MATHEMATICAL FOUNDATIONS OF ELASTICITY

JERROLD E. MARSDEN

Department of Mathematics University of California, Berkeley

THOMAS J. R. HUGHES

Division of Applied Mechanics Stanford University

DOVER PUBLICATIONS, INC.

New York

CONTENTS

	PREFACE	хi
	BRIEF GLOSSARY OF CONVENTIONS AND NOTATIONS	xvii
	•	
	A POINT OF DEPARTURE	1
1.	Kinematics 1	
2.	Balance Laws 4	
3.	Elastic Materials 8	
4.	Boundary Value Problems 11	
5.	Constitutive Inequalities 16	
6.	The Role of Geometry and Functional Analysis 21	
1	GEOMETRY AND KINEMATICS OF BODIES	25
1.1.	Motions of Simple Bodies 25	
1.2.	Vector Fields, One-Forms, and Pull-Backs 35	
1.3.	The Deformation Gradient 47	
1.4.	Tensors, Two-Point Tensors, and the Covariant	
	Derivative 65	
1.5.	Conservation of Mass 85	
1.6.	Flows and Lie Derivatives 93	
1.7.	Differential Forms and the Piola Transformation 104	

2	BALANCE PRINCIPLES	120
2.1. 2.2. 2.3.	Balance of Energy 142	
2.4.	Classical Spacetimes, Covariant Balance of Energy, and the Principle of Virtual Work 154	
2.5.	Thermodynamics II; The Second Law 176	
3	CONSTITUTIVE THEORY	180
3.1. 3.2.	**	
	Frame Indifference 189	
3.3.		
3.4. 3.5.		
5.5.	waterial symmetries and isotropic Elasticity 217	
4	LINEARIZATION	226
4.1.	The Implicit Function Theorem 226	
	Linearization of Nonlinear Elasticity 232	
	Linear Elasticity 238	
4.4.	Linearization Stability 243	
5	HAMILTONIAN AND VARIATIONAL PRINCIPLES	247
5.1.	The Formal Variational Structure of Elasticity 247	
	Linear Hamiltonian Systems and Classical Elasticity 252	
5.3.	Abstract Hamiltonian and Lagrangian Systems 262 Lagrangian Field Theory and Nonlinear Elasticity 275	
	Conservation Laws 281	
	Reciprocity 288	
	Relativistic Elasticity 298	
6	METHODS OF FUNCTIONAL ANALYSIS IN ELASTICITY	315
6.1.	Elliptic Operators and Linear Elastostatics 315	
6.2.	Abstract Semigroup Theory 332	
6.3.	Linear Elastodynamics 345	
6.4.	Nonlinear Elastostatics 370	
6.5.	Nonlinear Elastodynamics 386	

	The Energy Criterion 411 A Control Problem for a Beam Equation 421	
7	SELECTED TOPICS IN BIFURCATION THEORY	427
7.1.	Basic Ideas of Static Bifurcation Theory 427	
7.2.	A Survey of Some Applications to Elastostatics 447	
7.3.	The Traction Problem Near a Natural State (Signorini's Problem) 462	
7.4.	Basic Ideas of Dynamic Bifurcation Theory 481	
	A Survey of Some Applications to Elastodynamics 493	
7.6.	Bifurcations in the Forced Oscillations of a Beam 504	
	BIBLIOGRAPHY	517
	INDEX	545