
I.J.Modern Education and Computer Science, 2013, 9, 1-10
Published Online October 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2013.09.01

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

Mathematical Framework for A Novel Database
Replication Algorithm

Sanjay Kumar Yadav

Dept. of Computer Science & Information Technology, Sam Higginbottom Institute Of Agriculture, Technology &
Sciences- Deemed University, Allahabad, India

Email: yadav_sk@rediffmail.com

Gurmit Singh
Dept. of Computer Science & Information Technology, Sam Higginbottom Institute Of Agriculture, Technology &

Sciences- Deemed University, Allahabad, India
Email: gurmitsingh3@rediffmail.com

Divakar Singh Yadav
Department of Computer Science & Engineering, Institute of Engineering and Technology, Lucknow, India

Email: divakar_yadav@rediffmail.com

Abstract — In this paper, the detailed overview of the
database replication is presented. Thereafter, PDDRA
(Pre-fetching based dynamic data replication algorithm)
algorithm as recently published is detailed. In this
algorithm, further, modifications are suggested to
minimize the delay in data replication. Finally a
mathematical framework is presented to evaluate mean
waiting time before a data can be replicated on the
requested site.

Index Terms — database replication, throughput,
average delay

I. INTRODUCTION

A database system is one of the computer systems
which offer efficient data storage facilities to the
applications. A database system is used to control the
collection of data items. Database systems play a vital
role in contemporary applications, such as
administration, social sites, search-engines, and banking
systems. Database systems offer abstractions; data
consistency and concurrent data access, due to these
database systems have got huge success in real world
applications. A database system [1]

1) provides an interface which can be used to solve
the problems of data storage and retrieval;

2) allows concurrent data access while maintaining
data integrity;

3) survives server crashes or power failures without
corrupting data ;

Scalability and performance are the key problems as
the database system gets bigger. When database system
increases from a smaller system to a larger system
performance is degraded and at one point performance
can become a bottleneck in the database system.
Because of this, much research has been done in these
areas of database systems [1]. Replication is one of the

good ways to increase the performance of the database
system by separating out the database by maintaining
different servers. Workload on a single server can be
decreased by maintaining the different database servers
[2].

Replication is an efficient method to achieve
optimized access to data and high performance in
distributed environments [3]. Replication has been used
in distributed computing for a long time [4]. Replication
creates several copies of the original file (called replicas)
and distributes them to multiple sites. This provides
remarkably higher access speeds than having just a
single copy of each file. Besides [4,5] it can effectively
enhance data availability, fault tolerance, reliability,
system scalability and load balancing by creating
replicas and dispersing them among multiple sites. The
three [6] fundamental questions any replication strategy
has to answer are: When should the replicas be created?
Which files should be replicated? Where the replicas
should be placed? Depending on the answers, different
replication strategies are born.

Ming Tang et al. suggested two replication
algorithms in [7]: Simple Bottom Up (SBU) and
Aggregate Bottom Up (ABU) for multitier data sites.
The basic idea of these algorithms is to create the
replicas as close as possible to the clients that request
the data files with high rates exceeding the pre-defined
threshold.

In [8] a Popularity Based Replica Placement (PBRP)
algorithm was proposed. This algorithm tries to
decrease data access time by dynamically creating
replicas for popular data files.

Ruay-Shiung Chang et al. proposed a dynamic data
replication mechanism in [9], which is called Latest
Access Largest Weight (LALW). The design of the
architecture is based on a centralized data replication
management. LALW selects a popular file for

mailto:yadav_sk@rediffmail.com�
mailto:gurmitsingh3@rediffmail.com�
mailto:divakar_yadav@rediffmail.com�

2 Mathematical Framework for A Novel Database Replication Algorithm

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

replication and calculates a suitable number of copies
and grid sites for replication.

In [10] a dynamic data replication strategy called
FIRE was proposed. In this method each site maintains
a file access table to keep track of its local file access
history.

In another paper [11] a new replication algorithm
named Modified BHR was proposed. The proposed
algorithm was based on the network level locality. The
algorithm tries to replicate files within a region and
stores the replica in a site where the file has been
accessed frequently based on the assumption that it may
require in the future.

As detailed above, related work in the data
replication data throughput and average fetching delay
are the two important parameters. In this work an
existing PDDRA algorithm [12] is discussed and
modifications are suggested to improve its performance.
Finally a mathematical model is presented to obtain
throughput and average delay.

The remainder of this paper is organized as follows:
Section 1 of this paper describes the introduction to
distributed database and different replication strategies;
section 2 presents the overview of the database
replication. The concept and context of database
replication and design issues in distributed real time
replicated database system detailed in section 3. In
section 4, the existing PDDRA algorithm is detailed,
with its limitation. Section 5 explains our proposed
scheme and the mathematical frame work for a novel
database replication algorithm. Conclusion and future
work are given in the final section.

II. OVERVIEW OF DATABASE REPLICATION

Replication is the method of sharing information so
as to make sure of consistency between redundant
resources, such as hardware or software components,
to enhance reliability, defect-tolerance, or accessibility.
It could be data replication if the same data is stored on
multiple storage devices. Replication is the mechanism
that automatically copies directory data from one
directory Server to another. Fig. 1 shows the basic
replication model. In this model user or client does not
know the multiple physical copies of data exits. Data
replication is a combination of database and distributed
system. Database replication can be defined as the
process of creation and maintenance of the duplicate
copy of database objects in a distributed database
system [13].

Using replication, copying of any directory tree or
sub-tree (stored in its own database) could be done
between servers. The Directory Server, holding the
master copy of the information, automatically copies
every update to all replicas, whereas computation
replication of the same computing job is executed
several times.

Fig. 1: basic data replication model

A computational job is typically replicated in space,

i.e. executed on different devices, or it could be
replicated in time, if it is executed again and again on a
single device. The access to a replicated entity is
generally uniform with access to a single entity which is
not replicated. The replication itself should be
transparent to an external user. The main features of
database replication are as follows [14, 15]

1) Database Locality
This feature of database replication maintains the

database locally so that geographically far distance
users can access data with high speed. These users can
access data from local servers instead of far distance
servers because data access speed will be much higher
than far distance area network. Providing database as
closer to the user as possible contributes to higher
performance of a system.

2) Performance
Database replication typically focuses on improving

both read performance and write performance, while
improving both read and write performance
simultaneously is a more challenging task. When
application is widely used across the large network but
database is stored at a single server in that case database
server can be a bottleneck of that system and the whole
system slows down, i.e. slow response time and low
request throughput capacity. Multiple replicas offer the
system which serves the data in parallel.

3) Availability and Fault Tolerance
High availability of database requires low downtime

of database system. In database systems there are two
downtimes exit, first is planned and another one is
unplanned. Planned downtime is incurred during the
maintenance operation of all the software and hardware.
Unplanned downtime can strike at any time and it is due
to predictable or unpredictable failures such as
hardware failures, software bugs, human error, etc.
Downtime is usually the primary optimization area of
database replication to increase the database availability.
If a database item is stored at a single server and that

 Mathematical Framework for A Novel Database Replication Algorithm 3

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

server does not respond or is down or it might have
crashes. In that case database replication is the solution
of this problem, to provide fault a tolerance database
system.

2.1Types of Database Replication
The replica of database server can provide the data

item to the users during server failure. This replica can
also be used for restoring the data of failed servers. In
this way database replication increases the data
availability and forms a defect-tolerant system. [14]
There are three different ways of Database replication:

1) Snapshot Replication
Data on one database server is plainly copied to

another database server, or else to another database on
the same server (Fig. 2). The snapshot replication
method functions by periodically sending data in bulk
format. Usually it is used when the subscribing servers
can function in read-only environment and also when
the subscribing server can function for some time
without updated data. Functioning with un-updated
data for a period of time is referred to as latency.
Snapshot replication works by reading the published
database and creating files in the working folder on the
distributor. These files are named as snapshot files and
contain the data from the published database as well as
some additional information that will help create the
initial copy on the subscription server [16].

Fig. 2: schematic of snapshot replication

2) Merger Replication
Data from two or more databases is combined into a

single database. Merge replication is the process of
distributing data from Publisher to Subscribers,
allowing the Publisher as well as Subscribers to make
updates during connected or disconnected state, and
then merging the updates between sites when they are
connected. Merge replication allows distinct sites to
work autonomously and at a later time merge updates
into a single and uniform result. Merge replication
includes default and custom choices for conflict
resolution that you can define as you configure a
merge publication. When a conflict happens, a resolve
is invoked by the Merge Agent and determines which
data will be accepted and propagated to other sites.

3) Transaction Replication
Users obtain complete initial copies of the database

and then obtain periodic updates as data changes. In
transactional replication, each committed transaction is

replicated to the subscriber as it takes place. You can
control the replication process so that it will either
accumulate transactions or send them at timed
intervals; or transmit all changes as they occur.
Transaction replication is used in environments having
a lower degree of latency and higher bandwidth
connections.

Transactional replication requires a reliable and
continuous connection, because the Transaction Log
will grow quickly and if the server is unable to
connect for replication it might not be manageable.
Transactional replication begins with a snapshot. This
snap shot sets up the initial copy. Later then, the
copied transactions update that copy. You can choose
how often to update the snapshot, or select not to
update the snapshot after the very first copy. Once the
initial snapshot has been copied, transactional
replication, using the Log Reader agent, reads the
Transaction Log of the published database and stores
new transactions in the distribution Database. The
transactions are then transferred from the publisher to
the subscriber by the Distribution agent.

III. CONCEPT OF REPLICATED DATABASES

To better understand the method behind Database
Replication we start with the term “Replication”
which represents the process of sharing information
to ensure consistency between redundant resources,
like software or hardware components, to improve
reliability, accessibility or fault-tolerance. It could be
data replication if the same data is stored on multiple
storage devices or computation replication if the
same computing task is executed many times [17].
The availability of certain replication databases could
be improved by using Database mirroring. Support
for combining transactional replication with database
mirroring depends on which replication database is
being considered. Peer-to-Peer replication in
combination with database mirroring is not
supportive. The replication agents that connect to the
publication database can automatically fail over to
the mirrored publication database. In the occurrence
of a failure the agents that connect to the publication
database will automatically reconnect to the new
principal database.

The source, in a replication building block, is
generally a database that contains data to be replicated.
One database can be the source for various replication
building blocks. Further, the source database can also
serve as the target for another replication building block.
Following example will make it clearer. The same pair
of data stores swap roles in the Master-Master
Replication pattern, (source becomes target, and target
becomes source) for a common movement set that is
updateable in either data store.

A computational task is typically replicated in space,
i.e. executed on different devices or it could be
replicated in time, if it is executed again and again on a
individual device. The access to replicated entity is

4 Mathematical Framework for A Novel Database Replication Algorithm

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

typically uniform with access to a non-replicated, single
entity. The replication itself should be transparent to an
external user. Additionally, in a failure scenario, a
failover of replicas is concealed as much as possible

Replication is the key characteristic in improving the
availability of data distributed real time systems.
Replicated data is stored at multiple server sites so that
it can be accessed by the user even when some of the
copies are not available due to server/site failures [18].
A Major restriction to using replication is that replicated
copies must behave like a single copy, i.e. internal
consistency as well as mutual consistency must be
preserved, Synchronization techniques for replicated
data in distributed database systems have been studied
in order to increase the degree of consistency and to
reduce the possibility of transaction rollback [19].

In replicated database systems, copies of the data
items can be stored at multiple servers and a number of
places. The potential of data replication for high
data availability and improved read performance is
crucial to DRTDBS. In contrast, data replication brings
up its own complications. Access to a data item is no
longer controlled exclusively by a single server; rather,
the access control is distributed across the servers each
storing a copy of the data item. It is essential to ensure
that mutual consistency of the replicated data is
provided; it must fulfill the ACID properties of database.

It is common to talk about active and passive
replication in systems that replicate data or services. In
Active replication, the same request is processed at
every replica, while in passive replication, each single
request is processed on a single replica and then its state
is transferred to the other replicas. If at any time, one
master replica is entitled to process all the requests, then
we are discussing about the primary-backup scheme
(master-slave scheme) predominant in high-availability
clusters. On the other hand, if any replica processes a
request and then distributes a new state, then this is a
multi-primary scheme (in the database field called
multi-master). In the multi-primary scheme, it is
necessary to use some form of distributed concurrency
control, like distributed lock manager.

Load balancing is different from task replication, as it
distributes a load of different (not the same)
computations across machines, and it allows a
single computation to be dropped in case of a
failure. Load balancing, however, sometimes uses data
replication especially for multi-user internally, to
distribute its data among machines.

To cope with the complexity of replication, the
notion of group (of servers) and group communication
primitives have been introduced [20]. The notion of a
group acting as a logical addressing mechanism, allows
the client to ignore the degree of replication and the
identity of the individual server processes of a
replicated service. Group communication primitives
provide one-to-many communication with various
powerful semantics. These semantics hide much of the
complexity of maintaining the consistency of replicated
servers. The two main group communication primitives

are Atomic Broadcast (ABCAST) and View
Synchronous Broadcast (VSCAST). We give here an
informal definition of these primitives. A more formal
definition of ABCAST and of VSCAST can be found in
[21] and [22] respectively (see also [23, 24]). Group
communication properties can also feature FIFO order
guarantees.

Even though the process of Data Replication is used
to create instances of the same or parts of the same data,
we must not confuse the process of Data Replication
with the process of backup since replicas are frequently
updated and quickly lose any historical state. While
Backup on the other hand, saves a copy of data
unchanged for a long period of time.

Active replication, also called the state machine
approach [25], is a non-centralized replication technique.
Its key concept is that all replicas receive and process
the same sequence of client requests. Consistency is
made certain by assuming that, when supplied with the
same input in the same order, the same output will be
produced by the replicas. This assumption implies that
servers process requests in a deterministic way. Clients
do not contact one specific server, but address servers
as a group. In order for servers to receive the same input
in the same order, an Atomic Broadcast can be used to
propagate the client requests to servers. Weaker
communication primitives can also be used if semantic
information about the operation is known (e.g., two
requests that commute do not have to be delivered at all
servers in the same order).

The main advantage of active replication is its
simplicity (e.g., same code everywhere) and failure
transparency. Failures are fully concealed from the
clients, because if a replica fails; the requests are still
processed by the other replicas. The major drawback of
this approach is the determinism constraint.

The basic principle of passive replication, also named
as Primary Backup replication, is that clients send their
requests to a primary, which after executing the requests;
sends update messages to the backups. The invocations
are not executed by the backups, but apply the
alterations produced by the invocation execution at the
primary that is; updates. By doing this, no determinism
constraint is necessary on the execution of invocations,
the main disadvantage of active replication.
Communication between the backups and the primary
has to guarantee that updates are processed in the same
sequence, which is the case if primary backup
communication is based on FIFO channels. However,
an only FIFO channel is not enough to ensure correct
execution in case of failure of the primary. For example,
consider that the primary fails before all backups
receive the updates for a definite request, and another
replica takes over as a new primary. Some mechanism
has to ensure that updates sent by the new primary will
be “properly” ordered with regard to the updates sent by
the primary, which is faulty. VSCAST is a mechanism
that guarantees these constraints can usually be used to
implement the primary backup replication technique
[26]. Passive replication can tolerate non-deterministic

 Mathematical Framework for A Novel Database Replication Algorithm 5

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

servers (e.g., multi-threaded servers) and uses little
processing power when compared to other replication
techniques. However, when the primary fails, passive
replication suffers from a high reconfiguration cost.

3.1 Context of Database Replication
Replication Techniques in Distributed Systems

organizes and surveys the spectrum of replication
protocols and systems that achieve high availability by
replicating entities in failure-prone distributed
computing environments.

The transaction level data can be duplicated to the
replica database. The output is greater data integrity and
availability. However, the increased availability is
dependent on how independent the database replica is
from the primary database. Replica independence must
be taken in consideration in terms of disk spindles, disk
controller, system, power supplies, room, city and
building.

While data copying can provide users with local and
much quicker data accessing, the problem is to provide
these copies to users so that the overall systems operate
with the same integrity and management capacity that is
available within a centralized model. It is significantly
more complicated to manage a replicated data than
running against a single location database. It deals with
all of the implementation and design issues of a single
location and additionally with complexity of
distribution, remote administration and network latency.

3.2 Issues in Distributed Real Time replicated
Database Systems: Design Issues

1) Replication Set Size
Decide whether to replicate a subset of a table, an

entire table, or data from more than one table. This is a
trade-off among the amount of data that changes the
complexity of the link and the overall table size.

2) Transmission Volume
To transmit, the right amount of the data should be

chosen. The decision between sending all changes for
any single row, or just the net effect of entire changes,
is a key one.

3) At the target, Replication Set Data Changes
If these have to occur and if the source wants to

view the changes, then try to make the changes
naturally non-conflicting to avoid the need for
conflict detection and resolution.

4) Replication Frequency
Decide the appropriate timing of the replication for

the requirements and optimize the use of computing
resources.

5) Replication Unit
As explained earlier, a replication set consists of a

group of replication units. Recognize the unit of data
that will be transmitted to the target from the source. In
the extreme requirements, this will be a transaction as

it has been executed on the source. Easier to achieve
(easily achievable) but a less precise requirement is to
move a changed row. For environments with a big
(huge, immense) risk of conflicts, it can also be a
distinctive change in a cell within a record.

6) Initiator
Decide whether the target pulls the data or the

source pushes it, and make sure that throughout your
replication topology these decisions do not cause later
replication links to have problems meeting their
operational requirements.

7) Locking Issues
Verify that you can accept the locking impact of the

replication on the source. If not, verify that a minor
(small) decrease in consistency at a point in time is
acceptable for the targets so you can avoid lock
conflict.

8) Replication Topology
The players, their roles and the overall integrity

must be identified.

9) Security
Ensure that the replicated data is treated with the

right level of security at the target given the source
security conditions. Along with (it), verify that your
replication link is secure enough in the overall
topology requirements.

10) Key Updates
Verify whether the source allows updates to the key

of records belonging to the replication set. If so, take
special care for a consistent replication of such
operations. Key updates are SQL updates to the
columns of the physical key within a replication set.
Such key updates must be handled particularly by the
replication (Specially, the replications must handle
such key updates).

11) Referential Integrity
Verify whether the target has implemented

referential integrity. If so, you need rules to stop
(prevent) changes from the replication link being
applied twice if the change triggers a target change in
another replicated table.

IV. RELATED WORKS

PDDRA: Pre-fetching Based Dynamic Data
Replication Algorithm [12]

Replication is an efficient method to achieve
optimized access to data and high performance in
distributed environments Replication has been used in
distributed computing for a long time. This technique
appears clearly applicable to data distribution problems
such as High Energy Physics community where several
thousand physicists want to access the terabytes and

6 Mathematical Framework for A Novel Database Replication Algorithm

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

even petabytes of data that is produced every year. It is
a reasonable way to make copies or replicas of the
dataset and store these replicas among multiple sites
because of the geographic distribution of the
corporation in a data grid. Replication creates several
copies of the original file (called replicas) among the
data grid and distributes them to multiple grid sites.
This provides remarkably higher access speeds than
having just a single copy of each file. Besides it can
effectively enhance data availability, fault tolerance,
reliability, system scalability and load balancing by
creating replicas and dispersing them among multiple
sites.

Data replication not only reduces data access costs
but also increases data availability in many applications.
If the required files are replicated in some sites where
the job is executed, then the job is capable of processing
data without communication delay. However if the
required files are not stored locally, they will be fetched
from remote sites. This fetching takes a long time due to
the large size of files and the limitation of network
bandwidth between sites. Therefore it is better to pre-
fetch and pre-replicate the files that are probable to be
requested in near future. This will increase data
availability.

In this section algorithm for data replication will be
presented; this algorithm is based on pre-fetching [12].
For increasing system performance and reducing
response time and bandwidth consumption it is better to
pre-fetch some replicas for requester grid site, these
replicas will be requested in the near future with a high
probability and is better to replicate these files to
requester node so the next time that the grid site needs
them, it will access them locally, decreasing access
latency and response time. The architecture of the
algorithm is illustrated in Fig. 3. As shown in the Fig. 3,
the grid sites are located in lowest level of the
architecture. These grid sites consist of Storage and/or

Fig. 3: existing pre-fetching based dynamic data replication
algorithm (PDDRA)

Computing Element. Multiple grid sites constitute a

Virtual Organization (VO), there is a Local Server (LS)

for every Virtual Organization (VO) and the Replica
Catalog (RC) is located at Local Server. It is worth
mentioning that as available bandwidth between the
sites within a VO is higher than bandwidth between
Virtual Organizations. Hence accessing a file that is
located in the current VO is faster than accessing the
one that is located in the other VO. In the upper layer
there is a Regional Server (RS) and each RS consists of
one or more VOs. Regional Servers are connected
through the internet, so transferring files between them
takes a long time. There is also a Replica Catalog
located at each RS that is a directory of all the files
stored at that region. Whenever a file that is not stored
in the current VO is required, the RC of RS is asked for
determining which VOs have the requested file.
Suppose that grid site ‘A’ requests a file that is not
stored locally. Therefore it asks the RC to determine
which sites have the requested file. For reducing access
latency, bandwidth consumption and response time, it is
better to pre-fetch replicas that are probable to be
requested by the requester grid site in the near future.
When a required file is not in the current VO and is
stored in the other VOs, a request is sent to RS. Then
RS searches on its Replica Catalog table and determines
the locations of the requested file in other VOs. In such
situations only the required file will be replicated and
because of low bandwidth between VOs, high
propagation delay time and consequently high
replication cost, pre-fetching will not be advantageous
and will not be done. In addition in this paper [17] the
authors have assumed that members in a VO have
similar interests of files so file access patterns of
different VOs differ and consequently a file from
different VO should not be pre-fetched for the requester
grid site in other VO, because their requirements and
access patterns are different. So only the required file
will be replicated and pre-fetching will not be
performed. The algorithm is constructed on the bases of
an assumption: members in a VO have similar interest
in files. For predicting the future accesses, past
sequence of accesses should be stored. Files that will be
accessed in the near future can be predicted by mining
the past file access patterns. PDDRA consists of three
phases:

1) Phase 1: Storing file access patterns
In this phase, file access sequences and data access

patterns are stored in a database.

2) Phase2: Requesting a file and performing
replication and pre fetching

In this phase a grid site asks for a file and replication
is accomplished for it, if it is beneficial. Adjacent files
of the requested file are also pre-fetched for the
requester grid site in this phase.

3) Phase 3: Replacement
If there was enough space in storage element for

storing a new replica, it will be stored; otherwise an
existing file should be selected for replacement.

 Mathematical Framework for A Novel Database Replication Algorithm 7

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

Limitations of Existing PDDRA
1) The PDDRA algorithm tries to minimize the

access time using pre-fetching mechanism. However,
due to the limited bandwidth of the access network
sometimes it may not be possible to the fetch data as per
our will, and request will be in queue, that leads to the
further waiting and in turn will increase the replication
time.

2) Members of VO may have different interests.

V. PROPOSED SCHEME

1. In the proposed scheme the internet cloud will be
considered as master node as it can be assumed that
the data is available in the internet for the replication.

2. If any VO searches for any data first it will search in
RS and then it will search in internet, if data is
locally available at any RS then it will be replicated
and there will not be any need to connect through
the master node.

3. There is a possibility that the data may not be
available at RS, hence, a simultaneous request is
send to both RS and master node, if access of master
node is in queue for let’s say time qt then local

search at RS will be done for time s qt t< .
4. The three phases of the above PDDRA will be

implemented as explained above.

5.1 Simplified Mathematical Framework
As the replicated data is either available locally or it

is available globally. Therefore, some of the generated
request will be full-filled locally and leftover request
will be fetched from internet (master node). In this
section a mathematical framework is developed to
estimate the average response time of all the
transactions.

Fig. 4: modified pre-fetching based dynamic data replication
algorithm (PDDRA)

Table 1: List of Parameters

Parameters Meaning
n Number of cites
η Transaction type
ζ Percentage of transaction of type

i
λ Transaction arrival rate

iµ Mean service time for thi
transaction

ip Probability of local transaction
execution

sendt Mean time to send a transaction
type

returnt Mean time to return query result

Transaction Processing and Arrival Rates
The arrival of the update and query transaction are

random in nature. However, in most of the cases for a
particular node it’s a rare event. Hence, the arrival of
the update and query transactions from every node is
assumed to be a Poisson process, and then their sum is
also Poisson. However, where the arrival of updates and
query transactions are frequent, then, Bernoulli model
can be used. Update transactions are assumed to be
propagated asynchronously to the secondary copies.
Furthermore, transactions are also assumed to be
executed at a single site, either the local or a remote site.

The performance of replicated databases can be
improved if the requirement of mutual consistency
among the replicas of a logical data item is relaxed.
Various concepts of relaxed coherency can be denoted
by coherency conditions which allow calculating a
coherency index [0,1]k∈ as a measure of the degree
of allowed divergence. Small values of k express high
relaxation, k = 0 models suspend update propagation,
and for k = 1 updates are propagated immediately.
Taking locality, update propagation, and relaxed
coherency into account, the total arrival rate of
transactions of type , (1)i i η≤ ≤ , at a single site
amounts to

() 1(1) 1 .
(1)

T
i i i i ip n p

n
λ λ λ= + − −

−
 (1)

The first term ip describe a share of the incoming

iλ transactions which can be executed locally, whereas

the remaining transactions ()1 ip λ− are forwarded to
nodes where appropriate data is available. The other n-1
nodes also forward ()1 ip− of their iλ transactions,
which are received by each of the remaining databases

8 Mathematical Framework for A Novel Database Replication Algorithm

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

with equal probability
1

(1)n −
. The above formula

simplifies to T
i iλ λ=

1 1

Tot Tot
i i

i i

η η

λ λ λ
= =

= =∑ ∑ (2)

The mean waiting time W at a local database is

found to be:

2

1

1

.

1 .

Tot
i i

i

Tot
i i

i

W

η

η

λ µ

λ µ

=

=

=
−

∑

∑
 (3)

The mean waiting time at local database site is the

time that user or transaction spends in a queue waiting
to be serviced. Meanwhile, the response time is the total
time that a job spends in the queuing system. In other
words, the response time is equal to the summation of
the waiting time and the service time in the queuing
system. On average, a transaction needs to wait for
W seconds at a database node to receive a service of

iµ seconds. Additionally, with probability ()1 ip− a
transaction needs to be forwarded to a remote node that
takes CW seconds to wait for plus the time to be sent
and returned. Thus, the response time is given by

(1).()i i
i i i C send returnR W p W t tµ= + + − + + (4)

And the average response time over all transaction type
results in

1
i i

i
R R

η

ζ
=

=∑ (5)

VI. CONCLUSION

In this paper, PDDRA (Pre-fetching based dynamic
data replication algorithm) algorithm [12] as recently
published is modified. Finally a mathematical
framework is presented to evaluate mean waiting time
before a data can be replicated on the requested site. In
the future work, the simulation results will be presented
to obtain the mean waiting time and throughput.

REFERENCES

[1] R.Elmasri and S. B. Navathe. Fundamentals of
Database Systems [B]. The Benjamin/Cummings
Publishing Company, Inc., 1994.

[2] Fredrik Nilsson, Patrik Olsson. A survey on reliable
communication and replication techniques for
distributed databases [B].

[3] A. Dogan, A study on performance of dynamic file
replication algorithms for real-time file access in
data grids, [J] Future Generation Computer
Systems 2009, 25 (8): 829–839 .

[4] R.-S. Chang, P.-H. Chen, Complete and fragmented
selection and retrieval in data grids, [J] Future
Generation Computer Systems, 2007, 23: 536–546.

[5] Y. air Amir, Alec Peterson, and David Shaw.
Seamlessly Selecting the Best Copy from Internet-
Wide Replicated Web Servers [C]. Proceedings of
the International Symposium on Distributed
Computing (Disc98), LNCS 1499, pages 22-33
Andros, Greece, September 1998.

[6] I. Foster, K. Ranganathan, Design and evaluation of
dynamic replication strategies a high performance
Data Grid, [C] in: Proceedings of International
Conference on Computing in High Energy and
Nuclear Physics, China, September 2001.

[7] M. Tang, B.S. Lee, C.K. Yao, X.Y Tang, Dynamic
replication algorithm for the multi-tier data grid, [J]
Future Generation Computer Systems 2005, 21
(5) : 775–790.

[8] M. Shorfuzzaman, P. Graham, R. Eskicioglu,
Popularity-driven dynamic replica placement in
hierarchical data grids, [C] in: Proceedings of
Ninth International Conference on Parallel and
Distributed Computing, Applications and
Technologies, 2008, 524–531.

[9] R.-S. Chang, H.-P. Chang, Y.-T. Wang, A dynamic
weighted data replication strategy in data grids, [J]
The Journal of Supercomputing , 2008, 45 (3) :
277–295

[10] A.R. Abdurrab, T. Xie, FIRE: a file reunion data
replication strategy for data grids, [C] in: 10th
IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, 2010, 215–223.

[11] K. Sashi, A.S. Thanamani, Dynamic replication in
a data grid using a modified BHR region based
algorithm, [J] Future Generation Computer
Systems 2010, 27 :202–210.

[12] N.Saadat and A.M. Rahmani. PDDRA: A new pre-
fetching based dynamic data replication algorithm
in data grids. [J] Springer: Future Generation
Computer Systems, 2012, 28:666-681.

[13] Salman Abdul Moiz, Sailaja P., Venkataswamy G.,
Supriya N. Pal. Database Replication: A Survey of
Open Source and Commercial Tools. [J]
International Journal of Computer Applications
(0975 – 8887) 2011, 13(6), 1-8.

[14] Heinz Stockinger. Data Replication in Distributed
Database Systems, 1999 [B].

[15] Marius Cristian MAZILU, "Database Replication",
[J] Database Systems Journal 2010, 1(2), 33-38.

[16] Mark A.Linsenbardt, Shane Stigler. McGraw-
Hill/Osborne Media Book SQL
Server2000Administration-Chap.10,’.Replication’
[B].

 Mathematical Framework for A Novel Database Replication Algorithm 9

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

[17]Microsoft MSDN Library -
http://msdn.microsoft.com [W]

[18] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.
Processing transactions over optimistic atomic
broadcast protocols. [C] In Proceedings of the
International Conference on Distributed
Computing Systems, Austin, Texas, June 1999.

[19] M. Raynal, G. Thia-Kime, and M. Ahamad. From
serializable to causal transactions for collaborative
applications. [R] Technical Report 983, Institut de
Recherche en Informatique et Systèmes Aléatoires,
Feb. 1996.

[20] K. P. Birman. The process group approach to
reliable distributed computing. [J]
Communications of the ACM, 1993, 36(12):37–53.

[21] V. Hadzilacos and S. Toueg. Fault-tolerant
broadcasts and related problems. [B] In S.
Mullender, editor, Distributed Systems, chapter 5.
adwe, second edition, 1993.

[22] Sanjay Kumar Tiwari et al. Distributed Real Time
Replicated Database: [J] Concept and Design
International Journal of Engineering Science and
Technology (IJEST) ISSN: 0975-5462 230, 2011
3(6) 4839-4849.

[23] K. P. Birman and T. A. Joseph. Exploiting virtual
synchrony in distributed systems. [C] In
Proceedings of the 11th ACMSymposium on OS
Principles, pages 123–138, Austin, TX, USA, Nov.
1987. ACM SIGOPS, ACM.

[24] K. P. Birman, A. Schiper, and P. Stephenson.
Lightweight causal and atomic group
multicast.[J]ACM Transactions on Computer
Systems, 1991, 9(3):272–314.

[25] F. B. Schneider. Implementing fault-tolerant
services using the state machine approach:[J] A
tutorial. ACM Computing Surveys, 1990,
22(4):299–319.

[26] R. Guerraoui and A. Schiper. Software-based
replication for fault tolerance.[J] IEEE Computer,
1997, 30(4):68–74.

Authors’ Profiles

Sanjay Kumar Yadav: is
Assistant Professor of Computer
Science in Dept. of Computer
Science & Information
Technology at Sam
Higginbottom Institute Of
Agriculture, Technology &
Sciences” (Formerly Allahabad

Agricultural Institute), (Deemed-to-be-University)
Allahabad. He obtained batchelor degree in
B.Sc.(Maths) from University of Allahabad, MCA
degree from Institute of Engineering and Technology,
Lucknow. M.Tech. in Software Engineering from

Motilal Nehru National Institute of Technology
Allahabad and pursuing his Ph.D. in Computer Science
& IT at Sam Higginbottom Institute Of Agriculture,
Technology & Sciences” (Formerly Allahabad
Agricultural Institute), (Deemed-to-be-University)
Allahabad. His research interest includes distributed
system and mobile ad-hoc network.

Prof. Gurmit Singh: is Emeritus
Professor of Computer Science in
Dept. of Computer Science &
Information Technology at Sam
Higginbottom Institute Of
Agriculture, Technology &
Sciences” (Formerly Allahabad

Agricultural Institute), (Deemed-to-be-University)
Allahabad. He served the department as professor and
Head for several years and retired in year 2012. He was
also served the University as Dean, Shepherd School of
Engineering & Technology and is on the program
committees of the University. He is the author/co-
author of several publications in technical journals and
conferences. His research interest includes distributed
system and mobile ad-hoc network, wireless sensor
network and evolutionary computing.

Prof. Divakar Singh Yadav: is
Professor of Computer Science at
Institute of Engineering and
Technology, Lucknow. He
obtained B.Tech in Computer
Science& Engineering, M.Tech in
Computer Science from IIT,
Kharagpur and Ph.D from

University of Southampton, U.K. Before joining
Gautam Buddh Technical University, Lucknow as Pro-
Vice Chancellor, he was at South Asian University,
New Delhi, an international university established by
South Asian Association for Regional Cooperation
(SAARC) nations, where he was Chairperson of
Department of Computer Science at Faculty of
Mathematics and Computer Science.
Dr. Yadav possesses more than 20 years of experience
in academics/research in India and Abroad. Besides
serving as member of several expert committees of U. P.
Technical University, Lucknow, AICTE, New Delhi
and Govt. of Uttar Pradesh, he also served as member
of Advisory Boards, Technical Program Committees
and reviewer for several international conferences
/workshops /journals. He has long standing academic
interests in database systems and distributed computing.
His primary research interests are in formal methods,
refinement of distributed systems using Event-B,
verification of critical properties of business critical
systems and reasoning about distributed database
systems. He has also participated in prestigious
Daghtuhl seminar at Schloss Dagstuhl-Leibniz Center
for Informatics, Germany in 2006, in addition to

http://msdn.microsoft.com/�
http://shiatsmail.edu.in/webwapp/faculty/Colleges/coll_EnggTech.asp�
http://shiatsmail.edu.in/webwapp/faculty/Colleges/coll_EnggTech.asp�

10 Mathematical Framework for A Novel Database Replication Algorithm

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 9, 1-10

invitation at Commonwealth Scholarship Commission,
U.K. seminar held at the University of the West
England, Bristol in 2007. Dr. Yadav is author of four
(04) books in the area of computers and information
technology including best seller ‘Foundations of
Information Technology’ published in 2001. His
research contributions in the area of computer science
and information technologies appeared in the
international journals and refereed conference
proceedings published by Springer-Verlag, Elsevier and
IEEE.

	INTRODUCTION
	OVERVIEW OF DATABASE REPLICATION
	CONCEPT OF REPLICATED DATABASES
	RELATED WORKS
	PROPOSED SCHEME
	CONCLUSION
	REFERENCES

