model is robust and the
mixer can eliminate any disturbance of small magnitude
present in the inlet stream provided the degree of perturba-
tion is within range.

3.2.4. Summary. e hybrid PBM-DEM model demonstrat-
ed good qualitative agreement with experimental studies as
well as full featured DEM simulations [15, 18, 50]. A further

experimental validation of the PBM has been carried out by
the authors [51] which is quantitative in nature.

3.3. Comparison of Hybrid PBM-DEM with Full DEM Simu-
lation. Figure 7 depicts the RTDs obtained from the DEM
and gPROMs model. e plot shows that there is good
qualitative agreement between the methods. Residence time
can be increased by increasing the length and decreasing
the blender speed [37]. Increasing the length or decreasing
the blender speed will have considerable effect on other
CQAs and cost. Hence it is crucial to optimize the blender
performance as a function of processing conditions and
formulation properties. An RTD studymay be helpful in such
type of process optimization.
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F 4: (a) RSD versus time at mixer outlet for change in diameter of the blender and (b) RSD versus axial length at the time end-point for
change in diameter of the blender.
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F 5: Evolution of fractional composition of component A.

Other CQAs were extracted from gPROMs and DEM
as described in the previous two sections. e values were
normalized and then compared against each other. Figures
8(a) and 8(b) show how the RSD varies with blender length
and time, respectively. e overall RSD decreases over the
blender length for bothDEMsimulations and the PBM-based
gPROMs simulation. It can be noted that in DEM there are
spikes occurring in RSD for compartments 2, 4, 7, and 8. On
the other hand the decrease in RSD in case of gPROMsmodel
is smooth.e RSD at discharge decreases over time for both
the models as the system turns two segregated streams of
components into more uniform blend. is shows that there
is qualitative agreement between the two models as far as

the blending dynamics is concerned. Both the plots show
that the DEM results are very noisy and this is an inherent
property of the simulationwhich assumes large sized particles
due to which relatively small number of particles reside in
the blender or exit the blender at any moment of time. On
the other hand the hybrid PBM-DEM model shows very
gradual variation of the properties. Figure 9 represents the
component A concentration of the mixture at the outlet as
a function of time. e steady state value is 0.5 since same
amount of both the components were taken at the inlet. e
fractional composition values for DEM again seem to highly
�uctuate about the steady statewhereas they change gradually
in case of the hybrid PBM-DEMmodel.

Figure 10 represents how the particle �owrate at the
discharge vary with time. Both the gPROMs andDEM results
�uctuate.is is because powder �ow cannot be explained on
the basis of �rst principles unlike �uid �ow. In a continuum
phase such as a �uid, a perfect steady-state is possible because
the inlet and outlet �owrates can match exactly, which is
not possible with discrete particles. Hence the concept of
perfect steady state is not realised in powder system. ere
are several ways in which any two particles can interact
with each other as well as with the blender wall. Hence the
particle-particle interactions and particle-wall interactions
will have a pronounced e�ect on the powder �ow. But the
�uctuations seem to reduce over time. Overall, it can be seen
that within acceptable error due to numerical noise, the PBM
simulation in gPROMS is able to qualitatively capture the
dynamics of the mixing process as demonstrated by a full
DEM simulation. Moreover the hybrid PBM-DEM model is
less noisy and more gradual while reporting the values of the
CQAs.

e PBM-DEM model has been simulated for the same
time interval as the DEM simulation and the computational
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F 6: (a) RSD versus axial length at end-point and (b) RSD versus time at mixer outlet.
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requirements are reported in Section 3.4.is clearly demon-
strated the efficacy of the PBM model as a tool for design,
control and optimization of continuous mixing processes.

3.4. Comparison of Simulation Time between DEM and PBM.
e full DEM took 6.5 days running on a 4 core and 2
threads/core processor with a total of 8 workers. e PBM
simulation on the other hand took 30 minutes running on a
single core processor using 1 worker. Moreover, the memory
occupancy of the DEM is signi�cantly more, taking up to
90% of available RAM compared to the PBM which uses up
50% RAM.is clearly demonstrates the efficacy of using the
PBM for control and optimization as opposed to the full DEM

simulation which is not amenable to provide signal feedback
given the time (of the order of days) it takes to perform a
simulation. DEM simulation can be run only once in order
to extract the particle level data (particle velocity), which can
be fed to the PBM.en the PBMcan bemodi�edwith run as
many times as required to extract the required macroscopic
scale variables which affect the overall unit operation and
thus make control and optimization easier because of its
lower time requirement. It should be noted that the current
PBM simulation takes 30 min in a serial simulation. Parallel
simulation of PBMs using multicore CPU computing has
shown to be efficient in further reducing the computational
time of simulating a PBM thus enhancing its utility in control
and optimization [52, 53].

4. Conclusions

A hybrid framework of multi-dimensional population bal-
ance model (PBM) and discrete element modeling (DEM)
was developed. PBM coupled with DEM forms a basis of
one-way coupling. Variations in several design and pro-
cess parameters such as number of compartments, blender
dimension, and presence of disturbance in the inlet streams
were considered in order to test the robustness of the hybrid
model. PBM was shown to be an effective tool for tracking
the blending dynamics in terms of the key properties such as
blend composition and RSD. e results thus obtained from
the hybrid frameworkwere comparedwith theDEM. It gave a
good quantitative agreement with the trends as seen in DEM.
Future work will focus on two-way coupling of PBM and
DEM and validation with experimental data. e ultimate
aim is to effectively use the PBM for control and optimization
of blending.
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F 8: (a) RSD versus axial length at time end point (b) RSD versus time at mixer outlet.
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F 9: Evolution of fractional composition of component A.

Nomenclature𝐶𝐶𝐴𝐴: Fractional composition of component A,
dimensionless𝑐𝑐avg: Average spatial composition of component A,
moles/m3𝑐𝑐𝑖𝑖: Composition of component A in ith compartment,
moles/m3𝑐𝑐𝑐𝑐𝑐𝑐: Composition of component A at any time t,
moles/m3𝐸𝐸𝑐𝑐𝑐𝑐: Residence time distribution, dimensionless𝐹𝐹: Particle density, particles/m3𝑁𝑁: Total number of compartments, [−]𝑛𝑛: Counter for number of components, [−]
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F 10: Evolution of outlet mass �owrate.

𝑐𝑐: Time, s𝑉𝑉𝑓𝑓: forward axial velocity, m/s𝑉𝑉𝑏𝑏: backward axial velocity, m/s𝑉𝑉𝑟𝑟: radial velocity, m/s𝑥𝑥: Spatial coordinate in axial direction, m𝑦𝑦: Spatial coordinate in radial direction, m.
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