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Introduction

Supersymmetry (SUSY) is the machinery mathematicians and physicists have

developed to treat two types of elementary particles, bosons and fermions, on

the same footing. Supergeometry is the geometric basis for supersymmetry; it

was first discovered and studied by physicists Wess, Zumino [25], Salam and

Strathde [20] (among others) in the early 1970’s. Today supergeometry plays an

important role in high energy physics. The objects in super geometry generalize

the concept of smooth manifolds and algebraic schemes to include anticommuting

coordinates. As a result, we employ the techniques from algebraic geometry to

study such objects, namely A. Grothendiek’s theory of schemes.

Fermions include all of the material world; they are the building blocks of

atoms. Fermions do not like each other. This is in essence the Pauli exclusion

principle which states that two electrons cannot occupy the same quantum me-

chanical state at the same time. Bosons, on the other hand, can occupy the same

state at the same time.

Instead of looking at equations which just describe either bosons or fermions

separately, supersymmetry seeks out a description of both simultaneously. Tran-

sitions between fermions and bosons require that we allow transformations be-

tween the commuting and anticommuting coordinates. Such transitions are called

supersymmetries.

In classical Minkowski space, physicists classify elementary particles by their

mass and spin. Einstein’s special theory of relativity requires that physical theo-

ries must be invariant under the Poincaré group. Since observable operators (e.g.

Hamiltonians) must commute with this action, the classification corresponds to

finding unitary representations of the Poincaré group. In the SUSY world, this

means that mathematicians are interested in unitary representations of the su-
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per Poincaré group. A “super” representation gives a “multiplet” of ordinary

particles which include both fermions and bosons.

Up to this point, there have been no colliders that can produce the energy re-

quired to physically expose supersymmetry. However, the Large Hadron Collider

(LHC) in CERN (Geneva, Switzerland) will be operational in 2007. Physicists

are planning proton-proton and proton-antiproton collisions which will produce

energies high enough where it is believed supersymmetry can be seen. Such a dis-

covery will solidify supersymmetry as the most viable path to a unified theory of

all known forces. Even before the boson-fermion symmetry which SUSY presup-

poses is made physical fact, the mathematics behind the theory is quite remark-

able. The concept that space is an object built out of local pieces with specific

local descriptions has evolved through many centuries of mathematical thought.

Euclidean and non-Euclidean geometry, Riemann surfaces, differentiable mani-

folds, complex manifolds, algebraic varieties, and so on represent various stages

of this concept. In Alexander Grothendieck’s theory of schemes, we find a sin-

gle structure (a scheme) that encompasses all previous ideas of space. However,

the fact that conventional descriptions of space will fail at very small distances

(Planck length) has been the driving force behind the discoveries of unconven-

tional models of space that are rich enough to portray the quantum fluctuations

of space at these unimaginably small distances. Supergeometry is perhaps the

most highly developed of these theories; it provides a surprising continuation of

the Grothendieck theory and opens up large vistas. One should not think of it

as a mere generalization of classical geometry, but as a deep continuation of the

idea of space and its geometric structure.

Out of the first supergeometric objects constructed by the pioneering physi-

cists came mathematical models of superanalysis and supermanifolds indepen-
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dently by F. A. Berezin [2], B. Kostant [15], D.A. Leites [17], and De Witt [8].

The idea to treat a supermanifold as a ringed space with a sheaf of Z/2Z-graded

algebras was introduced in these early works. Later, Bernstein [7] and Leites

made this treatment rigorous and used techniques from algebraic geometry to

deepen the study of supersymmetry. In particular, Bernstein and Leites accented

the functor of points approach from Grothendieck’s theory of schemes. It is this

approach (which we call T -points) that we present and expand upon in our treat-

ment of mathematical supersymmetry. Interest in SUSY has grown in the past

decade, and most recently works by V. S. Varadarajan [23] among others, have

continued the exploration of the beautiful area of physics and mathematics and

have inspired this work. Given the interest and the number of people who have

contributed greatly to this field from various perspectives, it is impossible to give

a fair and accurate account of works related to ours.

In our exposition of mathematical SUSY, we use the language of T -points to

build supermanifolds up from their foundations in Z/2Z-graded linear algebra

(superalgebra). This treatment is similar to that given by Varadarajan in [23],

however we prove some deeper results related to the Frobenius theorem as well

as give a full treatment of superschemes in chapters 3-4. Recently the book by G.

Tuynman [21] has been brought to our attention. The main results from chapters

5-6 can be found in [21], however we obtained our results independently of this

work, moreover, our method of T -points remains fresh in light of this and other

recent works.

Here is a brief description of our work.

In chapter 1 we begin by studying Z/2Z-graded linear objects. We define

super vector spaces and superalgebras, then generalize some classical results and

ideas from linear algebra to the super setting. For example, we define a super Lie
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algebra, discuss supermatrices, and formulate the super trace and determinant

(the Berezinian).

In chapter 2 we introduce the most basic geometric structure: a superspace.

We present some general properties of superspaces which leads into two key exam-

ples of superspaces, supermanifolds and superschemes. Here we also introduce

the notion of T -points which treats our geometric objects as functors; it is a

fundamental tool to gain geometric intuition in supergeometry.

Chapters 3-4 lay down the full foundations of C∞-supermanifolds over R.

We give special attention to super Lie groups and their associated Lie algebras,

as well as look at how group actions translate infinitesimally. In chapter 4 we

prove the local and global Frobenius theorem on supermanifolds, then use the

infinitesimal actions from chapter 3 to build the super Lie subgroup, subalgebra

correspondence.

Chapters 5-6 expand upon the notion of a superscheme which we introduce

in chapter 2. We immediately adopt the language of T -points and give criterion

for representability: in supersymmetry it is often most convenient to desribe an

object functorially, then show it is representable. In chapter 5, we explicitly con-

struct the Grassmanian superscheme functorially, then use the representability

criterion to show it is representable. Chapter 5 concludes with an examination of

the infinitesimal theory of superschemes. We continue this exploration in chap-

ter 6 from the point of view of algebraic supergroups and their Lie algebras. We

discuss the linear representations of affine algebraic supergroups; in particular we

show that all affine super groups are realized as subgroups of the general linear

supergroup.

This work is self-contained; we try to keep references to a minimum in the

body of our work so that the reader can proceed without the aid of other texts. We
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assume a working knowledge of sheaves, differential geometry, and categories and

functors. We suggest that the reader begin with chapters 1 and 2, but chapters

3-4 and chapters 5-6 are somewhat disjoint and may be read independently of

one another.

We wish to thank professor V. S. Varadarajan for introducing us to this

beautiful part of mathematics. He has truly inspired us through his insight

and deep understanding of the subject. We also wish to thank Prof. M. A.

Lledo, Prof. A. Vistoli and Prof. M. Duflo for many helpful remarks. R. Fioresi

thanks the UCLA Department of Mathematics for its kind hospitality during

the realization of this work. L. Caston thanks the Dipartimento di Matematica,

Universita’ di Bologna for support and hospitality during the realization of this

work.
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CHAPTER 1

Z/2Z-Graded Linear Algebra

We first build the foundations of linear algebra in the super context. This is an

important starting point as we later build super geometric objects from sheaves

of super linear spaces. Let us fix a ground field k, char(k) 6= 2, 3.

1.1 Super Vector Spaces and Superalgebras

Definition 1.1.1. A super vector space is a Z/2Z-graded vector space

V = V0 ⊕ V1

where elements of V0 are called “even” and elements of V1 are called “odd”.

Definition 1.1.2. The parity of v ∈ V , denoted p(v) or |v|, is defined only on

nonzero homogeneous elements, that is elements of either V0 or V1:

p(v) = |v| =





0 if v ∈ V0

1 if v ∈ V1

Since any element may be expressed as the sum of homogeneous elements, it

suffices to only consider homogeneous elements in the statement of definitions,

theorems, and proofs.

Definition 1.1.3. The super dimension of a super vector space V is the pair

(p, q) where dim(V0)=p and dim(V1)=q as ordinary vector spaces. We simply

write dim(V ) = p|q.
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From now on we will simply refer to the superdimension as the dimension

when the category is clear. If dim(V ) = p|q, then we can find a basis {e1, . . . , ep}

of V0 and a basis {ε1, . . . , εq} of V1 so that V is canonically isomorphic to the free

k-module generated by the {e1, . . . , ep, ε1, . . . , εq}. We denote this k-module by

kp|q.

Definition 1.1.4. A morphism from a super vector space V to a super vector

space W is a Z/2Z-grading preserving linear map from V to W . Let Hom(V,W )

denote the set of morphisms V −→W .

Thus we have formed the abelian category of super vector spaces. It is im-

portant to note that the category of super vector spaces also admits and “inner

Hom”, which we denote Hom(V,W ); it consists of all linear maps from V to W :

Hom(V,W )0 = {T : V −→W | T preserves parity} (= Hom(V,W ));

Hom(V,W )1 = {T : V −→W | T reverses parity}.

In the category of super vector spaces we have the parity reversing functor Π

defined by

(ΠV )0 = V1 (ΠV )1 = V0.

The category of super vector spaces is in fact a tensor category, where V ⊗W

is given the Z/2Z-grading as follows:

(V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1)

(V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0).

The tensor functor ⊗ is additive and exact in each variable as in the ordinary

vector space category; it has a unit object (i.e. k) and is associative. Moreover,

V ⊗W ∼= W ⊗ V by the commutativity map

cV,W : V ⊗W −→ W ⊗ V
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where v ⊗ w 7→ (−1)|v||w|w ⊗ v. This is the so called “sign rule” that one finds

in some physics and math literature. In any tensor category with an inner Hom,

the dual, V ∗, of V is

V ∗ =def Hom(V, k).

Remark 1.1.5. We understand completely the object V ⊗n = V ⊗ · · · ⊗ V (n

times) for a super vector space V . We can extend this notion to make sense of

V ⊗n|m via the parity reversing functor Π. Define

V n|m := V × V × . . .× V︸ ︷︷ ︸
n times

×Π(V )× Π(V )× . . .× Π(V )︸ ︷︷ ︸
m times

,

from which the definition of V ⊗n|m follows by the universal property.

Let us now define a super k-algebra:

Definition 1.1.6. We say that a super vector space A is a superalgebra if there

is a multiplication morphism τ : A⊗ A −→ A.

We then say that a superalgebra A is commutative if

τ ◦ cA,A = τ,

that is, if the product of homogeneous elements obeys the rule

ab = (−1)|a||b|ba.

Similarly we say that A is associative if τ ◦ τ ⊗ id = τ ◦ id⊗ τ on A⊗A⊗A, and

that A has a unit if there is an even element 1 so that τ(1⊗ a) = τ(a ⊗ 1) = a

for all a ∈ A.

From now on we will assume all superalgebras are associative and commuta-

tive with unit unless specified.
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An even derivation of a superalgebra A is a super vector space homomorphism

D : A −→ A such that for a, b ∈ A, D(ab) = D(a)b+ aD(b). We may of course

extend this definition to include odd linear maps:

Definition 1.1.7. Let D ∈ Homk(A,A) be a k-linear map. Then D is a deriva-

tion of the superalgebra A if for a, b ∈ A,

D(ab) = D(a)b+ (−1)|D||a|aD(b). (1.1)

Those derivations in Homk(A,A) are even (as above) while those in Homk(A,A)1

are odd. The set of all derivations of a superalgebra A, denoted Der(A), is itself

a special type of superalgebra called a super Lie algebra which we describe in the

following section.

Example 1.1.8. Grassmann coordinates. Let

A = k[t1, . . . , tp, θ1, . . . , θq]

where the t1, . . . , tp are ordinary indeterminates and the θ1, . . . θq are odd inde-

terminates, i.e. they behave like Grassmannian coordinates:

θiθj = −θjθi.

(This of course implies that θ2
i = 0 for all i.) We claim that A is a supercommu-

tative algebra. In fact,

A0 = {f0 +
∑

|I| even

fIθI |I = {i1 < . . . < ir}}

where θI = θi1θi2 . . . θir and f0, fI ∈ k[t1, . . . , tp], and

A1 = {
∑

|J |odd

fJθJ |J = {i1 < . . . < is}}
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for s odd (|J | = 2m+ 1, m = 1, 2, . . .) and fJ ∈ k[t1, . . . tq]. Note that although

the {θj} ∈ A1, there are plenty of nilpotents in A0; take for example θ1θ2 ∈ A0.

Consider the k-linear operators {∂/∂ti} and {∂/∂θj} of A to itself where

∂/∂ti(tk) = δi
k ∂/∂ti(θl) = 0;

∂/∂θj(tk) = 0 ∂/∂θj(θl) = δj
l .

(1.2)

It is easy to verify that {∂/∂ti, ∂/∂θj} ∈ Der(A), and we leave it as an exercise

to check that

Der(A) = SpanA{
∂

∂ti
,
∂

∂θj

}.

1.2 Lie Algebras

An important object in supersymmetry is the super Lie algebra.

Definition 1.2.1. A super Lie algebra L is an object in the category of super

vector spaces together with a morphism [, ] : L ⊗ L −→ L which categorically

satisfies the usual conditions.

It is important to note that in the super category, these conditions are slightly

different to accomodate the odd variables. The bracket [, ] must satisfy

1. Anti-symmetry

[, ] + [, ] ◦ cL,L = 0

which may be interpreted as [x, y] + (−1)|x||y|[y, x] = 0 for x, y ∈ L homogeneous.

2. The Jacobi identity

[, [, ]] + [, [, ]] ◦ σ + [, [, ]] ◦ σ2 = 0

where σ ∈ S3 is a three-cycle, i.e. it takes the first entry of [, [, ]] to the second,

the second to the third, and the third to the first. So for x, y, z ∈ L homogeneous,
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this reads:

[x, [y, z]] + (−1)|x||y|+|x||z|[y, [z, x]] + (−1)|y||z|+|x||z|[z, [x, y]] = 0.

Remark 1.2.2. We can immediately extend this definition to the case where L

is an A-module.

Example 1.2.3. In the Grassmannian example above (1.1.8),

Der(A) = SpanA{
∂

∂ti
,
∂

∂θj

}

is a super Lie algebra where the bracket is taken for D1, D2 ∈ Der(A) to be

[D1, D2] = D1D2 − (−1)|D1||D2|D2D1.

In fact, we can make any associative algebra A into a Lie algebra by taking

the bracket to be

[a, b] = ab− (−1)|a||b|ba,

i.e. we take the bracket to be the difference τ − τ ◦ cA,A where we recall τ is

the multiplication morphism on A. We will discuss other examples of super Lie

algebras after the following discussion of superalgebra modules. In particular we

want to examine the SUSY-version of a matrix algebra.

Remark 1.2.4. If the ground field has characteristic 2 o 3 in addition to the

antisymmetry and Jacobi conditions one requires that [x, x] = 0 for x even if the

characteristic is 2 or [y, [y, y]] = 0 for y odd if the characteristic is 3. For more

details on superalgebras over fields with positive characteristic see [3].

1.3 Modules

Let A be a superalgebra, not necessarily commutative in this section.
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Definition 1.3.1. A left A-module is a super vector space M with a morphism

A⊗M −→ M obeying the usual identities found in the ordinary category.

A right A-module is defined similarly. Note that if A is commutative, a left

A-module is also a right A-module using the sign rule

m · a = (−1)|m||a|a ·m

for m ∈M , a ∈ A. Morphisms of A-modules are also obviously defined, and so we

have the category of A-modules. For A commutative, the category of A-modules

is a tensor category: for M1,M2 A-modules, M1 ⊗M2 is taken as the tensor of

M1 as a right module with M2 as a left module.

Let us now turn our attention to free A-modules. We already have the notion

of the vector space kp|q over k, and so we define Ap|q := A⊗ kp|q where

(Ap|q)0 = A0 ⊗ (kp|q)0 ⊕ A1 ⊗ (kp|q)1

(Ap|q)1 = A1 ⊗ (kp|q)0 ⊕ A0 ⊗ (kp|q)1.

Definition 1.3.2. We say that an A-module M is free if it is isomorphic (in the

category of A-modules) to Ap|q for some (p, q).

This definition is equivalent to saying that there are even elements {e1, . . . , ep}

and odd elements {ε1, . . . , εq} which generate M over A.

Let T : Ap|q −→ Ar|s be a morphism of free A-modules and write ep+1, . . . , ep+q

for the odd variables ε1, . . . , εq. Then T is defined on the basis elements {e1, . . . ep+q}

by

T (ej) =

p+q∑

i=1

eit
i
j . (1.3)

Hence T can be represented as a matrix of size (r + s)× (p+ q):

T =


 T1 T2

T3 T4


 (1.4)
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where T1 is an r×p matrix consisting of even elements of A, T2 is an r×q matrix

of odd elements, T3 is an s×p matrix of even elements, and T4 is an s× q matrix

of odd elements. We say that T1 and T4 are even blocks and that T2 and T3 are

odd blocks. Because T is a morphism of super A-modules, it must preserve parity,

and therefore the parity of the blocks is determined. Note that when we define

T on the basis elements, in the expression (1.3) the basis element preceeds the

coordinates tij. This is important to keep the signs in order and comes naturally

from composing morphisms. For any x ∈ Ap|q, we can express x as the column

vector x =
∑
eix

i and so T (x) is given by the matrix product Tx. Similarly the

composition of morphisms is given by a matrix product.

1.4 Matrices

Let us now consider all endomorphisms of M = Ap|q, i.e. Hom(M,M). This is

an ordinary algebra (i.e. not super) of matrices of the same type as T above.

Even though in matrix form each morphism contains blocks of odd elements of

A, each morphism is an even linear map from M to itself since a morphism in the

super category must preserve parity. In order to get a truly SUSY-version of the

ordinary matrix algebra, we must consider all linear maps M to M , i.e. we are

interested in Hom(M,M). Now we can talk about even and odd matrices. An

even matrix T takes on the block form from above. But the parity of the blocks

is reversed for an odd matrix S; we get

S =


 S1 S2

S3 S4




where S1 is a p× p odd block, S4 is a q × q odd block, S2 is a p× q even block,

and S3 is a q × p even block. Note that in the case where M = kp|q, the odd

blocks are just zero blocks. We will denote this super algebra of even and odd
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(p+ q)× (p+ q) = p|q× p|q matrices by Mat(Ap|q). This super algebra is in fact

a super Lie algebra where we define the bracket [, ] as in Example 1.2.3:

[T, S] = TS − (−1)|T ||S|ST

for S, T ∈ Mat(Ap|q).

Remark 1.4.1. Note that Mat(Ap|q) = Hom(Ap|q, Ap|q). We do not want to

confuse this with what we will later denote as Mp|q(A), which will functorially

only include the even part of Mat(Ap|q), i.e.

Mat(Ap|q)0 = Mp|q(A) = Hom(Ap|q, Ap|q)

(see chapter 3).

We now turn to the SUSY-extensions of the trace and determinant. Let

T : Ap|q −→ Ap|q be a morphism (i.e. T ∈ (Mat(Ap|q))0) with block form (1.4).

Definition 1.4.2. We define the super trace of T to be:

Tr(T ) := tr(T1)− tr(T4) (1.5)

where “tr” denotes the ordinary trace.

This negative sign is actually forced upon us when we take a categorical view

of the trace. We will not discuss this here, but we later give motivation to this

definition when we explore the SUSY-extension of the determinant.

Remark 1.4.3. The trace is actually defined for all linear maps. For S ∈

Mat(Ap|q)1 an odd matrix,

Tr(S) = trS1 + trS4.

Note the sign change. Note also that the trace is commutative, meaning that for

even matrices A,B ∈ Mat(Ap|q)0, we have the familiar formula

Tr(AB) = Tr(BA).
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Definition 1.4.4. Again let M = Ap|q, the free A-module generated by p even

and q odd variables. Then GL(Ap|q) denotes the super general linear group of

automorphisms of M ; we may also use the notation GLp|q(A) = GL(Ap|q).

Remark 1.4.5. If M is an A-module, then GL(M) is defined as the group of

automorphisms of M . If M = Ap|q, then we write GL(M) = GLp|q(A) as above.

Next we define the generalization of the determinant, called the Berezinian,

on elements of GL(Ap|q).

Definition 1.4.6. Let T ∈ GL(Ap|q) have the standard block form (1.4) from

above. Then we formulate Ber:

Ber(T ) = det(T1 − T2T
−1
4 T3) det(T4)

−1 (1.6)

where “det” is the usual determinant.

Remark 1.4.7. The first thing we notice is that in the super category, we only

define the Berezinian for invertible transformations. We immediately see that it

is necessary that the block T4 be invertible for the formula (1.6) to make sense,

however one can actually define the Berezinian on all matrices with only the T4

block invertible (i.e. the matrix itself may not be invertible, but the T4 block is).

There is a similar formulation of the Berezinian which requires that only the T1

block be invertible:

Ber(T ) = det(T4 − T3T
−1
1 T2) det(T1)

−1

So we can actually define the Berezinian on all matrices with either the T1 or the

T4 block invertible. Note that in the case where both blocks are invertible (i.e.

when the matrix T is invertible), both formulae of the Berezinian give the same

answer.
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We leave the following proposition as an exercise.

Proposition 1.4.8. Let T : Ap|q −→ Ap|q be a morphism with the usual block

form (1.4). Then T is invertible if and only if T1 and T4 are invertible.

Proposition 1.4.9. The Berezinian is multiplicative: For S, T ∈ GL(Ap|q),

Ber(ST ) = Ber(S)Ber(T ).

Proof. We will only briefly sketch the proof here and leave the details to the

reader. First note that any T ∈ GL(Ap|q) with block form (1.4) may be written

as the product of the following “elementary matrices”:

T+ =


1 X

0 1


 , T0 =


Y1 0

0 Y2


 , T− =


1 0

Z 1


 . (1.7)

If we equate T = T+T0T−, we get a system of equations which lead to the solution

X = T2T
−1
4 ,

Y1 = T1 − T2T
−1
4 T3,

Y2 = T4,

Z = T−1
4 T3.

It is also easy to verify that Ber(ST ) = Ber(S)Ber(T ) for S of type {T+, T0}

or T of type {T−, T0}. The last case to verify is for

S =


1 0

Z 1


 and T =


1 X

0 1


 .

We may assume that both X and Z each have only one non-zero entry since the

product of two matrices of type T+ results in the sum of the upper right blocks,

and likewise with the product of two type T− matrices. Let xij , zkl 6= 0. Then

ST =


1 X

Z 1 + ZX
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and Ber(ST ) = det(1−X(1 + ZX)−1Z) det(1 + ZX)−1. Because all the values

within the determinants are either upper triangular or contain an entire column of

zeros (X,Z have at most one non-zero entry), the values xij , zkl contribute to the

determinant only when the product ZX has its non-zero term on the diagonal,

i.e. only when i = j = k = l. But then det(1−X(1 +ZX)−1Z) = 1 + xiizii, and

it is clear that Ber(ST ) = 1. A direct calculation shows that Ber(S) = Ber(T ) =

1. �

Corollary 1.4.10. The Berezinian is a homomorphism

Ber : GL(Ap|q) −→ GL1|0(A) = A×
0

into the invertible elements of A.

Proof. This follows immediately from above proposition. �

The usual determinant on the general linear group GLn induces the trace on

its Lie algebra, namely the matrices Mn (see Remark 1.4.1). The extension to

the Berezinian gives

Ber(I + εT ) = 1 + εTr(T )

where I is the p|q×p|q identity matrix (ones down the diagonal, zeros elsewhere)

and ε2 = 0. An easy calculation then exposes the super trace formula with the

negative sign. This of course leads to the question of how the formula for the

Berezinian arises. The answer lies in the SUSY-version of integral forms on super-

manifolds called densities. In F.A. Berezin’s pioneering work in superanalysis,

Berezin calculated the change of variables formula for densities on isomorphic

open submanifolds of Rp|q ([2]). This lead to an extension of the Jacobian in

ordinary differential geometry; the Berezinian is so named after him.

We finish our summary of superlinear algebra by giving meaning to the rank

of a endomorphism of Ap|q.
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Definition 1.4.11. Let T ∈ End(Ap|q). Then the rank of T , rank(T ), is the

superdimension of the largest submatrix of T (obtained by removing columns

and rows).

Proposition 1.4.12. Again, let T ∈ End(Ap|q) with block form (1.4). Then

rank(T ) = rank(T1)|rank(T4).

Proof. Assume that rank(T ) = r|s. Then there is an invertible r|s×r|s submatrix

of T and it is clear that r ≤ rank(T1), s ≤ rank(T4). Conversely, if rank(T1) =

r′, rank(T4) = s′ it is also clear that there exists an invertible r′|s′×r′|s′ submatrix

of T . Therefore we must have r = r′, s = s′. �
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CHAPTER 2

Supergeometry

In this chapter we discuss the foundations of supergeometric objects. We begin

by defining the most basic object, the super ringed space and build some basic

concepts from this definition.

2.1 Superspaces

Definition 2.1.1. As in ordinary algebraic geometry, a super ringed space is a

topological space |S| endowed with a sheaf of supercommuting rings which we

denote by OS. Let S denote the super ringed space (|S|,OS).

Definition 2.1.2. A superspace is a super ringed space S with the property that

the stalk OS,x is a local ring for all x ∈ |S|.

Given an open subset U ⊂ |S|, we get an induced subsuperspace given by

restriction: (U,OS|U). For a closed superspace, we make the following definition:

Definition 2.1.3. Let S be a superspace. Then we say that S ′ is a closed sub-

superspace of S if

(i) |S ′| ⊂ |S| is a closed subset;
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(ii) The structure sheaf on S ′ is obtained by taking the quotient of OS by a

quasi-coherent sheaf of ideals I in OS:

OS′(U) = OS(U)/I(U)

for all open subsets U .

Next we define a morphism of superspaces so that we can talk about the

category of superspaces.

Definition 2.1.4. Let S and T be superspaces. Then a morphism S −→ T is a

continuous map |ϕ| : |S| −→ |T | together with a sheaf map ϕ∗ : OT −→ ϕ∗OS so

that ϕ∗
x(m|ϕ|(x)) ⊂ mx where mx is the maximal ideal in OS,x and ϕ∗

x is the stalk

map. We denote the pair (|ϕ|, ϕ∗) by ϕ : S −→ T .

Remark 2.1.5. The sheaf map ϕ∗ : OT −→ ϕ∗OS corresponds to the system of

maps ϕ∗|U : OT (U) −→ OS(|ϕ|−1(U)) for all open sets U ⊂ T . To ease notation,

we also refer to the maps ϕ∗|U as ϕ∗.

Essentially the condition ϕ∗
x(m|ϕ|(x)) ⊂ mx means that the sheaf homomor-

phism is local. Note also that ϕ∗ is a morphism of supersheaves, so it preserves

parity. The main point to make here is that the sheaf map must be specified

along with the continuous topological map since sections are not necessarily gen-

uine functions on the topological space as in ordinary differential geometry. An

arbitrary section cannot be viewed as a function because supercommutative rings

have many nilpotent elements, and nilpotent sections are identically zero as func-

tions on the underlying topological space. Therefore we employ the methods of

algebraic geometry to study such objects. We will address this in more detail

later. Now we introduce two types of superspaces that we examine in detail in

the forthcoming chapters: supermanifolds and superschemes.
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2.2 Supermanifolds

A supermanifold is a specific type of “smooth” superspace which we describe via

a local model. Because we always keep an eye on the physics literature from

which supersymmetry springs, the supermanifolds of interest to us are the C∞-

supermanifolds over R.

Let C∞
U be the sheaf of C∞-functions on the domain U ⊂ Rp. We define

the superdomain Up|q to be the super ringed space (U,C∞
U [θ1, . . . , θq]) where

C∞
U [θ1, . . . , θq] is the sheaf of supercommutative R-algebras given by (for V ⊂ U

open)

V 7→ C∞
U (V )[θ1, . . . , θq].

The θj are odd (anti-commuting) global sections which we restrict to V . Most

immediately, the superspaces Rp|q are superdomains with sheaf C∞
Rp[θ1, . . . , θq].

Definition 2.2.1. A supermanifold of dimension p|q is a superspace which is

locally isomorphic to Rp|q. Given any point x ∈ |M |, there exists a neighborhood

V ⊂ |M | of x with p even functions (ti) and q odd functions θj on V so that

OM |V = C∞(t1, . . . , tp)︸ ︷︷ ︸
C∞

M
(V )

[θ1, . . . , θq]. (2.1)

Morphisms of supermanifolds are morphisms of the underlying superspaces.

For M,N supermanifolds, a morphism ϕ : M −→ N is a continuous map |ϕ| :

|M | −→ |N | together with a (local) morphism of sheaves of superalgebras ϕ∗ :

ON −→ ϕ∗OM . Note that in the purely even case of ordinary C∞-manifolds, the

above notion of a morphism agrees with the ordinary one. We may now talk about

the category of supermanifolds. The difficulty in dealing with C∞-supermanifolds
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arises when one tries to think of “points” or “functions” in the traditional sense.

The ordinary points only account for the topological space and the underlying

sheaf of ordinary C∞-functions, and one may truly only talk about the “value”

of a section f ∈ OM (U) for U ⊂ |M | an open subset; the value of f at x ∈ U

is the unique real number c so that f − c is not invertible in any neighborhood

of x. What this says is that we cannot reconstruct a section by knowing only

its values at topological points. Such sections are then not truly functions in the

ordinary sence, however, now that we have clarified this point, we may adhere to

the established notation and call such sectionsf “functions on U”.

Remark 2.2.2. Let M be a supermanifold, U an open subset in |M |, and f a

function on U . If OM(U) = C∞(t1, . . . , tp)[θ1, . . . , θq] as in (2.1), there exist even

functions fI ∈ C
∞(t) (t = t1, . . . tp)) so that

f(t, θ) = f0(t) +
∑

i

fi(t)θ
i +
∑

i<j

fij(t)θ
iθj + . . . = f0(t) +

q∑

|I|=1

fI(t)θ
I (2.2)

where I = {i1 < i2 < . . . < ir}
q
r=1.

Let us establish the following notation. Let M be a supermanifold, then we

write the nilpotent sections as

JM = OM,1 +O2
M,1 = 〈OM,1〉OM

. (2.3)

This is an ideal sheaf in OM and thus defines a natural subspace of M we

shall call Mred, or M̃ , where

M̃ = (|M |,OM/JM). (2.4)
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Note that M̃ is a completely even superspace, and hence lies in the ordinary

category of ordinary C∞-manifolds, i.e. it is locally isomorphic to Rp. The quo-

tient map from OM −→ OM/JM defines the inclusion morphism M̃ ↪→ M . The

subspace M̃ should not be confused with the purely even superspace (|M |,OM,0)

which is not a C∞-manifold since the structure sheaf still contains nilpotents.

Observation 2.2.3. Here we examine closed submanifolds in the super category.

Let M be a supermanifold. Then a submanifold of M is a supermanifold N

together with a immersion, that is a map i : N −→ M so that i induces an

imbedding of Ñ onto a closed (locally closed) ordinary submanifold of M̃ and

i∗U : OM(U) −→ ON (i−1(U)) is surjective for all open U ⊂ |M |.

Locally, this means that we can find a system of coordinates (t1, . . . , tp, θ1, . . . , θq)

in any open neighborhood of M so that N restricted to this neighborhood is de-

scribed by the vanishing of some of the coordinates:

t1 = . . . = tr = θ1 = . . . = θs = 0.

One can check that this explanation of submanifolds agrees with the definition

of a closed sub superspace given earlier.

2.3 Superschemes

A superscheme is an object in the category of superspaces which generalizes the

notion of a scheme.

Definition 2.3.1. A superspace S = (|S|,OS) is a superscheme if (|S|,OS,0) is

an ordinary scheme and OS,1 is a quasi-coherent sheaf of OS,0-modules.

Because any non-trivial supercommutative ring has non-zero nilpotents, we

need to redefine what we mean by a reduced superscheme.
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Definition 2.3.2. We say that a superscheme S is super reduced if OS/JS is

reduced. In other words, in a super reduced superscheme, we want that the odd

sections generate all the nilpotents.

Example 2.3.3. Let Am be the ordinary affine space of dimension m over C

given with the Zariski topology. On Am we define the following sheaf OAm|n of

superalgebras. Given U ⊂ Am open,

O(U) = OAn(U)[ξ1, . . . , ξn] (2.5)

where OAm is the ordinary sheaf on Am and the ξ1, . . . , ξn are anti-commuting

(or odd) variables. One may readily check that (Am,OAm|n) is a reduced su-

percheme which we hereon denote by Am|n.

Remark 2.3.4. The superscheme Am|n is more than reduced; it is a smooth

superscheme. The difference being the local splitting in (2.5). We do not further

explore the notion of smoothness in these notes.

Morphisms of superschemes are just morphisms of superspaces, so we may

talk about the subcategory of superschemes. The category of superschemes is

larger than the category of schemes; any scheme is a superscheme if we take a

trivial odd component in the structure sheaf. We will complete our exposition of

the category of superschemes in chapters 5-6.

2.4 T-Points

The presence of odd coordinates steals some of the geometric intuition away

from the language of supergeometry. For instance, we cannot see an “odd point”

– they are invisible both topologically and as classical functions on the underlying
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topological space. We see the odd points only as sections of the structure sheaf.

To bring some of the intuition back, we turn to the functor of points approach

from algebraic geometry.

Definition 2.4.1. Let S and T be superspaces. Then a T -point of S is a mor-

phism T −→ S. We denote the set of all T -points by S(T ). Equivalently,

S(T ) = Hom(T, S).

Let us recall an important lemma.

Lemma 2.4.2. (Yoneda’s Lemma) There is a bijection from the set of morphisms

ϕ : M −→ N to the set of maps ϕT : M(T ) −→ N(T ), functorial in T .

Proof. Given a map ϕ : M −→ N , for any morphism t : T −→ M , ϕ ◦ t is a

morphism T −→ N . Conversely, we attach to the system (ϕT ) the image of the

identity map from ϕM : M(M) −→ N(M).

�

Yoneda’s lemma allows us to replace a superspace S with its set of T -points,

S(T ). We can now think of a superspace S as a representable functor from the

category of superspaces to the category of sets. In fact, when constructing a

superspace, it is often most convenient to construct the functor of points, then

prove that the functor is representable. Let us give a couple examples of T -points

from the category of supermanifolds.

Example 2.4.3. (i) If T is just an ordinary topological point (i.e. T = (R0|0,R)),

then a T -point of M is an ordinary topological point of |M |.

(ii) If M = Rp|q, then a T -point of M is a system of p even and q odd functions

on T by definition of a superspace morphism. This is made more clear in chapter
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5 by Proposition 3.1.2. Thus Rp|q(T ) = Op
T,0 ⊕O

q
T,1 = (O

p|q
T )0.

We already see the power of T -points in these two examples. The first example

(T = R0|0) gives us complete topological information while the second (M = Rp|q)

will allow us to talk about coordinates on supermanifolds. We fully explore these

topics in the next chapter.

In chapter 5 we give a criterion for the representability of functors from the

category of superschemes to the category of sets. As in the ordinary case, it turns

out that representable functors must be local, i.e. they should admit a cover by

open affine subfunctors which glue together in some sense.
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CHAPTER 3

C∞-supermanifolds

We have already described a supermanifold in chapter 2 as a superspace which is

locally isomorphic to Rp|q. Recall also that given a supermanifold M , there is a

surjection OM −→ OM/JM which corresponds to the natural inclusion M̃ ↪→ M .

For local functions f on OM , this means f 7→ f̃ = f0 from the decomposition

(2.2).

3.1 Charts

Let us begin studying supermanifold morphisms in detail through the following

example.

Example 3.1.1. Consider the supermanifold R1|2 with a morphism ϕ : R1|2 −→

R1|2. On R1|1 we have global coordinates t, θ1, θ2 and so we may express any

function f as in (2.2):

f = f(t, θ1, θ2) = f0(t) + f1(t)θ
1 + f2(t)θ

2 + f12(t)θ
1θ2.

Then f̃ = f0(t) ∈ C
∞(R) which sits as a function on the reduced C∞-manifold

R̃1|2 = R. The morphism ϕ is described by a continuous map |ϕ| and a sheaf

map ϕ∗.
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We first prescribe the global coordinates under ϕ∗:

t 7→ t∗ = t+ θ1θ2

θ1 7→ θ1∗ = θ1

θ2 7→ θ2∗ = θ2.

(3.1)

We claim that knowing ϕ∗ on only these global coordinates is enough to

completely describe ϕ. Indeed, we first see that t 7→ t + θ1θ2 tells us that |ϕ| is

just the identity map. Next, let f ∈ C∞(t)[θ1, θ2] be as above. Then f 7→ f ∗;

f ∗ = f(t∗, θ1∗, θ2∗) = f0(t+θ
1θ2)+f1(t+θ

1θ2)θ1+f2(t+θ
1θ2)θ2+f12(t+θ

1θ2)θ1θ2.

(3.2)

And so we must only make sense of fI(t+θ1θ2). The key is that we take a Taylor

series expansion; the series of course terminates thanks to the nilpotence of the

the odd coordinates:

fI(t+ θ1θ2) = fI(t) + θ1θ2f ′
I(t). (3.3)

It is easy to check that this in fact gives a homomorphism of superalgebras. For

g, h ∈ C∞(R), (gh)∗ = gh + θ1θ2(gh)′ = g∗h∗. The global sections are enough

since the full sheaf map is given by restriction. So in this example, it is enough to

know ϕ on only the coordinates. In fact, the morphism induced by the equations

(3.1) is unique via the above construction.

That a morphism is determined by local coordinates is true in general; we

summarize this fact in the following Chart Theorem.

Theorem 3.1.2. (Chart) Let U ⊂ Rp|q be an open submanifold of Rp|q (U = Up|q

is a superdomain). There is a bijection between

(i) the set of morphisms ϕ : M −→ U and

(ii) the set of systems of p even functions ti∗ and q odd functions θj∗ on M so

that t̃i∗(m) ∈ |U | for all m ∈ |M |.
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Proof. We sketch the proof of this well-known result here (for more details, see

for example [17]). The key point is that given a system of p even functions ti∗

and q odd functions θj∗ on M , we can define a sheaf map. As in the example

(3.1.1) it is enough to define the sheaf map for f ∈ C∞(U) since the expansion

of an arbitrary section is linear in the odd coordinates over C∞(U) and since we

can restrict to an open V ⊂ U .

We define ϕ formally by

f = f(t1, . . . , tp) 7→ f ∗ = f(t1∗, . . . , tp∗).

We can write ti∗ = t̃i∗ + ni where the ni are nilpotent, and we are set up to take

a Taylor series expansion, just as in the above example:

f(t̃1∗ + n1, . . . , t̃p∗ + np) :=
∑

k

∂k

∂tk
f(t̃1∗, . . . , t̃p∗)

nk

k!
(3.4)

where nk is k-tuples of {ni}. This series terminates again thanks to the nilpotent

ni. The C∞-functions t̃i∗ completely determine the topological map |ϕ|. �

Remark 3.1.3. Note that because the expansion (3.4) involves an arbitrary

number of derivatives, there is no way to make sense of Ck-supermanifolds. We

may, however, talk about the category of analytic (over R or C) supermanifolds.

We refer to theorem (3.1.2) as the Chart Theorem because it equates the definition

of a supermanifold to giving an atlas of local charts. These local charts glue

together isomorphic copies of open subsets of Rp|q.

As in the category of superschemes, products exist in the category. Let M be

a dimension p|q supermanifold and N be a dimension r|s supermanifold, then we

describe M ×N by

M ×N = (|M | × |N |,OM×N).
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We define the sheafOM×N as follows. For coordinate neighborhoods U(= (x, θ)) ⊂

|M |, V (= (t, η)) ⊂ |N |, OM×N(U × V ) = C∞(x, t)[θ, η]. One must show that

gluing conditions are satisfied, but this calculation mimics that in the ordinary

category and is left for the reader. SoM×N is a (p+r)|(q+s)-dimensional super-

manifold with M̃ ×N = M̃×Ñ . As in the ordinary category, OM×N 6= OM×ON ;

instead the we must take the completion of the tensor product to get an equality.

Remark 3.1.4. We cannot think of a supermanifold simply as a fiber space over

an ordinary manifold. Morphisms between supermanifolds mix both even and

odd coordinates and thus for an open neighborhood U of a supermanifold M ,

C∞ cannot be realized as a subsheaf of OM ; it follows that there is no natural

morphism M −→ M̃ . The symmetries of interest in these extensions of classical

manifolds are those which place even and odd on the same level. Such symmetries

are called supersymmetries and are at the foundation of the physical supersym-

metry theory which aims to treat bosons and fermions on the same footing.

3.2 Vector Fields

Many concepts and results from ordinary differential geometry extend naturally

to the category of supermanifolds. If we keep the categorical language we have

developed, there is hardly any difference in fundamental differential geometry

between the ordinary and the super categories. For example, a vector bundle

on a supermanifold M is a locally free sheaf of (super)modules over OM . This

leads to the notion of a tangent bundle on M , where we find super extensions

of the inverse and implicit function theorem (see [17]), and the local and global

Frobenius theorem which we will prove in the next chapter.

Definition 3.2.1. A vector field V on a supermanifold M is an R-linear deriva-
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tion of OM , i.e. it is a family of of derivations OM (U) −→ OM (U) that is

compatible with restrictions.

The vector fields form a sheaf of modules over OM , the tangent sheaf which

we denote by VecM . The sheaf VecM is actually locally free over OM which we

establish with the following lemma. The lemma also helps us understand the

local structure of a vector field.

Lemma 3.2.2. Let (t, θ) be coordinates on some open subsupermanifold U ⊂

Rp|q. Then the OU -module of R-linear derivations of OU is a rank p|q free sheaf

over OU with basis {∂/∂ti, ∂/∂θj} where

∂

∂ti
(fI(t)θ

I) =
∂fI(t)

∂ti
θI ,

∂

∂θj
(fI(t)θ

jθI) = fI(t)θ
I (3.5)

where j /∈ I.

Proof. The proof is the same as in the classical case since the θ-variables are

polynomial (in fact, they are linear). �

Since U ⊂ Rp|q is the local model for any dimension p|q supermanifold M ,

the lemma implies that VecM is a vector bundle of rank p|q. If V is a vector field

on U , then in a coordinate neighborhood U ′ ⊂ U with coordinates (t, θ), there

exist functions fi, gj on U ′, so that V has the unique expression

V |U ′ =

p∑

i=1

fi(t, θ)
∂

∂ti
+

q∑

j=1

gj(t, θ)
∂

∂θj
. (3.6)

We similarly define the tangent space at a point m of M , which we denote

Tm(M). We think of tangent vectors as R-linear derivations Om −→ R of the

stalk at m; we may think of a tangent vector v ∈ Tm(M) as a vector field on U ,

a neighborhood of m, composed with evaluation at m. If the open subset U from
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definition 3.2.1 is a coordinate neighborhood around m, the vector v takes the

expression

v =
∑

ai

∂

∂xi
|m + bj

∂

∂θj
|m (3.7)

for ai, bj ∈ R.

For M and N supermanifolds, we can extend a vector on M to a ON -linear

derivation on M ×N , and likewise we may trivially treat any vector field on M

as a vector field on M × N . We will call these extensions extended vectors and

extended vector fields respectively.

Definition 3.2.3. Let v be a tangent vector of M at m, Um ⊂ |M | an open

neighborhood of m. We view v as a derivation OM(Um) −→ R and identify ON

with OR×N . Then v extends uniquely to a ON -linear derivation:

vN : OM×N(Um × V ) −→ ON (V )

↘ ↗

OR×N(R× V )

for any open V ⊂ |N | (this is easily seen locally by using coordinates, and then

by patching using local uniqueness) so that

vN (a⊗ b) = v(a)b (3.8)

where a and b are local functions of M and N respectively.

One may similarly “extend” vector fields: let V be a vector field on M . Then

we extend V to a derivation (V ⊗ id) on M × N by forcing V to act trivially

on N . If (t, θ) and (x, ξ) are local coordinates on M and N respectively, V has

the coordinate expression as in (3.6). Then the extension (V ⊗ id) has the same

coordinate expression on M × N described by coordinates (t, x, θ, ξ), i.e. it is

identically zero on (x, ξ). Again the extension is unique by patching using local

uniqueness.
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3.3 Differential Calculus

In this section we discuss the notion of differential of a morphism of superman-

ifolds. In this context the theory of supermanifolds resembles very closely the

classical theory. For completeness, we give a summary of the well known results,

sketching only briefly the proofs or leaving them as exercises.

Definition 3.3.1. Let α : M −→ N be a morphism of supermanifolds. We

define differential of α at a topological point m ∈ |M | the map (dα)m : TmM −→

T|α|(m)N given by:

(dα)m(X)(f) = X(α∗
m(f)), α∗

m : ON,|α|(m) −→ OM,m,

where X ∈ T|α|(m)N ∼= Der(OM,m,R), as we have seen in the previous section.

In local coordinates one can readily check that (dα)m has the usual jacobian

expression. In fact, let’s choose suitable open submanifolds U ⊂ M and V ⊂

N such that m ∈ |U | and |α|(m) ∈ |V |, homeomorphic respectively to open

submanifolds in Rr|s and Ru|v, and let (ti, θj) be local coordinates in U . We have

that:

α(ti, θj) = (fk, φl) ⊂ V.

Then

(dα)m =




∂fk

∂ti
∂φl

∂ti

∂fk

∂θj

∂φl

∂θj




m

,

where the subscript m means evaluation at m.

As an example let’s compute the differential of the morphism described in

example 3.1.1.
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Example 3.3.2. Let α : R1|2 −→ R1|2 be the morphism given locally (and

globally) by:

α(t1, θ1, θ2) = (t1 + θ1θ2, θ1, θ2)

Then the differential at a generic topological point m = (t0, 0, 0) is:

(dα)m =




1 0 0

θ2 1 0

−θ1 0 1




m

=




1 0 0

0 1 0

0 0 1




As in the ordinary theory there are classes of morphisms that play a key role:

immersions, submersions and diffeomorphisms.

Definition 3.3.3. Let α : M −→ N be a supermanifold morphism and α̃ :

M̃ −→ Ñ the underlying classical morphism on the reduced spaces. α is an

immersion at m ∈ |M | if α̃ is an ordinary immersion at m and (dα)m is injective.

Likewise α is a submersion at m if α̃ is a submersion at m and (dα)m is surjective.

Finally α is a diffeomorphism at m if it is a submersion and an immersion. When

we say α is a immersion (resp. submersion or diffeomorphism) we mean α is such

at all points of |M |.

As in the classical setting submersions and immersions have the usual local

models.

Proposition 3.3.4. Let α : M −→ N be a supermanifold morphism. Let m ∈

|M | and let U ⊂M and V ⊂ N two suitable open sets homeomorphic respectively

to open sets in Rr|s and Ru|v, m ∈ |U |, α(m) ∈ |V |.

1. If α is an immersion at m, after suitable changes of coordinate in U and V ,

locally we have that

α(ti, θk) = (ti, 0, θk, 0)
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2. If α is an submersion at m, after suitable changes of coordinate in U and V ,

locally we have that

α(ti, sj, θk, σl) = (ti, θk)

The proof of this result is essentially the same as in the ordinary setting and

can be found for example in [23] chapter 4.

Remark 3.3.5. A closed sub supermanifold N ofM can be equivalently defined

as a supermanifold such that Ñ is a closed supermanifold of M̃ and N ⊂ M is an

immersion. We leave as an exercise to the reader the check that this definition is

equivalent to the one given in observation 2.2.3 in chapter 2.

The Submersion Theorem in the supercontext plays an important role in

proving that certain closed subset of a supermanifold admit a supermanifold

structure.

Theorem 3.3.6. Submersion Theorem. Let f : M −→ N be a submersion at

n ∈ |N |, and let |P | = |g|−1(n). Then |P | admits a supermanifold structure, i.

e. there exists a supermanifold P = (|P |,OP ) where OP = OM ||P |. Moreover:

dimP = dimM − dimN

Proof. (Sketch). Locally we can define for p ∈ |P |, OP,p = OM,p/f
∗(In), where

In is the ideal in ON,n of elements vanishing at n. For W ∈ |P | open, sections in

OP (W ) are defined as maps

u : W −→
∐

p∈W OP,p

q 7→ u(q) ∈ OP,q

This gives P the structure of a superspace. By the previous proposition we know

that locally f(t, s, θ, σ) = (t, θ). Hence locally we have coordinates (s, σ) and P

is a supermanifold of the prescribed dimension. �
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Example 3.3.7. Let X be the open submanifold of R2|2 whose topological space

consists of the points of plane R2 with the coordinate axis, x = 0, y = 0 removed.

Let f : X −→ R1|0 be the morphism α(x, y, ξ, η) = y−1(x − ξy−1η). One can

check that at the topological point 1 ∈ R, f is a submersion, hence |P | = |f |−1(1)

admits a sub supermanifold structure. If we identify R2|2 with the 1|1 × 1|1

supermatrices P corresponds to the supermatrices with Berezinian equal to 1

and we denote P with SL(1|1), the special linear supergroup.

We next turn our attention to a special type of supermanifold, a super Lie

group.

3.4 Super Lie Groups

A Lie group is a group object in the category of manifolds. Likewise a super Lie

group is a group object in the category of supermanifolds. This means that there

are appropriate morphisms which correspond to the group operations: product

µ : G × G −→ G, unit e : 1 −→ G (where 1 ∈ |G| may be equated to R0|0, a

single topological point), and inverse i : G −→ G so that the necessary diagrams

commute (these are, in fact, the same diagrams as in the ordinary setting). We

may of course interpret all these maps and diagrams in the language of T -points,

which gives us (for any supermanifold T ) morphisms µT : G(T )×G(T ) −→ G(T ),

etc. that obey the same commutative diagrams. In other words, Yoneda’s Lemma

says that the set G(T ) is in fact a group for all T . This leads us to our working

definition of a super Lie group.

Definition 3.4.1. A supermanifold G is a super Lie group if for any superman-

ifold T , G(T ) is a group, and for any supermanifold S and morphism T −→ S,

the corresponding map G(S) −→ G(T ) is a group homomorphism.
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In other words, T 7→ G(T ) is a functor into the category of groups.

Example 3.4.2. Let us consider the super Lie group R1|1 through the symbolic

language of T -points. The product morphism µ : R1|1 × R1|1 −→ R1|1 is given

by

(t, θ) · (t′, θ′) = (t+ t′ + θθ′, θ + θ′) (3.9)

where the coordinates (t, θ) and (t′, θ′) represent two distinct T -points for some

supermanifold T . It is then clear by the formula (3.9) that the group axioms

inverse, identity, and associativity are satisfied.

Also in the language of T -points, the definition given above is equivalent to

saying that a super Lie group is a functor from the category of supermanifolds to

the category of groups which is representable. In this vein, let us further examine

the GLp|q example.

Example 3.4.3. Let’s first construct the supermanifold GLp|q. The reduced

space G̃Lp|q = GLp ×GLq is an open subset of Rp2

×Rq2

. We build the sheaf on

GLp|q from the smooth functions on GLp ×GLq and the restriction of the global

odd coordinates θ1, . . . , θ2pq on Rp2+q2|2pq, i.e. for an open U ⊂ GLp ×GLq,

OGLp|q
(U) = (GLp ×GLq)(U)⊗ [θ1, . . . , θ2pq]|U .

Now we can examine the T -points of GLp|q. Let T be a supermanifold, t ∈

GLp|q(T ) a T -point, then t : T −→ GLp|q is a morphism. By proposition 3.1.2,

t is equivalent to giving the pullbacks of coordinates. By taking into account

the determinant identities which must be satisfied, we see that t is then equiva-

lent to an invertible matrix with coefficients in OT , and so t corresponds to an

automorphism of O
p|q
T . Thus GLp|q(T ) is the group of automorphisms of O

p|q
T .

Example 3.4.4. Let us consider another example of a super Lie group, SLp|q.

We define SLp|q in a way which mimics the classical construction. For each
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supermanifold T , the Berezinian gives a morphism from the T -points of GLp|q to

the T -points of GL1|0:

BerT : GLp|q(T ) −→ GL1|0(T ).

The super special linear group SLp|q is the kernel of BerT .

Using a similar argument as in example 3.3.7 one can show that the functor

SLp|q is the functor of points of a super Lie group, closed sub supermanifold of

GLp|q. In fact |SLp|q| = |Ber|−1(1), where Ber is the map Ber : GLp|q −→ GL1|0

between supermanifold corresponding by Yoneda’s lemma to the family of maps

BerT given above.

Example 3.4.5. In our last example we extend the classical orthogonal group

to the super category. Let Φ be an even nondegenerate bilinear form on Rp|2q

with values in R1|0. The form Φ is equivalent to giving nondegenerate symmetric

bilinear form on Rp and a nondegenerate alternating form on R2q. Then for any

supermanifold T , define OSpp|2q(T ) as the subgroup of GLp|2q(T ) which preserves

Φ.

Remark 3.4.6. A word of caution. In the above two examples, we only give SLp|q

and OSpp|2q in terms of their T -points. It is clear that each is a functor from

supermanifolds to groups. However, it is not clear without a further argument,

that the functors defined above are representable.

3.5 Left Invariant Vector Fields

In the remainder of this chapter, we discuss left invariant vector fields on a super

Lie group, then examine the infinitesimal interpretation of a super Lie group

acting on a supermanifold, which will be most relevant when we examine the

super Lie group/algebra, super Lie subgroup/subalgebra pairing.
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Let G be a super Lie group with group law µ : G × G → G. Via T -points,

we can symbolically understand this group law as (x, ξ) · (x′, ξ′) = (t, θ) where

t = t(x, x′, ξ, ξ′) are even functions and θ = θ(x, x′, ξ, ξ′) are odd functions. Again,

all this really says is that µ∗(ti) = ti∗ = ti(x, x
′, ξ, ξ′) for some even section ti of

OG×G and µ∗(θj) = θj∗ = θj(x, x
′, ξ, ξ′) for some odd section.

Recall classically that for an ordinary Lie group H , we could define a map `h,

“left multiplication by h”(h ∈ H):

H
`h−→ H ; a 7→ ha (3.10)

(for a ∈ H). The differential of this map gives

Te(H)
d`h−→ Th(H) (3.11)

and for a vector field X on H , we say that X is left invariant if

d`h ·X = X · `h. (3.12)

We interpret this in the super category by saying that a left invariant vector

field on G is invariant with respect to the group law µ∗ “on the left”. What this

amounts to in making a formal definition is that we replace the ordinary group

law µ with the anti-group law ι given (via T -points) by:

ι(g, g′) = µ(g′, g) = g′ · g.

Since V is a vector field, V |U : OG(U) → OG(U) is a derivation for all open

U ⊂ |G|, the expression ι∗ ◦ V makes sense. Now in the spirit of (3.12) we need

to understand “V ◦ ι∗.” We trivially extend the derivation V to OG×G, and the

expression (V ⊗ id) ◦ ι∗ is formal. We can now make a definition.

Definition 3.5.1. If V is a vector field on the super Lie group G, we say that V

is left invariant if (V ⊗ id)ι∗ = ι∗V .
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As in the classical theory, we have the following theorem.

Theorem 3.5.2. There is a bijection between

i. left-invariant vector fields on G and

ii. Te(G).

Before we prove theorem (3.5.2), let us first establish some useful notation

and a technical lemma. Recall that for a supermanifold X and any v ∈ TxX, we

have the extended OT -linear derivation vT for any supermanifold T . Moreover,

let ϕ : X −→ Y be a morphism of supermanifolds. Then ϕ induces the morphism

ϕ× idT : X × T −→ Y × T and we denote the pullback by

(ϕ× idT )∗ = ϕ∗ ⊗ idT . (3.13)

Similarly we can define idT ⊗ ϕ
∗.

Proof. (Theorem 3.5.2)

Since G is a super Lie group, there is a map id : {e} → G which gives ε : OG → k,

“evaluation at e”. If V is a left invariant vector field on G, then εV = v is a

tangent vector at the origin of G. We claim that this v in fact determines V :

V = (vG)ι∗.

Let us first show that given any tangent vector v, (vG)ι∗ is a left invariant vector

field on G.

Heuristically we are doing the same thing as in the classical setting; we are

infinitesimally pushing the vector v with the group law. It is clear that (vG)ι∗ is

locally a derivation on OG; we next show it is left invariant, i.e. we must show

that

((vG)ι∗ ⊗ idG)ι∗ = ι∗(vG)ι∗. (3.14)

43



A direct check on local coordinates (one can always choose coordinates of the

form a⊗ b on G×G) shows that

((vG)ι∗ ⊗ idG) = vG×G(ι∗ ⊗ idG).

But vG×G(ι∗ ⊗ idG) = vG×G(idG ⊗ ι
∗) by the coassociativity of G, and another

direct check shows that

vG×G(idG ⊗ ι
∗) = ι∗(vG)

Hence the claimed equality (3.14).

The only item left to show is that V = (vG)ι∗. Note that we have the equality

idG = (ε ⊗ idG)ι∗ from the “identity” group axiom. Then V = (ε ⊗ idG)ι∗V =

(ε ⊗ idG)(V ⊗ idG)ι∗ by left-invariance of V , but the right hand side of the last

equality is precisely (vG)ι∗ by evaluation on local coordinates. �

Remark 3.5.3. A right invariant vector field is similarly defined; we need only

replace ι by µ in the above definitions and theorems. There is a natural anti-

homomorphism from left invariant vector fields to right invariant vector fields

induced by the inverse map i : G −→ G.

The left invariant vector fields are a subsuper Lie algebra of VecG which we

denote by

g = {V ∈ VecG | (V ⊗ id)ι∗ = ι∗V }.

Since the bracket of left invariant vector fields is left invariant, in fact, g is the

super Lie algebra associated to the super Lie group G, and we write g = Lie(G)

as usual.

Example 3.5.4. We will calculate the left invariant vector fields on R1|1 with

the group law from example (3.4.2)

(t, θ) ·µ (t′, θ′) = (t+ t′ + θθ′, θ + θ′). (3.15)

44



From theorem (3.5.2), we know that the Lie algebra of left invariant vector fields

can be extracted from TeG = span{ ∂
∂t
|e,

∂
∂θ
|e}. We use the identity V = (vG)ι∗

from the proof of Theorem 3.5.2 to calculate the corresponding left invariant

vector fields:

(
∂

∂t
|e)G ◦ ι

∗, (
∂

∂θ
|e)G ◦ ι

∗. (3.16)

To get coordinate representations of (3.16), we apply them to coordinates (t, θ):

( ∂
∂t
|e)G ◦ ι

∗(t) = ( ∂
∂t
|e)G(t′ + t+ θ′θ) = 1

( ∂
∂t
|e)G ◦ ι

∗(θ) = ( ∂
∂t
|e)G(θ′ + θ) = 0;

(3.17)

( ∂
∂θ
|e)G ◦ ι

∗(t) = ( ∂
∂θ
|e)G(t′ + t+ θ′θ) = −θ′

( ∂
∂θ
|e)G ◦ ι

∗(θ) = ( ∂
∂θ
|e)G(θ′ + θ) = 1.

(3.18)

Thus the left invariant vector fields on (R1|1, µ) are

∂

∂t
, −θ

∂

∂t
+

∂

∂θ
. (3.19)

A quick check using the definition shows that (3.19) are in fact left invariant.

3.6 Infinitesimal Action

In this section we discuss the infinitesimal interpretation of a super Lie group

acting on a supermanifold. We later use the results from this section in chapter 4

to build the super Lie group/algebra super Lie subgroup/subalgebra correspon-

dence.

Let G be a super Lie group, M a supermanifold, and

ϕ : G×M −→M

be a morphism. If v ∈ TeG (e ∈ G the identity), then the composition

OM (U)
ϕ∗

−→ OG×M(Ue × U)
vM−→ OM(U) (3.20)
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is then a derivation of OM(U) for any open U ⊂ |M | (Ue ⊂ |G| is some open

neighborhood of the identity e). The Leibniz property can be verified directly by

calculating on local coordinates. Then the composition vM ◦ ϕ
∗ defines a vector

field on M which we denote by VM(v, ϕ):

VM(v, ϕ)(f) = vM(ϕ∗(f)) (3.21)

for f local function on M . It is clear that as v varies we get a map of super vector

spaces from Tx(X) into the super vector space of vector fields on M . Let S be

another supermanifold and consider the morphism

ϕ× idS : G×M × S −→ M × S

and we see that

vM×S(ϕ∗(f)⊗ s) = vM (ϕ∗(f))⊗ s (3.22)

for f again a function on M and s a function on S. We thus obtain the equality:

VM×S(v, ϕ× idS) = VM(v, ϕ)⊗ idS. (3.23)

Note that it is enough to verify (3.23) on sections of the form f⊗s. The equation

establishes an equality of vector fields, and so it is enough to check it on coordi-

nates. We can always write coordinates in the form f ⊗ s, and so the calculation

(3.22) is enough.

Example 3.6.1. Let M = G and let the map ϕ = ι be the anti-group law. Then

VG(v, ι) =: V `

is the unique left invariant vector field on G which defines the tangent vector v

at e. If we take ϕ = µ where µ(gg′) = gg′ is the ordinary group law, then

VG(v, µ) = V r
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where V r is the unique right invariant vector field defining the tangent vector v

at e. We know that v 7−→ V ` is a linear isomorphism of Te(G) with Lie(G) and

one can check that V ` 7−→ V r is an anti-isomorphism of super Lie algebras.

Definition 3.6.2. Let ϕ = σ be an action of G on M

σ : G×M −→M.

We define a linear map ρ by

ρ(v) =def VM(v, σ), ρ(v)(f) = vM(σ∗(f)) (3.24)

for f a section on OM .

In fact, the next theorem asserts that the association

V ` 7−→ ρ(v)

is a linear map from Lie(G) to VecM .

The definition of action of G on M gives rise to a commutative diagram

G×G×M
µ×idM−→ G×M

idG×σ ↓ ↓σ

G×M
σ
−→ M.

(3.25)

Theorem 3.6.3. The map ρ (3.6.2) is an antimorphism of super Lie algebras

Lie(G) −→ VecM . It moreover satisfies the property

(V r ⊗ idM)(σ∗f) = σ∗(ρ(v)f) (3.26)

for v ∈ Te(G), V r its corresponding right-invariant vector field, and f a function

on M .
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Proof. It is enough to prove (3.26) to prove both assertions. Indeed, suppose we

have proved (3.26). Then we see that the image of OM under σ∗ is stable under

all the vector fields V r⊗idM , and that V r⊗idM and ρ(v) are σ-related. Moreover,

as f varies, σ∗(f) is surjective onto all sections of OM by restriction since G is a

super Lie group (i.e. G contains an identity element which acts trivially on M).

It is then immediate that

V r 7−→ ρ(v)

is a morphism of super Lie algebras. Hence ρ is an antimorphism of Lie(G) into

VecM .

It thus remains to prove (3.26). It will come as a consequence of the relation

from the commutative diagram (3.25) that

(µ× idM)∗(σ∗(f)) = (idG × σ)∗(σ∗(f)), (3.27)

and the equality we seek will come by evaluating vG×M on both sides of (3.27).

By (3.23), VG×M(v, µ× idM) = VG(v, µ)⊗ idM . Hence

vG×M((µ× idM)∗(σ∗(f))) = VG×M(v, µ× idM)(σ∗(f))

= (VG(v, µ)⊗ idM)(σ∗(f))

= (V r ⊗ idM)(σ∗(f)).

(3.28)

We shall next evaluate vG×M on the right side of (3.27). Now for u ∈ OG×M ,

vG×M((idG × σ)∗(u)) = VG×M(v, idG × σ)(u).

Let Z denote the vector field VG×M(v, idG×σ) on G×M for brevity. Let a ∈ OG

and b ∈ OM ; we get

Z(a⊗ b) = vG×M(a⊗ σ∗(b)) = v(a)σ∗(b) = σ∗(v(a)b).

On the other hand, vM(a⊗ b) = v(a)b, so we may rewrite the last equation as

Z(a⊗ b) = σ∗(vM(a⊗ b)).
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But Z and σ∗ ◦ vM are both derivations of OG×M , and hence are vector fields

on G ×M . Then the above relation shows that they must be identical as it is

enough to check the equality of vector fields on coordinates, and we may always

find coordinates of the form a⊗ b. Hence

Z(u) = σ∗(vM(u))

for u ∈ OG×M . If we take u = σ∗(f) again for f a local function on M , by

definition we have vM(σ∗(f)) = ρ(v)(f) and so the right side is equal to σ∗(ρ(v)f).

The left side is equal to vG×M((idG × σ)∗(f)). Hence

vG×M((idG × σ)∗(f)) = σ∗(ρ(v)f). (3.29)

The equations (3.28) and (3.29) give us our result. �

Corollary 3.6.4. The anti-morphism ρ extends to an associative algebra anti-

morphism (which we also call ρ),

ρ : U(Lie(G)) −→ U(VecM).

Proof. We use the universal property of the universal enveloping algebra and

extend the anti-morphism by mapping basis to basis. We can characterize the

extension also by the relation (3.26): for v1, v2, . . . , vk ∈ Te(G) and f a local

section of OM ,

(V r
1 V

r
2 . . . V

r
k ⊗ idG)(σ∗f) = σ∗(ρ(v1v2 . . . vk)f) = σ∗(ρ(v1)ρ(v2) . . . ρ(vk)f).

�
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CHAPTER 4

The Frobenius Theorem

4.1 The Local Frobenius Theorem

We want a mechanism by which we can construct a subsupermanifold of a given

supermanifold M . In this chapter we present a construction from the tangent

bundle of M . We first prove the super extension of the Frobenius theorem on

manifolds, then prove a global result.

Let M be a supermanifold with tangent bundle VecM .

Definition 4.1.1. A distribution on M is an OM -submodule D of VecM which

is locally a direct factor.

Definition 4.1.2. We say that a distribution D is integrable if it is stable under

the bracket on VecM , i.e. for D1, D2 ∈ D, [D1, D2] ∈ D.

Lemma 4.1.3. Any distribution D is locally free.

Proof. By definition, a distribution is a locally direct subsheaf of the tangent

sheaf VecM . Let x ∈ |M |, then

Tx(M) = Dx ⊕D
′

where Dx is a subsuper vector space of Tx(M) and we may say that Dx has

basis {s1, s2, . . . , sk}. Then by Nakayama’s Lemma (7.2.3), the {si} correspond
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to vector fields which span D in a neighborhood of x, and by the locally direct

property of a distribution, these vector fields are linearly independent in this

neighborhood. Hence D is actually locally free. �

We can then define the rank of a distribution.

Definition 4.1.4. Let D be a distribution as above. Then rank(D) is the di-

mension of Dx for x ∈ |M |. This definition is well-defined thanks to Lemma

4.1.3.

Now we prove a series of lemmas before we prove the local Frobenius theorem

on supermanifolds.

Remark 4.1.5. Note that all the following lemmas which pertain to the local

Frobenius theorem are local results. Thus it suffices to consider the caseM = Rp|q

in a coordinate neighborhood of the origin.

Lemma 4.1.6. Let D be an integrable distribution. Then there exist linearly

independent supercommuting vector fields which span D.

Proof. Let X1, . . . , Xr, χ1, . . . , χs be a basis for D and let (t, θ) = (t1, . . . , tp,

θ1, . . . , θq) be a local set of coordinates. Then we can express the vector fields:

Xj =
∑

i aij
∂

∂ti
+
∑

l αlj
∂

∂θl

χk =
∑

i βik
∂

∂ti
+
∑

l blk
∂

∂θl .
(4.1)

The coefficients form an r|s× p|q matrix T ;

T =


 a α

β b




of rank r|s since the {Xi, χj} are linearly independent. This is to say that the

submatrix (a) has rank r
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and rank(b) = s. Then by renumerating coordinates (t, θ), we may assume

that

T = (T0|∗)

where T0 is an invertible r|s×r|s matrix. Multiplying T by any invertible matrix

on the left does not change the row space of T (i.e. the distribution D), so we

can multply by T−1
0 and assume that

T =


 Ir 0 ∗

0 Is ∗


 ,

which is to say that we may assume that

Xj = ∂
∂tj

+
∑p

i=r+1 aij
∂

∂ti
+
∑q

l=s+1 αlj
∂

∂θl

χk = ∂
∂θk +

∑q
l=s+1 blk

∂
∂θl +

∑p
i=r+1 βij

∂
∂ti
.

(4.2)

We then claim that [Xj , Xk] = 0. By the involutive property of D, we know

that

[Xj , Xk] =
r∑

i=1

fiXi +
s∑

l=1

ϕlχl

where the fi are even functions and the ϕl are odd functions. Then by (4.2), fi

is the coefficient of the ∂
∂ti

term in the vector field [Xj , Xk]. However, again by

(4.2), it is clear that [Xj, Xk] has only ∂
∂ti

terms for i > r, and so we have that

fi = 0 for all i. Similarly, [Xj, Xk] has only ∂
∂θl terms for l > s, hence also ϕl = 0

for all l.

The cases [Xj, χk] = 0 and [χl, χk] = 0 follow by using the same argument

above. �

Lemma 4.1.7. Let X be an even vector field. There exist local coordinates so

that

X =
∂

∂t1
.
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Proof. Let r = 1, i.e. we begin with a single even vector field X, and we want

to show that we may express X = ∂
∂t1

in some coordinate system. Let J be the

ideal generated by the odd functions on Rp|q. Then since X is even, X maps J

to itself. Thus X induces a vector field, and hence an integrable distribution, on

the reduced space Rp. Then we may apply the classical Frobenius theorem to

get a coordinate system where X = ∂
∂t1

(mod J ). So we may assume

X =
∂

∂t1
+
∑

i≥2

ai

∂

∂ti
+
∑

j

αj

∂

∂θj

where the ai are even, αj are odd, and ai, αj ∈ J . That the ai are even implies

that ai ∈ J
2. Moreover, we can find an even matrix (bjk) so that αj =

∑
k bjkθ

k

(mod J 2), and so modulo J 2 we have that

X =
∂

∂t1
+
∑

j,k

bjkθ
k ∂

∂θj
.

Let (t, θ) 7→ (y, η) be a change of coordinates where y = t and η = g(t)θ for g(t) =

gij(t) a suitable invertible matrix of smooth functions, that is, ηj =
∑

i gij(t)θ
i.

Then

X =
∂

∂y1
+
∑

jk

θk(
∂gjk

∂t1
+
∑

l

gjlblk)
∂

∂ηj
, (4.3)

and we choose g(t) so that it satisfies the matrix differential equation and initial

condition
∂g

∂t1
= −gb, g(0) = I.

Then from (4.3) we may then assume that modulo J 2,

X =
∂

∂y1
.

Next we claim that if X = ∂
∂t1

(mod J k), then X = ∂
∂t1

(mod J k+1). Since

J is nilpotent, this claim will imply the result for the 1|0-case.
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Again, let (t, θ) 7→ (y, η) be a change of coordinates so that yi = ti + ci and

ηj = θj + γj for ci, γj ∈ J
k suitably chosen. In the (t, θ) coordinate system, let

X =
∂

∂t1
+
∑

i≥2

hi

∂

∂ti
+
∑

u

ϕu

∂

∂θu

for hi, ϕu ∈ J
k. In the new coordinate system, this becomes

X =
∂

∂y1
+
∑

i

(hi +
∂ci
∂t1

)
∂

∂yi
+
∑

l

(ϕl +
∂γl

∂t1
)
∂

∂ηl
+ Y

for some Y = 0 (mod J k+1) since 2k− 1 ≥ k+ 1 for k ≥ 2. So choose the ci and

γl so that they satisfy the differential equations

∂ci
∂t1

= −hi,
∂γl

∂t1
= −ϕl,

and we get that X = ∂
∂y1 (mod J k+1) as we wanted. �

The above Lemma 4.1.7 sets us up to prove the following.

Lemma 4.1.8. Let {Xj} be a set of supercommuting even vector fields. Then

there exist local coordinates (t, θ) so that

Xj =
∂

∂tj
+

j−1∑

i=1

aij

∂

∂ti

for some even functions aij.

Proof. Notice that since the {Xj} supercommute, they in fact form a distribution.

Now we proceed by induction. The r = 1 case is presented obove.

We may now assume that we can find coordinates which work for r−1 super-

commuting vector fields, and we want to prove the lemma for r. Again, assume

there are coordinates so that Xj = ∂
∂tj

+
∑j−1

i=1 aij
∂

∂ti
for j < r. Then

Xr =

p∑

i=1

fi

∂

∂ti
+

q∑

k=1

ϕk

∂

∂θk
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for some even functions fi and odd functions ϕk. The assumption [Xr, Xj] = 0

gives

∑
fi[

∂

∂ti
, Xj] +

∑
ϕk[

∂

∂θk
, Xj]−

∑
(Xjfi)

∂

∂ti
−
∑

(Xjϕk)
∂

∂θk
= 0.

We know that [ ∂
∂ti
, Xj ] is a linear combination of ∂

∂tl
for l < r, which means

that Xjfi = 0 for all j ≥ r − 1. Because the coefficients of the Xj are “upper

triangular” for j ≤ r−1, we see that fi depends only on (tr, . . . , tp, θ1, . . . , θq) for

i ≥ r. We also have that [ ∂
∂θk , Xj] = 0 for all k, and so Xjϕk = 0 for all j as well.

We can then again conclude that the ϕk depend only on (tr, . . . , tp, θ1, . . . , θq) as

well.

Now we can rewrite Xr as follows:

Xr =

(
r−1∑

i=1

fi

∂

∂ti

)
+

p∑

l=r

fl

∂

∂tl
+

q∑

k=1

ϕk

∂

∂θk

︸ ︷︷ ︸
||

X ′
r

.

Here the X ′
r depends only on (tr, . . . , θq), and so by an application of the 1|0-

lemma on X ′
r, we may change the coordinates (tr, . . . , θq) so that X ′

r = ∂
∂tr

, and

so

Xr =
∂

∂tr
+

r−1∑

i=1

f ′
i

∂

∂ti

(where the f ′
i are the fi above under the change of coordinates prescribed by

Lemma 4.1.7).

�

In fact, the above lemma proves the local Frobenius theorem in the case when

D is a purely even distribution (i.e. of rank r|0). For the most general case we

need one more lemma.
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Lemma 4.1.9. Say χ is an odd vector field so that χ2 = 0 and that Span{χ} is

a distribution. Then there exist coordinates so that locally χ = ∂
∂θ1 .

Proof. As we have previously remarked, since we want a local result, it suffices

to assume that χ is a vector field on Rp|q near the origin. Let us say (y, η) are

coordinates on Rp|q. Then

χ =
∑

i

αi(y, η)
∂

∂yi
+
∑

j

aj(y, η)
∂

∂ηj

where the αi are odd, the aσ are even, and we may assume that a1(0) 6= 0.

Now consider the map

π : R0|1 ×Rp|q−1 −→ Rp|q

given by

yi = ti + εαi(t, 0, θ̂),

η1 = εa1(t, 0, θ̂),

ηj≥2 = θj + εaj(t, 0, θ̂)

where ε is the coordinate on R0|1 and (t1, . . . , tp, θ2, . . . , θq) are the coordinates

on Rp|q−1, and θ̂ denotes the θ-indices 2, . . . , q. The α(t, 0, θ̂) and a(t, 0, θ̂) are

the functions αi and aσ where we substitute t for y, let θ1 = 0, and substitute θ̂

for η2, . . . , ηq. We claim that the map π is a diffeomorphism in a neighborhood

of the origin. Indeed, the Jacobian of π at 0 is

J = Ber




Ip ∗ 0

0 a1(0) 0

0 ∗ Iq−1


 = a−1

1 (0) 6= 0.

So we may think of (t, ε, θ̂) as coordinates on Rp|q with π being a change of

coordinates. Under this change of coordinates, we have

∂

∂ε
=
∑

i

∂yi

∂ε

∂

∂yi
+
∑

j

∂ηj

∂ε

∂

∂ηj
,
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which amounts to

∂

∂ε
=
∑

i

αi(t, 0, θ̂)
∂

∂yi
+
∑

j

aj(t, 0, θ̂)
∂

∂ηj
.

The αi(t, 0, θ̂) and aj(t, 0, θ̂) terms must be expressed as functions of (y, η). Notice

that by a simple Taylor series expansion, αi(y, η) = αi(t
i + εαi, εa1, θ

k≥2 + εak) =

αi(t
i, 0, θ̂)+εβi for some odd function βi. Similarly we get aj(y, η) = aj(t, 0, θ̂)+εbj

for some even function bj . Thus we can write

∂

∂ε
= χ + εZ

for some even vector field Z. Recall that η1 = εâ1 where â1 is an even invertible

section. Hence ε = η1A from some invertible even section A.

Then we see that under the change of coordinates given by π,

∂

∂ε
− η1A · Z∗

︸ ︷︷ ︸
=Z′

= χ

where Z∗ denotes the pullback of Z by π and Z ′ is some even vector field (since

both A and Z are even). Now,

χ2 = 0 =⇒ ( ∂
∂ε
− η1Z ′)2 = 0

=⇒ (
∂

∂ε
)2

︸ ︷︷ ︸
=0

− ∂
∂ε

(η1Z ′)− (η1Z ′) ∂
∂ε

+ (η1Z ′)2

︸ ︷︷ ︸
=0

= 0

=⇒ −â1Z
′ + η1 ∂

∂ε
Z ′ − η1Z ′ ∂

∂ε
= 0

=⇒ â1Z
′ = 0

=⇒ Z ′ = 0,

so we really have ∂
∂ε

= χ under the change of coordinates. �

Now we can prove of the full local Frobenius theorem.
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Theorem 4.1.10. (Local Frobenius Theorem) Let D be an integrable (involutive)

distribution of rank r|s. Then there exist local coordinates so that D is spanned

by
∂

∂t1
, . . . ,

∂

∂tr
,
∂

∂θ1
, . . . ,

∂

∂θs
.

Proof. Let {X1, . . . , Xr, χ1, . . . , χs} be a basis of vector fields for the distribution

D. By Lemma 4.1.6 we may assume that these basis elements supercommute,

so then D′ = span{X1, . . . , Xr} is a subdistribution, and by lemma 4.1.8 we get

that there exist coordinates so that Xi = ∂
∂ti

.

We then use the fact that [χ1, Xi] = 0 for all i, to see that χ1 depends only

on coordinates (tr+1, . . . , θq) (as in the proof of Lemma 4.1.8). In fact, this is not

completely accurate. If we express χ1 as in (4.1), we see that it is only the βik and

blk which depend only on the coordinates (tr+1, . . . , θq). However, we can always

kill off the first r ∂/∂ti terms by subtracting off appropriate linear combinations

of the {X1 = ∂/∂t1, . . . , Xr = ∂/∂tr}.

Then since χ2
1 = 0, by Lemma 4.1.9 we may change only the coordinates

(tr+1, . . . , θq) and express χ1 = ∂
∂θ1 . For χ2 we apply the same idea: that

[χ2, Xi] = 0 and [χ2, χ1] = 0 again shows that χ2 depends only on coordinates

(tr+1, . . . , tp, θ2, . . . , θq), and again applying Lemma 4.1.9 gives χ2 = ∂
∂θ2 . And so

on with χ3, . . . , χs. �

We are now in a position to state and prove the global Frobenius theorem on

supermanifolds.
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4.2 The Global Frobenius Theorem on Supermanifolds

Theorem 4.2.1. (Global Frobenius Theorem) Let M be a C∞-supermanifold,

and let D be an integrable distribution on M . Then given any point of M there is

a unique maximal supermanifold corresponding to D which contains that point.

Proof. Let D = span{X1, . . . , Xr, χ1, . . . , χs} as in the previous section (again

the Xi are even and the χj are odd). Then let D0 = span{X1, . . .Xr}; this

subdistribution maps odd sections to odd sections, and so descends to an integral

distribution D̃0 on M̃ . Let x ∈ |M |. Then by the classical global Frobenius

Theorem, there is a unique maximal integral manifold M̃x ⊂ M̃ of D̃0 containing

x. We want to build a sheaf of commutative superalgebras on M̃x.

By the local Frobenius theorem, given any point y ∈ |M |, there exists an

open coordinate neighborhood around y, Uy ⊂ |M |, so that Uy is characterized

by coordinates (t, z, θ, η) (i.e. OM(Uy) = C∞(t, z)[θ, η]) where D is given by the

TM -span of { ∂
∂t
, ∂

∂θ
}. Now let U ⊂ |M | and define the following presheaf I:

I(U) = 〈{f ∈ OM(U) | ∀y ∈ M̃x ∩ U , ∃ Vy ⊂ U so that f |Vy
∈ C∞(z)[η]}〉.

We claim that I is a subsheaf ofOM . Again let U ⊂ |M | be an open subset and let

{Uα} be an open covering of U so that for sα ∈ Uα we have sα|Uα∩Uβ
= sβ|Uα∩Uβ

.

We know that there exists a unique s ∈ OM(U) so that s|Uα
= sα. Let y ∈Mx∩U ,

then y ∈ Uα for some α. Then there exists Vy ⊂ Uα where s|Vy
∈ C∞(z)[η] since

s|Vy
= sα|Vy

. Hence I is a subsheaf of OM . Moreover I is an ideal sheaf by

construction.

It is clear that if p /∈ M̃x, then Ip = OM,p since we can find some neighborhood

of p, Wp ∩ M̃x = ∅, where I(Wp) = OM(Wp). Thus the support of I is M̃x, and

we have defined a quasi-coherent sheaf of ideals with support M̃x which defines
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a unique closed subspace of M . By going to coordinate neighborhoods it is clear

that this closed subspace is in fact a closed subsupermanifold which we shall now

call Mx.

The maximality condition is clear. From the classical theory we have that the

reduced space is maximal, and locally we can verify that we have the maximal

number of odd coordinates that D allows. �

4.3 Lie Subalgebra, Subgroup Correspondence

From a slice of the tangent bundle of a given supermanifold, the global Frobenius

theorem allows us to build a subsupermanifold. We now use this construction

to make the super Lie group/algebra super Lie subgroup/subalgebra correspon-

dence. We begin with a technical lemma we will need later.

Lemma 4.3.1. Let M be a supermanifold, N ⊂ M a subsupermanifold, and let

ϕ : M −→ M be a diffeomorphism so that ϕ(N) ⊂ N and ϕ̃(Ñ) = Ñ . Then

ϕ(N) = N .

Proof. Because ϕ is a diffeomorphism, ϕ(N) is a super submanifold of M with the

same super dimension as N . We assume that they both have the same underlying

space. Then since they have the same odd dimension and ϕ(N) sits inside N , they

must be the same space. This can be checked at the coordinate neighborhood

level. �

Let G be a super Lie group with super Lie algebra Lie(G). Let (H ′, h) be a

pair consisting of an ordinary Lie subgroup and a Lie superalgebra, so that

1. H ′ ⊂ G̃ is a Lie subgroup;

2. h ⊂ Lie(G) is a super Lie subalgebra.
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Theorem 4.3.2. There is a super Lie subgroup H of G so that

1. H̃ = H ′;

2. Lie(H) = h.

Proof. Let D be the distribution generated by h on G, i.e. D = 〈h〉TG
.

Then we can use the Global Frobenius Theorem to get maximal integral super

submanifolds Gp through each point p ∈ G which correspond to D. Since H ′ is

second countable, it is the union of a countable number of connected components.

Take a collection of points pi ∈ H
′, each of which corresponds to exactly one of the

Gpi
and let H be the supermanifold of the union of these maximal integral super

submanifolds, i.e. H = ∪Gpi
. This construction makes it clear that H̃ = H ′.

All that is left to show is that H is in fact a super Lie group. We already have

a morphism µH : H ×H −→ G which comes from restricting the multiplication

morphism µ : G×G −→ G. This gives the sheaf map

µ∗
H : OG −→ OH×H .

Let us restrict our view to some coordinate neighborhood of G, and let (t, z, θ, η)

represent the coordinates on G so that H is described locally by the vanishing of

the coordinates (z, η). This is equivalent to saying that

h kills these coordinates; for h ∈ h, h(z) = h(η) = 0. To show that µ∗
H is

actually a map from OH −→ OH×H we have to show that µ∗
H vanishes on (z, η).

Let h ∈ h. Because h ⊂ Lie(G), h is left invariant, and hence commutes with

µ (more precisely, with µH). Then the following diagram commutes:

OG

µ∗
H−→ OH×H

h ↓ ↓idH⊗h

OG

µ∗
H−→ OH×H .
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We already know µ∗
H ◦ h(z) = 0, from which commutativity gives that idH ⊗ h ◦

µ∗
H(z) = 0. Thus µ∗

H(z) is killed by idH ⊗ h which implies that µ∗
H(z) = 0 since

h ranges over all left invariant vector fields. Similarly, µ∗
H(η) = 0. Thus we have

a product structure on H .

Last we show that there is an inverse map ι : H −→ H . Consider the

morphism

ν : G×G −→ G×G

given by ν = (id, µ) which we define as follows via T -points. Let T be any

supermanifold. Then

ν(T ) : G(T )×G(T ) −→ G(T )×G(T )

so that for g, h ∈ G(T ),

(g, h) 7→ (g, gh).

If is then clear that ν(T ) is bijective for all T , and so ν is thus a diffeomorphism

of G×G to itself by

Yoneda’s Lemma. Recall that H ×H ⊂ G×G is a closed subsupermanifold.

From the arguments above, ν maps H ×H into itself. Moreover, we claim that

ν̃(H̃ ×H) = H̃ ×H. First note that H̃ ×H = H̃ × H̃ and that for any ordinary

manifold S, we have that ν̃(S) : H̃(S) × H̃(S) −→ H̃(S) × H̃(S) is a bijection

because H̃ is a Lie group. Thus

ν̃(H̃ × H̃) = H̃ × H̃

and we can use the general Lemma (4.3.1) to see that ν(H ×H) = H ×H from

which it follows that the inverse map of G descends to H .

The necessary diagrams commute (associativity, inverses, etc.) because they

do for G and all the maps for H are derived from those of G. We have thus
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produced a super Lie subgroupH ofGwith the additional property that Lie(H) =

h. �
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CHAPTER 5

Supervarieties and Superschemes

5.1 Basic definitions

In this section we give the basic definitions of algebraic supergeometry. Because

we are in need of a more general setting in the next two chapters we no longer

assume the ground field to be R.

Let k be a commutative ring.

Assume all superalgebras are associative, commutative (i.e. xy = (−1)p(x)p(y)yx)

with unit and over k. We denote their category with (salg) . For a superalgebra

A let JA denote the ideal generated by the odd elements i. e. JA =< A1 >A.

Denote the quotient A/JA by Ar.

In chapter 2 we have introduced the notion of superspace and of superscheme.

Recall that a superspace X = (|X|,OX) is a topological space |X| together with

a sheaf of superalgebras OX such that OX,x is a local superalgebra, i.e. it has a

unique two sided maximal homogeneous ideal.

The sheaf of superalgebras OX is a sheaf of OX,0-modules, where OX,0(U)

=def OX(U)0, ∀U open in |X|.

Let Or
X denote the sheaf of algebras:

Or
X(U) = OX(U)/JOX(U)
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We will call Xr = (|X|,Or
X) the reduced space associated to the superspace

X = (|X|,OX). This is a locally ringed space in the classical sense.

Recall that given two superspaces X = (|X|,OX) and Y = (|Y |,OY ) a mor-

phism f : X −→ Y of superspaces is given by a pair f = (|f |, f ∗) such that

1. |f | : X → Y is a continuous map.

2. f ∗ : OY → f∗OX is a map of sheaves of superalgebras on |Y |, that is for all U

open in |Y | there exists a morphism f ∗
U : OY (U)→ OX(|f |−1(U)).

3. The map of local superalgebras f ∗
p : OY,|f |(p) → OX,p is a local morphisms i.e.

sends the maximal ideal of OY,|f |(p) into the maximal ideal of OX,p.

Recall that a superscheme S is a superspace (|S|,OS) such that (|S|,OS,0)

is a quasi coherent sheaf of Ox,1-modules. A morphism of superschemes is a

morphisms of the corresponding superspaces.

For any open U ⊂ X we have the superscheme U = (|U |,OX |U), called open

subscheme in the superscheme X.

One of the most important examples of superscheme is given by the spectrum

of the even part of a given superalgebra (the topological structure) together with

a certain sheaf of superalgebras on it that plays the role of the structural sheaf

in the classical theory. Let’s see this construction in detail.

Definition 5.1.1. SpecA.

Let A be an object of (salg) . We have that Spec(A0) = Spec(Ar), since the

algebras Ar and A0 differ only by nilpotent elements.

Let’s consider OA0
the structural sheaf of Spec(A0). The stalk of the sheaf at

the prime p ∈ Spec(A0) is the localization of A0 at p. As for any superalgebra,
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A is a module over A0. We have indeed a sheaf OA of OA0
-modules over SpecA0

with stalk Ap, the localization of the A0-module A over each prime p ∈ Spec(A0).

Ap = {
f

g
| f ∈ A, g ∈ A0 − p}

The localization Ap has a unique two-sided maximal ideal which consists of the

maximal ideal in the local ring (Ap)0 and the generators of (Ap)1 as A0-module.

For more details on this construction see [13] II §5.

OA is a sheaf of superalgebras and (SpecA0,OA) is a superscheme that we

will denote with SpecA. Notice that on the open sets:

Uf = {p ∈ SpecA0|(f) 6⊂ p}, f ∈ A0

we have that OA(Uf ) = Af = {a/fn | a ∈ A}.

Definition 5.1.2. An affine superscheme is a superspace that is isomorphic to

SpecA for some superalgebra A in (salg) . An affine algebraic supervariety is a

superspace isomorphic to SpecA for some affine superalgebra A i. e. a finitely

generated superalgebra such that A/JA has no nilpotents. We will call A the

coordinate ring of the supervariety.

Proposition 5.1.3. A superspace S is a superscheme if and only if it is locally

isomorphic to SpecA for some superalgebra A, i. e. for all x ∈ |S|, there exists

Ux ⊂ |S| open such that (Ux,OS|Ux
) ∼= SpecA. (Clearly A depends on Ux).

Proof. Since S is a superscheme, by definition S ′ = (|S|,OS,0) is an ordinary

scheme, that is, it admits an open cover S ′ = ∪Vi so that Vi
∼= SpecAi,0 where

Ai,0 is a commutative algebra. Let x ∈ |S| and let Ui = (|Vi|,OS|Vi
), such that

x ∈ |Ui|.
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The Ui can be chosen so that there exists aAi,0-moduleAi,1 such thatOS,1|Ui
∼=

OAi,1
, where OAi,1

denotes the sheaf induced by the Ai,0-module Ai,1. So we have

that:

OS|Ui
= OS,0|Ui

⊕OS,1|Ui
= OAi,0

⊕OAi,1
= OAi

Since these are sheaves of superalgebras, Ai is also a superalgebra, in fact

Ai = OS|Ui
(Ui). Hence Ui

∼= SpecAi. The other direction is clear. �

Given a superscheme X = (|X|,OX), the scheme (|X|,Or
X) is called the

reduced scheme associated to X. Notice that the reduced scheme associated to

a given superscheme may not be reduced, i.e. Or
X(U), U open in X, can contain

nilpotents.

As in the classical setting we can define closed subsuperschemes.

Definition 5.1.4. A closed subsuperscheme Y of a given superscheme X is such

that |Y | ⊂ |X| and OY = OX/I for a quasi-coherent sheaf of ideals in OX .

Notice that if X = SpecA, closed subschemes are in one to one correspondence

with ideals in A as it happens in the ordinary case.

Example 5.1.5. 1. Affine superspace Am|n.

Consider the polynomial superalgebra k[x1 . . . xm, ξ1 . . . ξn] over an algebraically

closed field k where x1 . . . xm are even indeterminates and ξ1 . . . ξn are odd in-

determinates (see chapter 1). We will call Speck[x1 . . . xm, ξ1 . . . ξn] the affine

superspace of superdimension m|n and we denote it by Am|n.

k[Am|n] = k[x1 . . . xm, ξ1 . . . ξn].

67



As a topological space Speck[x1 . . . xm, ξ1 . . . ξn]0 will consists of the even max-

imal ideals

(xi − ai, ξjξk), i = 1 . . .m, j, k = 1 . . . n

and the even prime ideals

(p1 . . . pr, ξjξk), i = 1 . . .m, j, k = 1 . . . n

where (p1 . . . pr) is a prime ideal in k[x1 . . . xm].

The structural sheaf of Am|n will have stalk at the point p ∈ Speck[Am|n]0:

k[Am|n]p = {
f

g
| f ∈ k[Am|n], g ∈ k[Am|n]0, g /∈ p}.

2. Supervariety over the sphere S2.

Consider the polynomial superalgebra generated over an algebraically closed

field k k[x1, x2, x3, ξ1, ξ2, ξ3], and the ideal

I = (x2
1 + x2

2 + x2
3 − 1, x1 · ξ1 + x2 · ξ2 + x3 · ξ3).

Let k[X] = k[x1, x2, x3, ξ1, ξ2, ξ3]/I andX = Speck[X]. X is a supervariety whose

reduced variety Xr is the sphere S2. A maximal ideal in k[X]0 is given by:

m = (xi − ai, ξiξj) with i, j = 1, 2, 3, ai ∈ k and a2
1 + a2

2 + a2
3 = 1.

Observation 5.1.6. Let (affine sschemes) denote the category of affine super-

schemes.

The functor

F : (salg) o −→ (affine sschemes)

A 7→ SpecA

68



gives an equivalence between the category of superalgebras and the category of

affine superschemes. The inverse functor is given by:

G : (affine sschemes) −→ (salg)

SpecA 7→ OA(A0) ∼= A.

We need to specify both F (φ), for φ : A −→ B and G(f), for f : SpecA −→

SpecB and show that they realize a bijection:

Hom (salg) (A,B) ∼= Hom (affine sschemes) (SpecB, SpecA)

Let φ : A −→ B and φ0 = φ|A0
. We want to build a morphism f = F (φ) :

SpecB −→ SpecA. We have immediately |f | : SpecB0 −→ SpecA0 defined as

|f |(p) = φ−1
0 (p). We also have a map

f ∗
U : OA(U) −→ OB(|f |−1(U)), U open in SpecA0,

defined as in the classical case. That is if a ∈ OA(U), f ∗
U(a) : p 7→ φp(a(|f |(p)))

and φp : Aφ−1

0
(p) −→ Bp, p ∈ SpecB0.

Vice-versa if we have a map f : SpecB −→ SpecA, since global sections of

the structural sheaves coincide with the rings B and A respectively, we obtain

immediately a map from A to B:

G(f) = f ∗
SpecA0

: OA(SpecA0) ∼= A −→ OB(SpecB0) ∼= B.

When we restrict the functor F to the category of affine superalgebras, it gives

an equivalence of categories between affine superalgebras and affine supervarieties.

We now would like to give an example of a non affine superscheme which is

of particular importance: the projective superspace.
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Example 5.1.7. Projective superspace

Let S = k[x0, . . . xm, ξ1 . . . ξm]. S = σ−0⊕S1 is a Z/2Z and Z graded algebra

and the two gradings are compatible. Define the topological space ProjS0 as the

set of Z-homogeneous non irrelevant primes in S0, with the Zariski topology.

ProjS0 is covered by open affine Ui consisting of those primes non containing

(xi). As in the classical setting we have that

Ui = Speck[x0 . . . x̂i . . . xm, ξ1 . . . ξn]0, i = 1 . . .m.

So we can define the sheaves

OUi
= Ok[x0...x̂i...xm,ξ1...ξn]

corresponding to these open affine subsets. One can check that these sheaves glue

to give a sheaf OS on all ProjS. So we define projective superspace Pm|n, as the

superscheme (ProjS0,OS).

The same construction can be easily repeated for a generic Z-graded superal-

gebra.

5.2 The functor of points

As in C∞ geometry, we employ the functor of points approach from algebraic

geometry to better handle to nilpotent elements and to bring back geometric

intuition.

Definition 5.2.1. For a superscheme X, the functor of points of X is a repre-

sentable functor

hX : (sschemes)o → (sets) , hX(Y ) = Hom(sschemes)(Y,X)
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hX(Y ) are called the Y -points of the superscheme X.

In the previous chapters, we have used the same notation to denote both a

supergeometric object, say a supermanifold, and its functor of points. In this

chapter, however, we want to make a distinction, since we will also deal with non

representable functors.

As in the ordinary setting, the functor of points of a superscheme hX is deter-

mined by looking at its restriction to the affine superschemes ha
X , that is looking

at the functor

ha
X : (salg) −→ (sets) , ha

X(A) = Hom(sschemes)(SpecA,X).

This is proven in the same way as the ordinary case. In fact a morphism

φ ∈ Hom(Y,X) is determined by its restrictions to the open affine subschemes

that form an open cover of Y .

When the superscheme X is affine, i.e. X = SpecR, ha
X is representable. In

fact by Observation 5.1.6:

ha
X(A) = Hom(sschemes)(SpecA, SpecR) = Hom (salg) (R,A).

Observation 5.2.2. Since we have the equivalence of categories between affine

superschemes and superalgebras, we can define an affine superscheme equivalently

as a representable functor

F : (salg) −→ (sets) , F (B) = Hom (salg) (A,B).

Remark 5.2.3. To simplify notation we drop the suffix a in ha
X , the context will

make clear whether we are considering hX or its restriction to affine superschemes.

Moreover, whenever want the restriction of hX to affine superschemes we will

not use a different functor name for hX(A), hX : (salg) −→ (sets) and for

hX(SpecA) hX : (affine sschemes) −→ (sets) .
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Observation 5.2.4. Let X0 be an affine variety over an algebraically closed

field k. Consider an affine supervariety X whose reduced part coincides with X0.

Then one can immediately check that the k-points of X correspond to the points

of the affine variety X0.

Examples 5.2.5. 1. Affine superspace revisited.

Let A ∈ (salg) and let V = V0 ⊕ V1 be a free supermodule (over k). Let

(smod) denote the category of k-modules. Define

V (A) = (A⊗ V )0 = A0 ⊗ V0 ⊕ A1 ⊗ V1.

In general this functor is not representable. However, if V is finite dimensional

we have:

(A⊗ V )0
∼= Hom(smod) (V ∗, A) ∼= Hom (salg) (Sym(V ∗), A)

where Sym(V ∗) denotes the symmetric algebra over the dual space V ∗. Recall

that V ∗ is the set of linear maps V −→ k not necessarily preserving the parity,

and Sym(V ∗) = Sym(V ∗
0 ) ⊗ ∧V ∗

1 , where ∧V ∗
1 denotes the exterior algebra over

the ordinary space V1.

Let’s fix a basis for V and let dim V = p|q. The functor V is represented by:

k[V ] = k[x1 . . . xp, ξ1 . . . ξq]

where xi and ξj are respectively even and odd indeterminates.

Hence the functor V is the functor of points of the affine supervariety Am|n

introduced in Example 5.1.5.

We also want to remark that the functor DV defined as:

DV (A) =def Hom(smod) (V,A)
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is representable for any V (not necessarily finite dimensional), and it is repre-

sented by the superalgebra Sym(V ). Clearly V = DV when V is finite dimen-

sional.

2. Supermatrices.

Let A ∈ (salg) . Define Mm|n(A) as the set of endomorphisms of the A-

supermodule Am|n. Choosing coordinates we can write:

Mm|n(A) =






a α

β b







where a and b are m×m, n×n blocks of even elements and ∀, α, β m×n, n×m

blocks of odd elements.

This is the functor of points of an affine supervariety represented by the

commutative superalgebra: k[M(m|n)] = k[xij , ξkl] where xij ’s and ξkl’s are re-

spectively even and odd variables with 1 ≤ i, j ≤ m or m + 1 ≤ i, j ≤ m + n,

1 ≤ k ≤ m, m+ 1 ≤ l ≤ m+ n or m+ 1 ≤ k ≤ m+ n, 1 ≤ l ≤ m.

Notice that Mm|n
∼= h

Am2+n2|2mn .

5.3 A representability criterion

We now want to single out among all the functors F : (salg) −→ (sets) those

that are the functor of points of superschemes.

We first need the definition of local functor and open subfunctor.

Let A be a superalgebra. Given f ∈ A0, let Af denote:

Af =def {a/f
n|a ∈ A}.
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The sets Uf = Spec(Af )0 are open sets in the topological space X = SpecA0.

In fact recall that since A0 is an ordinary commutative algebra, by definition the

open sets in the Zariski topology of SpecA0 are:

UI = {p ∈ SpecA0|I 6⊂ p}

for all the ideals I in A0.

We now want to define the notion of open subfunctor of a functor F . If we

assume F is the functor of points of superscheme X an open subfunctor could

simply be defined as the functor of points of an open superscheme U ⊂ X.

However because we are precisely interested in a characterization of those F that

come from superschemes, we have to carefully extend this notion.

Definition 5.3.1. Let U be a subfunctor of a functor F : (salg) −→ (sets)

(this means that we have a natural transformation U −→ F such that U(A) −→

F (A) is injective for all A). We say that U is an open subfunctor of F if for

all A ∈ (salg) given a natural transformations f : hSpecA −→ F , the subfunctor

f−1(U) is equal to hV , for some open V in SpecA where

f−1(U)(R) =def f
−1
R (U(R)), fR : hSpecA(R) −→ F (R).

We say U is an open affine subfunctor of F if it is open and representable.

Observation 5.3.2. Let X = (|X|,OX) be a superscheme and U ⊂ X open

affine in X. Then hU is an open affine subfunctor of hX .

By Yoneda’s lemma f : hSpecA −→ hX corresponds to a map f ′ : SpecA −→

X. Let V = f ′−1(U) open in SpecA. We claim

f−1
R (hU(R)) = hV (R).
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Let φ ∈ hSpecA(R), then fR(φ) = f ′ · φ ∈ hX(R).

Hence if fR(φ) ∈ hU(R) immediately:

φ : SpecR −→ V = f−1(U) −→ SpecA.

So fR(φ) ∈ hU(R) if and only if φ ∈ hV (R).

We want to define the notion of an open cover of a functor.

Definition 5.3.3. Let F : (salg) −→ (sets) be a functor. F is covered by

the open subfunctors (Ui)i∈I , if and only if for any affine superscheme SpecA and

map f : hSpecA −→ F we have that the fibered product hSpecA ×F Ui
∼= hVi

and

(Vi)i∈I is an open cover of SpecA. (For the definition of fibered product see the

Appendix 7).

Notice that by the very definition of open subfunctor the functor hSpecA×F Ui

is always representable. In fact it is equal to f−1(U) which is by definition the

functor of points of an open and affine Vi in SpecA.

Before going to our main result we need the notion of local functor.

Definition 5.3.4. A functor

F : (salg) −→ (sets)

is called local or sheaf in the Zariski topology, if for each A ∈ (salg) , there exists

fi ∈ A0, i ∈ I, (fi, i ∈ I) = (1), such that for every collection of αi ∈ F (Afi
)

which map to the same element in F (Afifj
), then there exists a unique α ∈ F (A)

mapping to each αi.

Proposition 5.3.5. The functor of points hX of a superscheme X is local.
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Proof. We briefly sketch the proof since it is the same as in the ordinary case.

Let the notation as in the previous definition. Consider a collection of maps

αi ∈ hX(Afi
) which map to the same element in hX(Afifj

). Each αi con-

sists of two maps: |αi| : SpecAfi0 −→ |X| and a family of α∗
i,U : OX(U) −→

OAfi
(|α|−1(U)). The fact the |αi| glue together is clear. The gluing of the α∗

i ’s

to give α : SpecA −→ X depends on the fact that OX , OAf
are sheaves. �

We are ready to state the result that characterizes among all the functors

from (salg) to (sets) those which are the functors of points of superschemes.

Theorem 5.3.6. A functor

F : (salg) −→ (sets)

is the functor of points of a superscheme X, i. e. F = hX if and only if

1. F is local.

2. F admits a cover by affine open subfunctors.

Proof. Again the proof of this result is similar to that in the ordinary case. We

include a sketch of it for lack of an appropriate reference. We first observe that

if hX is the functor of points of a superscheme, by 5.3.5 it is local and by 5.3.2 it

admits a cover by open affine subfunctors.

Let’s now assume to have F satisfying the properties (1) and (2) of 5.3.6.

We need to construct a superscheme X = (|X|,OX) such that hX = F . The

construction of the topological space |X| is the same as in the ordinary case.

Let’s sketch it.

Let {hXα
}α∈A be the affine open subfunctors that cover F . Define hXαβ

=

hXα
×F hXβ

. (Xαβ will correspond to the intersection of the two open affine Xα

and Xβ in the superscheme X). Notice that hXα
×F hXβ

is representable.
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We have the commutative diagram:

hXαβ
= hXα

×F hXβ

jβ,α
−−−→ hXβyjα,β

yiβ

hXα

iα−−−→ F

As a set we define:

|X| =def

∐

α

|Xα|/ ∼

where ∼ is the following relation:

∀xα ∈ |Xα|, xβ ∈ |Xβ|, xα ∼ xβ ⇐⇒ ∃xαβ ∈ |Xαβ |, jα,β(xαβ) = xα, jβ,α(xαβ) = xβ .

This is an equivalence relation. |X| is a topological space and πα : |Xα| ↪→ |X| is

an injective map.

We now need to define a sheaf of superalgebras OX , by using the sheaves in

the open affine Xα and “gluing”.

Let U be open in |X| and let Uα = π−1
α (U). Define:

OX(U) =def {(fα) ∈
∐

α∈I

OXα
(Uα)| j∗β,γ(fβ) = j∗γ,β(fγ), ∀β, γ ∈ I}.

The condition j∗β,γ(fβ) = j∗γ,β(fγ) simply states that to be an element of OX(U),

the collection {fα} must be such that fβ and fγ agree on the intersection of Xβ

and Xγ for any β and γ.

One can check that OX is a sheaf of superalgebras.

We now need to show hX
∼= F . We are looking for a functorial bijection

hX(A) = Hom(sschemes)(SpecA,X) = F (A), for all A ∈ (salg) . It is here that we

use the hypothesis of F being local.

To simplify the notation let T = SpecA. We also write hX(T ) instead of

hX(A). So we want to show hX(T ) ∼= F (T ).

77



We first construct a natural transformation ρT : F (T ) −→ hX(T ).

Let t ∈ F (T ) = Hom(hT , F ), by Yoneda’s lemma. Consider the diagram:

hTα
=def hXα

×F hT −−−→ hTytα

yt

hXα

iα−−−→ F.

Notice that {Tα} form an open affine cover of T . Since by Yoneda’s lemma:

Hom(hTα
, hXα

) ∼= Hom(Tα, Xα) we obtain a map: tα : Tα −→ Xα ⊂ X. One

can check that the maps tα glue together to give a map t′ : T −→ X, hence

t′ ∈ hX(T ). So we define ρT (t) = t′.

Next we construct another natural transformation σT : hX(T ) −→ F (T ),

which turns out to be the inverse of ρ.

Assume we have f ∈ hX(T ) i.e. f : T −→ X. Let Tα = f−1(Xα). We imme-

diately obtain maps gα : Tα −→ Xα ⊂ F . By Yoneda’s lemma, gα corresponds to

a map gα : hTα
−→ hXα

. Since F is local, the maps iα · gα glue together to give

a map g : hT −→ F , i. e. an element g ∈ F (T ). Define σ(f) = g.

One can directly check that ρ and σ are inverse to each other and that the

given correspondence is functorial. �

This theorem has an important corollary.

Corollary 5.3.7. Fibered products exist in the category of superschemes. The

fibered product X×Z Y , for superschemes X, Y , Z with morphisms f : X −→ Z,

g : Y −→ Z is the superscheme whose functor of points is hX ×hZ
hY .

Proof. The proof follows the classical proof, and full details can be found for

example in [9] I §1, 5.1. For completeness we will briefly sketch the argument. Let
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F = X×Z Y . We want to show F is representable. One can check that F is local.

We then want to show it can be covered by open affine subfunctors. Let {Zi} be

a cover by affine open subsuperschemes of Z. Define Xi = X ×Z Zi = f−1(Zi)

and Yi = Y ×Z Zi = g−1(Zi). Let Xiα and Yjβ open affine covers of Xi and Yj

respectively. One can check Xiα×Zi
Yiβ form an affine open cover of F . Hence F

is representable. �

Remark 5.3.8. One could also prove directly the existence of fibered product

in the category of superschemes. This is done exactly as in the classical case, see

for example Theorem 3.3 in chapter II of [13].

Remark 5.3.9. Theorem 5.3.6 can be stated also in the C∞ category:

Let F be a functor F : (smfld) −→ (sets) , such that when restricted to the

category of manifolds is representable.

Then the functor F is representable if and only if:

1. F is local, i. e. it has the sheaf property.

2. F is covered by open supermanifold functors.

where an open supermanifold functors is a subfunctor U of F such that for

all f : hX −→ F , f−1(U) = hV where V is a submanifold of X (here hX denotes

the functor of points of the supermanifold X).

The proof of this result in the C∞ category is essentially the same as the one

seen in the algebraic category.
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5.4 The Grassmannian superscheme

In this section we want to discuss the grassmannian of the r|s-dimensional super-

spaces inside a super vector space of dimension m|n, r < m, s < n. We will show

that it is a superscheme using the Theorem 5.3.6. This is a particularly important

example since it is the first non trivial example of a non affine superscheme.

Consider the functor Gr : (salg) −→ (sets) , where for any superalgebra A,

Gr(A) is the set of projective A-submodules of rank r|s of Am|n (for the definition

of the rank of a projective A-module see the Appendix 7).

Equivalently Gr(A) can also be defined as:

Gr(A) = {α : An|m −→ L | α surjective, L projective A-module of rank r|s}

(modulo equivalence).

We need also to specify Gr on morphisms ψ : A −→ B.

Given a morphism ψ : A→ B of superalgebras, we can give to B the structure

of right A-module by setting

a · b = ψ(a)b, a ∈ A, b ∈ B.

Also, given an A-module L, we can construct the B-module L⊗A B. So given ψ

and the element of Gr(A), f : Am|n → L, we have an element of Gr(B),

Gr(ψ)(f) : Bm|n = Am|n ⊗A B → L⊗A B.

We want to show that Gr is the functor of points of a superscheme.

We will start by showing it admits a cover of open affine subfunctors. Con-

sider the multiindex I = (i1, . . . , ir|µ1, . . . , µs) and the map φI : Ar|s −→ Am|n

where φI(x1, . . . xr|ξ1, . . . ξs) is the m|n-uple with x1, . . . xr occupying the position
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i1, . . . , ir and ξ1, . . . ξs occupying the position µ1, . . . , µs and the other positions

are occupied by zero. For example, let m = n = 2 and r = s = 1. Then

φ1|2(x, ξ) = (x, 0|0, ξ).

Now define the subfunctors vI of Gr as follows. The vI(A) are the maps

α : Am|n −→ L such that α · φI is invertible.

We want to show that the vI are open affine subfunctors of Gr. The condition

that vI is an open subfunctor is equivalent to asking that f−1(vI) is open for any

map f : SpecA −→ Gr.

By Yoneda’s lemma, a map f : SpecA −→ Gr corresponds to a point f in

Gr(A). So we are asking if there exists an open subscheme VI in SpecA, such

that

hVI
(B) = {ψ : A −→ B|Gr(ψ)(f) ∈ vI(B)} ⊂ hSpecA(B)

To show VI is open, consider the matrix

Z = (f(ei1) . . . f(eir), f(ει1) . . . f(eιs))

and define bA(f) the product of the determinants of the two even diagonal blocks

of Z.

If bA(f) is invertible, then any map ψ : A −→ B is forced to send bA(f)

into an invertible element in B, hence all maps Gr(ψ)(f) are in vI(B). Hence

VI = SpecA.

If bA(f) is zero, then no map can send bA(f) into an invertible element, so VI

is empty.

The only non trivial case is when bA(f) is non-zero and not invertible. In this

case since bA(f) is sent to an invertible element in B by ψ we have a one to one
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correspondence between such maps ψ and ψ′ : A[bA(f)−1] −→ B. So we have

obtained that hVI
∼= SpecA[bA(f)−1] which is open in SpecA.

It remains to show that these subfunctors cover Gr.

Given f ∈ Gr(A), that is a function from hSpecA −→ Gr, we have that since

f is surjective, there exists at least an index I so that bA(f) is invertible, hence

f ∈ vI(A) for this I. The above argument shows that we obtain a cover of any

SpecA by taking vI ×Gr hSpecA.

Finally we want to show that Gr is local. This is immediate once we identify

Gr(A) with coherent sheaves with locally constant of rank r|s.

Gr(A) ∼= {F ⊂ O
m|n
A /F is a subsheaf, of locally costant rank r|s}

where O
m|n
A = km|n ⊗OA.

By its very definition this functor is local.

This identification is possible since by the Appendix 7.2 we prove that a

projective module M is locally free and the correspondence between coherent

sheaves and finitely generated modules in the supersetting.

So we have shown that Gr is the functor of points of a superscheme that we

will call the supergrassmannian of r|s subspaces into a m|n dimensional space.

5.5 The infinitesimal theory

In this section we discuss the infinitesimal theory of superschemes. We define

the notion of tangent space to a superscheme and to a supervariety at a point
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of the underlying topological space. We then use these definitions in explicit

computations.

Let k be a field.

Definition 5.5.1. Let X = (X,OX) be a superscheme (supervariety). We say

that X is algebraic if it admits an open affine finite cover {Xi}i∈I such that

OX(Xi) is a finitely generated superalgebra for each Xi.

Unless otherwise specified all superschemes are assumed to be algebraic.

Given a superscheme X = (|X|,OX) each point of x in the topological space

|X| belongs to an open affine subsuperscheme SpecA, x ∼= p ∈ SpecA0, so that

OX,x
∼= Ap. Recall that Ap is the localization of the A0-module A into the prime

ideal p ⊂ A0 and that

Ap = {
f

g
|g ∈ A0 − p}.

The local ring Ap contains the maximal ideal px generated by the maximal

ideal in the local ring (Ap)0 and the generators of (Ap)1 as A0-module.

We want to define the notion of a rational point of a scheme. We will then

define the tangent space to a scheme in a rational point.

Definition 5.5.2. Let X = (|X|,OX) be a superscheme. A point x ∈ |X| is said

to be rational if OX,x/px
∼= k.

Remark 5.5.3. As in the commutative case we have that if k is algebraically

closed all closed points of |X| are rational. This is because the field OX,x/px is a

finite algebraic extension of k. (see [1] 7.9 for more details).

(Recall that a point x ∈ |X| is closed if it corresponds to a maximal ideal in

SpecA0, where (SpecA0,OA) ⊂ X is any affine open neighbourhood of x).
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It is important not to confuse the points of the underlying topological space

|X| with the elements obtained via the functor of points, hX(A) for a generic A ∈

(salg) . These are called A-points of the superscheme X. The next observation

clarifies the relationship between the points of X and hX the functor of points of

X.

Observation 5.5.4. There is a bijection between the rational points of a super-

scheme X and the set of its k-points hX(k). In fact, an element (|f |, f ∗) ∈ hX(k),

|f | : Speck −→ |X|, f ∗ : OX,x −→ k, determines immediately a point x = |f |(0),

which is rational.

Definition 5.5.5. Let A be a superalgebra and M an A-module. Let D : A −→

M be an additive map with the property D(a) = 0, ∀a ∈ k. We say that D is an

super derivation if:

D(fg) = D(f)g + (−1)p(D)p(f)fD(g), f, g ∈ A

where p as always denotes the parity.

Definition 5.5.6. Let X = (|X|,OX) be a superscheme and x a rational point

in |X|. We define tangent space of X at x:

TxX = Der(OX,x, k)

where k is viewed as OX,x-module via the identification k ∼= OX,x/mX,x, where

mX,x is the maximal ideal in OX,x.

The next proposition gives an equivalent definition for the tangent space.

Proposition 5.5.7. Let X be a superscheme, then:
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TxX = Der(OX,x, k) ∼= Hom(smod) (mX,x/m
2
X,x, k).

Note that mX,x/m
2
X,x is a OX,x-supermodule which is annihilated by mX,x,

hence it is a k = OX,x/mX,x-supermodule i.e. a super vector space.

Proof. Let D ∈ Der(OX,x, k). Since D is zero on k and OX,x = k⊕mX,x we have

that D is determined by its restriction to mX,x, D|mX,x
. Moreover since mX,x

acts as zero on k ∼= OX,x/mX,x one can check that

ψ : Der(OX,x, k) −→ Hom(smod) (mX,x/m
2
X,x, k)

D 7→ D|mX,x

is well defined.

Now we construct the inverse. Let α : mX,x −→ k, α(m2
X,x) = 0. Define

Dα : OX,x = k ⊕mX,x −→ k, Dα(a, f) = α(f).

This is a well defined superderivation.

Moreover one can check that the map α 7→ Dα is ψ−1. �

The next proposition provides a characterization of the tangent space, that is

useful for explicit calculations.

Proposition 5.5.8. Let X = (|X|,OX) be a supervariety x ∈ |X| a rational

closed point. Let U be an affine neighbourhood of x, mx ⊂ k[U ] the maximal

ideal corresponding to x. Then

TxX ∼= Hom(smod) (mX,x/m
2
X,x, k)

∼= Hom(smod) (mx/m
2
x, k).
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Proof. The proof is the same as in the ordinary case and is based on the fact that

localization commutes with exact sequences. �

Let’s compute explicitly the tangent space in an example.

Example 5.5.9. Consider the affine supervariety represented by the coordinate

ring:

C[x, y, ξ, η]/(xξ + yη).

Since C is algebraically closed, all closed points are rational. Consider the closed

point P = (1, 1, 0, 0) ∼= mP = (x − 1, y − 1, ξ, η) ⊂ C[x, y, ξ, η]/(xξ + yη) (we

identify (x0, y0, 0, 0) with maximal ideals in the ring of the supervariety, as we do

in the commutative case). By Proposition 6.3.5, the tangent space at P is given

by all the functions α : mP −→ k, α(m2
P ) = 0.

A generic f ∈ mP lifts to the family of f = f1 + f2(xξ + yη) ∈ C[A1|1] =

C[x, y, ξ, η] with f1(1, 1, 0, 0) = 0 and where f2 is any function in C[A1|1] =

C[x, y, ξ, η]. Thus f can be formally expanded in power series around P (see [23]

for more details).

f = ∂f1

∂x
(P )(x− 1) + ∂f1

∂y
(P )(y − 1) + (∂f1

∂ξ
(P ) + f2(P ))ξ+

(∂f1

∂η
(P ) + f2(P ))η + higher order terms.

Define:

X =
∂f1

∂x
(P ), Y =

∂f1

∂y
(P ), Ξ =

∂f1

∂ξ
(P ), E =

∂f1

∂η
(P ).

These are coordinates for the supervector space MP/M
2
P , MP = (x − 1, y −

1, ξ, η) ⊂ C[x, y, ξ, η]. A basis for the dual space (Mp/M
2
p)

∗ consists of sending

the coefficient of one of the x− 1, y− 1, ξ, η to a non zero element and the others
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to zero. This gives relations that allow us to elimine the parameter f2(P ). We

get equations:

Ξ + f2(P ) = 0, E + f2(P ) = 0.

Eliminating the parameter we get the equation for the tangent space:

Ξ + E = 0.

So we have described the tangent space (mP /m
2
P )∗ as a subspace of (MP/M

2
P )∗,

the tangent space to the affine superspace Am|n.

There is yet another way to compute the tangent space, in the case X is an

affine supervariety. Before we examine this construction, we must understand

first the notion of differential of a function and of a morphism.

Definition 5.5.10. Let X = (|X|,OX) be a superscheme, x a rational point.

Consider the projections:

π : OX,x −→ OX,x/mX,x
∼= k, p : mX,x −→mX,x/m

2
X,x

Let f ∈ OX,x, we define value of f at x:

f(x) =def π(f).

We also define differential of f at x:

(df)x =def p(f − f(x)).

We now want to define value and differential of a section in a point.

If U is an open neighbourhood of x and f ∈ OX(U) we define value of f at

x to be:

f(x) =def π(φ(f)), φ : OX(U) −→ OX,x.
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We define differential of f at x

(df)x =def (dφ(f))x.

For example, if P = (x0
1 . . . x

0
m, 0 . . . 0) is a closed rational point of the affine

superspace Am|n with coordinate ring k[x1 . . . xm, ξ1 . . . ξn] a basis of mP/m
2
P is

{x− x0
i , ξj}{i=1...m,j=1...n}. Hence:

(dxi)P = x− x0
i , (dξj)P = ξj, i = 1 . . .m, j = 1 . . . n

Let (|α|, α∗) : X −→ Y be a morphism of superschemes and x a rational point,

|α|(x) also rational, α induces a morphism dαx : TxX −→ T|α|(x)Y , by:

dαx(D)f = D(α∗
x(f)), D ∈ TxX = Der(OX,x, k), α∗

x : OY,|α|x −→ OX,x

It is simple to check that if (|α|, α∗) is an immersion i.e. it identifies X with

a subscheme of Y , then dαx is injective. Hence if X is a subsupervariety of Am|n

it makes sense to ask for equations that determine the tangent superspace to X

as a linear subsuperspace of TxA
m|n ∼= km|n.

Proposition 5.5.11. Let X be a subvariety of Am|n and let x be a rational closed

point of X. Then

TxX = {v ∈ km|n|(df)x(v) = 0, ∀f ∈ I}

where I is the ideal defining X in k[Am|n].

Proof. The immersion α : X ⊂ Am|n corresponds to a surjective morphism φ :

k[Am|n] −→ k[X], hence k[X] ∼= k[Am|n]/I. Let mx and Mx denote respectively
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the maximal ideal associated to x in X and Speck[Am|n] respectively. φ induces

a surjective linear map ψ between superspaces:

ψ : Mx/M
2
x −→mx/m

2
x.

Let’s recall the following simple fact of linear algebra. If a : V1 −→ V2 is a

surjective linear map between finite dimensional vector spaces V1, V2 and b :

V ∗
2 ⊂ V ∗

1 is the injective linear map induced by a on the dual vector spaces then

s ∈ Im(b) if and only if s|ker(a) = 0. We apply this to the differential

(dα)x : Tx(X) = (mx/m
2
x)

∗ −→ Tα(x)(A
m|n) = (Mx/M

2
x)

∗

and we see that

Tx(X) = {v ∈ Tα(x)(A
m|n)|v(ker(ψ)) = 0}.

Observe that ker(ψ) = {(df)x|f ∈ I}. By identifying Am|n = km|n with its

double dual (km|n)∗∗ we obtain the result. �

Remark 5.5.12. In the notation of the previous proposition, if I = (f1 . . . fr)

one can check that:

TxX = {v ∈ km|n|(dfi)x(v) = 0, ∀i = 1 . . . r}.

Let’s revisit Example 5.5.9 and see how the calculation is made using Propo-

sition 5.5.11.

Example 5.5.13. Consider again the supervariety represented by:

C[x, y, ξ, η]/(xξ + yη).
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We want to compute the tangent space at P = (1, 1, 0, 0) = (x0, y0, ξ0, η0).

d(xξ + yη)P = x0(dξ)P + ξ0(dx)P + y0(dη)P + η0(dy)P

= (dξ)P + (dη)P
∼= (0, 0, 1, 1).

Hence by 5.5.11 the tangent space is the subspace of k2|2 given by the equation:

ξ + η = 0.
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CHAPTER 6

Algebraic Supergroups and Lie Superalgebras

In this section we introduce the notion of supergroup scheme, and of its Lie

superalgebra.

Let k be a noetherian ring.

All superschemes are assumed to be algebraic.

6.1 Supergroup functors and algebraic supergroups

A supergroup scheme is a superscheme whose functor of points is group valued.

In order to study supergroup schemes we need first to understand the weaker

notion of supergroup functor.

Definition 6.1.1. A supergroup functor is a group valued functor:

G : (salg) −→ (sets)

Remark 6.1.2. Saying that G is group valued is equivalent to have the following

natural transformations:

1. Multiplication µ : G×G −→ G, such that µ ◦ (µ× id) = (µ× id) ◦ µ, i. e.

G×G×G
µ×id
−−−→ G×G

id×µ

y
yµ

G×G
µ

−−−→ G
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2. Unit e : ek −→ G, where ek : (salg) −→ (sets) , ek(A) = 1A, such that

µ ◦ (id⊗ e) = µ ◦ (e× id), i. e.

G× ek
id×e
−→ G×G

e×id
←− ek ×G

↘ µ

y ↙

G

3. Inverse i : G −→ G, such that µ ◦ (id× i) = e ◦ id, i. e.

G
(id,i)
−−−→ G×Gy

yµ

ek
e

−−−→ G

If G is the functor of points of a superscheme X, we say thatX is a supergroup

scheme. An affine supergroup scheme is a supergroup scheme which is an affine

superscheme. To make the terminology easier we will drop the word “scheme”

when speaking of supergroup schemes.

Observation 6.1.3. The functor of points of an affine supergroup G is a repre-

sentable functor. It is represented by the superalgebra k[G]. This superalgebra

has a Hopf superalgebra structure, so we identify the category of affine super-

groups with the category of commutative Hopf superalgebras.

Observation 6.1.4. If k is a field, we may interpret the unit e of a supergroup

G = (|G|,OG) as a rational point of G that we will denote with 1G. In fact

e : ek −→ G, e = (|e|, e∗). Define 1G = |e|(|ek|). This is a rational point, in fact

OG,1G
/m1G

∼= k. Moreover by the very definition of e, 1G has the property of a

unit for the group |G|.
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Example 6.1.5. 1. Supermatrices Mm|n. It is immediate to verify that the su-

permatrices discussed in chapter 1 are an affine supergroup where µ is interpreted

as the usual matrix addition.

2. The general linear supergroup GLm|n.

Let A ∈ (salg) . Define GLm|n(A) as GL(Am|n) (see chapter 1) the set of

automorphisms of the A-supermodule Am|n. Choosing coordinates we can write

GLm|n(A) =






a α

β b







where a and b are m×m, n×n blocks of even elements and ∀, α, β m×n, n×m

blocks of odd elements and a and b are invertible matrices.

It is not hard to see that this is the functor of points of an affine supergroup

GL(m|n) represented by the Hopf superalgebra

k[GL(m|n)] = k[xij , ξkl][T ]/(TBer− 1),

where xij ’s and ξkl’s are respectively even and odd variables with 1 ≤ i, j ≤ m or

m + 1 ≤ i, j ≤ m + n, 1 ≤ k ≤ m, m + 1 ≤ l ≤ m + n or m + 1 ≤ k ≤ m + n,

1 ≤ l ≤ m and Ber denotes the Berezinian.

In general if V is a super vector space we define the functor GL(V ) as

GL(V )(A) = GL(V (A)), the invertible transformations of V (A) preserving par-

ity.

3. The special linear group SLm|n.

For a superalgebra A, let’s define SLm|n(A) to be the subset of GLm|n(A)

consisting of matrices with Berezinian equal to 1. This is the functor of points of

an affine supergroup and it is represented by the Hopf superalgebra:

k[SL(m|n)] = k[xij , ξkl]/(Ber− 1).
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Similarly one can construct the functor of points and the representing Hopf

superalgebras for all the classical algebraic supergroups (see [7, 23]).

6.2 Lie superalgebras

Assume 2 and 3 are not zero divisors in k.

In this section we define functorially the notion of Lie superalgebra.

Our definition is only apparently different from the one we have introduced

in chapter 1, which is the one mostly used in the literature.

Let Ok : (salg) −→ (sets) be the functor represented by k[x]. Ok corre-

sponds to an ordinary algebraic variety, namely the affine line. For a superalgebra

A we have that Ok(A) = A0.

Definition 6.2.1. Let g be a free k-module. We say that the group valued

functor

Lg : (salg) −→ (sets) , Lg(A) = (A⊗ g)0

is a Lie superalgebra if there is a Ok-linear natural transformation

[ , ] : Lg× Lg −→ Lg

that satisfies commutative diagrams corresponding to the antisymmetric property

and the Jacobi identity. For each superalgebra A, the bracket [ , ]A defines

a Lie algebra structure on the A-module Lg(A), hence the functor Lg is Lie

algebra valued. We will drop the suffix A from the bracket and the natural

transformations to ease the notation.
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Remark 6.2.2. In general, a Lie superalgebra is not representable. However if

g is finite dimensional,

Lg(A) = (A⊗ g)0 = Hom(smod) (g∗, A) = Hom (salg) (Sym(g∗), A)

where (smod) denotes the category of supermodules and Sym(g∗) the symmet-

ric algebra over g∗. In this special case Lg is representable and it is an affine

superscheme represented by the superalgebra Sym(g∗).

We want to see that the usual notion of Lie superalgebra, as defined by Kac

(see [14]) among many others, is equivalent to this functorial definition.

Recall that in chapter 1 we gave the following definition of Lie superalgebra.

Let k be a field, char(k) 6= 2, 3.

Definition 6.2.3. Let g be a super vector space. We say that a bilinear map

[, ] : g× g −→ g is a superbracket if ∀x, y, z ∈ g:

a) [x, y] = (−1)p(x)p(y)[y, x]

b) [x, [y, z]] + (−1)p(x)p(y)+p(x)p(z)[y, [z, x]] + (−1)p(x)p(z)+p(y)p(z)[z, [x, y]].

The super vector space g satisfying the above properties is commonly defined

as Lie superalgebra in the literature.

Observation 6.2.4. The definition 6.2.1 and 6.2.3 are equivalent. In other words

given a Lie algebra valued functor Lg : (salg) −→ (sets) we can build a super

vector space g with a superbracket and vice-versa. Let’s see these constructions

in detail.

If we have a Lie superalgebra Lg there is always, by definition, a super vector

space g associated to it. The superbracket on g is given following the even rules.
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Let’s see in detail what it amounts to in this case (for a complete treatment

of even rules see pg 57 [7]). Given v, w ∈ g, since the Lie bracket on Lg(A) is

A-linear we can define the element {v, w} ∈ g as:

[a⊗ v, b⊗ w] = (−1)p(b)p(v)ab⊗ {v, w} ∈ (A⊗ g)0 ∈ Lg(A).

Clearly the bracket {v, w} ∈ g does not depend on a, b ∈ A. It is straightforward

to verify that it is a superbracket. Let’s see, for example, the antisymmetry

property. Observe first that if a ⊗ v ∈ (A ⊗ g)0 must be p(v) = p(a), since

(g⊗ A)0 = A0 ⊗ g0 ⊕A1 ⊗ g1. So we can write:

[a⊗ v, b⊗ w] = (−1)p(b)p(v){v, w} ⊗ ab = (−1)p(w)p(v)ab⊗ {v, w}.

On the other hand:

[b⊗ w, a⊗ v] = (−1)p(a)p(w)ba⊗ {w, v} = (−1)p(a)p(w)+p(a)p(b)ab⊗ {w, v} =

(−1)2p(w)p(v)ab⊗ {w, v} = {w, v}.

By comparing the two expressions we get the antisymmetry of the superbracket.

For the super Jacobi identity the calculation is the same.

A similar calculation also shows that given a supervector space with a super

bracket one obtains a Lie superalgebra.

Hence a Lie superalgebra Lg according to Definition 6.2.3 is equivalent to a

supervector space g with a superbracket. With an abuse of language we will refer

to both g and Lg as “Lie superalgebra”.

Remark 6.2.5. Given a supervector space g one may also define a Lie superal-

gebra to be the representable functor Dg : (salg) −→ (sets) so that

Dg(A) = Hom(smod) (g∗, A) = Hom (salg) (Sym(g∗), A)
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with a Ok linear natural transformation [, ] : Dg×Dg −→ Dg satisfying the com-

mutative diagrams corresponding to antisymmetry and Jacobi identity. When g

is finite dimensional this definition coincides with the previous one, however we

have preferred the one given in 6.2.3 since its immediate equivalence with the

definition mostly used in the literature.

The purpose of the next two sections is to naturally associate a Lie superal-

gebra Lie(G) to a supergroup G.

6.3 Lie(G) as tangent superspace to a supergroup scheme

For the rest of this chapter, let k be a field, char(k) 6= 2, 3.

Let G be a supergroup functor.

Let A be a commutative superalgebra and let A(ε) =def A[ε]/(ε2) be the

algebra of dual numbers (ε here is taken as an even indeterminate). We have

that A(ε) = A⊕ εA and there are two natural morphisms:

i : A→ A(ε), i(1) = 1

p : A(ε)→ A, p(1) = 1, p(ε) = 0, p · i = idA

Definition 6.3.1. Consider the homomorphism G(p) : G(A(ε)) −→ G(A). For

each G there is a supergroup functor,

Lie(G) : (salg) −→ (sets) , Lie(G)(A) =def ker(G(p)).

If G is a supergroup scheme, we denote Lie(hG) by Lie(G).
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Example 6.3.2. 1. The super general linear algebra.

We want to determine the functor Lie(GLm|n). Consider the map:

GLm|n(p) : GLm|n(A(ε)) −→ GLm|n(A)


p + εp′ q + εq′

r + εr′ s+ εs′


 7→


p q

r s




with p, p′, s, s′ having entries in A0 and q, q′, r, r′ having entries in A1; the blocks

p and s are invertible matrices. One can see immediately that

Lie(GLm|n)(A) = ker(GLm|n(p)) =






Im + εp′ εq′

εr′ In + εs′







where In is a n × n identity matrix. The functor Lie(GLm|n) is clearly group

valued and can be identified with the (additive) group functor Mm|n defined as:

Mm|n(A) = Hom(smod) (M(m|n)∗, A) = Hom (salg) (Sym(M(m|n)∗), A)

where M(m|n) is the supervector space

M(m|n) =






P Q

R S






∼= km2+n2|2mn

where P , Q, R, S are respectively m ×m, m × n, n ×m, n × n matrices with

entries in k. An element X ∈M(m|n) is even if Q = R = 0, odd if P = S = 0.

Notice that M(m|n) is a Lie superalgebra with superbracket:

[X, Y ] = XY − (−1)p(X)p(Y )Y X

So Lie(GLm|n) is a Lie superalgebra. In the next section we will see that in general

we can give a Lie superalgebra structure to Lie(G) for any group scheme G.
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2. The special linear superalgebra.

A similar computation shows that

Lie(SLm|n)(A) =



W =


Im + εp′ εq′

εr′ In + εs′


 | Ber(W ) = 1



 .

The condition on the Berezinian is equivalent to:

det(1− εs′) det(1 + εp′) = 1

which gives:

tr(p′)− tr(s′) = 0.

Hence

Lie(SLm|n)(A) = {X ∈ Mm|n(A) | Tr(X) = 0}.

Similar calculations can be done also for the other classical supergroups.

Let’s now assume that G is a supergroup scheme.

We now want to show that Lie(G) : (salg) −→ (sets) is a representable

functor and its representing superscheme is identified with the tangent space at

the identity of the supergroup G.

Definition 6.3.3. Let X = (|X|,OX) be a superscheme, x ∈ |X|. We define

the first neighbourhood of X, Xx, to be the superscheme SpecOX,x/m
2
X,x. The

topological space |Xx| consists of the one point mX,x which is the maximal ideal

in OX,x.

Observation 6.3.4. There exists a natural map f : Xx −→ X. In fact we can

write immediately

|f | : SpecOX,x/m
2
X,x = {mX,x} −→ X

mX,x 7→ x
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f ∗
U : OX(U) −→ OXx

(|f |−1(U)) = OX,x/m
2
X,x

where f ∗
U is the composition of natural map from OX(U) to the direct limit OX,x

and the projection OX,x −→ OX,x/m
2
X,x.

We now want to make some observation on the identity element of a super-

group G. By definition we have that the identity is a map e : Speck −→ G.

This corresponds to a map of the functor of points: hSpeck −→ hG assigning

to the only map 1A ∈ hSpeck(A) a map that we will denote 1G(A) ∈ hG(A) =

Hom(SpecA,G). The topological space map |1G(A)| sends all the maximal ideals

in SpecA to 1G ∈ |G|. The sheaf map OG −→ k is the evaluation at 1G that is

OG(U) −→ OG,1G
−→ OG,1G

/mG,1G
∼= k (the identity is a rational point). Hence

it is immediate to verify that 1G(A) factors through G1 (the first neighbourhood

at the identity 1G), i. e. 1G(A) : SpecA −→ G1 −→ G. This fact will be crucial

in the proof of the next theorem.

Theorem 6.3.5. Let G be an algebraic supergroup. Then

Lie(G)(A) = Hom(smod) (mG,1G
/m2

G,1G
, A) = (A⊗ T1G

(G))0

where T1G
(G) denotes the tangent space in the rational point 1G.

Proof. Let d : m1G
/m2

1G
−→ A be a linear map. Let d′ be the map:

OG,1G
/m2

1G

∼= k ⊕m1G
/m2

1G
−→ A(ε)

(s, t) 7→ s+ d(t)ε.

So we have d′ ∈ hG1
(A(ε)) since G1 is a superscheme represented by OG,1G

/m2
1G

.

This shows that we have a correspondence between hG1
(A) and the elements

of Hom(smod) (m1G
/m2

1G
, A). Let φ : G1 −→ G be the map described in 6.3.3. By
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Yoneda’s lemma φ induces φA(ε) : hG1
(A(ε)) −→ hG(A(ε)), hence we have a map

ψ : Hom(smod) (m1G
/m2

1G
, A) −→ hG(A(ε))

d 7→ φA(ε)(d
′).

The following commutative diagram shows that ψ(d) ∈ ker(hG(p)) = Lie(G)(A).

hG1
(A(ε))

hG1
(p)
−→ hG1

(A)

d′′ 7→ 1G1(A)

↓ ↓

hG(A(ε))
hG(p)
−→ hG(A)

ψ(d) 7→ 1G(A).

We now want to build an inverse for ψ. Let z ∈ ker(hG(p)) i.e. hG(p)z =

1G(A), where:

hG(p) : hG(A(ε)) = Hom(SpecA(ε), G) −→ hG(A) = Hom(SpecA,G)

Here z factors via G1 and this is because 1G(A) splits via G1 (recall p : A(ε) −→

A and it induces p# : SpecA −→ SpecA(ε)). Since z factors via G1, that is

z : SpecA(ε) −→ G1 −→ G, this provides immediately a map SpecA(ε) −→ G1

corresponding to an element in Hom(smod) (m1G
/m2

1G
, A). �

6.4 The Lie superalgebra of a supergroup scheme

We now want to show that, for any supergroup scheme G, Lie(G) is a Lie super-

algebra.

To ease the notation, throughout this section G will denote the functor of

points of a supergroup scheme.
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Observation 6.4.1. Lie(G) has a structure of Ok-module. In fact let ua :

A(ε) −→ A(ε) be the endomorphism, ua(1) = 1, ua(ε) = aε, for a ∈ A0.

Lie(G) admits a Ok-module structure, i.e. there is a natural transformation

Ok × Lie(G) −→ Lie(G), such that for any superalgebra A

(a, x) 7→ ax =def Lie(G)(ua)x, a ∈ Ok(A), x ∈ Lie(G)(A).

For subgroups of GL(m|n)(A), ax corresponds to the multiplication of the matrix

x by the even scalar a.

We now want to define a natural transformation [, ] : Lie(G) × Lie(G) −→

Lie(G) which has the properties of a superbracket.

Let GL(Lie(G))(A) be the (multiplicative) group of linear automorphisms and

End(Lie(G))(A) be the (additive) group of linear endomorphisms of Lie(G)(A).

The natural Ok-module structure of Lie(G) gives two group functors (one multi-

plicative the other additive)

GL(Lie(G)) : (salg) −→ (sets) , End(Lie(G)) : (salg) −→ (sets) .

One can check

Lie(GL(Lie(G))) = End(Lie(G)).

Definition 6.4.2. The adjoint action Ad of G on Lie(G) is defined as the natural

transformation

Ad : G −→ GL(Lie(G))

Ad(g)(x) = G(i)(g)xG(i)(g)−1, g ∈ G(A), x ∈ Lie(G)(A).

The adjoint action ad of Lie(G) on Lie(G) is defined as

ad =def Lie(Ad) : Lie(G) −→ Lie(GL(Lie(G))) = End(Lie(G)).
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On Lie(G) we are ready to define a bracket :

[x, y] =def ad(x)y, x, y ∈ Lie(G)(A).

Observation 6.4.3. One can check that

Ad(g) = Lie(c(g))

where c(g) : G(A) −→ G(A), c(g)(x) = gxg−1.

Our goal is now to prove that [, ] is a Lie bracket.

In the next example we work out the bracket for GLm|n. This example will

be crucial for the next propositions.

Example 6.4.4. We want to see that in the case of GLm|n, the Lie bracket [ , ]

coincides with the bracket defined in Example 6.3.2. We have:

Ad : GL(A) −→ GL(Lie(GLm|n))(A) = GL(Mm|n(A))

g 7→ Ad(g),

Since G(i) : GLm|n(A) −→ GLm|n(A(ε)) is an inclusion, if we identify GLm|n(A)

with its image we can write:

Ad(g)x = gxg−1, x ∈ Mm|n(A).

By definition we have: Lie(GL(Mm|n))(A) = {1 + εβ | β ∈ GL(Mm|n)(A)} So

we have, for a, b ∈ Mm|n(A) ∼= Lie(GLm|n)(A) = {1 + εa | a ∈ Mm|n(A)}:

ad(1 + εa)b = (1 + εa)b(1− εa) = b+ (ab− ba)ε = b+ ε[a, b].

Hence ad(1 + εa) = id + εβ(a), with β(a) = [a, ].
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It is important to observe that in G(A(ε)) it is customary to write the product

of two elements x and y as xy. However as elements of Lie(G)(A), their product

is written as x + y (hence the unit is 0 and the inverse of x is −x). In order to

be able to switch between these two way of writing it is useful to introduce the

notation eεx.

Definition 6.4.5. Let φ : A(ε) −→ B be a superalgebra morphism such that

φ(ε) = α. We define eαx = G(φ)(x).

The following properties are immediate:

1. eεx = x,

2. eα(x+y) = eαxeαy,

3. eα(ax) = eaαx,

4. If f : G −→ H , f(eαx) = eαLie(f)x.

Observation 6.4.6. Observe that Property 4 above and the Example 6.4.4 give

us:

Ad(eεx)y = y + ε[x, y] = (id + εad(x))y

Lemma 6.4.7. Let the notation be as above and let ε, ε′ be two elements with

square zero.

eεxeε′ye−εxe−ε′y = eεε′[x,y]

Proof. By the Property 4 and Observation 6.4.6 we have that:

eεxeε′ye−εx = eε′Ad(eεx)y = eε′(y+ε[x,y]).

So we have

eεxeε′ye−εx = eε′yeεε′[x,y] = eεε′[x,y]eε′y
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which gives the result.

�

Proposition 6.4.8. The bracket [, ] is antisymmetric.

Proof. From the previous proposition we have that:

eεε′[x,y] = eεε′[−y,x]

from which we get the result. �

Proposition 6.4.9. Let ρ : G −→ GL(V ) be a morphism of supergroup functors.

Then Lie(ρ) : Lie(G) −→ Lie(V ) is a Lie superalgebras morphism.

Proof. Using the notation introduced previously we have that by Observation

6.4.6 and Property 4:

ρ(eεx) = eεLie(ρ)x = id + εLie(ρ)x

Using Proposition 6.4.7 we have:

ρ(eεε′[x,y]) = ρ(eεx)ρ(eε′y)ρ(e−εx)ρ(eε′y).

Hence using Property 4:

id + εε′Lie(ρ)[x, y] = (id + εLie(ρ)x)(id + ε′Lie(ρ)y)(id− εLie(ρ)x)(id− εLie(ρ)y),

which immediately gives:

Lie(ρ)[x, y] = [Lie(ρ)(x),Lie(ρ)(y)].

�
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Proposition 6.4.10. The bracket [, ] satisfies the Jacobi identity.

Proof. In the previous proposition take ρ = Ad. Then we have:

[ad(x), ad(y)] = ad([x, y]), ∀x, y ∈ Lie(G)(A)

which gives us immediately the Jacobi identity. �

Corollary 6.4.11. The natural transformation [, ] : Lie(G)× Lie(G) −→ Lie(G)

defined as

[x, y] =def ad(x)y, x, y ∈ Lie(G)(A).

is a Lie bracket for all A.

Proof. Immediate from previous propositions. �

6.5 Affine algebraic supergroups. Linear representations.

We now want to restrict our attention to the case of the supergroup scheme G to

be an affine algebraic group.

Let’s recall few facts from chapter 1. Let A and B be superalgebras. A

morphism of algebras f : A −→ B (not necessarily in Hom (salg) (A,B)) is called

even if it preserves parity, odd if it “reverses” the parity i.e. sends even elements

in odd elements. Clearly any morphism of algebras can be written as sum of

an even and an odd one. Recall that Hom (salg) (A,B) consists only of the even

maps. The set of all morphisms between A and B is called inner Hom, it is

denoted with Hom (salg) (A,B) and it can be made an object of (salg) . Its even

part is Hom (salg) (A,B).

106



Definition 6.5.1. Let G be an affine algebraic supergroup, k[G] its Hopf super-

algebra. We define the additive map D : k[G] −→ k[G] a left invariant super

derivation if it satisfies the following properties.

1. D is k-linear i. e. D(a) = 0, for all a ∈ k,

2. D satisfies the Leibniz identity, D(fg) = D(f)g + (−1)p(D)p(f)fD(g),

3. ∆ ◦D = (id⊗D) ◦∆, where ∆ denotes the comultiplication in k[G].

Observation 6.5.2. The set L(G) of left invariant derivations of k[G] is a Lie

superalgebra with bracket:

[D1, D2] =def D1D2 − (−1)p(D1)p(D2)D2D1.

Theorem 6.5.3. Let G be an affine supergroup scheme. Then we have natural

bijections among the sets:

a) L(G) left invariant derivations in Der(k[G], k[G]),

b) Der(k[G], k),

c) Lie(G).

Proof. . Let’s examine the correspondence between (a) and (b). We want to

construct a map φ : Der(k[G], k) −→ L(G). Let d ∈ Der(k[G], k). Define φ(d) =

(id ⊗ d)∆. Then φ(d) ∈ Der(k[G], k[G]), moreover it is left invariant as one can

readily check. Vice-versa if D ∈ L(G) define ψ(D) = D ◦ ε (ε is the counit in the

Hopf algebra k[G]). One can check that ψ is the inverse of φ. We now want a

correspondence between (b) and (c). By Theorem 6.3.5 we have that Lie(G) =

Hom(smod) (T1G
(G)∗, A) = Der(OG,1G

, k). Observe that as in the commutative

case:

Der(OG,1G
, k) = Der(k[G], k),
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that is, the derivation on the localization of the ring k[G] is determined by the

derivation on the ring itself. �

We want to show that, as in the classical case, every affine algebraic super-

group G can be embedded into some GL(m|n).

Definition 6.5.4. Let f : X −→ Y be a superscheme morphism. We say that f is

a closed immersion if the topological map |f | : |X| −→ |Y | is a homeomorphism

of the topological space |X| onto its image in |Y | and the sheaf map f ∗ : OY −→

f∗OX is a surjective morphism of sheaves of superalgebras.

This means that we may identify X with a closed subscheme of Y , so its sheaf

is identified with OY /I, for some quasicoherent sheaf of ideals I. If both X and

Y are affine superschemes we have immediately that f is a closed immersion if

and only if k[X] ∼= k[Y ]/I for some ideal I.

We now need to introduce the notion of linear representation of a supergroup.

Definition 6.5.5. Let V be a super vector space and G an algebraic supergroup

(not necessarily affine). We define linear representation a natural transformation

ρ

ρ : hG −→ End(V ),

where End(V ) is the functor

End(V ) : (salg) −→ (sets) , End(V )(A) = End(A⊗ V ).

Here End(A⊗V ) denotes the endomorphisms of the A-module A⊗V preserving

the parity. We will also say that G acts on V .

Assume now that G is an affine algebraic supergroup, k[G] the Hopf superal-

gebra representing it, ∆ and ε its comultiplication and counit respectively.
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Definition 6.5.6. Let V be a supervector space. We say that V is a right

G-comodule if there exists a linear map:

∆V : V −→ V ⊗ k[G]

called a comodule map with the properties:

1) (∆V ⊗ idG)∆V = (idV ⊗∆)∆V

2) (idV ⊗ ε)∆V = idV .

where idG : k[G] −→ k[G] is the identity map.

One can also define a left G-comodule in the obvious way.

Observation 6.5.7. The two notions of G acting on V and V being a (right)

G-comodule are essentially equivalent. In fact, given a representation ρ : G −→

End(V ), it defines immediately a comodule map:

∆V (v) = ρk[G](idG)v, idG ∈ hG(k[G]) = Hom (salg) (k[G], k[G])

where we are using the natural identification (for A = k[G])

End(V )(A) ∼= Hom(smod) (V, V ⊗ A).

Vice-versa if we have a comodule map ∆V we can define a representation in

the following way:

ρA : hG(A) −→ End(V )(A) ∼= Hom(smod) (V, V ⊗ A)

g 7→ v 7→ (id⊗ g)(∆V (v))

where g ∈ hG(A) = Hom (salg) (k[G], A).

Let’s see this correspondence in a special, but important case.
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Example 6.5.8. Let’s consider the natural action of GLm|n on km|n:

ρA : GLm|n(A) −→ End(km|n)(A)

g = (gij) 7→ ej 7→
∑
ei ⊗ gij

where {ej} is the canonical homogeneous basis for the framed supervector space

km|n. We identify the morphism g ∈ GLm|n(A) = Hom (salg) (k[G], A) with the

matrix with entries gij = g(xij), where xij ’s are the generators of k[GL(m|n)].

This corresponds to the comodule map

∆km|n : km|n −→ km|n ⊗ k[GL(m|n)]

ej 7→
∑
ej ⊗ xij

where xij are the generators of the algebra k[GL(m|n)].

Vice-versa, given the comodule map as above: ej 7→
∑
ej ⊗xij it corresponds

to the representation:

ρA : GLm|n(A) −→ End(km|n)(A)

g = (gij) 7→ ej 7→ (id⊗ g)(
∑
ei ⊗ xij) =

∑
ei ⊗ gij .

Definition 6.5.9. Let G act on the superspace V , via a representation ρ corre-

sponding to the comodule map ∆V . We say that the subspace W ⊂ V is G-stable

if ∆V (W ) ⊂W ⊗ V . Equivalently W is G-stable if ρA(g)(W ⊗ A) ⊂ W ⊗ A.

Definition 6.5.10. The right regular representation of the affine algebraic group

G is the representation of G in the (infinite dimensional) super vector space k[G]

corresponding to the comodule map:

∆ : k[G] −→ k[G]⊗ k[G].
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Proposition 6.5.11. Let ρ be a linear representation of an affine algebraic su-

pergroup G. Then each finite dimensional supersubspace of V generates a finite

dimensional stable subspace of V .

Proof. It is the same as in the commutative case. Let’s sketch it. It is enough

to prove for one element x ∈ V . Let ∆V : V −→ V ⊗ k[G] be the comodule

structure associated to the representation ρ. Let

∆V (x) =
∑

i

xi ⊗ ai

where {ai} is a basis for k[G].

We claim that spank{xi} is a G-stable subspace.

By definition of comodule we have:

(∆V ⊗ idG)(∆V (x)) = (idV ⊗∆)(∆V (x)),

that is
∑

j

∆V (xj)⊗ aj =
∑

i

xi ⊗∆(ai) =
∑

i,j

xi ⊗ bij ⊗ aj .

Hence

∆V (xj) =
∑

i

xi ⊗ bij .

The finite dimensional stable subspace is given by the span of the xi’s. �

Theorem 6.5.12. Let G be an affine supergroup variety. Then there exists a

closed embedding:

G ⊂ GL(m|n)

for suitable m and n.
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Proof. We need to find a surjective superalgebra morphism k[GL(m|n)] −→ k[G]

for suitable m and n. Let k[G] = k[f1 . . . fn], where fi are homogeneous and

chosen so that W = span{f1 . . . fn} is G-stable, according to the right regular

representation. This choice is possible because of Proposition 6.5.11. We have:

∆k[G](fi) =
∑

j

fj ⊗ aij .

Define the morphims:

k[GL(m|n)] −→ k[G]

xij 7→ aij

where xij are the generators for k[GL(m|n)]. This is the required surjective

algebra morphism. In fact, since k[G] is both a right and left G-comodule we

have:

fi = (ε⊗ id)∆(fi) = (ε⊗ id)(
∑

j

fj ⊗ aij) =
∑

j

ε(fj)⊗ aij

which proves the surjectivity. �

Corollary 6.5.13. G is an affine supergroup scheme if and only if it is a closed

subgroup of GL(m|n).
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CHAPTER 7

Appendix

7.1 Categories

We want to make a brief summary of formal properties and definitions relative

to categories. For more details one can see for example [16].

Definition 7.1.1. A category C consists of a collection of objects, denoted by

Ob(C), and sets of morphisms between objects. For all pairs A,B ∈ Ob(C),

we denote the set of morphisms from A to B by HomC(A,B) so that for all

A,B,C ∈ C, there exists an association

HomC(B,C)× HomC(A,B) −→ HomC(A,B)

called the “composition law” ((f, g)→ f ◦ g) which satisfies the properties

(i) the law “◦” is associative,

(ii) for all A,B ∈ Ob(C), there exists idA ∈ HomC(A,A) so that we get f ◦idA = f

for all f ∈ HomC(A,B) and idA ◦ g = g for all g ∈ HomC(B,A),

(iii) HomC(A,B) and HomC(A
′, B′) are disjoint unless A = A′, B = B′ in

which case they are equal.

Once the category is understood, it is conventional to write A ∈ C instead of

A ∈ Ob(C) for objects. We may also suppress the “C” from HomC and just write

Hom whenever there is no danger of confusion.
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Essentially a category is a collection of objects which share some basic struc-

ture, along with maps between objects which preserve that structure.

Example 7.1.2. Let G denote the category of groups. Any object G ∈ G is a

group, and for any two groups G,H ∈ Ob(G), the set HomG(G,H) is the set of

group homomorphisms from G to H .

Definition 7.1.3. A category C′ is a subcategory of category C if Ob(C′) ⊂ Ob(C)

and if for all A,B ∈ C′, HomC′(A,B) ⊂ HomC(A,B) so that the composition law

“◦” on C′ is induced by that on C.

Example 7.1.4. The category A of abelian groups is a subcategory of the cate-

gory of groups G.

Definition 7.1.5. Let C1 and C2 be two categories. Then a covariant [contravari-

ant] functor F : C1 −→ C2 consists of

(1) a map F : Ob(C1) −→ Ob(C2) and

(2) a map (denoted by the same F ) F : HomC1
(A,B) −→ HomC2

(F (A), F (B))

[F : HomC1
(A,B) −→ HomC2

(F (B), F (A))] so that

(i) F (idA) = idF (A) and

(ii) F (f ◦ g) = F (f) ◦ F (g) [F (f ◦ g) = F (g) ◦ F (f)]

for all A,B ∈ Ob(C1).

When we say “functor” we mean covariant functor. A contravariant functor

F : C1 −→ C2 is the same as a covariant functor from Co
1 −→ C2 where Co

1 denotes

the opposite category i. e. the category where all morphism arrows are reversed.

Definition 7.1.6. Let F1, F2 be two functors from C1 to C2. We say that there is

a natural transformation of functors ϕ : F1 −→ F2 if for all A ∈ C1 there is a set

of morphisms ϕA : F1(A) −→ F2(A) so that for any f ∈ HomC1
(A,B) (B ∈ C1),
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the following diagram commutes:

F1(A)
ϕA−→ F2(A)

F1(f) ↓ ↓F2(f)

F1(B)
ϕB−→ F2(B).

(7.1)

We say that the family of functions ϕA is functorial in A.

The notion of equivalence of categories is important since it allows to identify

two categories which are apparently different.

Definition 7.1.7. We say that two categories C1 and C2 are equivalent if there

exists two functors F : C1 −→ C2 and G : C1 −→ C2 such that FG ∼= idC2
,

GF ∼= idC1
(where idC denotes the identity functor of a given category, defined in

the obvious way).

Next we want to formally define what it means for a functor to be repre-

sentable.

Definition 7.1.8. Let F be a functor from the category C to the category of sets

S. We say that F is representable by X ∈ C if for all A ∈ C,

F (A) = HomC(X,A),

F (f) : F (A) −→ F (B), F (f)(α) =def f · α

for all f : A −→ B.

We end our small exposition of categories by the constructing the fibered

product which is be important in chapter 3.

Definition 7.1.9. Given functors A, B, C, from a category C to the category of

(sets) , and given natural transformations f : A −→ C, g : B −→ C the fibered
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product A×C B is the universal object making the following diagram commute:

A×C B −→ B

↓ ↓ g

A
f
−→ C.

One can see that:

(A×C B)(R) = A(R)×C(R) B(R) = {(a, b) ∈ A× B|f(a) = g(b)}

One can see that if g is injective, that is gR : B(R) ⊂ C(R) we have that

(A×C B)(R) = f−1(B(R)).

The language of categories allows us to make (and prove) some sweeping

generalizations about geometric objects without too much “forceful” computa-

tion. In particular, it also allows us to generalize the notion of a “point” to a

T -point; this allows us to make more intuitive calculations with supergeometric

objects. The main categories we discuss in this exposition are the categories

of C∞-supermanifolds, super Lie groups (a subcategory of C∞-supermanifolds),

superschemes, and super algebraic groups.

7.2 SuperNakayama’s Lemma and Projective Modules

Let A be a commutative superalgebra.

Definition 7.2.1. A projective A-module M is a direct summand of Am|n. In

other words it is a projective module in the classical sense respecting the grading:

M0 ⊂ A
m|n
0 , M1 ⊂ A

m|n
1 .

Observation 7.2.2. As in the classical setting being projective is equivalent to

the exactness of the functor Hom(M, ).
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We want to show that a projective A-module has the property of being locally

free, that is its localization Lp into primes p of A0 is free as Ap-module. This result

allows to define the rank of a projective module as it happens in the ordinary

case.

We start with a generalization of the Nakayama’s lemma.

Lemma 7.2.3. (super Nakayama’s Lemma) Let A be a local supercommutative

ring with maximal homogeneous ideal m. Let E be a finitely generated module for

the ungraded ring A.

(i) If mE = E, then E = 0; more generally, if H is a submodule of E such that

E = mE +H, then E = H.

(ii) Let (vi)1≤i≤p be a basis for the k-vector space E/mE where k = A/m. Let

ei ∈ E be above vi. Then the ei generate E. If E is a supermodule for the super

ring A, and vi are homogeneous elements of the super vector space E/mE, we

can choose the ei to be homogeneous too (and hence of the same parity as the vi).

(iii) Suppose E is projective, i.e. there is a A-module F such that E ⊕ F = AN

where AN is the free module for the ungraded ring A of rank N . Then E (and

hence F ) is free, and the ei above form a basis for E.

Proof. The proofs are easy extensions of the ones in the commutative case. We

begin the proof of (i) with the following observation: if B is a commutative local

ring with n a maximal ideal, then a square matrix R over B is invertible if and

only if it is invertible modulo n over the field B/n. In fact if this is so, det(R) /∈ n

and so is a unit of B. This said, let ui, (1 < i < N) generate E. If E = mE, we
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can find mij ∈ m so that ui =
∑

j mijej for all i. Hence, if L is the matrix with

entries δij −mij , then

L




u1

u2

...

uN




= 0.

It is now enough to prove that L has a left inverse. Then multiplying the above

from the left by P , we get ui = 0 for all i and so E = 0. It is even true that L is

invertible. To prove this, let us consider B = A/J where J is the ideal generated

by A1. Since J ⊂ m we have

A −→ B = A/J −→ k = A/m.

Let LB (resp. Lk) be the reduction of L modulo J (respectively modulo m). Then

B is local, and its maximal ideal is m/J where Lk is the reduction of LB mod

m/J . But B is commutative and Lk = I, and so LB is invertible. But then L is

invertible. If more generally we have E = H + mE, then E/H = m(E/H) and

so E/H = 0, which is to say that E = H .

To prove (ii), let H be the submodule of E generated by the ei. Then E =

mE +H and so E = H .

We now prove (iii). Clearly F is also finitely generated. We have kN =

AN/mN = E/mE ⊕ F/mF . Let (wj) be a basis of F/mF and let fj be elements

of F above wj . Then by (ii), the ei, fj form a basis of AN while the ei (respectively

the fj) generate E (resp. F ). Now there are exactly N of the ei, fj, and so if

X denotes the N ×N matrix with columns e1, . . . , f1, . . . , then for some N ×N

matrix Y over A we have XY = I. Hence XBYB = I where the suffix “B” denotes

reduction modulo B. However, B is commutative and so YBXB = I. Thus X

has a left inverse over A, which must be Y so that Y X = I. If there is a linear
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relation among the ei and the fj , and if x is the column vector whose components

are the coefficients of this relation, then Xx = 0; but then x = Y Xx = 0. In

particular E is a free module with basis (ei). �

We now wish to give a characterization of projective modules.

Theorem 7.2.4. Let M be a finitely generated A-module, A finitely generated

over A0 where A0 noetherian. Then

i) M is projective if and only if Mp is free for all p primes in A0 and

ii) M is projective if and only if M [f−1
i ] free for all fi’s such that (f1 . . . fr) = A0.

Proof. (i) If M is projective, by part (iii) of Nakayama’s Lemma, we have that

Mp is free since it is a module over the supercommutative ring Ap.

Now assume that Mp is free for all primes p ∈ A0. Recall that

HomA[U−1](M [U−1], N [U−1]) = HomA(M,N)[U−1]

for U a multiplicatively closed set in A0. Recall also that given A0-modules

N , N ′, N ′′, we have that 0 −→ N ′ −→ N −→ N ′′ is exact if and only if

0 −→ N ′
p −→ Np −→ N ′′

p is exact for all prime p in A0. So given an exact

sequence 0 −→ N ′ −→ N −→ N ′′, since Mp is free, we obtain the exact sequence

0 −→ Hom(Mp, N
′
p) −→ Hom(Mp, Np)Hom(Mp, N

′′
p ) −→ 0

for all the primes p. Hence by the previous observation,

0 −→ Hom(M,N ′)p −→ Hom(M,N)p −→ Hom(M,N ′′)p −→ 0,

and

0 −→ Hom(M,N ′) −→ Hom(M,N) −→ Hom(M,N ′′) −→ 0.

Hence M is projective.
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(ii) That Mp is free for all primes p is equivalent to M [f−1
i ] being free for

(f1 . . . fr) = A0 is a standard fact of commutative algebra and can be found

in [10] p. 623 for example. �

Remark 7.2.5. As in the ordinary setting we have a correspondence between

projective A-modules and locally free sheaves on SpecA0. In this correspondence,

given a projective A-module M , we view M as an A0-module and build a sheaf of

modules OM on A0. The global sections of this sheaf are isomorphic to M itself,

and locally, i.e. on the open sets Ufi
= {p ∈ SpecA0|(fi) 6⊂ p}, fi ∈ A0,

OM (Ufi
) = M [f−1

i ].

More details on this construction can be found, for example, in [13] chapter 2.
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