Toéhoku Math. Journ.
35 (1983), 53-63.

MATHEMATICAL FOUNDATION OF GENERAL COOPERATIVE
FUZZY GAMES

ATSUSHI YAMADA AND SHIGERU TSURUMI

(Received December 8, 1981)

1. Introduction. Aumann and Shapley [4] developed the theory of
non-atomic games for coalitions of players, Lebesgue measurable sets in
[0,1], which was originated by Aumann [2], [3]. Aubin [1] worked on
n-person games on fuzzy coalitions. Fuzzy coalitions are called ideal
coalitions by Aumann and Shapley.

In this paper we consider a general o-finite measure space (X, &, )
as the set of all players, a family _# of bounded measurable functions
on X as the set of fuzzy coalitions and a superadditive functional on
# as a game. First of all we construct a signed measure associated
with a given game which enables us to clarify various properties of
fuzzy games, and prove finally that the core %, defined by the excess

coincides with a core <, defined by the set of all undominated allo-
cations.

We give here some comments on the game-theoretic background of
the present paper. The functional » of the game represents a certain
profit of the coalitions of players in the game. The superadditivity of
v reflects the property that the cooperation of players in the game has
an effect on profits of players, while the additive game v is called ines-
sential because the cooperation is of no effect. In the study of the
games in the functional formulation, the emphasis is laid on the inves-
tigation of dominance structures on the set .97 of all allocations rather
than the determination of the strategy. For this purpose, we treat
strategically equivalent classes of the games. The solutions of the game
in this treatment are some special subsets of .9, which are stable in a
sense under the dominance relation. In the present paper we consider
only two subsets of .&,. Let e(m) be the difference v(m) — a(m) between
the profit »(m) and an imputed value a(m) where a € .%7,. Then, e(m)is
the excess of the profit of the coalition m which is not imputed to the
members of m if it is possible for us to imagine them. The set &, of
the allocations a which satisfy e(m) < 0 for any m € _~ is acceptable for
the players because each coalition gains at least its own earnings. We
call the subset &, of .o/, the core of the game and an allocation in &,
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a core-allocation. Let f(B) be the set of the all allocations which are
not dominated by any allocation belonging to a subset B of .&. We
call the mapping f: 2% — 2%+ “undom” where 2*+ stands for the class
of all subsets of .&,. Then, &, mentioned in the previous paragraph is
the image of ./ under the undom mapping f. Generally &,C 2, but
these two subsets of .o, coincide in the superadditive games considered
hitherto. This coincidence will be proved also in the present one.

2. Game and associated signed measure. Let (X, &#, 1) be a o-
finite measure space. A measurable set is called a coalition. A mea-
surable function m is called a fuzzy coalition or an ideal coalition if
0<m<1ae Let _# denote the set of all fuzzy coalitions. Let I7,
be the set of all partitions of a coalition A to finite or countably infinite
coalitions.

A real valued functional v on _# is called a game if it satisfies
(V1)-(V4):

(V1) [Superadditivity] v(m,) + v(m,) < v(m, + m,) whenever m,, m,,
m, + m,€ _A#.

(V2) [Continuity] lim, v(m,)=v(m) whenever m, m,e _#(k=1,2, ---)
and lim, m, = m a.e.

(V8) [Total boundedness] supx,cn, > |v(lx,)|<oo, Where 1, denotes
the indicator function of X,.

(V4) [Positive homogeneity] v(al,) = av(l,) whenever « is a constant
with al, e _#.

Let 7~ be the set of all games.

For any game v, it is easily seen that

(V5) w(1,) =0 whenever u(4) =0,

(V6) SUP(4;1em, pI Iv(l,{,)l < oo,

V) »(1,) = X.v(1,,) for any {A}ell,.

In fact, (V5), (V6) and (V7) follow from (V4) + (V2), from (V3) and
from (V1) + (V6), respectively.

A game v is called inessential if it satisfies

(A) [Additivity] »(m,) + v(m,) = v(m, + m,) whenever m,, m,, m, +
m, € _H.

Let .o~ be the set of all inessential games.

THEOREM 2.1. (i) For any veE 7, there exists a pM-absolutely con-
tinuous signed measure \, on & such that

v(m) = Sxmd)\.,,

Jor all me _Z and \, 18 maximal in thes ense that if \ is a p-absolutely
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continuous signed measure on & and if v(l,) = nA) for all Ae F,
N =N 0N F.

Ifv=00n #Z N =00n F. (N, 1s called a signed measure associated
with v.)

(ii) For any ve 7,ve ¥ iff there exists a p-absolutely continuous
signed measure n, on & such that

v(m) = Lmdkv

for all me _#.
Proor. (i) Define
M(4) = inf S(ly)

(Sitell4

for Ae #. Consider {4,},€Il, and ¢ > 0. Then there exists {S,.},e I1,,
such that \,(4,) + ¢/2° = 3, v(1s,), and 80 3uN(A4,) + e = Suv(ls,) =
Ao(A). Hence 330, (4r) = Ny(4).

On the other hand, there exists {S;;el, such that A»,(4A) +¢=
>.v(ls,). Since {S; N A} € [T, we have v(ls) = (X 1s,04,) = 2 v(1s,04,)-
Hence N(A) + & = 3 v(1s,n4) = 2 M(As), and 80 Ay(A) = S N(4y).

Consequently n,(A) = 3 N.(4y).

Therefore ), is a signed measures. A\, is clearly p-absolutely continuous.
Since v(1,) = \,(A) for all Ae &, by virtue of (V1), (V4) and (V2), we
have v»(m) = S mdx, for all me _#.

We shall :how the maximality of \,. Let A be a signed measure as
in the theorem and let Ae #. Then M4) = 3, \S:) < 3. v(1s) for any
{Si}eIl,, and so MA) = infs,en, 2 v(ls) = N (4).

It is clear that if ¥ =0 on _# then A, = 0 on &#.

(ii) Suppose ve .o~ Then A, defined as in the proof of (i) satisfies
v(1,) = \,(A) for any Ae . #, and so, by virtue of (A), (V4) and (V2),
v(m) = Sxmdx,, for any me _#.

The converse is clear.

COROLLARY 2.2, Let ve 70 Then v¢ 7 tff v(1) > A\(X).

3. Strategical equivalence. Let u,ve 77 If there existsanaec .
and a constant ¢ > 0 with u = ¢v + a, v is said to be strategically equi-
valent to w and is denoted by v ~ u.

Let u,ve 7. u is called a [0, 1]-standard of v provided that v ~ u
and, in the case of ve v

w=0
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and, in the case of v ¢ o
w=0, ul) =1, bey, 0<b=<wu implies b=0.

Note that if « is standardized as above, then ), = 0 on &#. In fact,
put b(m) = S mdx, for me _#. Then be o/, 0<b=<wu and so b =0 or,
equivalently,xm = 0.

THEOREM 3.1. For any ve ¥, there exists a unique [0, 1]-standard

of v.
PrROOF. It is enough only to consider the case of v¢ . Since
(1) — 2\, (X) > 0 by Corollary 2.2, we can define

u(m) = (vem) = | mar,) [ @) = r.0)
for me _# Then it is clear that ue ;v ~wu, v =0 and u(1) = 1.
Suppose be & and 0 < b < u. Then
v(l) = A\, + (WA) — (X)) N)(A)

for Ae #. Hence, by the maximality of ,, \, = 0 and so b = 0. There-
fore u is a [0, 1]-standard of w».

Now we shall show the uniqueness of standardization. Suppose that
w and »' are [0, 1]-standards of v. Since u' ~ u, u = cu’ + a for some
ac. s and some ¢>0." Then u =a and u' = —(1/c)a. Consider the
supporting set D of the Hahn decomposition of the signed measure )\,
and put a,(m) = a(m-1,), a,(m) = —a(m-1,). Thena = a, — a,, a,, a,€ .
and, for any me _#,

wm) 2 uim-1,) = a(m) = | mar, 20,

wW(m) 2 Wm0 2 (Ae)am) = —(1/e) | mdr.z 0.
Dc

Hence a, = 0, (1/¢)a, = 0 and so a = 0. Then, since 1 = u(l) = %'(1), we
have ¢ =1 and u = '.

4. Allocation and core-allocation. Let ve 7 and a € % a is called
an allocation for v if

aV) = o), a(m) 2 | max,

for any me /.

Let o7, denote the set of all allocations for ».

PROPOSITION 4.1. (i) &7, # @ for any ve 7. (i) 7, = {v} for any
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VE WV

Proor. (i) Let u be the [0, 1]-standard of v and » = cu + a for some
a€ 7 and for some ¢ > 0. Consider a mapping f of .o to .o defined
by f(x) = cx + a. Take a p-absolutely continuous probability measure
p on &% and put a(m) = Sxmdp for me _. Then ac ., because
u(1) =1 and N, = 0. Since .97 is equipollent to .o/, by the mapping f,
we have v, # .

(ii) Clearly ve »v,. Let a€.o,. Then A\, (X) = a@l) = v(1) = 1, (X)
and moreover A, = \, since S mdn, = a(m) = S mdx,. Henece )\, = \,and

X X
S0 a = v.

Let ve 7 and ac ./ a is called a core-allocation for v if
a(l) = (1), a(m) = v(m)

for any me _~.

Let &, denote the set of all core-allocations for ». <&, is called the
core for v.

Then we have clearly:

PROPOSITION 4.2. (i) &, C %7, for any veE 7.
(ii) &, = {v} for any ve o/

Let ve 7"\ . o is called an essential constant-sum game if v(1,) +
v(14) = v(1) for any Ae F.

PROPOSITION 4.8. If v is an essential constant-sum game, then &, =
@.

PrOOF. Suppose &, # @ and choose a €%’,. Then, for any Ae &,
a(ly) = v(1y), a(le) = v(lie), v(1) = a(l) = a(ly) + a(lye) = v(1,) + v(ly) =
v(1), so that it must be a(l,) = v(1,). Hence v(1,) = \,(A) for all Ae &
and so, by the maximality of \,, we get A, = \,. Since a€ ., and so
Ng = Ny, We have A, =2, Hence v(1) =a(l) =N (X) =7, (X) which
contradicts v ¢ .~ by Corollary 2.2. Therefore &, = @.

5. Domination. Let z, ye 7. If there exists an m € _# such that
v(m) = x(m) > y(m), we say x dominates ¥y and use the notation “x > y”.

If no x dominates y, we say y is an undominated allocation for v.

Let =, denote the set of all undominated allocations for w».
If there exists a bijection f of o7 to .o/ such that

x>y iff f@) > f(¥)

for any x, y € .57, we say u is isomorphic to v or &7, is isomorphic to
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7, and use the notation “u = v”.
THEOREM 5.1. Let u,ve 7. If u is strategically equivalent to v, u
18 1somorphic to v.

PrOOF. Let v be expressed as v = cu + a for some a € % and some
¢ > 0.

First we shall show

(1) Ny =Ny + N

Since v(m) = S md(ch, + ), the maximality of X, implies A, = e\, +
.. On the other hand, since u(m) = S md (L), — (1/e)ry), the maxi-
mality of . implies A, = (1/e), — (/cjx,. Hence (1) holds.

We shall now prove u = v. Consider a mapping f of & to
defined by f(x) =c¢x + o for xc . Suppose x€ .. Then f(x)e 5

f)@) = (1) and, by (1), f(x)(m) = S md(en, + ) = g mdx, for any m.

Hence f(x)e .. Similarly, we can show that if ye o7, then f'(y) =
(1/e)y — A/e)ae 7. It is now easily seen that f is an isomorphism.

THEOREM 5.2. <, = &,

PROOF OF &, C =,. Let ae ,\=, Then there exists an re .
which dominates a. Hence v(m) = x(m) > a(m) for some m, and so ac€
S,\&,. Therefore &, =,.

For the proof of &, c&’,, we need lemmas.

LEMMA 5.3. Let ve 7"\ and let w be the [0, 1]-standard of v.
Then 2, = &, 1mplies D, = &,.

The proof is easy and so omitted.
LeEMMA 5.4. Let ue 7, u = 0,u(l) =1 and let N, be a p-absolutely
continuous probadility measure on & such that

u(my) > g Mol

for some m,€ _#. Then there exists a p-absolutely continuous pr obabzlzty
measure N, on F such that

u(m,) > Sxfrnlolk.1 > Sxmld)“"

for some m, € /.

PrOOF. Let S be the support of A, that is, S = {d\,/dg > 0}, where
d\o/dy is the Radon-Nikodym derivative of A, with respect to g. Then
©(S) > 0.
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The case of ((S°) = 0. In this case, S is not an atom. In faet, if
S is an atom, m, is constant pg-a.e. on X. Denote its constant value by
c¢. Then clearly ¢ > 0, and

1= u(t) = (Afe)ulm) > 1/e)] mdr, =1,

which is a contradiction. Hence S is not an atom.
By the continuity (V2) of v, there exists an ¢ (0 < ¢ £ 1) such that

w(m,) > Sxmsdho ,

where m, = My Lingze) + € Limg<s € A

Since S is not an atom, it is easily seen that, even if m, is constant
p-a.e. on S, there exists a constant ¢, (=¢) and two measurable sets S,, S,
such that

S,cSnim. <¢g}, S,cSNn{m.=¢},
SSNS;,=@, uS)>0, uS,)>0.
Then, note that A\(S,) > 0, A,(S,) > 0.
Choose a number v with u(m,) > v > Sxm‘d)“"'

By the continuity (V2) of v, there exists a constant 7 (0 < 7 < ¢)
such that w(m, > v, where m, = (m, — 9)-15, + m.-lsc € A.
There exists a constant a (>1) such that

v > a-s m.dn, + S m.dN\, ,
53

S

((X - 1)')\'0(S2) < 7]')"0(81) .

Take a constant B (0 < B < 1) for which (1 — B)-A(S) = (@ — 1)-Ny(S,).
Define

)"1(A) = ,8'7\'0(A N Sl) + a- (AN Sz) + 7\'0(A N (Sl U Sz)c)

for Ae #. Then )\, is a p-absolutely continuous probability measure on
. Moreover

wm) > 7> a-| md, + | mar,
Sy s
2z [ md@ g + | macgn +{ mdne= | max,
8y 83 (S1USg)¢ x

§ mydn, — S M,
X X

= (Ss;rnﬁdxl - Sszm’dM) - (Sslm‘d)”" — Sslm‘d)“‘> =dJ,—J;,
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say,
Ji= (=1 mdnz@-DarS)
Jo= =0 o - ninz - 86— DM,
so that
J1 - Jz _—>—.. (0[ - 1)30'7\10(82) - (1 - 18)(50 - 77)‘7\‘0(S1)
= (1 — ,3)7]')\;0(S1) >0.
Therefore

u(m,) > g m,dn, > S MmN, -
X X
The case of p(S°) > 0. Define
ml = mo‘ls + 150 .
Then m,e _# and w(m,) = u(m,) > S Moy = S m,dN,.
p.q X

Choose a number ¥ with w(m,) > >S m,d\, and a p-absolutely
X

continuous measure )\ on &% with A(S°) = 1.
Define

MmA) =1=T o A4nSs) + T=CaAn s
l1—c¢ 1—c¢
for Ae &, where ¢ = S m,d\, < 1. Then )\, is a p-absolutely continuous
X
probability measure on .&# and g m,dn, = 7, so that
X

u(my) > Sxmld)ul > Sxmldxo .

The proof of Lemma 5.4 is completed.

Now we go back to the proof of Theorem 5.2.

PROOF OF &2,C &,. The case of ve 7 By Propositions 4.1 and 4.2,
7, = {v} = &,. Hence &, = &,.

The case of ve 7 \.%. By virtue of Lemma 5.3, it is enough to

prove that if « is the [0, 1]-standard of v, &, c <&,. Let ac ¥\ F..
Then )\, is a p-absolutely continuous probability measure on & and

u(mg) > S m,d\, for some m, e _#.
X

Hence, by Lemma 5.4, there exists a p-absolutely continuous pro-
bability measure )\, on & such that
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u(m,) > S m,dxn, > S m,dn,
X X

for some m,e_#. Put x(m) = S mdn, for me _# Then xe o7, and «

dominates @, and so ae&/u\_@j Therefore &, c&,. The proof of
Theorem 5.2 is completed.

6. Another formulation. In this section, we shall give another
formulation of the theory by changing the definitions of _#, core-
allocation and domination. It should be noticed here that we have still
all theorems and propositions in the same forms as described previously
and moreover we have entirely no need of changing of their proofs except
that of Theorem 5.2.

Let _# denote either the set of all fuzzy coalitions or the set of

all indicator functions of coalitions. In the latter case of _#, we note
that

(i) (V1), (V2) and (V4) may be restated as follows:

(V1) w(1,) + v(1,) = v(1,u4,) Whenever A, and A, are disjoint mod y;

(V2) lim,v(1,,) = v(1,) whenever lim, A, = A mod z;

(V4) 2(0) = 0;
and, for example,

(ii) “vim) = S mdn, for all me_#” in Theorem 2.1 is reduced to
“p(1,) = N (A) for all Ae 7.7

Before changing the definition of core- allocatmn, we note that a is
an allocation for v iff

a(l) =v(1), a(ly) = r(4)
for any Ae &,
Let ve7 and ae . a is called a core-allocation for v if
al) =v(1), a(ly) = vl
for any Ae &#.
Let x, ye o7,. If there exists an Ae.& such that
pA) >0, v1,) =21y, dra/de>dn/dpe p-ae. on o7,
we say x dominates y.
PROOF OF THEOREM 5.2 UNDER THE PRESENT FORMULATION. The

implication &, <, is easily shown as in the proof of the previous
Theorem 5.2.

Proof of Z,Cc %, Let ae o\ &, Then there exists an Ae &
such that v(1,) > A.(A). Then p(A4) > 0, #(A°) > 0 and moreover A,(A°) —
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No(A%) = v(1,) — A\ (A), because
(Na(A%) = Ny(A7) = (L) — Na(A)) = Na(X) — v(L) — Mu(4)
= (1) — v(1s) — M(4A°) = v(Lee) — (A 2 0.

Hence there exists a p-absolutely continuous measure p on & such that

dp/dp >0 p-ae. on A,

dn /Ay — dn,/dp = dp/dpe =0 p-ae. on A°,

D(4) = p(A°) = v(1,) — No(4) .
Define

ME) = N (E) + p(EN A) — p(EN A)

for Ec #. Then \ is a p-absolutely continuous signed measure on .#.
Put z(m) = Sxmdx. for me _#. Then

2(1) = MX) = M(X) = a(l) = v(1),
2(lp) = ME) 2 M(E N A) + M(ENA) — p(EN A)
= M(ENA) + N (ENAY) Z N (B)

for any E e &, because

NENA) —pENA)=| (D dB)g,

dy ay
Z S dxlv dﬂ — N,(Eﬂ Ac) .
ENA4¢ d;,z

Hence zc.27,. Moreover
v(14) = N(4) + p(4) = MA) = x(1) ,
dr/dp = dn./dpe + dpldpe > di,/dye  pa.e .

on A.
Hence z dominates a¢ and so ae€ . 7,\ =,. Therefore =, c &,.
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