
Mathematical Foundations for a

Compositional Distributional Model of Meaning

Bob Coecke∗, Mehrnoosh Sadrzadeh∗, Stephen Clark†

coecke, mehrs@comlab.ox.ac.uk – stephen.clark@cl.cam.ac.uk

∗Oxford University Computing Laboratory
†University of Cambridge Computer Laboratory

Abstract

We propose a mathematical framework for a unification of the distribu-

tional theory of meaning in terms of vector space models, and a compo-

sitional theory for grammatical types, for which we rely on the algebra of

Pregroups, introduced by Lambek. This mathematical framework enables us

to compute the meaning of a well-typed sentence from the meanings of its

constituents. Concretely, the type reductions of Pregroups are ‘lifted’ to mor-

phisms in a category, a procedure that transforms meanings of constituents

into a meaning of the (well-typed) whole. Importantly, meanings of whole

sentences live in a single space, independent of the grammatical structure

of the sentence. Hence the inner-product can be used to compare meanings

of arbitrary sentences, as it is for comparing the meanings of words in the

distributional model. The mathematical structure we employ admits a purely

diagrammatic calculus which exposes how the information flows between the

words in a sentence in order to make up the meaning of the whole sentence. A

variation of our ‘categorical model’ which involves constraining the scalars

of the vector spaces to the semiring of Booleans results in a Montague-style

Boolean-valued semantics.

1 Introduction

The symbolic [13] and distributional [36] theories of meaning are somewhat or-

thogonal with competing pros and cons: the former is compositional but only qual-

itative, the latter is non-compositional but quantitative. For a discussion of these

two competing paradigms in Natural Languge Processing see [15]. Following [39]

in the context of Cognitive Science, where a similar problem exists between the

1

connectionist and symbolic models of mind, [6] argued for the use of the tensor

product of vector spaces and pairing the vectors of meaning with their roles. In this

paper we will also use tensor spaces and pair vectors with their grammatical types,

but in a way which overcomes some of the shortcomings of [6]. One shortcoming

is that, since inner-products can only be computed between vectors which live in

the same space, sentences can only be compared if they have the same grammatical

structure. In this paper we provide a procedure to compute the meaning of any sen-

tence as a vector within a single space. A second problem is the lack of a method

to compute the vectors representing the grammatical type; the procedure presented

here does not require such vectors.

The use of Pregroups for analysing the structure of natural languages is a recent

development by Lambek [19] and builds on his original Lambek (or Syntactic)

calculus [18], where types are used to analyze the syntax of natural languages in

a simple equational algebraic setting. Pregroups have been used to analyze the

syntax of a range of different languages, from English and French to Polish and

Persian [32], and many more; for more references see [23, 21].

But what is particularly interesting about Pregroups, and motivates their use

here, is that they share a common structure with vector spaces and tensor prod-

ucts, when passing to a category-theoretic perspective. Both the category of vector

spaces, linear maps and the tensor product, as well as pregoups, are examples of so-

called compact closed categories. Concretely, Pregroups are posetal instances of

the categorical logic of vector spaces, where juxtaposition of types corresponds to

the monoidal tensor of the monoidal category. The mathematical structure within

which we compute the meaning of sentences will be a compact closed category

which combines the two above. The meanings of words are vectors in vector

spaces, their grammatical roles are types in a Pregroup, and tensor product of vec-

tor spaces paired with the Pregroup composition is used for the composition of

(meaning, type) pairs.

Type-checking is now an essential fragment of the overall categorical logic,

and the reduction scheme to verify grammatical correctness of sentences will not

only provide a statement on the well-typedness of a sentence, but will also assign

a vector in a vector space to each sentence. Hence we obtain a theory with both

Pregroup analysis and vector space models as constituents, but which is inherently

compositional and assigns a meaning to a sentence given the meanings of its words.

The vectors −→s representing the meanings of sentences all live in the same meaning

space S. Hence we can compare the meanings of any two sentences −→s ,
−→
t ∈ S by

computing their inner-product 〈−→s |
−→
t 〉.

Compact closed categories admit a beautiful purely diagrammatic calculus that

simplifies the meaning computations to a great extent. They also provide reduc-

tion diagrams for typing sentences; these allow for a high level comparison of the

2

grammatical patterns of sentences in different languages [33]. This diagrammatic

structure, for the case of vector spaces, was recently exploited by Abramsky and

the second author to expose the flows of information withing quantum information

protocols [1, 7, 9]. Here, they will expose the flow of information between the

words that make up a sentence, in order to produce the meaning of the whole sen-

tence. Note that the connection between linguistics and physics was also identified

by Lambek himself [22].

Interestingly, a Montague-style Boolean-valued semantics emerges as a sim-

plified variant of our setting, by restricting the vectors to range over B = {0, 1},

where sentences are simply true or false. Theoretically, this is nothing but the pas-

sage from the category of vector spaces to the category of relations as described

in [8]. In the same spirit, one can look at vectors ranging over N or Q and obtain

degrees or probabilities of meaning. As a final remark, in this paper we only set

up our general mathematical framework and leave a practical implementation for

future work.

2 Two ‘camps’ within computational linguistics

We briefly present the two domains of Computational Linguistics which provide

the linguistic background for this paper, and refer the reader to the literature for

more details.

2.1 Vector space models of meaning

The key idea behind vector space models of meaning [36] can be summed up by

Firth’s oft-quoted dictum that “you shall know a word by the company it keeps”.

The basic idea is that the meaning of a word can be determined by the words

which appear in its contexts, where context can be a simple n-word window, or

the argument slots of grammatical relations, such as the direct object of the verb

eat. Intuitively, cat and dog have similar meanings (in some sense) because cats

and dogs sleep, run, walk; cats and dogs can be bought, cleaned, stroked; cats and

dogs can be small, big, furry. This intuition is reflected in text because cat and dog

appear as the subject of sleep, run, walk; as the direct object of bought, cleaned,

stroked; and as the modifiee of small, big, furry.

Meanings of words can be represented as vectors in a high-dimensional “mean-

ing space”, in which the orthogonal basis vectors are represented by context words.

To give a simple example, if the basis vectors correspond to eat, sleep, and run, and

the word dog has eat in its context 6 times (in some text), sleep 5 times, and run

3

7 times, then the vector for dog in this space is (6,5,7).1 The advantage of repre-

senting meanings in this way is that the vector space gives us a notion of distance

between words, so that the inner product (or some other measure) can be used to

determine how close in meaning one word is to another. Computational models

along these lines have been built using large vector spaces (tens of thousands of

context words/basis vectors) and large bodies of text (up to a billion words in some

experiments). Experiments in constructing thesauri using these methods have been

relatively successful. For example, the top 10 most similar nouns to introduc-

tion, according to the system of [11], are launch, implementation, advent, addition,

adoption, arrival, absence, inclusion, creation.

The other main approach to representing lexical semantics is through an ontol-

ogy or semantic network, typically manually created by lexicographers or domain

experts. The advantages of vector-based representations over hand-built ontologies

are that:

• they are created objectively and automatically from text;

• they allow the representation of gradations of meaning;

• they relate well to experimental evidence indicating that the human cognitive

system is sensitive to distributional information [34, 40].

Vector-based models of word meaning have been fruitfully applied to many

language processing tasks. Examples include lexicon acquisition [16, 26], word

sense discrimination and disambiguation [36, 28], text segmentation [5], language

modelling [2], and notably document retrieval [35]. Within cognitive science,

vector-based models have been successful in simulating a wide variety of semantic

processing tasks ranging from semantic priming [27, 24, 29] to episodic memory

[17], and text comprehension [24, 14, 25]. Moreover, the cosine similarities ob-

tained within vector-based models have been shown to substantially correlate with

human similarity judgements [29] and word association norms [12, 17].

2.2 Algebra of Pregroups as a type-categorial logic

We provide a brief overview of the algebra of Pregroups from the existing literature

and refer the reader for more details to [19, 20, 21, 4].

A partially ordered monoid (P,≤, ·, 1) is a partially ordered set, equipped with

a monoid multiplication − · − with unit 1, where for p, q, r ∈ P , if p ≤ q then we

have r · p ≤ r · q and p · r ≤ q · r. A Pregroup (P,≤, ·, 1, (−)l, (−)r) is a partially

1In practice the counts are typically weighted in some way to reflect how informative the contex-

tual element is with respect to the meaning of the target word.

4

ordered monoid whose each element p ∈ P has a left adjoint pl and a right adjoint

pr, i.e. the following hold:

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p .

Some properties of interest in a Pregroup are:

• Adjoints are unique.

• Adjoints are order reversing: p ≤ q =⇒ qr ≤ pr and ql ≤ pl.

• The unit is self adjoint: 1l = 1 = 1r.

• Multiplication is self adjoint:(p · q)r = qr · pr and (p · q)l = ql · pl.

• Opposite adjoints annihilate each other: (pl)r = p = (pr)l.

• Same adjoints iterate: pllpl ≤1≤ prprr, plllpll ≤1≤ prrprrr,

An example of a Pregorup from arithmetic is the set of all monotone unbounded

maps on integers f : Z → Z. In this Pregroup, function composition is the monoid

multiplication and the identity map is its unit, the underlying order on integers lifts

to an order on the maps whose Galois adjoints are their Pregroup adjoints, defined:

f l(x) = min{y ∈ Z | x ≤ f(y)} f r(x) = max{y ∈ Z | f(y) ≤ x}

Recall that a Lambek Calculus (P,≤, ·, 1, /, \) is also a partially ordered monoid,

but there it is the monoid multiplication that has a right − \ − and a left −/−
adjoint. Roughly speaking, the passage from Lambek Calculus to Pregroups can be

thought of as replacing the two adjoints of the monoid multiplication with the two

adjoints of the elements. One can define a translation between a Lambek Calculus

and a Pregroup by sending (p\q) to (pr ·q) and (p/q) to (p ·ql), and via the lambda

calculus correspondence of the former think of the adjoint types of a Pregroup as

function arguments.

Pregroups formalize grammar of natural languages in the same way as type-

categorial logics do. One starts by fixing a set of basic grammatical roles and a

partial ordering between them, then freely generating a Pregroup of these types,

the existence of which have been proved. In this paper, we present two examples

from English: positive and negative transitive sentences2, for which we fix the

following basic types:

2By a negative sentence we mean one with a negation operator, such as not, and a positive sen-

tence one without a negation operator.

5

n: noun s: declarative statement

j: infinitive of the verb σ: glueing type

Compound types are formed from these by taking adjoints and juxtaposition. A

type (basic or compound) is assigned to each word of the dictionary. We define that

if the juxtaposition of the types of the words within a sentence reduces to the basic

type s, then the sentence is grammatical. It has been shown that this procedure

is decidable. In what follows we use an arrow → for ≤ and drop the · between

juxtaposed types. The example sentence “John likes Mary”, has the following type

assignment3:

John likes Mary

n (nrsnl) n

and it is grammatical because of the following reduction:

n(nrsnl)n→ 1snln→ 1s1 → s

Reductions are depicted diagrammatically, that of the above is:

n nr s nl n

Reduction diagrams depict the grammatical structure of sentences in one dimen-

sion, as opposed to the two dimensional trees of type-categorial logics. This feature

becomes useful in applications such as comparing the grammatical patterns of dif-

ferent languages; for some examples see [33].

We type the negation of the above sentence as follows:

John does not like Mary

n (nrsjlσ) (σrjjlσ) (σrjnl) n

which is grammatical because of the following reduction:

n (nrsjlσ) (σrjjlσ) (σrjnl)n→ s

depicted diagrammatically as follows:

n nrs jlσ σrjjlσ σrjnl n

3The brackets are only for the purpose of clarity of exposition and are not part of the mathematical

presentation.

6

The types used here for “does” and “not” are not the original ones, e.g. as

suggested in [21], but are rather obtainable from the procedure later introduced

in [30]. The difference between the two is in the use of the glueing types; once

these are deleted from the above, the original types are retrieved. The motivation

behind introducing these glueing types is their crucial role in the development of a

discourse semantics for Pregroups [30]. Our motivation, as will be demonstrated

in section 4, is that these allow for the information to flow and be acted upon in

the sentence and as such assist in constructing the meaning of the whole sentence.

Interestingly, we have come to realize that these new types can also be obtained

by translating into the Pregroup notation the types of the same words from a type-

categorial logic approach, up to the replacement of the intermediate n’s with σ’s.

3 Modeling a language in a concrete category

Our mathematical model of language will be category-theoretic. Category theory is

usually not conceived as the most evident part of mathematics, so let us briefly state

why this passage is essential. The reader may consult the category theory tutorial

[10] which covers the background on the kinds of categories that are relevant here.

Also the survey of graphical languages for monoidal categories [38] could be useful

– note that Selinger refers to ‘non-commutative’ compact closed categories as (both

left and right) planar autonomous categories. So why do we use categories?

1. The passage from {true, false}-valuations (as in Montague semantics) to

quantitative meaning spaces requires a mathematical structure that can store

this additional information, but which at the same time retains the composi-

tional structure. Concrete monoidal categories do exactly that:

• the axiomatic structure, in particular the monoidal tensor, captures com-

positionality;

• the concrete objects and corresponding morphisms enable the encoding

of the particular model of meaning one uses, here vector spaces.

2. The structural morphisms of the particular categories that we consider, com-

pact closed categories, will be the basic building blocks to construct the mor-

phisms that represent the ‘from-meaning-of-words-to-meaning-of-a-sentence’-

process.

3. Even in a purely syntactic setting, the lifting to categories will allow us to

reason about the grammatical structures of different sentences as first class

citizens of the formalism. This will enable us to provide more than just

7

a yes-no answer about the grammatical structure of a phrase, i.e. if it is

grammatical or not. As such, the categorical setting will, for instance, allow

us to distinguish and reason about ambiguities in grammatical sentences,

where their different grammatical structures gives rise to different meaning

interpretations.

We first briefly recall the basic notions of the theory of monoidal categories, be-

fore explaining in more detail what we mean by this ‘from-meaning-of-words-to-

meaning-of-a-sentence’-process.

3.1 Monoidal categories

Here we consider the non-symmetric case of a compact closed category, non-

degenerate Pregroups being examples of essentially non-commutative compact closed

categories. The formal definition of monoidal categories is somewhat involved. It

does admit an intuitive operational interpretation and an elegant, purely diagram-

matic calculus. A (strict) monoidal category C requires the following data and

axioms:

• a family |C| of objects;

– for each ordered pair of objects (A,B) a corresponding set C(A,B) of

morphisms; it is convenient to abbreviate f ∈ C(A,B) by f : A→ B;

– for each ordered triple of objects (A,B,C), each f : A→ B, and g :
B → C, there is a sequential composite g ◦ f : A→ C; we moreover

require that:

(h ◦ g) ◦ f = h ◦ (g ◦ f) ;

– for each object A there is an identity morphism 1A : A→ A; for f :
A→ B we moreover require that:

f ◦ 1A = f and 1B ◦ f = f ;

• for each ordered pair of objects (A,B) a composite object A⊗B; we more-

over require that:

(A⊗B) ⊗ C = A⊗ (B ⊗ C) ; (1)

• there is a unit object I which satisfies:

I ⊗A = A = A⊗ I ; (2)

8

• for each ordered pair of morphisms (f : A → C, g : B → D) a parallel

composite f ⊗ g : A⊗B → C⊗D; we moreover require bifunctoriality i.e.

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1) ⊗ (g2 ◦ f2) . (3)

There is a very intuitive operational interpretation of monoidal categories. We think

of the objects as types of systems. We think of a morphism f : A→ B as a process

which takes a system of type A as input and provides a system of type B as output,

i.e. given any state ψ of the system of typeA, it produces a state f(ψ) of the system

of type B. Composition of morphisms is sequential application of processes. The

compound type A⊗B represents joint systems. We think of I as the trivial system,

which can be either ‘nothing’ or ‘unspecified’. More on this intuitive interpretation

can be found in [8, 10].

Morphisms ψ : I → A are called elements ofA. At first this might seem to be a

double use of terminology: if A were to be a set, then x ∈ A would be an element,

rather than some function x : I → A. However, one easily sees that elements in

x ∈ A are in bijective correspondence with functions x : I → A provided one

takes I to be a singleton set. The same holds for vectors −→v ∈ V , where V is a

vector space, and linear maps −→v : R → V . In this paper we take the liberty to

jump between these two representations of a vector −→v ∈ V , when using them to

represent meanings.

In the standard definition of monoidal categories the ‘strict’ equality of eqs.

(1,2) is not required but rather the existence of a natural isomorphism between

(A⊗B)⊗C and A⊗ (B⊗C). We assume strictness in order to avoid coherence

conditions. This simplification is justified by the fact that each monoidal category

is categorically equivalent to a strict one, which is obtained by imposing appro-

priate congruences. Moreover, the graphical language which we introduce below

represents (free) strict monoidal categories. This issue is discussed in detail in [10].

So what is particularly interesting about these monoidal categories is indeed

that they admit a graphical calculus in the following sense [38]:

An equational statement between morphisms in a monoidal category

is provable from the axioms of monoidal categories if and only if it is

derivable in the graphical language.

This fact moreover does not only hold for ordinary monoidal categories, but also for

many kinds that have additional structure, including the compact closed categories

that we will consider here.

9

Graphical language for monoidal categories. In the graphical calculus for monoidal

categories we depict morphisms by boxes, with incoming and outgoing wires la-

belled by the corresponding types, with sequential composition depicted by con-

necting matching outputs and inputs, and with parallel composition depicted by

locating boxes side by side. For example, the morphisms

1A f g ◦ f 1A ⊗ 1B f ⊗ 1C f ⊗ g (f ⊗ g) ◦ h

are depicted as follows in a top-down fashion:

g

B

B D

Cf
B

A

C

B

f

A

B

A

h
B

E

A B

D

C

g

E

A f

f g

A

f

When representing morphisms in this manner by boxes, eq.(3) comes for free [10]!

The unit object I is represented by ‘no wire’; for example

ψ : I → A π : A→ I π ◦ ψ : I → I

are depicted as:

A

A π A

π
π ψo

=ψ ψ

3.2 The ‘from-meaning-of-words-to-meaning-of-a-sentence’ process

Monoidal categories are widely used to represent processes between systems of

varying types, e.g. data types in computer programs. The process which is central

to this paper is the one which takes the meanings of words as its input and produces

the meaning of a sentence as output, within a fixed type S (Sentence) that allows

the representation of meanings of all well-typed sentences.

Diagrammatically we represent it as follows:

word 1 word 2 word n. . .
 process depending on
grammathical structure

sentence

= A B Z

S

S

where all triangles represent meanings, both of words and sentences. For example,

the triangle labeled ‘word 1’ represents the meaning of word 1 which is of gram-

matical type A, and the triangle labeled ‘sentence’ represents the meaning of the

10

whole sentence. The concatenation (word 1)· . . . · (word n) is the sentence itself,

which is of grammatical typeA⊗. . .⊗Z, and the way in which the list of meanings

of words:

word 1 word 2 word n. . .
A B Z

becomes the meaning of a sentence:

sentence

S

within the fixed type S, is mediated by the grammatical structure. The concrete

manner in which grammatical structure performs this role will be explained below.

This method will exploit the common mathematical structure which vector spaces

(used to assign meanings to words in a language) and Pregroups (used to assign

grammatical structure to sentences) share, namely compact closure.

3.3 Compact closed categories

A monoidal category is compact closed if for each object A there are also objects

Ar and Al, and morphisms

ηl : I → A⊗Al ǫl : Al⊗A→ I ηr : I → Ar⊗A ǫr : A⊗Ar→ I

which satisfy:

(1A ⊗ ǫl) ◦ (ηl ⊗ 1A) = 1A (ǫr⊗ 1A) ◦ (1A ⊗ ηr) = 1A

(ǫl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al (1Ar ⊗ ǫr) ◦ (ηr⊗ 1Ar) = 1Ar

Compact closed categories are in a sense orthogonal to cartesian categories,

such as the category of sets and functions with the cartesian product as the monoidal

structure. Diagrammatically, in a cartesian category the triangles representing

meanings of type A ⊗ B could always be decomposed into a triangle represent-

ing meanings of type A and a triangle representing meanings of type B:

Cartesian

non-Cartesian
=

=

=

But if we consider a verb, then its grammatical type is nrsnl, that is, of the form

N ⊗ S ⊗ N within the realm of monoidal categories. Clearly, to compute the

11

meaning of the whole sentence, the meaning of the verb will need to interact with

the meaning of both the object and subject, so it cannot be decomposed into three

disconnected entities:

verb

object subject

meaning of sentence

=

In this graphical language, the topology (i.e. either being connected or not) repre-

sents when interaction occurs. In other words, ‘connectedness’ encodes ‘correla-

tions’.

That we cannot always decompose triangles representing meanings of typeA⊗
B in compact closed categories can be immediately seen in the graphical calculus

of compact closed categories, which explicitly introduces wires between different

types, and these will mediate flows of information between words in a sentence. A

fully worked out example of sentences of this type is given in section 4.1.

Graphical language for compact closed categories. When depicting the mor-

phisms ηl, ǫl, ηr, ǫr as (read in a top-down fashion)

A Al A A

A Al

r

A Ar

rather than as triangles, the axioms of compact closure simplify to:

=

A

A

A

A

=A

A A

A

r

r

=

A

A

A

A

=A

A A

Al l

ll

r

r

i.e. they boil down to ‘yanking wires’.

Vector spaces, linear maps and tensor product as a compact closed category.

Let FVect be the category which has vector spaces over the base field R as objects,

linear maps as morphisms and the vector space tensor product as the monoidal

tensor. In this category, the tensor is commutative, i.e. V ⊗W ∼= W ⊗ V , and left

and right adjoints are the same, i.e. V l = V r so we denote either by V ∗, which

12

is the identity maps, i.e. V ∗ = V . To simplify the presentation we assume that

each vector space comes with an inner product, that is, it is an inner-product space.

For the case of vector space models of meaning this is always the case, since we

consider a fixed base, and a fixed base canonically induces an inner-product. The

reader can verify that compact closure arises, given a vector space V with base

{−→e i}i, by setting V l = V r = V ,

ηl = ηr : R → V ⊗ V :: 1 7→
∑

i

−→e i ⊗
−→e i (4)

and

ǫl = ǫr : V ⊗ V → R ::
∑

ij

cij
−→v i ⊗

−→w j 7→
∑

ij

cij〈
−→v i|

−→w j〉 . (5)

In equation 4 we have that ǫl = ǫr is the inner-product extended by linearity to the

whole tensor product. Recall that if {−→e i}i is a base for V and if {−→e ′
i}i is a base

forW then {−→e i⊗
−→e ′

j}ij is a base for V ⊗W . In the base {−→e i⊗
−→e j}ij for V ⊗V

the linear map ǫl = ǫr : V ⊗ V → R has as its matrix the row vector which has

entry 1 for the base vectors −→e i ⊗
−→e i and which has entry 0 for the base vectors

−→e i ⊗
−→e j with i 6= j. The matrix of ηl = ηr is the column vector obained by

transposition.

In eq. (5), the weighted sum
∑

ij cij
−→v i ⊗

−→w j denotes a typical vector in a

tensor space V ⊗W , where cij’s enumerate all possible weights for the tensored

pair of base vectors −→v i⊗
−→w j . If in the definition of ǫl = ǫr we apply the restriction

that −→v i = −→w i = −→e i, which we can do if we stipulate that ǫl = ǫr is a linear map,

then it simplifies to

ǫl = ǫr : V ⊗ V → R ::
∑

ij

cij
−→e i ⊗

−→e j 7→
∑

i

cii .

A Pregroup as a compact closed category. A Pregroup is an example of a pose-

tal category, that is, a category which is also a poset. For a category this means

that for any two objects there is either one or no morphism between them. In the

case that this morphism is of type A→ B then we write A ≤ B, and in the case it

is of type B → A we write B ≤ A. The reader can then verify that the axioms of a

category guarantee that the relation ≤ on |C| is indeed a partial order. Conversely,

any partially ordered set (P,≤) is a category. For ‘objects’ p, q, r ∈ P we take

[p ≤ q] to be the singleton {p ≤ q} whenever p ≤ q, and empty otherwise. If

p ≤ q and q ≤ r we define p ≤ r to be the composite of the ‘morphisms’ p ≤ q
and q ≤ r.

A partially ordered monoid is a monoidal category with the monoid multipli-

cation as tensor on objects; whenever p ≤ r and q ≤ z then we have p · q ≤ r · z

13

by monotonicity of monoid multiplication, and we define this to be the tensor of

‘morphisms’ [p ≤ r] and [q ≤ z]. Bifunctoriality, as well as any equational state-

ment between morphisms in posetal categories, is trivially satisfied, since there can

only be one morphism between any two objects.

Finally, each Pregroup is a compact closed category for

ηl = [1 ≤ p · pl] ǫl = [pl · p ≤ 1]

ηr = [1 ≤ pr · p] ǫr = [p · pr≤ 1]

and so the required equations are again trivially satisfied. Diagrammatically, the

under-links representing the type reductions in a Pregroup grammar are exactly the

‘cups’ of the compact closed structure. The symbolic counterpart of the diagram

of the reduction of a sentence with a transitive verb

n nr s nl n

is the following morphism:

ǫrn ⊗ 1s ⊗ ǫln : n⊗ nr ⊗ s⊗ nl ⊗ n→ s .

3.4 Categories representing both grammar and meaning

We have described two aspects of natural language which admit mathematical pre-

sentations:

1. vector spaces can be used to assign meanings to words in a language;

2. Pregroups can be used to assign grammatical structure to sentences.

When we organize these vector spaces as a monoidal category by also considering

linear maps, and tensor products both of vector spaces and linear maps, then these

two mathematical objects share common structure, namely compact closure. We

can think of these two compact closed structures as two structures that we can

project out of a language, where P is the free Pregroup generated from the basic

types of a natural language:

language

FVect

✛

m
ea
ni
ng

P

gram
m
ar
✲

14

We aim for a mathematical structure that unifies both of these aspects of lan-

guage, that is, in which the compositional structure of Pregroups would lift to the

level of assigning meaning to sentences and their constituents, or dually, where the

structure of assigning meaning to words comes with a mechanism that enables us

to compute the meaning of a sentence. The compact closed structure of FVect

alone is too degenerate for this purpose since Al = Ar = A. Moreover, there are

canonical isomorphisms V ⊗W →W ⊗V which translate to posetal categories as

a · b = b · a, and in general we should not be able to exchange words in a sentence

without altering its meaning. Therefore we have to refine types to retain the full

grammatical content obtained from the Pregroup analysis. There is an easy way of

doing this: rather than objects in FVect we will consider objects in the product

category FVect × P :

language

FVect ✛

πm

✛

m
ea
ni
ng

FVect × P
❄

πg

✲ P

gram
m
ar

✲

Explicitly, FVect×P is the category which has pairs (V, a) with V a vector space

and a ∈ P a grammatical type as objects, and the following pairs as morphisms:

(f : V →W , p ≤ q) ,

which we can also write as

(f,≤) : (V, p) → (W, q).

Note that if p 6≤ q then there are no morphisms of type (V, p) → (W, q). It is

easy to verify that the compact closed structure of FVect and P lifts component-

wise to one on FVect × P . The structural morphisms in this new category are

now:

(ηl,≤) : (R, 1) → (V ⊗ V, p · pl) (ηr,≤) : (R, 1) → (V ⊗ V, pr · p)

(ǫl,≤) : (V ⊗ V, pl · p) → (R, 1) (ǫr,≤) : (V ⊗ V, p · pr) → (R, 1)

3.5 Meaning of a sentence as a morphism in FVect × P .

Definition 3.1. We refer to an object (W,p) of Fvect × P as a meaning space .

This consists of a vector space W in which the meaning of a word lives −→w ∈ W
and the grammatical type p of the word.

15

Definition 3.2. We define the vector −−−−−−→w1 · · ·wn of the meaning of a string of words

w1 · · ·wn to be
−−−−−−→w1 · · ·wn := f(−→w1 ⊗ · · · ⊗ −→wn)

where for (Wi, pi) meaning space of the word wi, the linear map f is built by

substituting each pi in [p1 · · · pn ≤ x] with Wi.

Thus for α = [p1 · · · pn → x] a morphism in P and f = α[pi \Wi] a linear

map in Fvect, the following is a morphism in Fvect × P :

(W1 ⊗ · · · ⊗Wn, p1 · · · pn)
(f,≤)

✲ (X,x)

We call f the ‘from-meaning-of-words-to-meaning-of-a-sentence’ map.

According to this formal definition, the procedure of assigning meaning to a

string of words can be roughly described as follows:

1. Assign a grammatical type pi to each word wi of the string, apply the axioms

and rules of the Pregroup grammar to reduce these types to a simpler type

p1 · · · pn → x. If the string of words is a sentence, then the reduced type x
should be the basic grammatical type s of a sentence4.

2. Assign a vector space to each word of the sentence based on its syntactic

type assignment. For the purpose of this paper, we prefer to be flexible with

the manner in which these vector spaces are built, e.g. the vector spaces of

the words with basic types like noun may be atomic and built according to

the usual rules of the distributional model; the vector spaces of the words

with compound types like verbs are tensor spaces.

3. Consider the vector of the meaning of each word in the spaces built above,

take their tensor, and apply to it the diagram of the syntactic reduction of the

string, according to the meaning spaces of each word. This will provide us

with the meaning of the string.

3.6 Comparison with the connectionist proposal

Following the solution of connectionists [39], Pulman and the third author argued

for the use of tensor products in developing a compositional distributional model

of meaning [6]. They suggested that to implement this idea in linguistics one can,

4By Lambek’s switching lemma [19] the epsilon maps suffice for the grammatical reductions and

thus x already exists in the type of one of the words in the string.

16

for example, traverse the parse tree of a sentence and tensor the vectors of the

meanings of words with the vectors of their roles:

(
−−→
John ⊗

−−→
subj) ⊗

−−→
likes ⊗ (

−−−→
Mary ⊗

−→
obj)

This vector in the tensor product space should then be regarded as the meaning of

the sentence “John likes Mary.”

The tensors (
−−→
John ⊗

−−→
subj) and (

−−−→
Mary ⊗

−→
obj) in the above are pure tensors, and

thus can be considered as a pair of vectors, i.e. (
−−→
John,

−−→
subj) and (

−−−→
Mary,

−→
obj). These

are pairs of a meaning of a word and its grammatical role, and almost the same as

the pairs considered in our approach, i.e. that of a meaning space of each word. A

minor difference is that, in the above, the grammatical role −→p is a genuine vector,

whereas in our approach this remains a grammatical type. If needed, our approach

can easily be adapted to also allow types to be represented in a vector space.

A more conceptual difference between the two approaches lies in the fact that

the above does not assign a grammatical type to the verb, i.e. treats
−−→
likes as a single

vector. Whereas in our approach, the vector of the verb itself lives in a tensor space.

4 Computing the meaning of example sentences

In what follows we use the steps above to assign meaning to positive and negative

transitive sentences5.

4.1 Positive Transitive Sentence

A positive sentence with a transitive verb has the Pregroup type n(nrsnl)n. We

assume that the meaning spaces of the subject and object of the sentence are atomic

and are given as (V, n) and (W,n). The meaning space of the verb is compound

and is given as (V ⊗ S ⊗W,nrsnl). The ‘from-meaning-of-words-to-meaning-of-

a-sentence’ linear map f is the linear map which realizes the following structural

morphism in FVect × P :

(

V ⊗ T ⊗W ,n(nrsnl)n
) (f,≤)

✲ (S, s) ,

and arises from a syntactic reduction map; in this case we obtain:

f = ǫV ⊗ 1S ⊗ ǫW : V ⊗ (V ⊗ S ⊗W) ⊗W → S .

5For the negative example, we use the idea and treatment of previous work [31], in that we use

eta maps to interpret the logical meaning of “does” and “not”, but extend the details of calculations,

diagrammatic representations, and corresponding comparisons.

17

Noting the isomorphism V ⊗S⊗W ∼= V ⊗W⊗S ∼= V ∗⊗W ∗ → S obtained from

the commutativity of tensor in the FVect and that V ∗ = V and W ∗ = W therein,

and the universal property of the tensor with respect to product, we can think about

the meaning space of a verb V ⊗W ⊗ S as a function space V ×W → S. So the

meaning vector of each transitive verb can be thought of as a function that inputs a

subject from V and an object from W and outputs a sentence in S.

In the graphical calculus, the linear map of meaning is depicted as follows:

The matrix of f has dim(V)2 × dim(S) × dim(W)2 columns and dim(S) rows,

and its entries are either 0 or 1. When applied to the vectors of the meanings of

the words, i.e. f(−→v ⊗
−→
Ψ ⊗ −→w) ∈ S for −→v ⊗

−→
Ψ ⊗ −→w ∈ V ⊗ S ⊗W we obtain,

diagrammatically:

v wΨ

This map can be expressed in terms of the inner-product as follows. Consider the

typical vector in the tensor space which represents the type of verb:

Ψ =
∑

ijk

cijk
−→v i ⊗

−→s j ⊗
−→w k ∈ V ⊗ S ⊗W

then

f(−→v ⊗
−→
Ψ ⊗−→w) = ǫV ⊗ 1S ⊗ ǫW (−→v ⊗

−→
Ψ ⊗−→w)

=
∑

ijk

cijk〈
−→v |−→v i〉

−→s j〈
−→w k|

−→w 〉

=
∑

j

(

∑

ik

cijk〈
−→v |−→v i〉〈

−→w k|
−→w 〉

)

−→s j .

This vector is the meaning of the sentence of type n(nrsnl)n, and assumes as given

the meanings of its constituents −→v ∈ V ,
−→
Ψ ∈ T and −→w ∈ W , obtained from data

using some suitable method.

Note that, in Dirac notation, f(−→v ⊗
−→
Ψ ⊗−→w) is written as:

(

〈ǫrV | ⊗ 1S ⊗ 〈ǫrV |
) ∣

∣

−→v ⊗
−→
Ψ ⊗−→w

〉

.

Also, the diagrammatic calculus tells us that:

18

v wΨ
v w

Ψ=

where the reversed triangles are now the corresponding Dirac-bra’s, or in vector

space terms, the corresponding functionals in the dual space. This simplifies the

expression that we need to compute to:

(〈−→v | ⊗ 1S ⊗ 〈−→v |)|
−→
Ψ〉

As mentioned in the introduction, our focus in this paper is not on how to practi-

cally exploit the mathematical framework, which would require substantial further

research, but to expose the mechanisms which govern it. To show that this par-

ticular computation (i.e. the ‘from-meaning-of-words-to-meaning-of-a-sentence’-

process) does indeed produce a vector which captures the meaning of a sentence,

we explicitly compute f(−→v ⊗
−→
Ψ ⊗−→w) for some simple examples, with the inten-

tion of providing the reader with some insight into the underlying mechanisms and

how the approach relates to existing frameworks.

Example 1. One Dimensional Truth-Theoretic Meaning. Consider the sen-

tence

John likes Mary. (6)

We encode this sentence as follows; we have:

−−→
John ∈ V,

−−→
likes ∈ T,

−−−→
Mary ∈W

where we take V to be the vector space spanned by men and W the vector space

spanned by women. In terms of context vectors this means that each word is its

own and only context vector, which is of course a far too simple idealisation for

practical purposes. We will conveniently assume that all men are referred to as

male, using indices to distinguish them: mi. Thus the set of vectors {−→m i}i spans

V . Similarly every woman will be referred to as female and distinguished by fj ,

for some j, and the set of vectors {
−→
f j}j spans W . Let us assume that John in

sentence (6) is m3 and that Mary is f4.

If we are only interested in the truth or falsity of a sentence, we have two

choices in creating the sentence space S: it can be spanned by two basis vectors

|0〉 and |1〉 representing the truth values of true and false, or just by a single vector
−→
1 , which we identify with true, the origin

−→
0 is then identified with false (so we

use Dirac notation for the basis to distinguish between the origin
−→
0 and the |0〉

basis vector). This latter approach might feel a little unintuitive, but it enables us

19

to establish a convenient connection with the relational Montague-style models of

meaning, which we shall present in the last section of the paper.

The transitive verb
−−→
likes is encoded as the superposition:

−−→
likes =

∑

ij

−→mi ⊗
−−→
likesij ⊗

−→
fj

where
−−→
likesij =

−→
1 if mi likes fj and

−−→
likesij =

−→
0 otherwise. Of course, in practice,

the vector that we have constructed here would be obtained automatically from

data using some suitable method.

Finally, we obtain:

f
(

−→m3 ⊗
−−→
likes ⊗

−→
f 4

)

=
∑

ij

〈−→m3 | −→mi〉
−−→
likesij〈

−→
f j |

−→
f 4〉

=
∑

ij

δ3i
−−→
likesij δj4

=
−−→
likes34 =

{−→
1 m3 likes f4
−→
0 o.w.

So we indeed obtain the correct truth-value meaning of our sentence. We are not

restricted to the truth-value meaning; on the contrary, we can have, for example,

degrees of meaning, as shown in section 5.

Example 1b. Two Dimensional Truth-Theoretic Meaning. It would be more

intuitive to assume that the sentence space S is spanned by two vectors |0〉 and

|1〉, which stand for false and true respectively. In this case, the computing of the

meaning map proceeds in exactly the same way as in the one dimensional case.

The only difference is that when the sentence “John likes Mary” is false, the vector

likesij takes the value |0〉 rather than just the origin
−→
0 , and if it is true it takes the

value |1〉 rather than
−→
1 .

4.2 Negative Transitive Sentence

The types of a sentence with negation and a transitive verb, for example “John does

not like Mary”, are:

n (nrsjlσ) (σrjjlσ) (σrjnl)n

Similar to the positive case, we assume the vector spaces of the subject and object

are atomic (V, n), (W,n). The meaning space of the auxiliary verb is (V ⊗ S ⊗
J ⊗ V, nrsjlσ), that of the negation particle is (V ⊗ J ⊗ J ⊗ V, σrjjlσ), and that

20

of the verb is (V ⊗ J ⊗W,σrjnl). The ‘from-meaning-of-words-to-meaning-of-

a-sentence’ linear map f is:

f = (1S ⊗ ǫJ ⊗ ǫJ) ◦ (ǫV ⊗ 1S ⊗ 1J∗ ⊗ ǫV ⊗ 1J ⊗ 1J∗ ⊗ ǫV ⊗ 1J ⊗ ǫW) :

V ⊗ (V ∗ ⊗ S ⊗ J∗ ⊗ V) ⊗ (V ∗ ⊗ J ⊗ J∗ ⊗ V) ⊗ (V ∗ ⊗ J ⊗W ∗) ⊗W → S

and depicted as:
v wΨnot

When applied to the meaning vectors of words one obtains:

f(−→v ⊗
−−→
does⊗

−→
not⊗

−→
Ψ ⊗−→w)

which is depicted as:

v wΨdoes not

where
−−→
does and

−→
not are the vectors corresponding to the meanings of “does” and

“not”. Since these are logical function words, we may decide to assign meaning

to them manually and without consulting the document. For instance, for does we

set:

S = J and
−−→
does =

∑

ij

−→e i ⊗
−→e j ⊗

−→e j ⊗
−→e i ∈ V ⊗ J ⊗ J ⊗ V .

As explained in section 3.1, vectors in V ⊗ J ⊗ J ⊗ V can also be presented as

linear maps of type R → V ⊗ J ⊗ J ⊗ V , and in the case of does we have:

−−→
does ≃ (1V ⊗ ηJ ⊗ 1V) ◦ ηV : R → V ⊗ J ⊗ J ⊗ V

which shows that we only relied on structural morphisms.

As we will demonstrate in the examples below, by relying only on η-maps, does

acts very much as an ‘identity’ with respect to the flow of information between the

words in a sentence. This can be formalized in a more mathematical manner. There

is a well-known bijective correspondence between linear maps of type V →W and

vectors in V ⊗W . Given a linear map f : V → W then the corresponding vector

is:

Ψf =
∑

i

−→e i ⊗ f(−→e i)

21

where {−→e i}i is a basis for V . Diagrammatically we have:

f = f

V

W

=⇒ Ψf = f

V

WV

Take this linear map to be the identity on V and we obtain ηV .

The trick to implement not will be to take this linear map to be the linear matrix

representing the logical not. Concretely, while the matrix of the identity is

(

1 0
0 1

)

,

the matrix of the logical not is

(

0 1
1 0

)

. In Dirac notation, the vector corresponding

to the identity is |00〉 + |11〉, while the vector corresponding to the logical not is

|01〉 + |10〉. While we have

−−→
does =

∑

i

−→e i ⊗ (|00〉 + |11〉) ⊗−→e i ∈ V ⊗ J ⊗ J ⊗ V ,

we will set

−→
not =

∑

i

−→e i ⊗ (|01〉 + |10〉) ⊗−→e i ∈ V ⊗ J ⊗ J ⊗ V .

Diagrammatically we have:

−−→
does =

−→
not =

not

Substituting all of this in f(−→v ⊗
−−→
does⊗

−→
not⊗

−→
Ψ⊗−→w) we obtain, diagrammatically:

v wΨnot

which by the diagrammatic calculus of compact closed categories is equal to:

v wΨ
v w

Ψ=

not not
(7)

since in particular we have that:

22

not not

=

where the configuration on the left always encodes the transpose and the matrix of

the not is obviously self-transpose. In the language of vectors and linear maps, the

left hand side of eq. (7) is:

(

ǫV ⊗

(

0 1
1 0

)

⊗ ǫW

)

(−→v ⊗
−→
Ψ ⊗−→w) .

Note that the above pictures are very similar to the ones encountered in [7, 9]

which describe quantum informatic protocols such as quantum teleportation and

entanglement swapping. There the morphisms η and ǫ encode Bell-states and cor-

responding measurement projectors.

Example 2. Negative Truth-Theoretic Meaning. The meaning of the sentence

John does not like Mary

is calculated as follows. We assume that the vector spaces S = J are spanned by

the two vectors as in Example 1b, |1〉 =

(

0
1

)

and |0〉 =

(

1
0

)

. We assume that |1〉

stands for true and that |0〉 stands for false. Vector spaces V and W are as in the

positive case above. The vector of like is as before:

−→
like =

∑

ij

−→mi ⊗
−−→
likeij ⊗

−→
fj for

−−→
likeij =

{

|1〉 mi likes fj

|0〉 o.w.

Setting N =

(

0 1
1 0

)

we obtain:

(ǫV ⊗N ⊗ ǫW)
(

−→m 3 ⊗
−−→
likes ⊗

−→
f 4

)

=
∑

ij

〈−→m 3 | −→mi〉N(
−−→
likesij)〈

−→
f j |

−→
f4 〉 =

∑

ij

δ3iN(
−−→
likesij) δj4 = N(

−−→
likes34) =

{

|1〉
−−→
like34 = |0〉

|0〉
−−→
like34 = |1〉

=

{

|1〉 m3 does not like f4
|0〉 o.w.

That is, the meaning of “John does not like Mary” is true if
−−→
like34 is false, i.e. if

the meaning of “John likes Mary” is false.

23

For those readers who are suspicious of our graphical reasoning, here is the

full-blown symbolic computation. Abbreviating |10〉 + |01〉 to n and |00〉 + |11〉
to d, and setting f = h ◦ g with

h = 1J ⊗ ǫJ ⊗ ǫJ and g = ǫV ⊗ 1J ⊗ 1J ⊗ ǫV ⊗ 1J ⊗ 1J ⊗ ǫV ⊗ 1J ⊗ ǫW

f

−→m3 ⊗
(

∑

l

−→ml ⊗ d⊗−→ml

)

⊗
(

∑

k

−→mk ⊗ n⊗−→mk

)

⊗
(

∑

ij

−→mi ⊗
−−→
likeij ⊗

−→
f j

)

⊗
−→
f 4

= h

∑

ijkl

〈−→m3 | −→ml〉 d 〈
−→ml |

−→mk〉n 〈
−→mk | −→mi〉

−−→
likeij〈

−→
f j |

−→
f 4〉

= h

∑

ijkl

δ3l d δlk n δki

−−→
likeijδj4

= h
(

d⊗ n⊗
−−→
like34

)

= h
(

(|00〉 + |11〉) ⊗ (|10〉 + |01〉) ⊗
−−→
like34

)

= h
(

|0010
−−→
like34〉 + |0001

−−→
like34〉 + |1110

−−→
like34〉 + |1101

−−→
like34〉

)

= |0〉〈0 | 1〉〈0 |
−−→
like34〉 + |0〉〈0 | 0〉〈1 |

−−→
like34〉 +

|1〉〈1 | 1〉〈0 |
−−→
like34〉 + |1〉〈1 | 0〉〈1 |

−−→
like34〉

= |0〉〈1 |
−−→
like34〉 + |1〉〈0 |

−−→
like34〉

=

{

|1〉
−−→
like34 = |0〉

|0〉
−−→
like34 = |1〉

5 Comparing meanings of sentences

One of the advantages of our approach to compositional meaning is that the mean-

ings of sentences are all vectors in the same space, so we can use the inner product

to compare the meaning vectors. This measure has been referred to and widely

used as a degree of similarity between meanings of words in the distributional ap-

proaches to meaning [36]. Here we extend it to strings of words as follows.

Definition 5.1. Two strings of words w1 · · ·wk and w′
1 · · ·w

′
l have degree of

similarity m iff their Pregroup reductions result in the same grammatical type6

6If one wishes to do so, meaning of phrases that do not have the same grammatical types can also

be compared, but only after transferring them to a common dummy space.

24

and we have

1

N ×N ′

〈

f(−→w1 ⊗ · · · ⊗ −→wk) | f(
−→
w′

1 ⊗ · · · ⊗
−→
w′

l)
〉

= m

for

N = | f(−→w1 ⊗ · · · ⊗ −→wk) | N ′ = | f(
−→
w′

1 ⊗ · · · ⊗
−→
w′

l) |

where | −→v | is the norm of −→v , that is, | −→v |2= 〈−→v | −→v 〉, and f, f ′ are the meaning

maps defined according to definition 3.2

Thus we use this tool to compare meanings of positive sentences to each other,

meanings of negative sentences to each other, and more importantly meanings of

positive sentences to negative ones. For example, we compare the meaning of

“John likes Mary” to “John loves Mary”, the meaning of “John does not like Mary”

to “John does not love Mary”, and also the meaning of the latter two sentences to

“John likes Mary” and “John loves Mary”. To make the examples more interesting,

we assume that “likes” has degrees of both “love” and “hate”.

Example 3. Hierarchical Meaning. Similar to before, we have:

−−→
loves =

∑

ij

−→mi ⊗
−−→
lovesij ⊗

−→
fj

−−→
hates =

∑

ij

−→mi ⊗
−−→
hatesij ⊗

−→
fj

where
−−→
lovesij = |1〉 if mi loves fj and

−−→
lovesij = |0〉 otherwise, and

−−→
hatesij = |1〉

if mi hates fj and
−−→
hatesij = |0〉 otherwise. Define likes to have degrees of love and

hate as follows:

−−→
likes =

3

4

−−→
loves +

1

4

−−→
hates =

∑

ij

−→mi ⊗

(

3

4

−−→
lovesij +

1

4

−−→
hatesij

)

⊗
−→
fj

The meaning of our example sentence is thus obtained as follows:

f
(

−→m 3 ⊗
−−→
likes ⊗

−→
f 4

)

= f

(

−→m 3 ⊗

(

3

4

−−→
loves +

1

4

−−→
hates

)

⊗
−→
f 4

)

=
∑

ij

〈−→m 3 | −→mi〉

(

3

4

−−→
lovesij +

1

4

−−→
hatesij

)

〈−→
f j |

−→
f4

〉

=
∑

ij

δ3i

(

3

4

−−→
lovesij +

1

4

−−→
hatesij

)

δj4

=
3

4

−−→
loves34 +

1

4

−−→
hates34

25

Example 4. Negative Hierarchical Meaning. To obtain the meaning of “John

does not like Mary” in this case, one inserts 3
4

−−−→
lovesij + 1

4

−−−→
hatesij for

−−−→
likesij in the

calculations and one obtains:

h

(

d⊗ n⊗

(

3

4

−−−→
loves34 +

1

4

−−−→
hates34

))

=
1

4

−−→
loves34 +

3

4

−−→
hates34

That is, the meaning of “John does not like Mary” is the vector obtained from the

meaning of “John likes Mary” by swapping the basis vectors.

Example 5. Degree of similarity of positive sentences. The meanings of the

distinct verbs loves, likes and hates in the different sentences propagate through

the reduction mechanism and reveal themselves when computing inner-products

between sentences in the sentence space. For instance, the sentence “John loves

Mary” and “John likes Mary” have a degree of similarity of 3/4, calculated as

follows:
〈

f
(−→m3 ⊗

−−→
loves ⊗

−→
f 4

)

∣

∣

∣ f
(−→m3 ⊗

−−→
likes ⊗

−→
f 4

)

〉

=
〈−−→

loves34

∣

∣

−−→
likes34

〉

In the above, we expand the definition of
−−→
likes34 and obtain:

〈−−→
loves34

∣

∣

3
4

−−→
loves34 + 1

4

−−→
hates34

〉

=

3

4

〈−−→
loves34

∣

∣

−−→
loves34

〉

+
1

4

〈−−→
loves34

∣

∣

−−→
hates34

〉

and since
−−→
loves34 and

−−→
hates34 are always orthogonal, that is, if one is |1〉 then the

other one is |0〉, we have that

〈−−−−−−−−−−−→
John loves Mary

∣

∣

−−−−−−−−−−→
John likes Mary

〉

=
3

4
|
−−−→
loves34 |2

Hence the degree of similarity of these sentences is 3
4 . A similar calculation pro-

vides us with the following degrees of similarity. For notational simplicity we drop

the square of norms from now on, i.e. we implicitly normalize meaning vectors.
〈−−−−−−−−−−−→

John hates Mary
∣

∣

−−−−−−−−−−→
John likes Mary

〉

=

〈

f
(−→m3 ⊗

−−→
hates ⊗

−→
f 4

)

∣

∣

∣
f
(−→m3 ⊗

−−→
likes ⊗

−→
f 4

)

〉

=
1

4
〈−−−−−−−−−−−→

John loves Mary
∣

∣

−−−−−−−−−−−→
John hates Mary

〉

=

〈

f
(−→m3 ⊗

−−→
loves ⊗

−→
f 4

)

∣

∣

∣
f
(−→m3 ⊗

−−→
hates ⊗

−→
f 4

)

〉

= 0 .

26

Example 6. Degree of similarity of negative sentences. In the negative case, the

meaning of the composition of the meanings of the auxiliary and negation markers

(“does not”), applied to the meaning of the verb, propagates through the computa-

tions and defines the cases of the inner product. For instance, the sentences “John

does not love Mary” and “John does not like Mary” have a degree of similarity of

3/4, calculated as follows:
〈−−−−−−−−−−−−−−−−→

John does not love Mary
∣

∣

−−−−−−−−−−−−−−−−→
John does not like Mary

〉

=
〈

f
(−→m3 ⊗

−−→
does⊗

−→
not⊗

−−→
love ⊗

−→
f 4

)

∣

∣

∣
f
(−→m3 ⊗

−−→
does⊗

−→
not⊗

−→
like ⊗

−→
f 4

)

〉

=
〈−−→

hates34

∣

∣

∣

1
4

−−→
loves34 + 3

4

−−→
hates34

〉

= 1
4

〈−−→
hates34

∣

∣

∣

−−→
loves34

〉

+ 3
4

〈−−→
hates34

∣

∣

∣

−−→
hates34

〉

= 3
4

Example 7. Degree of similarity of positive and negative sentences. Here we

compare the meanings of positive and negative sentences. This is perhaps of special

interest to linguists of distributional meaning, since these sentences do not have the

same grammatical structure. That we can compare these sentences shows that our

approach does not limit us to the comparison of meanings of sentences that have

the same grammatical structure. We have:

〈

f
(−→m3 ⊗

−−→
does ⊗

−→
not ⊗

−→
like ⊗

−→
f 4

)

∣

∣

∣ f
(−→m3 ⊗

−−→
loves ⊗

−→
f 4

)〉

=
1

4

〈

f
(−→m3 ⊗

−−→
does ⊗

−→
not ⊗

−→
like ⊗

−→
f 4

)

∣

∣

∣
f
(−→m3 ⊗

−−→
hates ⊗

−→
f 4

)〉

=
3

4

The following is the most interesting case:

〈

f
(−→m3 ⊗

−−→
does ⊗

−→
not ⊗

−→
like ⊗

−→
f 4

)

∣

∣

∣ f
(−→m3 ⊗

−−→
likes ⊗

−→
f 4

)〉

=
〈1

4

−−→
loves34 +

3

4

−−→
hates34

∣

∣

∣

3

4

−−→
loves34 +

1

4

−−→
hates34

〉

= (
1

4
×

3

4
)
〈−−→
loves34

∣

∣

∣

−−→
loves34

〉

+ (
3

4
×

1

4
)
〈−−→
hates34

∣

∣

∣

−−→
hates34

〉

= (
1

4
×

3

4
) + (

3

4
×

1

4
) =

3

8

This value might feel non-intuitive, since one expects that “like” and “does not

like” have zero intersection in their meanings. This would indeed be the case had

we used our original truth-value definitions. But since we have set “like” to have

degrees of “love” and “hate”, their intersection will no longer be 0.

27

Using the same method, one can form and compare meanings of many different

types of sentences. In a full-blown vector space model, which has been automati-

cally extracted from large amounts of text, we obtain ‘imperfect’ vector represen-

tations for words, rather than the ‘ideal’ ones presented here. But the mechanism

of how the meanings of words propagate to the meanings of sentences remains the

same.

6 Relations vs Vectors for Montague-style semantics

When fixing a base for each vector space we can think of FVect as a category

of which the morphisms are matrices expressed in this base. These matrices have

real numbers as entries. It turns out that if we consider matrices with entries not in

(R,+,×), but in any other semiring7 (R,+,×), we again obtain a compact closed

category. This semiring does not have to be a field, and can for example be the

positive reals (R+,+,×), positive integers (N,+,×) or even Booleans (B,∨,∧).
In the case of (B,∨,∧), we obtain an isomorphic copy of the category FRel

of finite sets and relations with the cartesian product as tensor, as follows. Let X
be a set whose elements we have enumerated as X =

{

xi | 1 ≤ i ≤ |X|
}

. Each

element can be seen as a column with a 1 at the row equal to its number and 0 in all

other rows. Let Y =
{

yj | 1 ≤ j ≤ |Y |
}

be another enumerated set. A relation

r ⊆ X × Y is represented by an |X | × |Y | matrix, where the entry in the ith
column and jth row is 1 iff (xi, yj) ∈ r or else 0. The composite s ◦ r of relations

r ⊆ X × Y and s ⊆ Y × Z is

{(x, z) | ∃y ∈ Y : (x, y) ∈ r, (y, z) ∈ s} .

The reader can verify that this composition induces matrix multiplication of the

corresponding matrices.

Interestingly, in the world of relations (but not functions) there is a notion of

superposition [8]. The relations of type r ⊆ {∗}×X (in matricial terms, all column

vectors with 0’s and 1’s as entries) are in bijective correspondence with the subsets

of X via the correspondence

r 7→ {x ∈ X | (∗, x) ∈ r} .

Each such subset can be seen as the superposition of the elements it contains. The

inner-product of two subsets is 0 if they are disjoint and 1 if they have a non-empty

intersection. So we can think of two disjoint sets as being orthogonal.

7A semiring is a set together with two operations, addition and multiplication, for which we have

a distributive law but no additive nor multiplicative inverses. Having an addition and multiplication

of this kind suffices to have a matrix calculus.

28

Since the abstract nature of our procedure for assigning meaning to sentences

did not depend on the particular choice of FVect we can now repeat it for the

following situation:

language

FRel ✛

πm

✛

m
ea
ni
ng

FRel × P
❄

πg

✲ P

gram
m
ar

✲

In FRel×P we recover a Montague-style Boolean semantics. The vector spaces in

this setting are encodings of sets of individuals and relations over these sets. Inner

products take intersections between the sets and eta maps produce new relations by

connecting pairs that are not necessarily side by side.

In all our examples so far, the vector spaces of subject and object were es-

sentially sets that were encoded in a vector space framework. This was done by

assuming that each possible male subject is a base in the vector space of males

and similarly for the female objects. That is why the meaning in these examples

was a truth-theoretic one. We repeat our previous calculations for example 1 in the

relational setting of FRel × P .

Example 1 revisited. Consider the singleton set {∗}; we assume that it signifies the

vector space S. We assume that the two subsets of this set, namely {∗} and ∅, will

respectively identify true and false. We now have sets V ,W and T = V ×{∗}×W
with

V := {mi}i , likes ⊂ T, W := {fj}j

such that:

likes := {(mi, ∗, fj) | mi likes fj} =
⋃

ij

{mi} × ∗ij × {fj}

where ∗ij is either {∗} or ∅. So we obtain

f ({m3} × likes × {f4}) =
⋃

ij

({m3}∩{mi})×∗ij×
(

{fj}∩{f4}
)

= ∗34 .

7 Future Work

This paper aims to lay a mathematical foundation for the new field of compositional

distributional models of meaning in the realm of computational and mathematical

29

linguistics, with applications to language processing, information retrieval, artifi-

cial intelligence, and in a conceptual way to the philosophy of language. This is

just the beginning and there is so much more to do, both on the practical and the

theoretical sides. Here are some examples:

• On the logical side, our “not” matrix works by swapping basis and is thus

essentially two dimensional. Developing a canonical matrix of negation, one

that works uniformly for any dimension of the meaning spaces, constitutes

future work. The proposal of [41] in using projection to the orthogonal sub-

space might be an option.

• A similar problem arises for the meanings of other logical words, such as

“and”, “or”, “if then”. So we need to develop a general logical setting on top

of our meaning category FVect × P. One subtlety here is that the opera-

tion that first come to mind, i.e. vector sum and product, do not correspond

to logical connective of disjunction and conjunction (since e.g. they are not

fully distributive). However, the more relaxed setting of vector spaces en-

ables us to also encode words such as ”but”, whose meaning depends on the

context and thus do not have a unique logical counterpart.

• Formalizing the connection with Montague-semantics is another future di-

rection. Our above ideas can be generalized by proving a representation

theorem for Fvect×P on the semiring of Booleans with respect to the cat-

egory of FRel of sets and relations. It would then be interesting to see how

the so called ‘non-logical’ axioms of Montague are manifested at that level,

e.g. as adjoints to substitution to recover quantifiers.

• Along similar semantic lines, it would be good to have a Curry-Howard-like

isomorphism between non-commutative compact closed categories, bicom-

pact linear logic [4], a version of lambda calculus. This will enable us to

automatically obtain computations for the meaning and type assignments of

our categorical setting.

• Our categorical axiomatics is flexible enough to accommodate mixed states

[37], so in principle we are able to study their linguistic significance, and for

instance implement the proposals of [3].

• Finally, and perhaps most importantly, the mathematical setting needs to be

implemented and evaluated, by running experiments on real corpus data.

Efficiency and the complexity of our approach then become an issue and

need to be investigated, along with optimization techniques.

30

Acknowledgements

Support from EPSRC Advanced Research Fellowship EP/D072786/1 and Euro-

pean Committee grant EC-FP6-STREP 033763 for Bob Coecke, EPSRC Post-

doctoral Fellowship EP/F042728/1 for Mehrnoosh Sadrzadeh, and EPSRC grant

EP/E035698/1 for Stephen Clark are gratefully acknowledged. We thank Keith

Van Rijsbergen, Stephen Pulman, and Edward Grefenstette for discussions, and

Mirella Lapata for providing relevant references for vector space models of mean-

ing.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols.

In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer

Science, pages 415–425. IEEE Computer Science Press, 2004. arXiv:quant-

ph/0402130.

[2] Jerome R. Bellegarda. Exploiting latent semantic information in statistical

language modeling. Proceedings of the IEEE, 88(8):1279–1296, 2000.

[3] P. Bruza and D. Widdows. Quantum information dynamics and open world

science. In Proceedings of AAAI Spring Symposium on Quantum Interaction.

AAAI Press, 2007.

[4] W. Buszkowski. Lambek grammars based on pregroups. Logical Aspects of

Computational Linguistics, 2001.

[5] Freddy Choi, Peter Wiemer-Hastings, and Johanna Moore. Latent Semantic

Analysis for text segmentation. In Proceedings of the EMNLP Conference,

pages 109–117, 2001.

[6] S. Clark and S. Pulman. Combining symbolic and distributional models of

meaning. In Proceedings of AAAI Spring Symposium on Quantum Interac-

tion. AAAI Press, 2007.

[7] B. Coecke. Kindergarten quantum mechanics — lecture notes. In A. Khren-

nikov, editor, Quantum Theory: Reconsiderations of the Foundations III,

pages 81–98. AIP Press, 2005. arXiv:quant-ph/0510032.

[8] B. Coecke. Introducing categories to the practicing physicist. In G. Sica, edi-

tor, What is category theory?, volume 30 of Advanced Studies in Mathematics

and Logic, pages 45–74. Polimetrica Publishing, 2006. arXiv:0808.1032.

31

[9] B. Coecke. Quantum picturalism. Contemporary physics, 51:59–83, 2010.

arXiv:0908.1787.

[10] B. Coecke and E. O. Paquette. Categories for the practicing physicist. In

B. Coecke, editor, New structures for physics, Lecture Notes in Physics, pages

167–271. Springer, 2010. arXiv:0905.3010.

[11] James R. Curran. From Distributional to Semantic Similarity. PhD thesis,

University of Edinburgh, 2004.

[12] G. Denhire and B. Lemaire. A computational model of children’s semantic

memory. In Proceedings of the 26th Annual Meeting of the Cognitive Science

Society, pages 297–302, Chicago, IL, 2004.

[13] D.R. Dowty, R.E. Wall, and S. Peters. Introduction to Montague Semantics.

Dordrecht, 1981.

[14] Peter W. Foltz, Walter Kintsch, and Thomas K. Landauer. The measure-

ment of textual coherence with latent semantic analysis. Discourse Process,

15:285–307, 1998.

[15] G. Gazdar. Paradigm merger in natural language processing. In R. Milner

and I. Wand, editors, Computing Tomorrow: Future Research Directions in

Computer Science, pages 88–109. Cambridge University Press, 1996.

[16] Gregory Grefenstette. Explorations in Automatic Thesaurus Discovery.

Kluwer Academic Publishers, 1994.

[17] Thomas L. Griffiths, Mark Steyvers, and Joshua B. Tenenbaum. Topics in

semantic representation. Psychological Review, 114(2):211–244, 2007.

[18] J. Lambek. The mathematics of sentence structure. American Mathematics

Monthly, 65, 1958.

[19] J. Lambek. Type grammar revisited. Logical Aspects of Computational Lin-

guistics, 1582, 1999.

[20] J. Lambek. Iterated galois connections in arithmetics and linguistics. Galois

Connections and Applications, Mathematics and its Applications, 565, 2004.

[21] J. Lambek. From Word to Sentence. Polimetrica, 2008.

[22] J. Lambek. Compact monoidal categories from linguistics to physics. In

B. Coecke, editor, New structures for physics, Lecture Notes in Physics, pages

451–469. Springer, 2010.

32

[23] J. Lambek and C. Casadio, editors. Computational algebraic approaches to

natural language. Polimetrica, Milan, 2006.

[24] T. K. Landauer and S. T. Dumais. A solution to Plato’s problem: the la-

tent semantic analysis theory of acquisition, induction and representation of

knowledge. Psychological Review, 104(2):211–240, 1997.

[25] Michael D. Lee, Brandon Pincombe, and Matthew Welsh. An empirical eval-

uation of models of text document similarity. In B.G. Bara, L.W. Barsalou,

and M. Bucciarelli, editors, Proceedings of the 27th Annual Conference of the

Cognitive Science Society, pages 1254–1259, Mahwah, NJ, 2005. Erlbaum.

[26] Dekang Lin. Automatic retrieval and clustering of similar words. In Pro-

ceedings of the 36th Annual Meeting of the Association for Computational

Linguistics and 17th International Conference on Computational Linguistics,

pages 768–774, 1998.

[27] K. Lund and C. Burgess. Producing high-dimensional semantic spaces from

lexical co-occurrence. Behavior Research Methods, Instruments & Comput-

ers, 28:203–208, 1996.

[28] Diana McCarthy, Rob Koeling, Julie Weeds, and John Carroll. Finding pre-

dominant senses in untagged text. In Proceedings of the 42nd Annual Meeting

of the Association for Computational Linguistics (ACL-04), pages 280–287,

Barcelona, Spain, 2004.

[29] Scott McDonald. Environmental Determinants of Lexical Processing Effort.

PhD thesis, University of Edinburgh, 2000.

[30] A. Preller. Towards discourse representation via pregroup grammars. JoLLI,

2007.

[31] A. Preller and M. Sadrzadeh. Bell states and negative sentences in the dis-

tributed model of meaning. In P. Selinger B. Coecke, P. Panangaden, editor,

Electronic Notes in Theoretical Computer Science, Proceedings of the 6th

QPL Workshop on Quantum Physics and Logic. University of Oxford, 2010.

[32] M. Sadrzadeh. Pregroup analysis of Persian sentences. In C. Casadio and

J. Lambek, editors, Computational algebraic approaches to natural lan-

guage. Polimetrica, 2006.

[33] M. Sadrzadeh. High level quantum structures in linguistics and multi agent

systems. In J. van Rijsbergen P. Bruza, W. Lawless, editor, Proceedings of the

AAAI Spring Symposium on Quantum Interaction. Stanford University, 2007.

33

[34] J. R. Saffran, E. L. Newport, and R. N. Asling. Word segmentation: The role

of distributional cues. Journal of Memory and Language, 35:606–621, 1999.

[35] G Salton, A Wang, and C Yang. A vector-space model for information re-

trieval. Journal of the American Society for Information Science, 18:613–620,

1975.

[36] H. Schuetze. Automatic word sense discrimination. Computational Linguis-

tics, 24(1):97–123, 1998.

[37] P. Selinger. Dagger compact closed categories and completely positive maps.

Electronic Notes in Theoretical Computer Science, 170:139–163, 2007.

[38] P. Selinger. A survey of graphical languages for monoidal categories. In

B. Coecke, editor, New structures for physics, Lecture Notes in Physics, pages

275–337. Springer, 2010.

[39] P. Smolensky and G. Legendre. The Harmonic Mind: From Neural Computa-

tion to Optimality-Theoretic Grammar Vol. I: Cognitive Architecture Vol. II:

Linguistic and Philosophical Implications. MIT Press, 2005.

[40] D. P. Spence and K. C. Owens. Lexical co-occurrence and association

strength. Journal of Psycholinguistic Research, (19):317–330, 1990.

[41] D. Widdows. Orthogonal negation in vector spaces for modelling word-

meanings and document retrieval. In 41st Annual Meeting of the Association

for Computational Linguistics, Japan, 2003.

34

