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Abstract The tools of weakly coupled phase oscillator theory have had a profound
impact on the neuroscience community, providing insight into a variety of network
behaviours ranging from central pattern generation to synchronisation, as well as
predicting novel network states such as chimeras. However, there are many instances
where this theory is expected to break down, say in the presence of strong coupling, or
must be carefully interpreted, as in the presence of stochastic forcing. There are also
surprises in the dynamical complexity of the attractors that can robustly appear—for
example, heteroclinic network attractors. In this review we present a set of mathemat-
ical tools that are suitable for addressing the dynamics of oscillatory neural networks,
broadening from a standard phase oscillator perspective to provide a practical frame-
work for further successful applications of mathematics to understanding network
dynamics in neuroscience.
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Glossary: some of the abbreviations used within the text

DDE Delay differential equation
IF Integrate and fire (model for neural oscillator)
iPRC Infinitesimal phase response curve
ISI Inter-spike interval
FHN FitzHugh–Nagumo equation (model for neural oscillator)
HH Hodgkin–Huxley equation (model for neural oscillator)
LIF Leaky integrate and fire (model for neural oscillator)
ML Morris–Lecar equation (model for neural oscillator)
MSF Master stability function
ODE Ordinary differential equation
PDE Partial differential equation
PRC Phase response curve
QIF Quadratic integrate and fire (model for neural oscillator)
SDE Stochastic differential equation
SHC Stable heteroclinic channel
SNIC Saddle node on an invariant circle (bifurcation)
WLC Winnerless competition
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1 Introduction

Coupled oscillator theory is now a pervasive part of the theoretical neuroscientist’s
toolkit for studying the dynamics of models of biological neural networks. Undoubt-
edly this technique originally arose in the broader scientific community through a
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fascination with understanding synchronisation in networks of interacting heteroge-
neous oscillators, and can be traced back to the work of Huygens on “an odd kind
of sympathy” between coupled pendulum clocks [1]. Subsequently the theory has
been developed and applied to the interaction between organ pipes [2], phase-locking
phenomena in electronic circuits [3], the analysis of brain rhythms [4], chemical os-
cillations [5], cardiac pacemakers [6], circadian rhythms [7], flashing fireflies [8],
coupled Josephson junctions [9], rhythmic applause [10], animal flocking [11], fish
schooling [12], and behaviours in social networks [13]. For a recent overview of the
application of coupled phase oscillator theory to areas as diverse as vehicle coordi-
nation, electric power networks, and clock synchronisation in decentralised networks
see the recent survey article by Dörfler and Bullo [14].

Given the widespread nature of oscillations in neural systems it is no surprise that
the science of oscillators has found such ready application in neuroscience [15]. This
has proven especially fruitful for shedding light on the functional role that oscillations
can play in feature binding [16, 17], cognition [18], memory processes [19], odour
perception [20, 21], information transfer mechanisms [22], inter-limb coordination
[23, 24], and the generation of rhythmic motor output [25]. Neural oscillations also
play an important role in many neurological disorders, such as excessive synchro-
nisation during seizure activity in epilepsy [26, 27], tremor in patients with Parkin-
son’s disease [28] or disruption of cortical phase synchronisation in schizophrenia
[29]. As such it has proven highly beneficial to develop methods for the control of
(de)synchronisation in oscillatory networks, as exemplified by the work of Tass et
al. [30, 31] for therapeutic brain stimulation techniques. From a transformative tech-
nology perspective, oscillatory activity is increasingly being used to control external
devices in brain–computer interfaces, in which subjects can control an external device
by changing the amplitude of a particular brain rhythm [32].

Neural oscillations can emerge in a variety of ways, including intrinsic mecha-
nisms within individual neurons or by interactions between neurons. At the single
neuron level, sub-threshold oscillations can be seen in membrane voltage as well as
rhythmic patterns of action potentials. Both can be modelled using the Hodgkin–
Huxley conductance formalism, and analysed mathematically with dynamical sys-
tems techniques to shed light on the mechanisms that underly various forms of rhyth-
mic behaviour, including tonic spiking and bursting (see e.g. [33]). The high dimen-
sionality of biophysically realistic single neuron models has also encouraged the use
of reduction techniques, such as the separation of time scales recently reviewed in
[34, 35], or the use of phenomenological models, such as FitzHugh–Nagumo (FHN)
[36], to regain some level of mathematical tractability. This has proven especially
useful when studying the response of single neurons to forcing [37], itself a precur-
sor to understanding how networks of interacting neurons can behave. When medi-
ated by synaptic interactions, the repetitive firing of presynaptic neurons can cause
oscillatory activation of postsynaptic neurons. At the level of neural ensembles, syn-
chronised activity of large numbers of neurons gives rise to macroscopic oscillations,
which can be recorded with a micro-electrode embedded within neuronal tissue as
a voltage change referred to as a local field potential (LFP). These oscillations were
first observed outside the brain by Hans Berger in 1924 [38] in electroencephalogram
(EEG) recordings, and have given rise to the modern classification of brain rhythms
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into frequency bands for alpha activity (8–13 Hz) (recorded from the occipital lobe
during relaxed wakefulness), delta (1–4 Hz), theta (4–8 Hz), beta (13–30 Hz) and
gamma (30–70 Hz). The latter rhythm is often associated with cognitive processing,
and it is now common to link large scale neural oscillations with cognitive states,
such as awareness and consciousness. For example, from a practical perspective the
monitoring of brain states via EEG is used to determine depth of anaesthesia [39].
Such macroscopic signals can also arise from interactions between different brain
areas, the thalamo-cortical loop being a classic example [40]. Neural mass models
(describing the coarse grained activity of large populations of neurons and synapses)
have proven especially useful in understanding EEG rhythms [41], as well as in aug-
menting the dynamic causal modelling framework (driven by large scale neuroimag-
ing data) for understanding how event-related responses result from the dynamics of
coupled neural populations [42].

One very influential mathematical technique for analysing networks of neural os-
cillators, whether they be built from single neuron or neural mass models, has been
that of weakly coupled oscillator theory, as comprehensively described by Hoppen-
steadt and Izhikevich [43]. In the limit of weak coupling between limit-cycle oscilla-
tors, invariant manifold theory [44] and averaging theory [45] can be used to reduce
the dynamics to a set of phase equations in which the relative phase between oscil-
lators is the relevant dynamical variable. This approach has been applied to neural
behaviour ranging from that seen in small rhythmic networks [46] up to the whole
brain [47]. Despite the powerful tools and widespread use afforded by this formal-
ism, it does have a number of limitations (such as assuming the persistence of the
limit cycle under coupling) and it is well to remember that there are other tools from
the mathematical sciences relevant to understanding network behaviour. In this re-
view, we encompass the weakly coupled oscillator formalism in a variety of other
techniques ranging from symmetric bifurcation theory and the groupoid formalism
through to more “physics-based” approaches for obtaining reduced models of large
networks. This highlights the regimes where the standard formalism is applicable,
and provides a set of complementary tools when it does not. These are especially
useful when investigating systems with strong coupling, or ones for which the rate of
attraction to a limit cycle is slow.

In Sect. 2 we review some of the key mathematical models of oscillators in neu-
roscience, ranging from single neuron to neural mass, as well as introduce the stan-
dard machinery for describing synaptic and gap-junction coupling. We then present
in Sect. 3 an overview of some of the more powerful mathematical approaches to
understanding the collective behaviour in coupled oscillator networks, mainly drawn
from the theory of symmetric dynamics. We touch upon the master stability func-
tion approach and the groupoid formalism for handling coupled cell systems. In
Sect. 4 we review some special cases where it is either possible to say something
about the stability of the globally synchronous state in a general setting, or that of
phase-locked states for strongly coupled networks of integrate-and-fire neurons. The
challenge of the general case is laid out in Sect. 5, where we advocate the use of
phase–amplitude coordinates as a starting point for either direct network analysis or
network reduction. To highlight the importance of dynamics off cycle we discuss the
phenomenon of shear-induced chaos. In the same section we review the reduction
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to the standard phase-only description of an oscillator, covering the well-known no-
tions of isochrons and phase response curves. The construction of phase interaction
functions for weakly coupled phase oscillator networks is covered in Sect. 6, together
with tools for analysing phase-locked states. Moreover, we go beyond standard ap-
proaches and describe the emergence of turbulent states in continuum models with
non-local coupling. Another example of something more complicated than a peri-
odic attractor is that of a heteroclinic attractor, and these are the subject of Sect. 7.
The subtleties of phase reduction in the presence of stochastic forcing are outlined
in Sect. 8. The search for reduced descriptions of very large networks is the topic
of Sect. 9, where we cover recent results for Winfree networks that provide an exact
mean-field description in terms of a complex order parameter. This approach makes
use of the Ott–Antonsen ansatz that has also found application to chimera states, and
which we discuss in a neural context. In Sect. 10 we briefly review some examples
where the mathematics of this review have been applied, and finally in Sect. 11 we
discuss some of the many open challenges in the field of neural network dynamics.

We will assume the reader has familiarity with the following:

• The basics of nonlinear differential equation descriptions of dynamical systems
such as linear stability and phase-plane analysis.

• Ideas from the qualitative theory of differential equations/dynamical systems such
as asymptotic stability, attractors and limit cycles.

• Generic codimension-one bifurcation theory of equilibria (saddle node, Hopf) and
of periodic orbits (saddle node of limit cycles, heteroclinic, torus, flip).

There are a number of texts that cover this material very well in the context of neuro-
science modelling, for example [48, 49]. We include a glossary of some abbreviations
that are introduced in the text.

2 Neurons and Neural Populations as Oscillators

Nonlinear ionic currents, mediated by voltage-gated ion channels, play a key role
in generating membrane potential oscillations and action potentials. There are many
ordinary differential equation (ODE) models for voltage oscillations, ranging from
biophysically detailed conductance-based models through to simple integrate-and-
fire (IF) caricatures. This style of modelling has also proved fruitful at the population
level, for tracking the averaged activity of a near synchronous state. In all these cases
bifurcation analysis is especially useful for classifying the types of oscillatory (and
possibly resonant) behaviour that are possible. Here we give a brief overview of some
of the key oscillator models encountered in computational neuroscience, as well as
models for electrical and chemical coupling necessary to build networks.

2.1 The Hodgkin–Huxley Model and Its Planar Reduction

The work of Hodgkin and Huxley in elucidating the mechanism of action potentials
in the squid giant axon is one of the major breakthroughs of dynamical modelling in
physiology [50], and see [51] for a review. Their work underpins all modern electro-
physiological models, exploiting the observation that cell membranes behave much
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like electrical circuits. The basic circuit elements are (1) the phospholipid bilayer,
which is analogous to a capacitor in that it accumulates ionic charge as the electrical
potential across the membrane changes; (2) the ionic permeabilities of the membrane,
which are analogous to resistors in an electronic circuit; and (3) the electrochemi-
cal driving forces, which are analogous to batteries driving the ionic currents. These
ionic currents are arranged in a parallel circuit. Thus the electrical behaviour of cells
is based upon the transfer and storage of ions such as potassium (K+) and sodium
(Na+).

Our goal here is to illustrate, by exploiting specific models of excitable membrane,
some of the concepts and techniques which can be used to understand, predict, and
interpret the excitable and oscillatory behaviours that are commonly observed in sin-
gle cell electrophysiological recordings. We begin with the mathematical description
of the Hodgkin–Huxley model.

The standard dynamical system for describing a neuron as a spatially isopoten-
tial cell with constant membrane potential V is based upon conservation of electric
charge, so that

C
d

dt
V = Iion + I,

where C is the cell capacitance, I the applied current and Iion represents the sum of
individual ionic currents:

Iion = −gK(V − VK)− gNa(V − VNa)− gL(V − VL).

In the Hodgkin–Huxley (HH) model the membrane current arises mainly through the
conduction of sodium and potassium ions through voltage-dependent channels in the
membrane. The contribution from other ionic currents is assumed to obey Ohm’s law
(and is called the leak current). The gK, gNa and gL are conductances (reciprocal
resistances) that can be interpreted as gating variables. The great insight of Hodgkin
and Huxley was to realise that gK depends upon four activation gates: gK = gKn

4,
whereas gNa depends upon three activation gates and one inactivation gate: gNa =
gNam

3h. Here the gating variables all obey equations of the form

d

dt
X =

X∞(V )−X
τX(V )

, X ∈ {m,n,h}.

The conductance variables described by X take values between 0 and 1 and ap-
proach the asymptotic values X∞(V ) with time constants τX(V ). These six func-
tions are obtained from fits with experimental data. It is common practice to write
τX(V )= 1/(αX(V )+ βX(V )), X∞(V )= αX(V )τX(V ), where α and β have the in-
terpretation of opening and closing channel transition rates, respectively. The details
of the HH model are provided in the Appendix for completeness. A numerical bi-
furcation diagram of the model in response to constant current injection is shown in
Fig. 1, illustrating that oscillations can emerge in a Hopf bifurcation with increasing
drive.

The mathematical forms chosen by Hodgkin and Huxley for the functions τX and
X∞, X ∈ {m,n,h}, are all transcendental functions (i.e. involve exponentials). Both
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Fig. 1 Bifurcation diagram of
the Hodgkin–Huxley model as a
function of the external drive I .
The green lines show the
amplitude of a stable limit cycle
and the blue lines indicate
unstable limit-cycle behaviour,
both born from Hopf
bifurcations. The solid red line

shows the stable fixed point and
the black line shows the unstable
fixed point. Details of the model
are provided in the Appendix

Fig. 2 Nullclines (red for V
and green for U ) of the reduced
HH neuron mode, obtained
using the reduction technique of
Abbott and Kepler [52], for the
oscillatory regime (I = 10)
capable of supporting a periodic
train of spikes. The periodic
orbit is shown in blue

this and the high dimensionality of the model make analysis difficult. However, con-
siderable simplification is attained with the following observations: (i) τm(V ) is small
for all V so that the variable m rapidly approaches its equilibrium value m∞(V ), and
(ii) the equations for h and n have similar time-courses and may be slaved together.
This has been put on a more formal footing by Abbott and Kepler [52] by expressing
both n and h as functions of a scalar quantity U(t). They obtain a reduced planar
model (of the full Hodgkin–Huxley model) in (V ,U) co-ordinates under the replace-
ment m→m∞(V ) and X = X∞(U) for X ∈ {n,h} with a prescribed choice of dy-
namics for U (such that d2V/dt2 is similar in the two models for a fixed V ). The
phase plane and nullclines for this system are shown in Fig. 2.

For zero external input the fixed point is stable and the neuron is said to be ex-

citable. When a positive external current is applied the low-voltage portion of the
V nullcline moves up whilst the high-voltage part remains relatively unchanged. For
sufficiently large constant external input the intersection of the two nullclines falls
within the portion of the V nullcline with positive slope. In this case the fixed point
is unstable and the system may support a limit cycle. If an emergent limit cycle is
stable then a train of action potentials will be produced and the system is referred
to as being oscillatory. Action potentials may also be induced in the absence of an
external current for synaptic stimuli of sufficient strength and duration. This simple
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Fig. 3 Phase portrait for the cortical neuron model with quadratic recovery variable, a = 0.1, β = γ = 0.5,
v1 = 0, v2 = 0.2. The voltage nullcline is shown in red and that of the recovery variable in green. Left:
I = 0, showing a stable fixed point (black filled circle), a saddle (grey filled circle) and an unstable fixed
point (white filled circle). Right: I = 0.1, where there is an unstable fixed point (white filled circle) with a
stable limit cycle (in blue) for C = 0.01

planar model captures all of the essential features of the original HH model yet is
much easier to understand from a geometric perspective. Indeed the model is highly
reminiscent of the famous FHN model, in which the voltage nullcline is taken to be
a cubic function. Both models show the onset of repetitive firing at a nonzero fre-
quency as observed in the HH model (when an excitable state loses stability via a
subcritical Hopf bifurcation). However, unlike real cortical neurons they cannot fire
at arbitrarily low frequency. This brings us to consider modifications of the original
HH formalism to accommodate bifurcation mechanisms from excitable to oscillatory
behaviours that can respect this experimental observation.

2.2 The Cortical Model of Wilson

Many of the properties of real cortical neurons can be captured by making the equa-
tion for the recovery variable of the FHN equations quadratic (instead of linear). We
are thus led to the cortical model of Wilson [53]:

C
d

dt
v = f (v)−w+ I, f (v)= v(a − v)(v − 1),

d

dt
w = β(v− v1)(v − v2)− γw,

where 0 < a < 1 and β,γ,C > 0. Here v is like the membrane potential V , and w
plays the role of a gating variable. In addition to the single fixed point of the FHN
model it is possible to have another pair of fixed points, as shown in Fig. 3(left). As
I increases two fixed points can annihilate at a saddle node on an invariant circle

(SNIC) bifurcation at I = Ic [48]. In the neighbourhood of this global bifurcation the
firing frequency scales like

√
I − Ic. For large enough I there is only one fixed point

on the middle branch of the cubic, as illustrated in Fig. 3(right). In this instance an
oscillatory solution occurs via the same mechanism as for the FHN model.

2.3 Morris–Lecar with Homoclinic Bifurcation

A SNIC bifurcation is not the only way to achieve a low firing rate in a single neuron
model. It is also possible to achieve this via a homoclinic bifurcation, as is possible
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Fig. 4 Phase portrait of the Morris–Lecar model at I = 0.075 with C = 1, Vk = −0.7, VL = −0.5,
VCa = 1, gK = 2, gL = 0.5, V1 = −0.01, V2 = 0.15, gCa = 1.33, V3 = 0.1, V4 = 0.145 and φ = 1/3. The
voltage nullcline is shown in red and that of the gating variable in green. The filled black circle indicates
a stable fixed point, the grey filled circle a saddle and the filled white circle an unstable fixed point. The
periodic orbit is shown in blue

in the Morris–Lecar (ML) model [54]. This was originally developed as a model for
barnacle muscle fibre. Morris and Lecar introduced a set of two coupled ODEs in-
corporating two ionic currents: an outward, non-inactivating potassium current and
an inward, non-inactivating calcium current. Assuming that the calcium currents op-
erate on a much faster time scale than the potassium current one, they formulated the
following two-dimensional system:

C
d

dt
V = gL(VL − V )+ gKw(VK − V )+ gCam∞(V )(VCa − V )+ I,

d

dt
w = λ(V )

(
w∞(V )−w

)
,

withm∞(V )= 0.5(1+ tanh[(V −V1)/V2]), w∞(V )= 0.5(1+ tanh[(V −V3)/V4]),
λ(V )= φ cosh[(V −V3)/(2V4)], where V1, . . . , V4 and φ are constants. Here w rep-
resents the fraction of K+ channels open, and the Ca2+ channels respond to V so
rapidly that we assume instantaneous activation. Here gL is the leakage conductance,
gK, gCa are the potassium and calcium conductances, VL, VK, VCa are correspond-
ing reversal potentials, m∞(V ), w∞(V ) are voltage-dependent gating functions and
λ(V ) is a voltage-dependent rate. Referring to Fig. 4, as I decreases the periodic
orbit grows in amplitude, it comes closer to a saddle point and the period increases
such that near the homoclinic bifurcation, where the orbit collides with the saddle at
I = Ic, the frequency of oscillation scales as −1/ log(I − Ic).

2.4 Integrate-and-Fire

Although conductance-based models like that of Hodgkin and Huxley provide a level
of detail that helps us understand how the kinetics of channels (with averaged acti-
vation and inactivation variables) can underlie action-potential generation, their high
dimensionality is a barrier to studies at the network level. The goal of a network-level
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analysis is to predict emergent computational properties in populations and recur-
rent networks of neurons from the properties of their component cells. Thus sim-
pler (lower-dimensional and hopefully mathematically tractable) models are more
appealing—especially if they fit single neuron data.

A one-dimensional nonlinear IF model takes the form

τ
d

dt
v = f (v)+ I if v < vth, (1)

such that v(t) is reset to vR just after reaching the value vth. In other words we seek
a piece-wise discontinuous solution v(t) of (1) such that

lim
t→t0−

v(t0)= vth implies that lim
t→t0+

v(t)= vR.

Firing times are defined iteratively according to

Tn = inf
{
t |v(t)≥ vth; t ≥ Tn−1

}
.

Real cortical data can be very accurately fit using

f (v)= vL − v+ κe(v−vκ )/κ ,

with vL = −68.5 mV, τ = 3.3 ms, vκ = −61.5 mV and κ = 4 mV [55]. There are
many varieties of nonlinear IF model, with the quadratic one [56] being well known as
a precursor for the planar Izhikevich spiking model [57], itself capable of generating
a wide variety of firing patterns, including bursting and chattering as well as regular
spiking. For a more thorough discussion of IF models and the challenges of analysing
non-smooth dynamical systems we refer the reader to [58].

2.5 Neuronal Coupling

At a synapse presynaptic firing results in the release of neurotransmitters that cause
a change in the membrane conductance of the postsynaptic neuron. This postsynap-
tic current may be written Is(t) = gss(t)(Vs − V (t)) where V (t) is the voltage of
the postsynaptic neuron, Vs is the membrane reversal potential and gs is a constant
conductance. The variable s corresponds to the probability that a synaptic receptor
channel is in an open conducting state. This probability depends on the presence and
concentration of neurotransmitter released by the presynaptic neuron. The sign of Vs
relative to the resting potential (which without loss of generality we may set to zero)
determines whether the synapse is excitatory (Vs > 0) or inhibitory (Vs < 0).

The effect of some synapses can be described with a function that fits the shape
of the postsynaptic response due to the arrival of an action potential at the presy-
naptic release site. The postsynaptic response s(t) would then be given by s(t) =
η(t − T ), t ≥ T where T is the arrival time of a presynaptic action potential and η(t)
fits the shape of a realistic postsynaptic response (with η(t)= 0 for t < 0). A common
(normalised) choice for η(t) is a difference of exponentials:

η(t)=
(

1

α
−

1

β

)−1(
e−αt − e−βt), (2)
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Fig. 5 A Half Center oscillator built from two (reduced) Hodgkin–Huxley neurons with mutual reciprocal
inhibition modelled by an α-function synapse and a negative reversal potential. The inset shows the voltage
traces (solid and dashed lines) for the two neurons. The solid blue line in the (V ,U) space shows the
common orbit of the two neurons (though each neuron travels half a period out of phase with the other).
Parameters: α = 1 ms, Vs = −100 mV, gs = 100 mS cm−2. Spike times determined by a voltage threshold
at V = −35 mV

or the alpha function α2te−αt obtained from (2) in the limit β→ α. The postsynaptic
response arising from a train of action potentials is given by

s(t)=
∑

m∈Z
η(t − Tm), (3)

where Tm denotes the arrival time of the mth action potential at a synapse.
Interestingly even purely inhibitory synaptic interactions between non-oscillatory

neurons can create oscillations at the network level, and can give rise to central pattern
generators of “half-centre” type [59]. To see this we need only consider a pair of
(reduced) Hodgkin–Huxley neurons with mutual reciprocal inhibition mediated by
an α-function synapse with a negative reversal potential. The phenomenon of anode
break excitation (whereby a neuron fires an action potential in response to termination
of a hyperpolarising current) can underlie a natural anti-phase rhythm, and is best
understood in terms of the phase plane shown in Fig. 2. In this case inhibition will
effectively move the voltage nullcline down, and the system will equilibrate to a new
hyperpolarised state. Upon release of inhibition the fixed point will move to a higher
value, though to reach this new state the trajectory must jump to the right hand branch
(since now dV /dt > 0). An example is shown in Fig. 5.

Gap junctions differ from chemical synapses in that they allow for direct com-
munication between cells. They are typically formed from the juxtaposition of two
hemichannels (connexin proteins) and allow the free movement of ions or molecules
across the intercellular space separating the plasma membrane of one cell from an-
other. As well as being found in the neocortex, they occur in many other brain regions,
including the hippocampus, inferior olivary nucleus in the brain stem, the spinal cord,
and the thalamus [60]. Without the need for receptors to recognise chemical messen-
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gers, gap junctions are much faster than chemical synapses at relaying signals. The
synaptic delay for a chemical synapse is typically in the range 1–100 ms, while the
synaptic delay for an electrical synapse may be only about 0.2 ms.

It is common to view the gap junction as nothing more than a channel that conducts
current according to a simple ohmic model. For two neurons with voltages vi and
vj the current flowing into cell i from cell j is given by Igap(vi, vj ) = g(vj − vi),
where g is the constant strength of the gap-junction conductance. They are believed
to promote synchrony between oscillators (e.g. see [61]), though the story is more
subtle than this as we shall discuss in Sect. 4.

2.6 Neural Mass Models

As well as supporting oscillations at the single neuron level, brain tissue can also gen-
erate oscillations at the tissue level. Rather than model this using networks built from
single neuron models, it is has proven especially useful to develop low-dimensional
models to mimic the collection of thousands of near identical interconnected neurons
with a preference to operate in synchrony. These are often referred to as neural mass
models, with state variables that track coarse grained measures of the average mem-
brane potential, firing rates or synaptic activity. They have proven especially useful
in the description of human EEG power spectra [62], as well as resting brain state
activity [63] and mesoscopic brain oscillations [64].

In many neural population models, such as the well-known Wilson–Cowan model
[65], it is assumed that the interactions are mediated by firing rates rather than action
potentials (spikes) per se. To see how this might arise we rewrite (3) in the equivalent
form using a sum of Dirac δ-functions,

(
1 +

1

α

d

dt

)(
1 +

1

β

d

dt

)
s =

∑

m∈Z
δ(t − Tm). (4)

Identifying the right hand side of (4) as a train of presynaptic spikes motivates the
form of a phenomenological rate model in the form

Qs = f, (5)

with f identified as a firing rate and Q identified as the differential operator
(1 + α−1d/dt)(1 + β−1d/dt). At the network level it is then common practice to
close this system of equations by specifying f to be a function of presynaptic ac-
tivity. A classic example is the Jansen–Rit model [66], which describes a network
of interacting pyramidal neurons (P ), inhibitory interneurons (I ) and excitatory in-
terneurons (E), and has been used to model both normal and epileptic patterns of
cortical activity [67]. This can be written in the form

QEsP = f (sE − sI ), QEsE = C2f (C1sP )+A, QI sI = C4f (C3sP ),

which is a realisation of the structure suggested by (5), with the choice

f (v)=
ν

1 + e−r(v−v0)
,
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Fig. 6 Bifurcation diagram on varying the input A for the Jansen–Rit model with βE = 100 s−1,
βI = 50 s−1, AE = 3.25 mV, AI = 22 mV, ν = 5 s−1, v0 = 6 mV, r = 0.56 mV−1, C1 = 135,
C2 = 0.8C1 , C3 = 0.25C1 = C4. Solid red (black) lines represent stable (unstable) fixed points. Green

(blue) points denote the amplitude of stable (unstable) periodic orbits that emerge via Hopf bifurcations.
Note that a SNIC bifurcation occurs at A≃ 110 Hz. The inset shows the coexistence of two stable periodic
orbits at A= 125 Hz

and Qa = (1 + β−1
a d/dt)2βa/Aa for a ∈ {E,I }. Here A is an external input. When

this is a constant we obtain the bifurcation diagram shown in Fig. 6. Oscillations
emerge via Hopf bifurcations and it is possible for a pair of stable periodic orbits
to coexist. One of these has a frequency in the alpha band and the other is char-
acterised by a lower frequency and higher amplitude. Recently a network of such
modules, operating in the alpha range and with additive noise, has been used to in-
vestigate mechanisms of cross-frequency coupling between brain areas [68]. Neural
mass models have also previously been used to model brain resonance phenomena
[69], for modelling of epileptic seizures [70–72], and they are very popular in the
neuroimaging community for model driven EEG/fMRI fusion [73].

Now that we have introduced some oscillator models for neurons and neural pop-
ulations it is appropriate to consider the set of tools for analysing their behaviour at
the network level.

3 Dynamical Systems Approaches to Collective Behaviour

We give a brief overview of some dynamical systems approaches, concepts and tech-
niques that can be used to understand collective behaviour that spontaneously appears
in coupled dynamical system models used for neuroscience modelling. We do not
give a complete review of this area but try to highlight some of the approaches and
how they interact; some examples of applications of these to neural systems are given
in later chapters.

In the artificial neural network literature, a distinction is made between recurrent
and feedforward networks; see for example [74]. A feedforward network is one that
is coupled but contains no feedback loops—i.e. there are no directed loops, while
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a recurrent network does contain feedback loops. We note that the methodologies
discussed in this section (including constraints from symmetries and groupoid struc-
tures) may be applied to networks regardless of whether they are feedforward or
recurrent. In this review we will later mostly discuss examples that are recurrent,
though there are many interesting and relevant questions for feedforward networks as
these often appear as models for “input–output” processes in neural systems.

3.1 Synchrony and Asynchrony

A set of N coupled nonlinear systems represented by ODEs can be written

d

dt
xi = Fi(xi;x1, . . . , xN ), (6)

where xi ∈ R
d represent the state space of the individual systems whose evolution is

affected both by the current state of the system and by the states of those coupled to
that system. In the mathematics literature, the xi are often called “cells” though we
note that the xi may include degrees of freedom in the coupling as well as variables
such as membrane potential that reflect the state of the “biological cell”. Note there
is potential for notational confusion here: to clarify this we write

x ∈R
Nd , xi ∈ R

d , x
(j)
i ∈R.

One of the most important observations concerning the collective dynamics of
coupled nonlinear systems relates to whether the collection behaves as one or not—
whether there is an attracting synchronous state, or whether more complex spatio-
temporal patterns such as generalised synchrony (also called clustering) appear. There
is a very large literature, even restricting to the case of applications of synchrony, and
one where we cannot hope to do the whole area justice. We refer in particular to [75,
76]. Various applications of synchrony of neural models are discussed, for example,
in [77–85] while there is a large literature (e.g. [17]) discussing the role of synchrony
in neural function. Other work looks for example at synchronisation of groups of
networks [86] and indeed synchrony can be measured experimentally [87] in groups
of neurons using dynamic patch clamping.

We discuss some of the types of behaviour that can emerge in the collective dy-
namics and the response of partial synchronised states to external forcing. In many
cases a system of N coupled dynamical systems can be written in the form

d

dt
xi = fi(xi)+ ǫgi(xi;x1, . . . , xN ), (7)

where each system is parametrised by xi ∈ R
d , with intrinsic dynamics determined by

fi ; ǫ = 0 corresponds to decoupling the systems and the functions gi represent drive
from other systems on the ith system. Many approaches start with the less general
case of additive interactions

d

dt
xi = fi(xi)+ ǫ

N∑

j=1

wijGij (xi, xj ), (8)
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which can be justified for systems where the collective interaction between systems
can be broken into “pairwise” interactions Gij that are summed according to some
linear weights wij (some of which may be zero) that represent the strength of the
couplings and ǫ the strength of coupling of the network. Note that there is clearly no
unique way to write the system in this form; more specifically, one can without loss
of generality choose ǫ = 1, wij = 1 by suitable choice of Gij . On the other hand it
can be useful to be able to e.g. modulate the strength of the coupling across the whole
network independently of changing individual coupling strengths. On the other hand,
the special, fully symmetric, case Gij = G is of particular interest as an example
where there is full connectivity.

3.2 Clusters, Exact and Generalised Synchrony

If one has a notion of synchrony between the systems of (7), it is possible to dis-
cuss certain generalised forms of synchrony, including clustering according to mutual
synchrony. Caution needs to be exercised whenever discussing synchrony—there are
many distinct notions of synchrony that may be appropriate in different contexts and,
in particular, synchrony is typically a property of a particular solution at a particular
point in time rather than a property of the system as a whole.

An important case of synchrony is exact synchrony: we say xi(t) and xj (t) are
exactly synchronised if xi(t)= xj (t) for all t . Generalised synchrony is, as the name
suggests, much more general and corresponds to there simply being a functional re-
lationship of the form xi(t)= F(xj (t)). Another related notion is that of clustering,
where different groups of oscillators are exactly synchronised but there is no exact
synchrony between the groups. For oscillators, phases can be used to define additional
notions such as phase and frequency synchrony: see Sect. 6.1.

Although we focus mostly on individual units with simple (periodic) dynamics,
if the units have more complex dynamics (such as “chaotic oscillators”) one can
understand synchrony of the cells by analysis of the linearised differences between
oscillators, and there is a sizeable literature on this; see the review [88], or [89] for
clusters in a system of globally coupled bistable oscillators. In the case of two linearly
coupled identical chaotic oscillators

d

dt
x1 = f (x1)+ ǫ(x2 − x1),

d

dt
x2 = f (x2)+ ǫ(x1 − x2),

where (x1, x2) ∈ R2d , if the individual oscillator dx/dt = f (x) has a chaotic attractor
A⊂ R

d then the coupled system will have an attracting exactly synchronised attractor
Ã = {(x, x) : x ∈ A} only if the coupling ǫ is sufficiently large in relation to the
maximal Lyapunov exponent of the synchronous state [88].

3.3 Networks, Motifs and Coupled Cell Dynamics

We focus now on the dynamics of pairwise coupled networks such as (8) as this form
is assumed in most cases. Under the additional assumption that the coupling between
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the oscillators is of the same type and either present or absent, one can consider
uniformly weighted coupling of the form

wij = gAij ,

where g is fixed and Aij is an adjacency matrix of the graph of interactions, i.e.
Aij = 1 if there is a link from j to i and 0 otherwise, or more generally

wij = gijAij ,

where gij > 0 represents the strength of coupling and Aij the adjacency matrix. It
is clear that the coupling structure as represented in Aij will influence the possible
dynamics on the network and to make further progress it is useful to restrict to partic-
ular network structures. Some important literature on network structures is reviewed
for example in [90], while [75] reviews work on synchrony in complex networks up
to the time of its publication; recent work includes for example [91]. For a recent
review of the application of complex networks to neurological disorders in the brain,
see [92].

It is interesting to try and understand the effect of network structure on synchrony,
so we briefly outline some basic graph theoretic measures of network structure. The
in-degree of the node i is the number of incoming connections (i.e. din(i)=

∑
j Aij ),

while the out-degree is the number of outgoing connections (i.e. dout(i) =
∑
j Aji )

and the distribution of these degrees is often used to characterise a large graph.
A scale-free network is a large network where the distribution of in (or out) degrees
scales as a power of the degree. This can be contrasted with highly structured ho-
mogeneous networks (for example on a lattice) where the degree may be the same
at each node. Other properties commonly examined include the clustering proper-
ties and path lengths within the graph. There are also various measures of centrality
that help one to determine the most important nodes in a graph—for example the be-

tweenness centrality is a measure of centrality that is the probability that a given node
is on the shortest path between two uniformly randomly chosen nodes [90]. As ex-
pected, the more central nodes are typically most important if one wishes to achieve
synchrony in a network.

Other basic topological properties of networks that are relevant to their dynamics
include, for example, the following, most of which are mentioned in [75, 90]: The
network is undirected if Aij =Aji for all i, j , otherwise it is directed. We say nodes
j and i in the network Aij are path-connected if for some n there is a path from
j to i, i.e. (An)ij 	= 0 for some n. The network is strongly connected if for each i,
j it is path-connected in both directions while it is weakly connected if we replace
Aij by max(Aij ,Aji) (i.e. we make the network undirected) and the latter network
is strongly connected.In the terminology of artificial neural networks, a strongly con-
nected network is recurrent while one that is not strongly connected must have some
feedforward connections between groups of nodes. There is a potential source of
confusion in that strong and weak connectivity are properties of a directed network—
while strong and weak coupling are properties of the coupling strengths for a given
network.
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The diameter of a network is the maximal length of a shortest path between two
points on varying the endpoints. Other properties of the adjacency matrix are dis-
cussed for example in [93] where spectral properties of graph Laplacians are linked
to the problem of determining stability of synchronised states. Other work we men-
tion is that of Pecora et al. [94, 95] on synchronisation in coupled oscillator arrays
(and see Sect. 4.1), while [96] explores the recurrent appearance of synchrony in
networks of pulse-coupled oscillators (and see Sect. 4.2).

Finally, we mention network motifs—these are subgraphs that are “more preva-
lent” than others within some class of graphs. More precisely, given a network one
can look at the frequency with which a small subgraph appears relative to some stan-
dard class of graphs (for example Erdös–Rényi random graphs) and if a certain sub-
graph appears more often than expected, this characterises an important property of
the graph [97]. Such analysis has been used in systems biology (such as transcription
or protein interaction networks) and has been applied to study the structure in neural
systems (see for example [98, 99]) and the implications of this for the dynamics. They
have also been used to organise the analysis of the dynamics of small assemblies of
coupled cells; see for example [100, 101].

3.4 Weak and Strong Coupling

Continuing with systems of the form (7) or (8), if the coupling parameter ǫ is, in some
sense small, we refer to the system as “weakly coupled”. Mathematically, the weak-
coupling approximation is very helpful because it allows one to use various types
of perturbation theory to investigate the dynamics [43]. For coupling of limit-cycle
oscillators it allows one to greatly reduce the dimension of phase space. Nonethe-
less, many dynamical effects (e.g. “oscillator death” where the oscillations in one or
more oscillators are completely suppressed by the action of the network [102]) can-
not occur in the weak-coupling limit, and, moreover, real biological systems often
have “strong coupling”. We will return to this topic to discuss oscillator behaviour
in Sect. 4.3. One can sometimes use additional structure such as weak dissipation
and weak coupling of the oscillators to perform a semi-analytic reduction to phase
oscillators; see for example [103, 104].

3.5 Synchrony, Dynamics and Time Delay

An area of intense interest is the role of time delay in the collective dynamics of cou-
pled systems. In the neural context it is natural to include propagation delay between
neurons explicitly, for example in models such as

d

dt
xi(t)= fi

(
xi(t)

)
+ ǫ

N∑

j=1

wijGij
(
xi(t), xj (t − τ)

)
,

where the delay time τ > 0 represents the time of propagation of the signal from
one neuron to another. This presents a number of serious mathematical challenges,
not least due to the fact that delayed dynamical systems are infinite-dimensional: one
must specify the initial condition over a time interval t ∈ [t0 − τ, t0] in order to have
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any chance of uniquely defining the future dynamics; this means that for a state to be
linearly stable, an infinite number of eigenvalues need to have real part less than zero.

Nonetheless, much can be learned about stability, control and bifurcation of dy-
namically synchronous states in the presence of delay; for example [84, 105–108],
and the volume [109] include a number of contributions by authors working in this
area. There are also well-developed numerical tools such as DDE-BIFTOOL [110,
111] that allow continuation, stability and bifurcation analysis of coupled systems
with delays. For an application of these techniques to the study of a Wilson–Cowan
neural population model with two delays we refer the reader to [112].

3.6 A Short Introduction to Symmetric Dynamics

Although no system is ever truly symmetric, in practice many models have a high
degree of symmetry.1 Indeed many real-world networks that have grown (e.g. giving
rise to tree-like structures) are expected to be well approximated by models that have
large symmetry groups [113].

Symmetric (more precisely, equivariant) dynamics provides a number of powerful
mathematical tools that one can use to understand emergent properties of systems of
the form

d

dt
x = f (x), (9)

with x ∈ RN . We say (9) is equivariant under the action of a group Γ if and only
if f (gx) = gf (x) for any g ∈ Γ and x ∈ R

N . There is a well-developed theory of
dynamics with symmetry; in particular see [114–116]. These give methods that help
in a number of ways:

• Description: one can identify symmetries of networks and dynamic states to help
classify and differentiate between them.

• Bifurcation: there is a well-developed theory of bifurcation with symmetry to help
understand the emergence of dynamically interesting (symmetry broken) states
from higher symmetry states.

• Stability: bifurcation with symmetry often gives predictions about possible bifur-
cation scenarios that includes information as regards stability.

• Generic dynamics: symmetries and invariant subspaces can provide a powerful
structure with which one can understand more complex attractors such as hetero-
clinic cycles.

• Design: one can use symmetries to systematically build models and test hypothe-
ses.

The types of symmetries that are often most relevant for mathematical modelling of
finite networks of neurons are the permutation groups, i.e. the symmetric groups and
their subgroups. Nonetheless, continuum models of neural systems may have contin-
uous symmetries that influence the dynamics and can be used as a tool to understand
the dynamics; see for example [117].

1Indeed, the human brain consists of the order of 1011 neurons, but of the order of 100–1000 types
http://neuromorpho.org meaning there is a very high replication of cells that are only different by their
location and exact morphology.

http://neuromorpho.org
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Table 1 Some permutation symmetry groups that have been considered as examples of symmetries of
coupled oscillator networks

Name Symbol Comments

Full permutation SN Global or all-to-all coupling [118, 120]

Undirected ring DN Dihedral symmetry [118, 120]

Directed ring ZN Cyclic symmetry [118, 120]

Polyhedral networks Various [121]

Lattice networks G1 ×G2 G1 and G2 could be Dk or Zk
Hierarchical networks G1 ≀G2 G1 is the local symmetry, G2 the global symmetry, and ≀ is

the wreath product [122]

3.7 Permutation Symmetries and Oscillator Networks

We review some aspects of the equivariant dynamics that have proven useful in cou-
pled systems that are relevant to neural dynamics—see for example [118, 119]. In
doing so we mostly discuss dynamics that respects some symmetry group of permu-
tations of the systems. The full permutation symmetry group (or simply, the symmet-
ric group) on N objects, SN , is defined to be the set of all possible permutations of
N objects. Formally it is the set of permutations σ : {1, . . . ,N} → {1, . . . ,N} (in-
vertible maps of this set). To determine effects of the symmetry, not only the group
must be known but also its action on phase space. If this action is linear then it is a
representation of the group. The representation of the symmetry group is critical to
the structure of the stability, bifurcations and generic dynamics that are equivariant
with the symmetry.

For example, if each system is characterised by a single real variable, one can view
the action of the permutations on R

N as a permutation matrix

[Mσ ]ij =
{

1 if i = σ(j),
0 otherwise,

for each σ ∈ Γ ; note that MσMρ =Mσρ for any σ,ρ ∈ Γ . Table 1 lists some com-
monly considered examples of symmetry groups used in coupled oscillator network
models.

More generally, for (7) equivariance under the action of Γ means that for all
σ ∈ Γ , x ∈ R

Nd and i = 1, . . . ,N we have

fσ(i)(xσ(i))+ ǫgσ(i)(xσ(i);x1, . . . , xN )= fi(xσ(i))+ ǫgi(xσ(i);xσ(1), . . . , xσ(N)).

A simple consequence of this is: if Γ acts transitively on {1, . . . ,N} (i.e. if for any
i and j there is a σ ∈ Γ such that σ(j) = i) then all oscillators are identical, i.e.
fi(xi)= F(xi) for some function F .

The presence of symmetries means that solutions can be grouped together into
families—given any x the set Γ x := {gx : g ∈ Γ } is the group orbit of x and all
points on this group orbit will behave in dynamically the same way.
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Fig. 7 Suppose the six-element group Γ = D3 of symmetries of the equilateral triangle acts on R
2,

generated by a rotation g2 and a reflection g1 in the x-axis. The group orbit of the point u that is not
fixed by any symmetries also has six elements (shown by filled circles), while any group orbit of a point
v that is fixed by a symmetry (e.g. g1) has correspondingly fewer points (shown by open circles) in the
group orbit. Bifurcation of equilibria with more symmetry typically leads to several equilibria with less
(“broken”) symmetry

3.8 Invariant Subspaces, Solutions and Symmetries

Given a point x ∈ R
N (for simplicity we consider the case d = 1 below) we define the

isotropy subgroup (or simply the symmetry) of x under the action of Γ on R
N to be

Σx := {g ∈ Γ : gx = x}.

This is a subgroup of Γ , and the set of these groups forms a lattice (the isotropy

lattice) by inclusion of subgroups. They are dynamically important in that for any
trajectory x(t) we have Σx(0) =Σx(t) for all t . A converse problem is to characterise
the set of all points with a certain symmetry. If H is a subgroup (or more generally,
a subset) of Γ then the fixed-point space of H is defined to be

Fix(H) :=
{
x ∈ R

N : gx = x for all g ∈H
}
.

Because all x ∈ Fix(H) have symmetryH these subspaces are dynamically invariant.
See Fig. 7 that illustrates this principle. Typical points x ∈ Fix(H) have Σx = H ,
however, some points may have more symmetry; more precisely, if H ⊂ K are
isotropy subgroups then Fix(H) ⊃ Fix(K); and the partial ordering of the isotropy
subgroups corresponds to a partial ordering of the fixed-point subspaces.

One can identify similar types of isotropy subgroup as those that are conjugate in
the group, i.e. we say H1 and H2 are conjugate subgroups of Γ if there is a g ∈ Γ
such that gH1 =H2g. If this is the case, note that

g Fix(H1) = g
{
x ∈ R

N : hx = x for all h ∈H1
}

=
{
x ∈ R

N : hg−1x = g−1x for all h ∈H1
}

=
{
x ∈ R

N : ghg−1x = x for all h ∈H1
}

=
{
x ∈ R

N : hx = x for all h ∈H2
}

= Fix(H2),
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meaning that the fixed-point spaces of conjugate subgroups (and the dynamics on
them) are in some sense equivalent.

Identifying symmetries up to conjugacy allows for a considerable reduction of
the number of cases one needs to consider; note that conjugate subgroups must have
fixed-point subspaces of the same dimension where essentially the same dynamics
will occur.

The fixed-point subspaces are often used (implicitly or explicitly) to enable one
to reduce the dimension of the system and thus to make it more tractable. As an
example, to determine the existence of an exactly synchronised solution one only
needs to suppose xi(t)= x(t) and determine whether there is such a solution x(t) for
the system (7).

For periodic orbits, the symmetry of points on the orbit to symmetries of the orbit
as an invariant set are as follows. Suppose P is a periodic orbit (which can be viewed
as a “loop” in phase space RN ). Let K denote the symmetries that fix all points on
P (the “spatial symmetries”) and H denote the symmetries that fix P as a set (the
“spatio-temporal symmetries”); note that K will be a subgroup of H . Finally, let

LK :=
⋃

g/∈K
Fix
(
{g}
)
∩ Fix(K),

be the set of points in phase space that have strictly more symmetry than K .

Theorem 3.1 (Theorem 3.4 in [116]) Consider ODEs on R
N with a given finite sym-

metry group Γ . There is a periodic orbit P with spatial symmetries K and spatio-

temporal symmetries H if and only if all of the following hold:

• H/K is cyclic,
• K is an isotropy subgroup,
• dim Fix(K)≥ 2,
• H fixes a connected component of Fix(K)/LK , where LK is defined as above.

One way of saying this is that the only possible spatio-temporal symmetries of
periodic orbits are cyclic extensions of isotropy subgroups. Further theory, outlined
in [116], shows that one can characterise possible symmetries of chaotic attractors;
these may include a much wider range of spatio-temporal symmetries (H,K) in-
cluding some that do not satisfy the hypotheses of Theorem 3.1. This means that the
symmetries of attractors may contain dynamical information about the attractor.

3.9 Symmetries and Linearisation

The presence of symmetries for an ODE will clearly constrain the system in many
ways; one of the most important of these being the effects on linear stabilities of so-
lutions. For a given equivariant ODE of the form (9), suppose we have an equilibrium
x ∈ R

N with isotropy subgroupΣx under the action of Γ on R
N . ThenΣx constrains

the JacobianDfx of the ODE because this must commute with the action ofΣx ; more
precisely

(gDfx)v = (Dfx)(gv),
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for any g ∈Σx and v ∈ R
N . This means that eigenvalues of the linearisation will be

multiple whenever they are mapped around in a nontrivial way by the action of the
isotropy subgroup.

Fortunately, there is a well-developed theory that enables one to exactly charac-
terise the structure of the Jacobians of such maps—this involves splitting the action
into a number of isotypic components according to irreducible representations that
are the most trivial invariant subspaces under the action of the group. We do not have
space here to go into this in detail, but refer the reader to [116] and references therein.
This characterisation can be extended to nonlinear terms of vector fields, and more
general invariant sets (such as periodic orbits) in addition to equilibria.

3.10 Bifurcations with Symmetry and Genericity

Bifurcations of ODEs can be classified and analysed by codimension according to
methods for example in texts [45, 123]. This involves the following steps:

(a) Identification of the marginally unstable modes (the directions that are losing
stability: for equilibria, this corresponds to the eigenspace of the Jacobian where
the eigenvalues have zero real part).

(b) Reduction to a centre manifold parametrised by the marginally unstable modes
(generically this is one- or two-dimensional when only one parameter is varied).

(c) Study of the dynamics of the normal form for the bifurcation under generic as-
sumptions on the normal form coefficients.

Indeed, the only generic codimension-one local bifurcations (i.e. the only one-
parameter bifurcations of equilibria that will not split into a number of simpler bifur-
cations for some small perturbation on the system) are the saddle-node (also called
fold, or limit point) and the Hopf (also called Andronov–Hopf) bifurcation. Addi-
tional more complicated bifurcations can appear generically at higher codimension.
This classification by codimension has enabled development of a powerful set of nu-
merical tools to help the analysis of such systems, not just for local bifurcations of
equilibria but also some global bifurcations (in particular, periodic orbit and homo-
clinic bifurcations). Particular packages to do this include AUTO [124], MatCont
[125], CONTENT [126] and XPPAUT [127] (which includes an implementation of
AUTO).

If we restrict to symmetry preserving perturbations, a much wider range of bi-
furcations can appear at low codimension—this is because, as described above, the
symmetry can cause a marginal mode of instability in one direction to appear simulta-
neously in many other directions meaning that (a), (b) and (c) above must be replaced
by

(a′) Identification of the marginally unstable modes (as discussed in Sect. 3.9, sym-
metry means there can generally be several of these that will become unstable at
the same time).

(b′) Reduction to a centre manifold parametrised by the marginally unstable modes
(these are preserved by the action of the symmetries and may be of dimension
greater than two even for one-parameter bifurcations).
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(c′) Study of the dynamics of the normal form for the symmetric bifurcation under
generic assumptions on the normal form coefficients (the symmetries mean that
some coefficients may be zero, some are constrained to be equal while others
may be forced to satisfy nontrivial and sometimes obscure algebraic relation-
ships).

These factors conspire to make symmetric bifurcations rich and interesting in
behaviour—even in codimension one it is possible for heteroclinic cycles or chaos
to bifurcate directly from high symmetry solutions. However, the same factors mean
that many features cannot be caught by numerical path-following packages such as
those listed above—the degeneracies mean that many branches may emanate from
the bifurcation; it is generally a challenge to identify all of these. Essentially, bifur-
cation theory needs to be developed in the context of the particular group action.
Examples of some consequences of this for weakly coupled oscillator networks with
symmetries are considered in Sect. 6.

3.11 Robust Heteroclinic Attractors, Cycles and Networks

The presence of symmetries in a dynamical system can cause highly nontrivial dy-
namics even away from bifurcation points. Of particular interest are robust invariant
sets that consist of networks of equilibria (or periodic orbits, or more general invariant
sets) connected via heteroclinic connections that are preserved under small enough
perturbations that respect the symmetries [128]. These structures may be cycles or
more generally networks. They can be robust to perturbations that preserve the sym-
metries and indeed they can be attracting [116, 129]. We are particularly interested
in the attracting case in which case we call these invariant sets heteroclinic attractors

and trajectories approaching such attractors show a typical intermittent behaviour—
periods that are close to the dynamics of an unstable saddle-type invariant set, and
switches between different behaviours.

In higher-dimensional systems, heteroclinic attractors may have subtle structures
such as “depth two connections” [130], “cycling chaos” where there are connec-
tions between chaotic saddles [116, 131, 132] and “winnerless competition” [133,
134]. Related dynamical structures are found in the literature in attractors that show
“chaotic itinerancy” or “slow switching”. Such complex attractors can readily appear
in neural oscillator models in the presence of symmetries and have been used to model
various dynamics that contribute to the function of neural systems; we consider this,
along with some examples, in Sect. 7.

3.12 Groupoid and Related Formalisms

Some less restrictive structures found in some coupled dynamical networks also have
many of the features of symmetric networks (including invariant subspaces, bifurca-
tions that appear to be degenerate, and heteroclinic attractors) but without necessarily
having the symmetries.

One approach [135] has been to use a structure of groupoids—these are mathe-
matical structures that satisfy some, but not all, of the axioms of a group and can be
useful in understanding the constraints on the dynamics of coupled cell systems of
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the form (6). A groupoid is similar to a group except that the composition of two
elements in a groupoid is not always defined, and the inverse of a groupoid element
may only be locally defined. This formalism can be used to describe the permutations
of inputs of cells as in [135, 136].

Suppose that we have (6) with cells C = {1, . . . ,N} and suppose that there are
connections E , i.e. there are pairs of cells (i, j) in C such that cell i appears in the
argument of the dynamics of cell j . We say

I (j)=
{
i ∈ C : (i, j) ∈ E

}
,

is the input set of cell j and there is a natural equivalence relation ∼I defined by
j ∼I k if there is a bijection (an input automorphism)

β : I (j)→ I (k),

with β(j)= k such that for all i ∈ I (j) we have (i, j)∼E (β(i), k). The set B(j, k)
of input automorphisms of this type and the set of all such input automorphisms has
the structure of a groupoid [135].

Given a coupling structure of this type, an admissible vector field is a vector field
on the product space of all cells that respects the coupling structure, and this gen-
eralises the idea of an equivariant vector field in the presence of a symmetry group
acting on the set of cells. The dynamical consequences of this have a similar flavour
to the consequences one can find in symmetric systems except that fewer cases have
been worked out in detail, and there are many open questions.

To illustrate, consider the system of three cells,

d

dt
x1 = g(x1, x2, x3),

d

dt
x2 = g(x2, x1, x3),

d

dt
x3 = h(x3, x1),

where g(x, y, z) = g(x, z, y); this is discussed in Sect. 5 in [136] in some detail.
This has a coupling structure as shown in Fig. 8. In spite of there being no exact
symmetries in the system there is a nontrivial invariant subspace where x1 = x2. In
the approach of [136] the dynamically invariant subspaces that can be understood in
terms of the balanced colourings of the graph where the cells are grouped in such
a way that the inputs are respected—this corresponds to an admissible pattern of

synchrony.
The invariant subspaces that are forced to exist by this form of coupling structure

have been called polydiagonals in this formalism, which correspond to clustering of
the states. For every polydiagonal one can associate a quotient network by identify-
ing cells that are synchronised, to give a smaller network. As in the symmetric case
the existence of an invariant subspace does not guarantee that it contains any attract-
ing solutions. Some work has been done to understand generic symmetry breaking
bifurcations in such networks—see for example [138], or spatially periodic patterns
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Fig. 8 Left: a system of three coupled cells with two cell types (indicated by the circle and square)
coupled in a way that there is no permutation symmetry but there is an invariant subspace corresponding
to cells 1 and 2 being synchronised. The different line styles show coupling types that can potentially be
permuted (after Fig. 3 in [135]). Middle: the quotient two-cell network corresponding to cells 1 and 2
being synchronised. Right: the same network structure shown using the notation of [137]

in lattice networks [139]. Variants of this formalism have been developed to enable
different coupling types between the same cells to be included.

Periodic orbits in such networks can also have interesting structures associated
with the presence of invariant subspaces. The so-called rigid phase conjecture [136,
140], recently proved in [141], states that if there is a periodic orbit in the network
such that two cells have a rigid phase relation between them (i.e. one that is preserved
for all small enough structure-preserving perturbations) then this must be forced by
either a Zn symmetric perturbation of the cells in the network, or in some quotient
network.

An alternative formalism for discussing asymmetric coupled cell networks has
been developed in [137, 142–144] that also allows one to identify invariant sub-
spaces. Each cell has one output and several inputs that may be of different types.
These papers concentrate on the questions: (a) When are two-cell networks formally
equivalent (i.e. when can the dynamics of one cell network be found in the other,
under suitable choice of cell)? (b) How can one construct larger coupled cell systems
with desired properties by “inflating” a smaller system S, such that the larger system
has S as a quotient? (c) What robust heteroclinic attractors exist in such systems?

4 Coupled Limit-Cycle Oscillators

In addition to variants on the systems in Sect. 2, we mention that several nonlin-
ear “conceptual” planar limit-cycle oscillators are studied as archetypes of nonlinear
oscillators. These include:

d2

dt2
x +

(
a0 + a1x

2) d

dt
x +ω2x = 0 (van der Pol [3]),

d2

dt2
x +

(
a0 + a1x

2) d

dt
x +ω2x + a2x

3 = 0 (van der Pol–Duffing [145]),

d

dt
z= (λ+ iω)z+ (a0 + ia1)|z|2z (Stuart–Landau [5]),

where x is real, z is complex and the coefficients λ, ω and aj are real constants.
If the coupling between two or more limit-cycle oscillators is relatively large, it

can affect not only the phases but also the amplitudes, and a general theory of strongly
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interacting oscillators is likely to be no more or less complicated than a general the-
ory of nonlinear systems. However, the theory of weak coupling is relatively well
developed (see Sect. 5 and Sect. 6) and specific progress for strong coupling can
sometimes be made for special choices of neuron model. Examples where one can do
this include IF (see Sect. 4.3), piece-wise linear models such as McKean [146], car-
icatures of FHN and ML [147], and singularly perturbed relaxation oscillators with
linear [148] or fast threshold modulation coupling [149].

For linear coupling of planar oscillators, much is known about the general case
[150, 151]. If the linear coupling is proportional to the difference between two state
variables this is referred to as “diffusive”, and otherwise it is called “direct”. The
difference between the two cases is most strongly manifest when considering the
mechanism of oscillator death (see Sect. 3.4). The diffusive case is more natural in
a neuroscience context as it can be used to model electrical gap-junction coupling
(which depends on voltage-differences). The existence of synchronous states in net-
works of identical units is inherited from the properties of the underlying single neu-
ron model since in this case coupling vanishes, though the stability of this solution
will depend upon the pattern of gap-junction connectivity.

Gap junctions are primarily believed to promote synchrony, though this is not
always the case and they can also lead to robust stable asynchronous states [152], as
well as “bursting” generated by cyclic transitions between coherent and incoherent
network states [153]. For work on gap junctions and their role in determining network
dynamics see for example [147, 154–158].

4.1 Stability of the Synchronised State for Complex Networks of Identical

Systems

There is one technique specific to the analysis of the synchronous state in a quite
large class of network models that is valid for strongly coupled identical systems,
namely the master stability function (MSF) approach. For networks of coupled sys-
tems or oscillators with identical components the MSF approach of Pecora and Car-
roll [159] can be used to determine the stability of the synchronous state in terms
of the eigenstructure of the network connectivity matrix. To introduce the MSF for-
malism it is convenient to consider N nodes (oscillators)2 and let xi ∈ R

d be the d-
dimensional vector of dynamical variables of the ith node with isolated (uncoupled)
dynamics dxi/dt = F(xi), with i = 1, . . . ,N . The output for each node is described
by a vector function H ∈ R

d (which is not necessarily linear). For example, for a
three-dimensional system with x = (x(1), x(2), x(3)) and linear coupling only occur-
ring through the x(3)-component then we would set H(x)= (0,0, x(3)). For a given
adjacency matrix Aij and associated set of connection strengths gij and a global cou-
pling strength σ the network dynamics of N coupled identical systems, to which the
MSF formalism applies, is specified by

d

dt
xi = F(xi)+ σ

N∑

j=1

Aijgij
[
H(xj )−H(xi)

]
≡ F(xi)− σ

N∑

j=1

GijH(xj ).

2In this section we assume little about the dynamics of the nodes—they may be “chaotic oscillators”.
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Here the matrix G with blocks Gij has the graph-Laplacian structure Gij = −Aijgij +
δij
∑
kAikgik . The N − 1 constraints x1(t)= x2(t) = · · · = xN (t) = s(t) define the

(invariant) synchronisation manifold, with s(t) a solution in R
d of the uncoupled

system, namely ds/dt = F(s). Although we will not discuss in detail here, we assume
that the asymptotic behaviour s(t) is such that averages along trajectories converge,
i.e. the behaviour of s(t) for the uncoupled system is governed by a natural ergodic
(Sinai–Ruelle–Bowen) measure for the dynamics.

To assess the stability of this state we perform a linear stability analysis expanding
a solution as xi(t)= s(t)+ δxi(t) to obtain the variational equation

d

dt
δxi =DF(s)δxi − σDH(s)

N∑

j=1

Gij δxj .

Here DF(s) and DH(s) denote the Jacobian of F(s) and H(s) around the syn-
chronous solution, respectively. The variational equation has a block form that can be
simplified by projecting δx into the eigenspace spanned by the (right) eigenvectors
of the matrix G. This yields a set of N decoupled equations in the block form

d

dt
ξl =

[
DF(s)− σλlDH(s)

]
ξl, l = 1, . . . ,N,

where ξl is the lth (right) eigenmode associated with the eigenvalue λl of G (and
DF(s) and DH(s) are independent of the block label l). Since

∑
i Gii = 0 there is

always a zero eigenvalue, say λ1 = 0, with corresponding eigenvector (1,1, . . . ,1),
describing a perturbation parallel to the synchronisation manifold. The other N − 1
transverse eigenmodes must damp out for synchrony to be stable. For a general matrix
G the eigenvalues λl may be complex, which brings us to consideration of the system

d

dt
ξ =

[
DF(s)− αDH(s)

]
ξ, α = σλl ∈ C. (10)

For given s(t), the MSF is defined as the function which maps the complex number
α to the greatest Lyapunov exponent of (10). The synchronous state of the system of
coupled oscillators is stable if the MSF is negative at α = σλl where λl ranges over
the eigenvalues of the matrix G (excluding λ1 = 0).

For a ring of identical (or near identical) coupled periodic oscillators in which the
connections have randomly heterogeneous strength, Restrepo et al. [160] have used
the MSF method to determine the possible patterns at the desynchronisation transition
that occurs as the coupling strengths are increased. Interestingly they demonstrate
Anderson localisation of the modes of instability, and show that this could organise
waves of desynchronisation that would spread to the whole network. For a further
discussion as regards the use of the MSF formalism in the analysis of synchronisation
of oscillators on complex networks we refer the reader to [75, 161], and for the use
of this formalism in a non-smooth setting see [162]. This approach has recently been
extended to cover the case of cluster states by making extensive use of tools from
computational group theory to determine admissible patterns of synchrony [163] (and
see also Sect. 3.12) in unweighted networks.
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4.2 Pulse-Coupled Oscillators

Another example of a situation in which analysis of network dynamics can be carried
out without the need for any reduction or assumption is that of pulse-coupled oscil-

lators, in which interactions between neurons are mediated by instantaneous “kicks”
of the voltage variable.

Networks of N identical oscillators with global (all-to-all) strong pulse coupling
were first studied by Mirollo and Strogatz [164]. They assumed that each oscillator is
defined by a state variable v and is of integrate–and–fire type with threshold vth = 1
and reset value vR = 0. When oscillator i in the network fires the instantaneous pul-
satile coupling pulls all other oscillators j 	= i up by a fixed amount ǫ or to firing,
whichever is less, i.e.

if vi(t)= 1 then vj
(
t+
)
= min

(
1, vj (t)+ ǫ

)
for all j 	= i.

Mirollo and Strogatz assume that the coupling is excitatory (ǫ > 0). If m oscillators
fire simultaneously then the remaining N −m oscillators are pulled up by mǫ, or to
firing threshold.

In the absence of coupling each oscillator has period� and there is a natural phase
variable φ(t) = t/� mod 1 such that φ = 0 when v = 0 and φ = 1 when v = 1.
Mirollo and Strogatz further assume that the dynamics of each (uncoupled) oscilla-
tor is governed by v(t) = f (φ) where f is a smooth function satisfying f (0)= 0,
f (1) = 1, f ′(φ) > 0 and f ′′(φ) < 0 for all φ ∈ [0,1]. Because of these hypotheses
on f , it is invertible with inverse φ = g(v).

Note that for the leaky (linear) integrate-and-fire model (LIF) where

τ
d

dt
v = −v+ I,

we have f (φ)= I (1 − e−�φ/τ ) where �= τ ln(I/(I − 1)), for I > 1, which satis-
fies the above conditions. However, quadratic IF models do not satisfy the concavity
assumption.

If an oscillator is pulled up to firing threshold due to the coupling and firing of
a group of m oscillators which have already synchronised then the oscillator is ‘ab-
sorbed’ into the group and remains synchronised with the group for all time. (Here
synchrony means firing at the same time.) Since there are now more oscillators in
the synchronised group, the effect of the coupling on the remaining oscillators is in-
creased and this acts to rapidly pull more oscillators into synchronisation. Mirollo
and Strogatz [164] proved that for pulsatile coupling and f satisfying the conditions
above, the set of initial conditions for which the oscillators do not all become syn-
chronised has zero measure. Here we briefly outline the proof for two pulse-coupled
oscillators. See Mirollo and Strogatz [164] for the generalisation of this proof to pop-
ulations of size N .

Consider two oscillators labelled A and B with φA and vA denoting, respectively,
the phase and state of oscillator A and similarly for oscillator B . Suppose that oscil-
lator A has just fired so that φA = 0 and φB = φ as in Fig. 9(a). The return map R(φ)
is the phase of B immediately after A next fires. It can be shown that the return map
has a unique, repelling fixed point:
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Fig. 9 A system of two oscillators governed by v = f (φ), and interacting by pulse coupling. a The state
of the system immediately after oscillator A has fired. b The state of the system just before oscillator B
reaches the firing threshold. c The state of the system just after B has fired. B has jumped back to zero,
and the state of A is now min(1, ǫ + f (1 − φ))

Oscillator B reaches threshold when φA = 1 − φ and an instant later B fires and
the pulsatile coupling makes vA = min(1, ǫ+f (1−φ)). If vA = 1 then the oscillators
have synchronised. Assuming that vA = ǫ+f (1−φ) < 1 then φA = g(ǫ+f (1−φ))
and after one firing the system has moved from (φA, φB)= (0, φ) to (h(φ),0) where
h(φ) = g(ǫ + f (1 − φ)) is the firing map (see Fig. 9(c)). The return map is given
by a further application of the firing map so that R(φ) = h(h(φ)). The assumption
that ǫ + f (1 − φ) < 1 is satisfied when ǫ ∈ [0,1) and φ ∈ (δ,1) where δ = 1 −
g(1 − ǫ). Thus the domain of h is (δ,1) and the domain of R is (δ, h−1(δ)). Since h
is monotonically decreasing, δ < h−1(δ) for ǫ < 1 and the interval is nonempty. Thus
on the whole of [0,1) the return map is defined as

R(φ)=

⎧
⎪⎨
⎪⎩

1, φ > h−1(δ),

h(h(φ)), φ ∈ (δ, h−1(δ)),

0, φ < δ.

Since the points 0 and 1 are identified, if φ < δ or φ > h−1(δ) then the two oscillators
will become synchronised.

It can be shown that almost all initial conditions eventually become synchronised
since (i) R has a unique fixed point φ ∈ (δ, h−1(δ)) and (ii) this fixed point is unstable
(i.e. |R′(φ)|> 1). To see that R has a unique fixed point, observe that fixed points φ
are roots of F(φ)≡ φ−h(φ). Now F(δ)= δ−1< 0 and F(h−1(δ))= h−1(δ)−δ >
0 so F has a root in (δ, h−1(δ)) and this root is unique since F ′(φ)= 1 − h′(φ) > 2.

Extensions to the framework of Mirollo and Strogatz include the introduction of
a time delay in the transmission of pulses and the consideration of inhibitory cou-
pling. It has been observed that delays have a dramatic effect on the dynamics in
the case of excitatory coupling. Considering first a pair of oscillators, Ernst et al.
[165] demonstrate analytically that inhibitory coupling with delays gives stable in-
phase synchronisation while for excitatory coupling, synchronisation with phase lag
occurs. As the number of globally coupled oscillators increases, so does the number
of attractors which can exist for both excitatory and inhibitory coupling.
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In the presence of delays many different cluster state attractors can coexist. The
dynamics settle down onto a periodic orbit with clusters reaching threshold and send-
ing pulses alternately [165–167]. Under the addition of weak noise when the coupling
is inhibitory, the dynamics stay near this periodic orbit indicating that all cluster state
attractors are stable [167]. However, the collective behaviour shows a marked differ-
ence when the coupling is excitatory. In this case, weak noise is sufficient to drive
the system away from the periodic orbit and results in persistent switching between
unstable (Milnor) attractors.

These dynamics are somewhat akin to heteroclinic switching and the relationship
between networks of unstable attractors and robust heteroclinic cycles has been ad-
dressed by a number of authors [168–170]. In particular, Broer et al. [170] highlight
a situation in which there is a bifurcation from a network of unstable attractors to
a heteroclinic cycle within a network of pulse-coupled oscillators with delays and
inhibitory coupling. They note that the model used in previous work [165–167] is
locally noninvertible since the original phase of an oscillator cannot be recovered
once it has received an input which takes it over threshold causing the phase to be
reset. Kirst and Timme [170] employ a framework in which supra-threshold activity
is partially reset, such that vj (t+) = R(vj (t) − 1) if vj > 1 with a reset function
R(v) = cv, c ∈ [0,1], which ensures that the flow becomes locally time invertible
when c > 0. They demonstrate that for c = 0 (where the locally noninvertible dy-
namics is recovered), the system has a pair of periodic orbits A1 and A2, which are
unstable attractors enclosed by the basin of each other. When c > 0, A1 and A2 are
non-attracting saddles with a heteroclinic connection from A1 to A2. Furthermore,
there is a continuous bifurcation from the network of two unstable attractors when
c= 0 to a heteroclinic two cycle when c > 0.

For an interesting dynamical systems perspective on the differences between
“kick” synchronisation (in pulsatile coupled systems) and “diffusive” synchronisa-
tion [171] and the lack of mathematical work on the former problem see [172]. For
example, restrictions on the dynamics of symmetrically coupled systems of oscilla-
tors when the coupling is time-continuous can be circumvented for pulsatile coupling
leading to more complex network dynamics [173].

In the real world of synaptic interactions, however, pulsatile kicks are probably
the exception rather than the rule, and the biology of neurotransmitter release and
uptake is better modelled with a distributed delay process, giving rise to a postsy-
naptic potential with a finite rise and fall time. For spike-time event driven synaptic
models, described in Sect. 2.5, analysis at the network level is hard for a general
conductance-based model (given the usual expectation that the single neuron model
will be high-dimensional and nonlinear), though far more tractable for LIF networks,
especially when the focus is on phase-locked states [174–176]. Indeed in this instance
many results can be obtained in the strongly coupled regime [177], without recourse
to any approximation or reduction.

4.3 Synaptic Coupling in Networks of IF Neurons

The instantaneous reaction of one neuron to the firing of another, as in the pulse-
coupled neurons above, does not account for the role of synapses in the transmission
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of currents. Bressloff and Coombes [177] consider a network of N identical, LIF
neurons that interact via synapses by transmitting spike trains to one another. Let
vi(t), the state of neuron i at time t , evolve according to

d

dt
vi = −vi + Ii +Xi(t), (11)

where Ii is a constant external bias andXi(t) is the total synaptic current into the cell.
As before, we supplement this with the reset condition that whenever vi = 1 neuron
i fires and is reset to vi = 0. The synaptic current Xi(t) is generated by the arrival of
spikes from other neurons j and can be taken to have the form

Xi(t)= ǫ
N∑

j=1

wij
∑

m∈Z
J
(
t − T mj

)
,

where ǫwij represents the weight of the connection from the j th neuron to the ith
neuron with ǫ characterising the overall strength of synaptic interactions, T mj denotes
the sequence of firing times of the j th neuron and J (t) determines the course of
postsynaptic response to a single spike. A biologically motivated choice for J (t) is

J (t)= η(t)Θ(t), η(t)= α2te−αt ,

where Θ(t) = 1 if t > 0 and zero otherwise. Here η is an alpha function (see also
Sect. 2.5) and the maximum synaptic response occurs at a nonzero delay t = α−1.
Note that in the limit of large inverse rise time α, J (t) approximates a delta function
(more like pulse coupling).

Bressloff and Coombes [177] show that the behaviour of the network of oscillators
differs depending on the strength of the coupling. This is another instance in which
information is lost through making weak-coupling assumptions. To see this one may
integrate (11) between T ni and T n+1

i , exploiting the linearity of the equations and
solving with variation of parameters, to obtain a map of the firing times. Since the
drive Xi(t) depends upon all previous firing events of the other neuron this is an
implicit map that relates all the network firing events to one another. It is convenient
to introduce the set of inter-spike intervals (ISIs) �n,mij = T ni − T mj , so that we may
write the firing map in the convenient form

Ii
(
1 − e−�n+1,n

ii
)
− 1 +

N∑

j=1

∑

m∈Z
Fij
(
�
n+1,n
ii ,�

n,m
ij

)
= 0, (12)

where T n+1
i > T mj for all j , m, and

Fij (x, y)= ǫwij e−x
∫ x

0
esJ (s + y)ds.

Phase-locked solutions may be found, for an arbitrary coupling strength ǫ, using the
ansatz T mj = (m − φj )� for some self-consistent ISI � and constant phases φj .
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Substitution into (12) yields

1 = Ii
(
1 − e−�)+ ǫ

N∑

j=1

wijK(φj − φi), (13)

where

K(φ)= e−�
∫ �

0
esP(s + φ�)ds, P (t)=

∑

m∈Z
J (t −m�),

and P(t)= P(t +�). Choosing one of the phases, say φ1, as a reference then (13)
provides a set of N equations for the unknown period � and the remaining N − 1
relative phases φj − φ1.

In order to investigate the linear stability of phase-locked solutions of Eq. (13),
we consider perturbations of the firing times which we write in the form T mj =
(m− φj )�+ δmj . Linearisation of the firing map (12) gives an explicit map for these
perturbations that can be written as

Iie
−�(δn+1

i − δni
)
+

N∑

j=1

∑

m∈Z

∂Fij

∂x

(
δn+1
i − δni

)
+
∂Fij

∂y

(
δni − δmj

)
= 0,

where the partial derivatives of Fij are evaluated at the phase-locked state (�n+1,n
ii ,

�
n,m
ij ) = (�, (n − m)� + (φj − φi)�). For solutions of the form δmj = λmδj this

reduces to

(λ− 1)Piδi = ǫ
N∑

j=1

Hij (λ)δj , (14)

where Pi = Ii − 1 + ǫ
∑
j WijP((φj − φi)�), Hij (λ) = WijG((φj − φi)�,λ) −

δij
∑
kWikG((φk − φi)�,1) and

G(t,λ)=
∑

m∈Z
λ−me−�

∫ �

0
esJ ′(s + t +m�)ds.

One solution to Eq. (14) is λ = 1 with δi = δ for all i = 1, . . . ,N . This reflects the
invariance of the dynamics with respect to uniform phase shifts in the firing times.
Thus the condition for linear stability of a phase-locked state is that all remaining
solutions λ of Eq. (14) are within the unit disc. For λ− 1 ∼O(ǫ), and ǫ small, we
may expand (14) as

(λ− 1)(Ii − 1)δi = ǫ
N∑

j=1

Hij (Φ)δj +O
(
ǫ2),

where Hij (Φ) = Hij (1) = [WijK ′(φj − φi) − δij
∑
kWikK

′(φk − φi)]/� and we
have used the result that G(φ,1)=K ′(φ)/�. Suppose for simplicity that Ii = I > 1
for all i, so that�= ln[I/(I−1)]+O(ǫ). Then the weak-coupling stability condition
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Fig. 10 Left: region of stability for a synchronised pair of identical IF neurons with inhibitory coupling
and collective period T = ln 2. The solid curve |ǫ| = ǫc(α) denotes the boundary of the stability region.
Crossing the boundary from below signals excitation of the linear mode (1,−1) leading to a stable state
in which one neuron becomes quiescent (oscillator death). For α > α0 the synchronous state is stable for
all ǫ. The dashed curve denotes corresponds to the eigenvalue with ν = 1. Right: plot of critical coupling
ǫc as a function of α for various network sizes N . The critical inverse rise time α0(N) is seen to be a
decreasing function of N with α0(N)→ 0 as N → ∞

is that Reλp < 0, where λp , p = 1, . . . ,N , are the eigenvalues of the N ×N matrix
with elements ǫHij (Φ).

As an explicit example let us consider the synchronous state (φi = φ for all i).
From (13) we see that this is guaranteed to exist for the choice

∑
j Wij = γ and Ii =

I [1 − ǫK(0)γ ] for some constant I > 1, which sets the period as �= ln[I/(I − 1)].
Using the result that K ′(φ) = −�K(φ)+�P(φ�)/I the spectral problem for the
synchronous state then takes the form

[
(λ− 1)

(
I − 1 + ǫIγK ′(0)/�

)
+ ǫγK ′(0)/�

]
δi = ǫG(0, λ)

N∑

j=1

Wij δj .

We may diagonalise this equation in terms of the eigenvalues of the weight matrix,
denoted by νp with p = 1, . . . ,N (and we note that γ is the eigenvalue with eigen-
vector (1,1, . . . ,1) corresponding to a uniform phase shift). Looking for nontrivial
solutions then gives the set of spectral equations Ep(λ)= 0, where

Ep(λ)= (λ− 1)
(
I − 1 + ǫIγK ′(0)/�

)
+ ǫγK ′(0)/�− ǫνpG(0, λ). (15)

We may use (15) to determine bifurcation points defined by |λ| = 1. For sufficiently
small ǫ, solutions to (15) will either be in a neighbourhood of the real solution
λ = 1 or in a neighbourhood of one of the poles of G(0, λ). Since the latter lie in
the unit disc, the stability of the synchronous solution (for weak coupling) is de-
termined by ǫK ′(0)[Reνp − γ ] < 0. For strong coupling the characteristic equa-
tion has been solved numerically in [177] to illustrate the possibility of Hopf bi-
furcations (λ = eiθ , θ 	= 0, θ 	= π ) with increasing |ǫ|, leading to oscillator death
in a globally coupled inhibitory network for a sufficiently slow synapse and burst-
ing behaviour in asymmetrically coupled networks. Bifurcation diagrams illustrating
these phenomenon are shown in Fig. 10. To see how these phenomena can occur
from a more analytical perspective it is useful to consider the Fourier representation
J (t)= (2π)−1

∫∞
−∞ dωJ̃ (ω)eiωt , where J̃ (ω)= α2/(α + iω)2, so that G may easily
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be evaluated with λ= ez as

G
(
0, ez

)
=

1

�

∑

n∈Z

J̃ (ωn − iz/�)(iωn + z/�)(ez − e−�)

1 + iωn + z/�
, ωn = 2πn/�, (16)

from which it is easy to see a pole at z = −α�. This suggests writing z in the form
z = −α(1 + κp)� and expanding the spectral equation in powers of α to find a so-
lution. For small α we find from (16) that G(0, ez)= −α(1 + κp)(1 − e−�)/(κ2

p�).

Balancing terms of order α then gives κ2
p = ǫνp(1−e−�)/(�2(I−1)), where we use

the result that G(0, e0) = O(α2). Thus for small α, namely slow synaptic currents,
we have K ′(0) = 0, so that a weak-coupling analysis would predict neutral stabil-
ity (consistent with the notion that a set of IF neurons with common constant input
would frequency lock with an arbitrary set of phases). However, our strong coupling
analysis predicts that the synchronous solution will only be stable if Re z±p < 0 with
z±p = [−1 ± κp]α�. Introducing the firing rate function f = 1/� then z±p can be
written succinctly as

z±p =
[
−1 ±

√
ǫνpf ′(I )

]
α�.

Thus for an asymmetric network (with at least one complex conjugate pair of eigen-
values) it may occur that as |ǫ| is increased a pair of eigenvalues determined by z±p
may cross the imaginary axis to the right hand complex plane signalling a discrete
Hopf bifurcation in the firing times. For a symmetric network with real eigenvalues
an instability may occur as some κp ∈R increases through 1, signalling a breakdown
of frequency locking. The above results (valid for slow synapses) can also be obtained
using a firing rate approach, as described in [177].

The results above, albeit valid for strong coupling, are only valid for LIF networks.
To obtain more general results for networks of limit-cycle oscillators it is useful to
consider a reduction to phase models.

5 Reduction of Limit-Cycle Oscillators to Phase–Amplitude and Phase

Models

Consider a system of the form

d

dt
x = f (x)+ ǫg(x, t), x ∈R

n, (17)

such that for ǫ = 0 the system possesses a periodic orbit

Γ =
{
u(t) : t ∈R

}
,

with minimal period T > 0 (such that u(t)= u(t + T ) for all t ∈ R but u(t) 	= u(s)
for 0< s < T ). We will assume that Γ is attracting and hyperbolic, i.e. linearly stable
so that there is one zero Floquet exponent and the others have negative real part. Then
we say that (17) is a limit-cycle oscillator. We will reduce this to a description that
involves a phase that lives on a topological circle that can be thought of as an interval
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Table 2 Comparison of the three conventions for a phase variable that we use in this review. The φ is
used for IF models

Symbol Phase space Uncoupled
equation

Period Advantages Disadvantages

ϑ R/TZ,
[0, T )

d
dt ϑ = 1 T Simplicity of uncoupled

equation, interpretation
of ϑ as “time”

Phase space depends on
parameters and initial
conditions

θ R/2πZ,
[0,2π)

d
dt θ = ω 2π

ω Phase space fixed, good
for heterogeneous
oscillators

Equation needs scaling

φ R/Z,
[0,1)

d
dt φ = 1

�
� Phase space fixed, good

for heterogeneous
oscillators

Equation needs scaling

[0, T ) with the topology that comes from identifying the ends of the interval: ǫ and
T − ǫ are close for ǫ small. This circle is sometimes called the one-torus T.

There are a number of conventions used in the literature to represent this phase.
We discuss these conventions before looking at general reduction methods. One con-
vention is to define a phase ϑ modulo T such that

d

dt
ϑ = 1,

where ϑ(u(t)) = t interpreted modulo T and such that ϑ(u0) = 0 for some chosen
point u0 ∈ Γ . Another convention is to define a phase θ modulo 2π such that

d

dt
θ = ω,

where ω = 2π/T is the angular frequency of the oscillator. Again we pick a point
u0 ∈ Γ and require that θ = 0 at u= u0.

In the remainder of the article we will use ϑ and θ as an indication of the con-
vention we are using for phase, in the special case T = 2π both conventions coincide
and we use θ . Typically one of these descriptions is more convenient than the others
but all can in principle be adapted to any phase reduction. Table 2 expresses some
features of the conventions which commonly used for phase variables.

We now review some techniques of reduction which can be employed to study the
dynamics of (17) when ǫ 	= 0 so that the perturbations may take the dynamics away
from the limit cycle. In doing so we will reduce for example to an ODE for ϑ(t) taken
modulo T . Clearly any solution of an ODE must be continuous in t and typically
ϑ(t) will be unbounded in t growing at a rate that corresponds to the frequency of
the oscillator. Strictly speaking, the coordinate we are referring to in this case is on
the lift of the circle T to a covering space R, and for any phase ϑ ∈ [0, T ) there are
infinitely many lifts to R given by ϑ + kT for k ∈ Z. However, in common with most
literature in this area we will not make a notational difference between whether the
phase is understood on the unit cell e.g. θ ∈ [0,2π) or on the lift, e.g. θ ∈ R modulo
2π .
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5.1 Isochronal Coordinates

Consider (17) with ǫ = 0. The asymptotic (or latent) phase of a point x0 in the basin
of attraction of the limit cycle Γ of period T is the value of ϑ(x0) such that

lim
t→∞

∣∣x(t)− u
(
t + ϑ(x0)

)∣∣= 0,

where x(t) is a trajectory starting at x0. Thus if u(t) and x(t) are trajectories on and
off the limit cycle, respectively, they have the same asymptotic phase if the distance
between u(t) and x(t) vanishes as t → ∞. The locus of all points with the same
asymptotic phase is called an isochron. Thus an isochron extends the notion of phase
off the cycle (within its basin of attraction). Isochrons can also be interpreted as the
leaves of the stable manifold of a hyperbolic limit cycle. They fully specify the dy-
namics in the absence of perturbations [178].

There are very few instances where the isochrons can be computed in closed form
(though see the examples in [179] for plane-polar models where the radial variable
decouples from the angular one). Computing the isochron foliation of the basin of
attraction of a limit cycle is a major challenge since it requires knowledge of the limit
cycle and therefore can only be computed in special cases or numerically.

One computationally efficient method for numerically determining the isochrons
is backward integration, however, it is unstable and in particular for strongly attract-
ing limit cycles the trajectories determined by backwards integration may quickly di-
verge to infinity. See Izhikevich [48] for a MATLAB code which determines smooth
curves approximating isochrons. Other methods include the continuation-based algo-
rithm introduced by Osinga and Moehlis [180], the geometric approach of Guillamon
and Huguet to find high-order approximations to isochrons in planar systems [181],
quadratic- and higher-order approximations [182, 183], and the forward integration
method using the Koopman operator and Fourier averages as introduced by Mauroy
and Mezić [184]. This latter method is particularly appealing and given its novelty
we describe the technique below.

The Koopman operator approach for constructing isochrons for a T -periodic orbit
focuses on tracking observables (or measures on a state space) rather than the iden-
tification of invariant sets. The Koopman operator, K , is defined by K = z ◦Φt (x),
where z : Rn → R is some observable of the state space and Φt (x) denotes the flow
evolved for a time t , starting at a point x. The Fourier average of an observable z is
defined as

ẑ(x;ω)= lim
T→∞

1

T

∫ T

0
(z ◦Φt )(x)e−iωt dt. (18)

For a fixed x, (18) is equivalent to a Fourier transform of the (time-varying) observ-
able computed along a trajectory. Hence, for a dynamics with a stable limit cycle (of
frequency 2π/T ), it is clear that the Fourier average can be nonzero only for the fre-
quencies ωn = 2πn/T , n ∈ Z. The Fourier averages are the eigenfunctions of K , so
that

Kẑ(x;ωn)= eiωnt ẑ(x;ωn), n ∈ Z.
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Fig. 11 Isochrons found using the method of Fourier averages for the Stuart–Landau oscillator:
dz/dt = z[λ(1 + ic)/2 + iω] − z|z|2(1 + ic)/2, z= x + iy, with λ= 2, c= 1 and ω= 1 so that T = 2π ;
see [185]. The black curve represents the periodic orbit of the system; in this case, we have θ = ϑ .
The background colour represents the Fourier average, whilst the coloured lines are the isochrons, given
as level sets of the Fourier average. The white dots are the actual isochrons, computed analytically as
(x, y)= ((1 + r) cos(θ + c ln(1 + r)), (1 + r) sin(θ + c ln(1 + r))), r ∈ (−1,∞)

Perhaps rather remarkably the isochrons are level sets of ẑ(x;ωn) for almost all ob-
servables. The only restriction being that the first Fourier coefficient of the Fourier
observable evaluated along the limit cycle is nonzero over one period. An example
of the use of this approach is shown in Fig. 11, where we plot the isochrons of a
Stuart–Landau oscillator.

5.2 Phase–Amplitude Models

An alternative (non isochronal) framework for studying oscillators with an attract-
ing limit cycle is to make a transformation to a moving orthonormal coordinate sys-
tem around the limit cycle where one coordinate gives the phase on the limit cycle
while the other coordinates give a notion of distance from the limit cycle. It has long
been known in the dynamical systems community how to construct such a coordi-
nate transformation; see [186] for a discussion. The importance of considering the
effects of both the phase and the amplitude interactions of neural oscillators has been
highlighted by several authors including Ermentrout and Kopell [187] and Medvedev
[188], and that this is especially pertinent when considering phenomenon such as
oscillator death (and see Sect. 3.4). Phase–amplitude descriptions have already suc-
cessfully been used to find equations for the evolution of the energies (amplitudes)
and phases of weakly coupled weakly dissipative networks of nonlinear planar oscil-
lators (modelled by small dissipative perturbations of a Hamiltonian oscillator) [103,
189, 190]. Lee et al. [191] use the notion of phase and amplitudes of large networks
of globally coupled Stuart–Landau oscillators to investigate the effects of a spread
in amplitude growth parameter (units oscillating with different amplitudes and some
not oscillating at all) and the effect of a homogeneous shift in the nonlinear frequency
parameter.

We now discuss the phase–amplitude coordinate transformation detailed by Hale
[186], some of the situations where it has been employed and other areas in which a
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phase–amplitude description of oscillators is necessary to reveal the dynamics of the
system. Consider again the system (17) with ǫ = 0, which has an attracting hyperbolic
periodic orbit. Make a transformation to a moving orthonormal coordinate system as
follows. Choose one axis of the coordinate system to be in the direction of unit tangent
vector along the periodic orbit, ξ , given by

ξ(ϑ)=
du

dϑ

/∣∣∣∣
du

dϑ

∣∣∣∣.

The remaining coordinate axes can be expressed as the columns of an n × (n − 1)
matrix ζ . We can then write an arbitrary point x in terms of its phase ϑ ∈ [0, T ) and
its amplitude ρ:

x(ϑ,ρ)= u(ϑ)+ ζ(ϑ)ρ.

Here, |ρ| represents the Euclidean distance from the limit cycle. The vector of ampli-
tudes ρ ∈R

n−1 allows us to consider points away from the limit cycle.
Upon projecting the dynamics onto the moving orthonormal system, we obtain the

dynamics of the transformed system for ϑ ∈ [0, T ) and ρ ∈R
n−1

d

dt
ϑ = 1 + f1(ϑ,ρ),

d

dt
ρ =A(ϑ)ρ + f2(ϑ,ρ),

where

f1(ϑ,ρ)= −hT (ϑ,ρ)
dζ

dϑ
ρ + hT (ϑ,ρ)

[
f (u+ ζρ)− f (u)

]
,

f2(ϑ,ρ)= −ζ T
dζ

dϑ
ρf1 + ζ T

[
f (u+ ζρ)− f (u)−Df ζρ

]
, (19)

h(ϑ,ρ)=
[∣∣∣∣

du

dϑ

∣∣∣∣+ ξ
T dζ

dϑ
ρ

]−1

ξ, A(ϑ)= ζ T
[
−

dζ

dϑ
+Df ζ

]
,

and Df is the Jacobian of the vector field f , evaluated along the periodic orbit
u. The technical details to specify the orthonormal coordinates forming ζ can be
found in the appendix of [192]. It is straightforward to show that f1(ϑ,ρ)→ 0 as
|ρ| → 0, f2(ϑ,0)= 0 and that ∂f2(ϑ,0)/∂ρ = 0. In the above, A(ϑ) describes the ϑ -
dependent rate of attraction or repulsion from cycle and f1 captures the shear present
in the system, that is, whether the speed of ϑ increases or decreases dependent on
the distance from cycle. A precise definition for shear is given in [193] and will be
discussed further in Sect. 5.3.

Some caution must be exercised when applying this transformation as it will break
down when the determinant of the Jacobian of the transformation vanishes. This never
occurs on cycle (where ρ = 0) but it may do so for some |ρ| = k > 0, setting an upper
bound on how far from the limit cycle these phase–amplitude coordinates can be used
to describe the system. In [192] it is noted that for the planar ML model the value of
k can be relatively small for some values of ϑ , but that breakdown occurs where
the orbit has high curvature. In higher-dimensional systems this issue would be less
problematic.
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Similarly, the coordinate transformation can be applied to driven systems (i.e. (17)
with ǫ 	= 0) where ǫ is not necessarily small. In this case the dynamics in (ϑ,ρ)
coordinates, where ϑ ∈ [0, T ) and ρ ∈ R

n−1, are

d

dt
ϑ = 1 + f1(ϑ,ρ)+ ǫhT (ϑ,ρ)g

(
u(ϑ)+ ζ(ϑ)ρ, t

)
, (20)

d

dt
ρ =A(ϑ)ρ + f2(ϑ,ρ)+ ǫζ TB(ϑ,ρ)g

(
u(ϑ)+ ζ(ϑ)ρ, t

)
, (21)

with

B(ϑ,ρ)= In −
dζ

dϑ
ρhT (ϑ,ρ), (22)

and In is the n× n identity matrix. Here, h and B describe the effect in terms of ϑ
and ρ that the perturbations have. For planar models, B = I2.

Medvedev [188] has employed this phase–amplitude description to determine con-
ditions for stability of the synchronised state in a network of identical oscillators with
separable linear coupling. Medvedev [194] has also used the framework to consider
the effects of white noise on the synchronous state, identifying the types of linear
coupling operators which lead to synchrony in a network of oscillators provided that
the strength of the interactions is sufficiently strong.

5.3 Dynamics of Forced Oscillators: Shear-Induced Chaos

Since phase–amplitude coordinates can capture dynamics a finite distance away from
the limit cycle (and additionally have the advantage over isochronal coordinates of
being defined outside of the basin of attraction of the limit cycle), they can be used to
model dynamical phenomena in driven systems where the perturbations necessarily
push the dynamics away from the limit cycle. There is no need to make any assump-
tions about the strength of the forcing ǫ.

The phase–amplitude description of a forced oscillator is able to detect the pres-
ence of other structures in the phase space. For example if the system were multi-
stable, phase–amplitude coordinates would track trajectories near these other struc-
tures and back again, should another perturbation return the dynamics to the basin
of attraction of the limit cycle. These coordinates would also detect the presence of
other non-attracting invariant structures such as saddles in the unperturbed flow. Or-
bits passing near the saddle will remain there for some time and forcing may act
to move trajectories near this saddle before returning to the limit cycle. It may also
be the case that the forcing acts to create trapping regions if the forcing is strong
compared to the attraction to the limit cycle.

Another dynamical phenomenon which phase–amplitude coordinates are able to
capture is the occurrence of shear-induced chaos. Shear in a system near a limit cycle
Γ is the differential in components of the velocity tangent to the limit cycle as one
moves further from Γ in phase space. Shear forces within the system act to speed
up (or slow down) trajectories further away from the limit cycle compared to those
closer to it. This phenomenon is illustrated in Fig. 12.

As we show below, when an impulsive force is applied (the system is kicked) a
‘bump’ in the image of Γ is produced. If there is sufficient shear in the system then
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Fig. 12 The stretch-and-fold action of a kick followed by relaxation in the presence of shear.
Left: a non-constant kick moves data away from the limit cycle (horizontal grey line). As the image of
the cycle under the kick relaxes back to the cycle (under the unperturbed flow) the action of shear causes
folds to appear. Right: the geometry of folding in relation to the isochron foliation (black lines). An initial
segment γ0 is kicked to the blue curve and is then allowed to relax back to cycle, passing through the red

and green curves, which are images of the blue curve under the unperturbed flow

the bump is folded and stretched as it is attracted back to the limit cycle. Such folding
can potentially lead to the formation of horseshoes and strange attractors. However,
if the attraction to the limit cycle is large compared to the shear strength or size of the
kick then the bumps will dissipate before any significant stretching occurs.

Shear-induced chaos is most commonly discussed in the context of discrete time
kicking of limit cycles. Wang and Young [195–197] prove rigorous results in the case
of periodically kicked limit cycles with long relaxation times. Their results provide
details of the geometric mechanism for producing chaos. Here we briefly review some
of these results. More detailed summaries can be found in [198] and [199].

Let Φt be the flow of the unperturbed system, which has an attracting hyperbolic
limit cycle Γ . We can think of a kick as a mapping κ . The dynamics of the system
with periodic kicking every τ units of time can be obtained by iterating the map
Fτ = Φτ ◦ κ . Provided that there is a neighbourhood U of Γ such that points in U

remain in the basin of attraction of Γ under kicks and τ is long enough that the kicked
points can return to U , then Γτ =

⋂
n≥0F

n
τ (U) is an attractor for the periodically

kicked system. If the kicks are weak then Γτ is generally expected to be a slightly
perturbed version of Γ and we should expect fairly regular behaviour. In this case
Γτ is an invariant circle. To obtain more complicated dynamics it is necessary to
break the invariant circle. This idea is illustrated by the following linear shear model,
considered in [196]:

d

dt
ϑ = 1 + σy,

d

dt
y = −λy +AH(ϑ)

∞∑

n=0

δ(t + nτ), (23)

where (ϑ, y) ∈ [0, T ) × R = S1 × R are coordinates in the phase space, λ,σ,A >
0 are constants and H : S1 → R is a non-constant smooth function. The unforced
system (A= 0) has a limit cycle Γ = S1 × {0}. If the quantity

σ

λ
A≡

shear

contraction rate
×
(
kick ‘amplitude’

)
,

is sufficiently large, then it is possible to show that there is a positive measure set
T ⊂ R

+ such that for all τ ∈ T , Γτ is a strange attractor of Fτ [197]. How large
the quantity must be depends on the function H(ϑ). Since H(ϑ) is non-constant (to
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create the bumps), the larger shear σ and the kick amplitude A, the more folding will
occur as the bump is attracted back to the limit cycle. Also note that weaker limit
cycles (smaller λ) create more favourable conditions for shear induced chaos as the
shear has longer to act before the bump is attracted back to the limit cycle.

For a more general system with periodic forcing the shear may not appear explic-
itly as a parameter. To elucidate what kind of kicks may cause shear induced chaos in
this case we appeal to the isochrons of the system. Suppose, as illustrated in Fig. 12,
that a section Γ0 of the limit cycle is kicked upwards with the end points held fixed
and assume τ = np for some n,p ∈ Z

+. Since the isochrons are invariant under the
action of ΦT , during relaxation the flow moves each point of the kicked curve κ(Γ0)

back towards Γ along the isochrons. In Fig. 12 we can clearly see the effect of the
shear with a fold forming.

From Fig. 12 one can see that kicks along isochrons or in directions roughly par-
allel to the isochrons will not produce strange attractors, nor will kicks that carry
points from one isochron to another. The cause of the stretching and folding is the
variation in how far points x ∈ Γ are moved by κ in the direction transverse to the
isochrons (i.e. the ordering of points in terms of asymptotic phase is altered by the
action of the kick). Lin and Young [198] emphasise that the occurrence of shear in-
duced chaos depends on the interplay between the geometries of the kicks and the
dynamical structures of the unforced system.

In the case of the linear shear model above, given by Eq. (23), the isochrons of the
unforced system are simply the lines with slope −λ/σ in (ϑ, y) coordinates. Variation
in kick distances in directions transverse to these isochrons is guaranteed with any
non-constant function H , with greater variation given by larger values of σ/λ and A.

Beyond the rigorous results proved by Wang and Young [195–198] concerning
periodically kicked limit cycles of the linear shear model and for supercritical Hopf
bifurcations, Ott and Stenlund [193] prove that shear-induced chaos may exist near
general limit cycles. In addition, Lin and Young [198] have carried out numerical
studies including random kicks at times given by a Poisson process and systems
driven by white noise. They also consider forcing of a pair of coupled oscillators.
In all cases, shear-induced chaos occurs when the shearing and amplitude of the forc-
ing are large enough to overcome the effects of damping.

Lin et al. [200] demonstrate that the ML model can exhibit shear-induced chaos
near the homoclinic bifurcation when periodically forced, by plotting images of the
periodic orbit under successive applications of the kick map and calculating the
maximum Lyapunov exponent. They also emphasise that the phenomenon of shear-
induced chaos cannot be detected by the perturbative techniques such as those out-
lined in Sect. 5.4 and Sect. 5.5 below.

Wedgwood et al. [192] go on to show that the phase–amplitude description is well
suited to understanding the behaviour of neural oscillators in response to external
stimuli. They consider a number of neural oscillator models in addition to a generic
planar model and examine the response of the system to periodic pulsatile forcing by
taking x ∈R

2,

g(x, t)=
∑

n∈Z

(
δ(t − nτ),0

)T
,
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and a variety of choices for f (x) in (17). Their numerical simulations indicate that for
both the FHN and the ML models the behaviour remains qualitatively similar when
the relevant functions f1(ϑ,ρ) are replaced by σρ, f2(ϑ,ρ) is dropped and A(ϑ) is
replaced with −λ (for a wide range of σ,λ > 0). They then focus on the effect of
the form of the forcing function in the phase–amplitude coordinates. Evaluating the
functions h(ϑ,ρ) and B(ϑ,ρ) of Eqs. (19) and (22), respectively, for the particular
model and denoting the first component of h as P1 and the first component of ξ as
P2 they find that forcing each system at the same ratio of the natural frequency of the
underlying periodic orbit and implementing the choices above gives the following
ODE on ϑ ∈ [0, T ), ρ ∈R

n−1:

d

dt
ϑ = 1 + σρ + ǫP1(ϑ,ρ)

∑

n∈Z
δ(t − nτ),

d

dt
ρ = −λρ + ǫP2(ϑ)

∑

n∈Z
δ(t − nτ).

By developing a stroboscopic map for this system, Wedgwood et al. [192] numeri-
cally evaluate the largest Lyapunov exponent which is found to be positive for the
Morris–Lecar model but negative for the FHN model.

The analysis of the behaviour of generic networks of oscillators within a phase–
amplitude framework is a challenging open problem but such a description would
allow for greater accuracy (compared to the phase-only methods traditionally used
and described below) in elucidating a richer variety of the complex dynamics of os-
cillator networks.

5.4 Phase Oscillator Models

To obtain a phase description, one can consider the limit of strong attraction [102]
in Eqs. (20)–(21). However, it is more appealing to consider a phase variable with a
uniform rotation rate that assigns a phase coordinate ϑ ∈ [0, T ) to each point x ∈ Γ
according to

d

dt
ϑ
(
x(t)

)
= 1, x ∈ Γ. (24)

This reduction to a phase description gives a simple dynamical system, albeit one that
cannot describe evolution of trajectories in phase space that are away from the limit
cycle. However, the phase-reduction formalism is useful in quantifying how a system
(on or close to a cycle) responds to weak forcing, via the construction of the infinites-
imal phase response curve (iPRC). This can be written, for a given ODE model, as
the solution to an adjoint equation. For a given high-dimensional conductance-based
model this can be solved for numerically, though for some normal form descriptions
closed form solutions are also known [201].

The iPRC at a point on cycle is equal to the gradient of the (isochronal) phase
at that point. Writing this vector quantity as Q means that weak forcing ǫg(t) in
the original high-dimensional models transforms as dϑ/dt = 1 + ǫ〈Q,g〉 where 〈·, ·〉
defines the standard inner product and ǫ is a small parameter. For periodic forcing
such equations can be readily analysed, and questions relating to synchronisation,
mode-locking and Arnol’d tongues can be thoroughly explored [76]. Moreover, this
approach forms the basis for constructing models of weakly interacting oscillators,
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where the external forcing is pictured as a function of the phase of a firing neuron.
This has led to a great deal of work on phase-locking and central pattern generation
in neural circuitry and see for example [43].

However, the assumption that phase alone is enough to capture the essentials of
neural response is one made more for mathematical convenience than being physi-
ologically motivated. Indeed for the popular type I ML firing model with standard
parameters, direct numerical simulations with pulsatile forcing show responses that
cannot be explained solely with a phase model [200], as just highlighted in Sect. 5.3
(since strong interactions will necessarily take one away from the neighbourhood of
a cycle where a phase description is expected to hold).

5.5 Phase Response

It is common practice in neuroscience to characterise a neuronal oscillator in terms of
its phase response to a perturbation [202]. This gives rise to the notion of a so-called
phase response curve (PRC), which for a real neuron can be determined experimen-
tally [203–205], and can also be related to the poststimulus time histogram [206].
Following [201], consider a dynamical system dx/dt = f (x), x ∈ R

N with a T -
periodic solution u(t)= u(t + T ) and introduce an infinitesimal perturbation �x0 to
the trajectory u(t) at time t = 0. This perturbation evolves according to the linearised
equation of motion:

d

dt
�x =Df

(
u(t)

)
�x, �x(0)=�x0.

Here Df (u) denotes the Jacobian of f evaluated along u. Introducing a time-
independent isochronal phase shift �ϑ as ϑ(u(t) + �u(t)) − ϑ(u(t)), we have to
first order in �x that

�ϑ =
〈
Q(t),�x(t)

〉
, (25)

where 〈·, ·〉 defines the standard inner product, and Q = ∇uϑ is the gradient of ϑ
evaluated at u(t). Taking the time-derivative of (25) gives

〈
d

dt
Q,�x

〉
= −

〈
Q,

d

dt
�x

〉
= −

〈
Q,Df (u)�x

〉
= −

〈
Df T (u)Q,�x

〉
.

Since the above equation must hold for arbitrary perturbations, we see that the gradi-
ent Q= ∇uϑ satisfies the linear equation

d

dt
Q=D(t)Q, D(t)= −Df T

(
u(t)

)
, (26)

subject to the boundary conditions
〈
∇u(0)ϑ,f

(
u(0)

)〉
= 1 and Q(t)=Q(t + T ).

The first condition simply guarantees that dϑ/dt = 1 (at any point on the periodic
orbit), and the second enforces periodicity. Note that the notion of phase response
can also be extended to time-delayed systems [207, 208].
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Fig. 13 From left to right: phase response curves for the Hodgkin–Huxley model, the Wilson model and
the Morris–Lecar model corresponding to the discussion in Sect. 2. Orbits are in blue and iPRCs in red

In general, Eq. (26) must be solved numerically to obtain the iPRC, say, using
the adjoint routine in XPPAUT [127] or MatCont [209]. However, for the case of a
nonlinear IF model, defined by (1), the PRC is given explicitly by

Q(ϑ)=
1

I + f ◦Ψ−1(ϑ)
, Ψ (v)= τ

∫ v(t)

vR

dv′

I + f (v′)
, (27)

where the period of oscillation is found by solving Ψ (vth) = T (and the response
function is valid for finite perturbations). For example, for the quadratic IF (QIF)
model, obtained from (1) with the choice with f (v) = v2, and taking the limit
vth → ∞ and vR → −∞ we find Q(ϑ)= sin2(ϑπ/T )/I with T = πτ/

√
I , recov-

ering the iPRC expected of an oscillator close to a SNIC bifurcation [210, 211]. For
a comprehensive discussion of iPRCs for various common oscillator models see the
excellent survey article by Brown et al. [201]. The iPRC for planar piece-wise lin-
ear IF models can also be computed explicitly [58], although we do not discuss this
further here. In Fig. 13 we show the numerically computed iPRCs for the Hodgkin–
Huxley model, the Wilson cortical model and the Morris–Lecar model previously
discussed in Sect. 2. For completeness it is well to note the iPRC for a planar oscil-
lator close to a supercritical Hopf bifurcation has an adjoint with a shape given by
(− sin(2πt/T ), cos(2πt/T )) for an orbit shape (cos(2πt/T ), sin(2πt/T )).

Having defined the phase in some neighbourhood of the limit cycle, we can write
(24) as

d

dt
ϑ(x)=

〈
∇xϑ,

d

dt
x

〉
.

For dx/dt = f (x) this gives 〈∇xϑ,f (x)〉 = 1. We now consider the effect of a
small external periodic force on the self sustained oscillations as in (17), with
g(x, t) = g(x, t +�), where in general � is different from T . For weak perturba-
tions (ǫ ≪ 1) the state point will leave Γ , though will stay in some neighbourhood,
which we denote by U . We extend the phase off cycle using isochronal coordinates
so that 〈∇xϑ,f (x)〉 = 1 holds for any point x ∈ U . For a perturbed oscillator, in these
coordinates we have

d

dt
ϑ =

〈
∇xϑ,

d

dt
x

〉
=
〈
∇xϑ,f (x)+ ǫg(x, t)

〉
= 1 + ǫ

〈
∇xϑ,g(x, t)

〉
.
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As a first approximation we evaluate the right hand side of the above on the limit
cycle to get an equation for the phase dynamics:

d

dt
ϑ = 1 + ǫI (ϑ, t), I (ϑ, t)=

〈
Q
(
u(ϑ)

)
, g
(
u(ϑ), t

)〉
. (28)

The phase dynamics (28) is still very hard to analyse, and as such it is common to
resort to a further simplification, namely averaging. First let us introduce a rotating
phase ψ = ϑ − T t/�, in which case (28) becomes

d

dt
ψ = −δ + ǫI (ψ + T t/�, t), δ = T/�− 1.

If both ǫ and δ are small then dψ/dt ≃ 0 and ψ evolves slowly. Thus we may set
ψ(s)≃ψ(t) for s ∈ [t, t + T ]. Averaging the above over one period gives

d

dt
ψ ≃ −δ + ǫH(ψ), H(ψ)=

1

T

∫ T

0

〈
Q
(
u(ψ + s)

)
, g
(
u(ψ + s), s

)〉
ds, (29)

where we have used the result that I (ψ + s, t)= I (ψ + s + T , t + T ). The function
H(ψ) is T -periodic and can be written as a Fourier series H(ψ)=

∑
nHne2πinψ/T ,

with the simplest example of an averaged phase dynamics being

d

dt
ψ = −δ+ ǫ sinψ,

which is called the Adler equation [212]. If we denote the maximum and minimum
of H by Hmin and Hmax, respectively, then for a phase-locked 1 : 1 state defined by
d
dtψ = 0 we require ǫHmin < δ < ǫHmax. In this case there are two fixed points ψ±
defined by H(ψ±)= δ. One of these is unstable (say ψ−, so that ǫH ′(ψ−) > 0) and
the other stable (ψ+, with ǫH ′(ψ+) < 0). This gives rise to a rotating solution with
constant rotation frequency so that ϑ = (1 + δ)t + ψ+. The two solutions coalesce
in a saddle-node bifurcation when δ = ǫHmin and δ = ǫHmax (or equivalently when
H ′(ψ±)= 0). In the case of the Adler model the parameter region for phase locking
is given explicitly by a triangular wedge defined by ǫ = |δ|—a so-called Arnol’d
tongue. Outside of this tongue solutions drift (they cannot lock to the forcing period)
according to (29), and the system evolves quasi-periodically. We treat weakly coupled
phase oscillators in Sect. 6.

6 Weakly Coupled Phase Oscillator Networks

The theory of weakly coupled oscillators [5, 213] is now a standard tool of dynamical
systems theory and has been used by many authors to study oscillatory neural net-
works; see for example [213–217]. The book by Hoppensteadt and Izhikevich pro-
vides a very comprehensive review of this framework [43], which can also be adapted
to study networks of relaxation oscillators (in some singular limit) [146, 218].
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Consider, for illustration, a system of interacting limit-cycle oscillators (8). Fol-
lowing the method in Sect. 5.5, similar to (29) we obtain the network’s phase dynam-
ics in the form

d

dt
θi = ωi + ǫ

N∑

j=1

wij
〈
Qi
(
ui(θi)

)
,G
(
uj (θj )

)〉
, (30)

where the frequency ωi allows for the fact that oscillators are not identical and, for
this reason, we will assume that θi ∈ [0,2π). Precisely this form of network model
was originally suggested by Winfree to describe populations of coupled oscillators.
The Winfree model [219] assumes a separation of time scales so that an oscillator can
be solely characterised by its phase on cycle (fast attraction to cycle) and is described
by the network equations,

d

dt
θi = ωi + ǫR(θi)

1

N

N∑

j=1

P(θj ), (31)

describing a globally coupled network with a biologically realistic PRC R and pul-
satile interaction function P . Using a mixture of analysis and numerics Winfree found
that with large N there was a transition to macroscopic synchrony at a critical value
of the heterogeneity of the population. Following this, Kuramoto [5] introduced a
simpler model with interactions mediated by phase differences, and showed how the
transition to collective synchronisation could be understood from a more mathemati-
cal perspective. For an excellent review of the Kuramoto model see [220] and [221].

The natural way to obtain a phase-difference model from (30) is, as in Sect. 5.5,
to average over one period of oscillation. For simplicity let us assume that all the
oscillators are identical, and ωi = ω for all i, in which case we find that

d

dt
θi = ω+ ǫ

N∑

j=1

wijH(θj − θi), (32)

where

H(ψ)=
1

2π

∫ 2π

0

〈
Q
(
u(s)

)
,G
(
u(ψ + s)

)〉
ds. (33)

The 2π -periodic function H is referred to as the phase interaction function (or cou-
pling function). If we write complex Fourier series for Q and G as

Q(t)=
∑

n∈Z
Qneint and G(t)=

∑

n∈Z
Gneint ,

respectively, then

H(ψ)=
∑

n∈Z
Hneinψ (34)

with Hn = 〈Q−n,Gn〉. Note that a certain caution has to be exercised in applying
averaging theory. In general, one can only establish that a solution of the unaveraged
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equations is ǫ-close to a corresponding solution of the averaged system for times of
O(ǫ−1). No such problem arises in the case of hyperbolic fixed points corresponding
to phase-locked states.

When describing a piece of cortex or a central pattern generator circuit with a
set of oscillators, the biological realism of the model typically resides in the phase
interaction function. The simplest example is H(ψ) = sin(ψ), which when com-
bined with a choice of global coupling defines the well-known Kuramoto model [5].
However, to model realistic neural networks one should calculate (33) directly, using
knowledge of the single neuron iPRC and the form of interaction. As an example
consider a synaptic coupling, described in Sect. 2.5, that can be written in the form
G(u(ψ))=

∑
m η(ψ +m2π), and a single neuron model for which the iPRC in the

voltage variable v is given byR (say experimentally or from numerical investigation).
In this case

H(ψ)=
∫ ∞

0
R(2πs −ψ)η(2πs)ds. (35)

If instead we were interested in diffusive (gap junction) coupling then we would have

H(ψ)=
1

2π

∫ 2π

0
R(s)

[
v(s +ψ)− v(s)

]
ds.

For the HH model R(t) is known to have a shape like − sin(t) for a spike centred on
the origin (see Fig. 13). Making the further choice that η(t)= α2te−αt then (35) can
be evaluated as

H(ψ)=
[1 − (1/α)2] sin(ψ)− 2/α cos(ψ)

2π[1 + (1/α)2]2
. (36)

In the particular case of two oscillators with reciprocal coupling and ω= 1 then

d

dt
θ1 = 1 + ǫH(θ2 − θ1),

d

dt
θ2 = 1 + ǫH(θ1 − θ2),

and we define ϕ := θ2(t)− θ1(t). A phase-locked solution has a constant phase dif-
ference φ that is a zero of the (odd) function

K(ϕ)= ǫ
[
H(−ϕ)−H(ϕ)

]
.

A given phase-locked state is then stable provided that K ′(ϕ) < 0. Note that by sym-
metry both the in-phase (ϕ = 0) and the anti-phase (ϕ = π ) states are guaranteed to
exist. For the form of the phase interaction function given by (36), the stability of the
synchronous solution is governed by the sign of K ′(0):

sgnK ′(0)= sgn
{
−ǫH ′(0)

}
= sgn

{
−ǫ
[(

1 − (1/α)
)2]}

.

Thus for inhibitory coupling (ǫ < 0) synchronisation will occur if 1/α > 1, namely
when the synapse is slow (α → 0). It is also a simple matter to show that the anti-
synchronous solution (ϕ = π ) is stable for a sufficiently fast synapse (α → ∞). It
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is also possible to develop a general theory for the existence and stability of phase-
locked states in larger networks than just a pair.

6.1 Phase, Frequency and Mode Locking

Now suppose we have a general population of N ≥ 2 coupled phase oscillators

d

dt
θj = fj (θ1, . . . , θN ),

described by phases θj ∈ R/2πZ. For a particular continuous choice of phases θ(t)
for the trajectory one can define the frequency of the j th oscillator as

Ωj = lim
T→∞

1

T

[
θj (T )− θj (0)

]
.

This limit will converge under fairly weak assumptions on the dynamics [222],
though it may vary for different attractors in the same system, for different oscil-
lators j and in some cases it may vary even for different trajectories within the same
attractor.

We say two oscillators j and k are phase locked with ratio (n : m) for (n,m) ∈
Z

2 \ (0,0) with no common factors of n and m, if there is anM > 0 such that
∣∣nθj (t)−mθk(t)

∣∣<M,

for all t > 0. The oscillators are frequency locked with ratio (n :m) if

nΩj −mΩk = 0.

If we say they are simply phase (or frequency locked) without explicit mention of the
(n : m) ratio, we are using the convention that they are (1 : 1) phase (or frequency)
locked. The definition of Ωj means that if two oscillators are phase locked then they
are frequency locked. The converse is not necessarily the case: two oscillators may be
frequency locked but not phase locked if the phase difference nθj (t)−mθk(t) grows
sublinearly with t .

For the special case of globally coupled networks (wij = 1/N for the system (32)),
the system is SN × T equivariant. By topological arguments, maximally symmetric
solutions describing synchronous, splay, and a variety of cluster states exist generi-
cally for weak coupling [118]. The system (32) with global coupling is in itself an
interesting subject of study in that it is of arbitrarily high dimension N but is effec-
tively determined by the single function H(ϕ) that is computable from a single pair
of oscillators. The system (and variants thereof) have been productively studied by
thousands of papers since the seminal work of Kuramoto [5].

6.2 Dynamics of General Networks of Identical Phase Oscillators

The collective dynamics of phase oscillators have been investigated for a range of
regular network structures including linear arrays and rings with uni- or bi-directional
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coupling e.g. [118, 120, 213, 223], and hierarchical networks [224]. In some cases the
systems can be usefully investigated in terms of permutation symmetries of (32) with
global coupling, for example ZN or DN for uni- or bi-directionally coupled rings. In
other cases a variety of approaches have been developed and adapted to particular
structures though these have not in all cases been specifically applied to oscillator
networks; some of these approaches are discussed in Sect. 3.3

We recall that the form of the coupling in (32) is special in the sense that it assumes
the interactions between two oscillators are independent of any third—this is called
pairwise coupling [118, 120]. If there are degeneracies such as

m−1∑

k=0

H

(
ϕ +

2πk

m

)
= 0, (37)

which can appear when some of the Fourier components of H are zero, this can
lead to degeneracies in the dynamics. For example [225], while Theorem 7.1 in [118]
shows that ifH satisfies (37) for somem≥ 2 and N is a multiple ofm then (32), with
global coupling, will have m-dimensional invariant tori in phase space that are foli-
ated by neutrally stable periodic orbits. This degeneracy will disappear on including
either non-pairwise coupling or introducing small but nonzero Fourier components
in the expansion of H but as noted in [226] this will typically be the case for the
interaction of oscillators even if they are near a Hopf bifurcation.

We examine in more detail some of the phase-locked states that can arise in weakly
coupled networks of identical phase oscillators described by (32). We define a 1 : 1
phase-locked solution to be of the form θi(t)= ϕi +Ωt , where ϕi is a constant phase
and Ω is the collective frequency of the coupled oscillators. Substitution into the
averaged system (32) gives

Ω = ω+ ǫ
N∑

j=1

wijH(ϕj − ϕi) (38)

for i = 1, . . . ,N . TheseN equations determine the collective frequencyΩ andN−1
relative phases with the latter independent of ǫ.

It is interesting to compare the weak-coupling theory for phase-locked states with
the analysis of LIF networks from Sect. 4.3. Equation (13) has an identical structure
to that of Eq. (38) (for Ii = I for all i), so that the classification of solutions using
group theoretic methods is the same in both situations. There are, however, a num-
ber of significant differences between phase-locking equations (38) and (13). First,
Eq. (13) is exact, whereas Eq. (38) is valid only to O(ǫ) since it is derived under the
assumption of weak coupling. Second, the collective period of oscillations � must
be determined self-consistently in Eq. (13).

In order to analyse the local stability of a phase-locked solutionΦ = (φ1, . . . , φN ),
we linearise the system by setting θi(t)= ϕi +Ωt + θ̃i(t) and expand to first-order
in θ̃i :

d

dt
θ̃i = ǫ

N∑

j=1

Ĥij (Φ)θ̃j ,
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where

Ĥij (Φ)=wijH ′(ϕj − ϕi)− δi,j
N∑

k=1

wikH
′(ϕk − ϕi),

and H ′(ϕ) = dH(ϕ)/dϕ. One of the eigenvalues of the Jacobian Ĥ is always zero,
and the corresponding eigenvector points in the direction of the uncoupled flow, that
is, (1,1, . . . ,1). The phase-locked solution will be stable provided that all other
eigenvalues have a negative real part. We note that the Jacobian has the form of
a graph-Laplacian mixing both anatomy and dynamics, namely it is the graph-
Laplacian of the matrix with components −wijH ′(ϕj − ϕi).

6.2.1 Synchrony

Synchrony (more precisely, exact phase synchrony), where θ1 = θ2 = · · · = θN−1 =
θN = Ωt + t0 for some fixed frequency Ω , is a classic example of a phase-locked
state. Substitution into (32), describing a network of identical oscillators, shows that
Ω has symmetry SN and must satisfy the condition

Ω = ω+ ǫH(0)
N∑

j=1

wij ∀i.

One way for this to be true for all i is if H(0)= 0, which is the case, say, for H(θ)=
sin(θ) or for diffusive coupling, which is linear in the difference between two state
variables so thatH(0)= 0. The existence of synchronous solutions is also guaranteed
if
∑N
j=1wij is independent of i. This would be the case for global coupling where

wij = 1/N , so that the system has permutation symmetry.
If the synchronous solution exists then the Jacobian is given by −ǫH ′(0)L where

L is the graph-Laplacian with components Lij = δij
∑
kwik − wij . We note that L

has one zero eigenvalue, with eigenvector (1,1, . . . ,1,1). Hence if all the other eigen-
values of L lie on one side of the imaginary axis then stability is solely determined
by the sign of ǫH ′(0). This would be the case for a weighted connectivity matrix
with all positive entries since the graph-Laplacian in this instance would be positive
semi-definite. For example, for global coupling we have Lij = δij − N−1, and the
(N − 1 degenerate) eigenvalue is +1. Hence the synchronous solution will be stable
provided λ= −ǫH ′(0) < 0.

6.2.2 Asynchrony

Another example of a phase-locked state is the purely asynchronous solution whereby
all phases are uniformly distributed around the unit circle. This is sometimes referred
to as a splay state, discrete rotating wave with ZN symmetry or splay-phase state and
can be written dθi/dt =Ω with θi+1 − θi = 2π/N ∀i. Like the synchronous solution
it will be present but not necessarily stable in networks with global coupling, with an



Page 52 of 92 P. Ashwin et al.

emergent frequency that depends on H :

Ω = ω+ ǫ
1

N

N∑

j=1

H

(
2πj

N

)
.

In this case the Jacobian takes the form

Ĥnm(Φ)=
ǫ

N
[An−m − δnmΓ ],

where Γ =
∑
kH

′(2πk/N) and An =H ′(2πn/N). Hence the eigenvalues are given
by λp = ǫ[νp − Γ ]/N , p = 0, . . . ,N − 1 where νp are the eigenvalues of An−m:∑
mAn−ma

p
m = νpapn , where apn denote the components of the pth eigenvector. This

has solutions of the form apn = e−2πinp/N so that νp =
∑
mAme2πimp/N , giving

λp =
ǫ

N

N∑

m=1

H ′
(

2πm

N

)[
e2πimp/N − 1

]
,

and the splay state will be stable if Re(λp) < 0 ∀p 	= 0.
In the large N limit N → ∞ we have the useful result that (for global coupling)

network averages may be replaced by time averages:

lim
N→∞

1

N

N∑

j=1

F

(
2πj

N

)
=

1

2π

∫ 2π

0
F(t)dt = F0,

for some 2π -periodic function F(t)= F(t + 2π) (which can be established using a
simple Riemann sum argument), with a Fourier series F(t) =

∑
nFneint . Hence in

the large N limit the collective frequency of a splay state (global coupling) is given
by Ω = ω+ ǫH0, with eigenvalues

λp =
ǫ

2π

∫ 2π

0
H ′(t)eipt dt = −2πipǫH−p.

Hence a splay state is stable if −pǫ ImHp < 0, where we have used the fact that
sinceH(θ) is real, then ImH−p = − ImHp . As an example consider the caseH(θ)=
θ(π−θ)(θ−2π) for θ ∈ [0,2π) and ǫ > 0 (whereH is periodically extended outside
[0,2π)). It is straightforward to calculate the Fourier coefficients (34) asHn = 6i/n3,
so that −pǫ ImHp = −6ǫ/p2 < 0 ∀p 	= 0. Hence the asynchronous state is stable. If
we flip any one of the coefficients Hm → −Hm then Reλm > 0 and the splay state
will develop an instability to an eigenmode that will initially destabilise the system
in favour of an m-cluster, and see Fig. 14.

6.2.3 Clusters for Globally Coupled Phase Oscillators

For reviews of the stability of cluster states (in which subsets of the oscillator popula-
tion synchronise, with oscillators belonging to different clusters behaving differently)
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Fig. 14 a A phase interaction given by ǫH(θ)= θ(π − θ)(θ − 2π) for θ ∈ [0,2π) with complex Fourier
series coefficients given by Hn = 6i/n3 . The remaining panels show the effect of flipping the sign of just
one of the coefficients, namely Hm → −Hm. b m= 1, and the asynchronous solution will destabilise in
favour of the synchronous solution since H ′(0) > 0. c m = 2, and the asynchronous solution will desta-
bilise in favour of a two-cluster. d m = 3, and the asynchronous solution will destabilise in favour of a
three-cluster. Note that only small changes in the shape of H , as seen in panels c–d, can lead to a large
change in the emergent network dynamics

we refer the reader to [118, 120, 227]; here we use the notation of [228]. If a group
of N oscillators is neither fully synchronised nor desynchronised it may be clustered.
We say A = {A1, . . . ,AM } is anM-cluster partition of {1, . . . ,N} if

{1, . . . ,N} =
M⋃

p=1

Ap,

where Ap are pairwise disjoint sets (Ap ∩Aq = ∅ if p 	= q). Note that if ap = |Ap|
then

M∑

p=1

ap =N.

One can refer to this as a cluster of type (a1, . . . , aM). It is possible to show that any
clustering can be realised as a stable periodic orbit of the globally coupled phase os-
cillator system [228] for suitable choice of phase interaction function; more precisely,
there is a coupling functionH for the system (32), with global coupling, such that for
any N and any givenM-cluster partition A of {1, . . . ,N} there is a linearly stable pe-
riodic orbit realising that partition (and all permutations of it). See also [229], where
the authors consider clustering in this system whereH(ϕ)= sinMϕ. More generally,
there are very many invariant subspaces corresponding to spatio-temporal clustering
that we can characterise in the following theorem.

Theorem 6.1 (Theorem 3.1 in [118]) The subsets of TN that are invariant for (32),
with global coupling, because of symmetries of SN × T correspond to isotropy sub-

groups in the conjugacy class of

Σk,m := (Sk1 × · · · × Skℓ)m ×s Zm,

where N =mk, k = k1 + · · · + kℓ and ×s denotes the semidirect product. The points

with this isotropy have ℓm clusters that are split into ℓ groups ofm clusters of the size

ki . The clusters within these groups are cyclically permuted by a phase shift of 2π/m.
The number of isotropy subgroups in this conjugacy class is N !/[m(k1! · · ·kℓ!)].
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It is a nontrivial problem to discover which of these subspaces contain periodic
solutions. Note that the in-phase case corresponds to ℓ=m= 1, k1 =N while splay
phase corresponds to ℓ = k1 = 1, m = N . The stability of several classes of these
solutions can be computed in terms of properties ofH(ϕ); see for example Sect. 6.2.1
and Sect. 6.2.2 and for other classes of solution [118, 120, 228].

6.2.4 Generic Loss of Synchrony in Globally Coupled Identical Phase Oscillators

Bifurcation properties of the globally coupled oscillator system (32) on varying a
parameter that affects the coupling H(ϕ) are surprisingly complicated because of the
symmetries present in the system; see Sect. 3.6. In particular, the high multiplicity of
the eigenvalues for loss of stability of the synchronous solution means:

• Path-following numerical bifurcation programs such as AUTO, CONTENT, Mat-
Cont or XPPAUT need to be used with great care when applying to problems with
N ≥ 3 identical oscillators—these typically will not be able to find all solutions
branching from one that loses stability.

• A large number of branches with a range of symmetries may generically be in-
volved in the bifurcation; indeed, there are branches with symmetries correspond-
ing to all possible two-cluster states Sk × SN−k .

• Local bifurcations may have global bifurcation consequences owing to the pres-
ence of connections that are facilitated by the nontrivial topology of the torus [118,
230].

• Branches of degenerate attractors such as heteroclinic attractors may appear at such
bifurcations for N ≥ 4 oscillators.

Hansel et al. [231] consider the system (32) with global coupling and phase inter-
action function of the form

H(ϕ)= sin(ϕ − α)− r sin(2ϕ), (39)

for (r,α) fixed parameters; detailed bifurcation scenarios in the cases N = 3,4 are
shown in [232]. As an example, Fig. 15 shows regions of stability of synchrony,
splay-phase solutions and robust heteroclinic attractors as discussed later in Sect. 7.

6.3 Phase Waves

The phase-reduction method has been applied to a number of important biological
systems, including the study of travelling waves in chains of weakly coupled oscil-
lators that model processes such as the generation and control of rhythmic activity
in central pattern generators (CPGs) underlying locomotion [233, 234] and peristal-
sis in vascular and intestinal smooth muscle [213]. Related phase models have been
motivated by the observation that synchronisation and waves of excitation can occur
during sensory processing in the cortex [235]. In the former case the focus has been
on dynamics on a lattice and in the latter continuum models have been preferred. We
now present examples of both these types of model, focusing on phase wave solutions
[236].
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Fig. 15 Regions of stability for
the globally coupled
N = 4-oscillator system (32)
with phase interaction function
(39) and parameters in the
region r > 0, 0< α < π [232].
The narrow stripes show the
region of stability of synchrony,
while the wide stripes show the
region of stability of the
splay-phase solution. The pink

shaded area shows a region of
existence of a robust heteroclinic
network that is an attractor with
in the checkerboard region; the
boundaries are described in
[232]

Phase Waves: A Lattice Model The lamprey is an eel-like vertebrate which swims
by generating travelling waves of neural activity that pass down its spinal cord. The
spinal cord contains about 100 segments, each of which is a simple half-centre neural
circuit capable of generating alternating contraction and relaxation of the body mus-
cles on either side of body during swimming. In a seminal series of papers, Ermen-
trout and Kopell carried out a detailed study of the dynamics of a chain of weakly cou-
pled limit-cycle oscillators [213, 237, 238], motivated by the known physiology of the
lamprey spinal cord. They considered N phase oscillators arranged on a chain with
nearest-neighbour anisotropic interactions, as illustrated in Fig. 16, and identified a
travelling wave as a phase-locked state with a constant phase difference between ad-
jacent segments. The intersegmental phase differences are defined as ϕi = θi+1 − θi .
If ϕi < 0 then the wave travels from head to tail whilst for ϕi > 0 the wave travels
from the tail to the head. For a chain we set Wij = δi−1,jW− + δi+1,jW+ to ob-
tain

d

dt
θ1 = ω1 +W+H(θ2 − θ1),

d

dt
θi = ωi +W+H(θi+1 − θi)+W−H(θi−1 − θi), i = 2, . . . ,N − 1,

d

dt
θN = ωN +W−H(θN−1 − θN ),

Fig. 16 A chain of N phase oscillators ϕi = θi+1 − θi with H±(ϕ)=W±H(ϕ)
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where θi ∈ R/2πZ. Pairwise subtraction and substitution of ϕi = θi+1 − θi leads to
an N − 1-dimensional system for the phase differences,

d

dt
ϕi =�ωi +W+

[
H(ϕi+1)−H(ϕi)

]
+W−

[
H(−ϕi)−H(−ϕi−1)

]
,

for i = 1, . . . ,N − 1, with boundary conditions H(−ϕ0) = 0 = H(ϕN+1), where
�ωi = ωi+1 − ωi . There are at least two different mechanisms that can generate
travelling wave solutions.

The first is based on the presence of a gradient of frequencies along the chain, that
is,�ωi has the same sign for all i, with the wave propagating from the high frequency
region to the low frequency region. This can be established explicitly in the case of an
isotropic, odd interaction function,W± = 1 and H(ϕ)= −H(−ϕ), where we have

d

dt
ϕi =�ωi +H(ϕi+1)+H(ϕi−1)− 2H(ϕi).

The fixed points Φ = (ϕ1, . . . , ϕN ) satisfy the matrix equation H(Φ) = −A−1D,
where H(Φ)= (H(ϕ1), . . . ,H(ϕN ))

⊤, D = (�ω1, . . . ,�ωN )
⊤, and A is a tridiag-

onal matrix with elements Aii = −2, Ai,i+1 = A1+1,i = 1. For the sake of illustra-
tion suppose that H(ϕ) = sin(ϕ + σ). Then a solution Φ will exist if every com-
ponent of A−1D lies between ±1. Let a0 = max{|(A−1D)i |}. If a0 < 1 then for
each i = 1, . . . ,N there are two distinct solutions ϕ±

i in the interval [0,2π] with
H ′(ϕ−

i ) > 0 and H ′(ϕ+
i ) < 0. In other words, there are 2N phase-locked solutions.

Linearising about a phase-locked solution and exploiting the structure of the matrix
A, it can be proven that only the solution Φ− = (ϕ−

1 , . . . , ϕ
−
N ) is stable. Assuming

that the frequency gradient is monotonic, this solution corresponds to a stable travel-
ling wave. When the gradient becomes too steep to allow phase locking (i.e. a0 > 1),
two or more clusters of oscillators (frequency plateaus) tend to form that oscillate at
different frequencies. Waves produced by a frequency gradient do not have a constant
speed or, equivalently, constant phase lags along the chain.

Constant speed waves in a chain of identical oscillators can be generated by con-
sidering phase-locked solutions defined by ϕi = ϕ for all i, with a collective period
of oscillation Ω determined using dθ1/dt = Ω to give Ω = ω1 +W+H(ϕ1). The
steady state equations are then �ω1 +W+H(−ϕ)= 0, �ωN−1 −W−H(ϕ)= 0 and
�ωi = 0, for i = 2, . . . ,N − 2. Thus, a travelling wave solution requires that all fre-
quencies must be the same except at the ends of the chain. One travelling solution
is given by �ωN−1 = 0 with �ω1 = −W−H(−ϕ) and H(ϕ) = 0. For the choice
H(ϕ) = sin(ϕ + σ) we have ϕ = −σ and �ω1 = −W− sin(2σ). If 2σ < π then
�ω1 = ω2 − ω1 < 0 and ω1 must be larger than ω2 and hence all the remaining
ωi for a forward travelling wave to exist. Backward swimming can be generated by
setting ω1 = 0 and solving in a similar fashion.

Phase Waves: A Continuum Model There is solid experimental evidence for elec-
trical waves in awake and aroused vertebrate preparations, as well as semi-intact
and active invertebrate preparations, as nicely described by Ermentrout and Klein-
feld [235]. Moreover, these authors argue convincingly for the use of phase models
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in understanding waves seen in cortex and speculate that they may serve to label si-
multaneously perceived features in the stimulus stream with a unique phase. More
recently it has been found that cortical oscillations can propagate as travelling waves
across the surface of the motor cortex of monkeys (Macaca mulatta) [239]. Given
that to a first approximation the cortex is often viewed as being built from a dense re-
ciprocally interconnected network of corticocortical axonal pathways, of which there
are typically 1010 in a human brain it is natural to develop a continuum phase model,
along the lines described by Crook et al. [240]. These authors further incorporated
axonal delays into their model to explain the seemingly contradictory result that syn-
chrony is stable for short range excitatory coupling, but unstable for long range. To
see how a delay-induced instability may arise we consider a continuum model of
identical phase oscillators with space-dependent delays

∂

∂t
θ(x, t)= ω+ ǫ

∫

D

W(x,y)H
(
θ(y, t)− θ(x, t)− τ(x, y)

)
dy, (40)

where x ∈D ⊆ R and θ ∈R/2πZ. This model is naturally obtained as the continuum
limit of (32) for a network arranged along a line with communication delays τ(x, y)
set by the speed of an action potential v that mediates the long range interaction over
a distance between points in the tissue at x and y. Here we have used the result that
for weak coupling delays manifest themselves as phase shifts. The function W sets
the anatomical connectivity pattern. It is convenient to assume that interactions are
homogeneous and translation invariant, so thatW(x,y)=W(|x−y|) with τ(x, y)=
|x − y|/v, and we either assume periodic boundary conditions or take D = R.

Following [240] we construct travelling wave solutions of Eq. (40) for D = R of
the form θ(x, t)=Ωt + βx, with the frequency Ω satisfying the dispersion relation

Ω = ω+ ǫ
∫ ∞

−∞
dyW

(
|y|
)
H
(
βy − |y|/v

)
.

When β = 0, the solution is synchronous. To explore the stability of the travelling
wave we linearise (40) aboutΩt+βx and consider perturbations of the form eλteipx ,
to find that travelling phase waves solutions are stable if Reλ(p) < 0 for all p 	= 0,
where

λ(p)= ǫ
∫ ∞

−∞
W
(
|y|
)
H ′(βy − |y|/v

)[
eipy − 1

]
dy.

Note that the neutrally stable mode λ(0) = 0 represents constant phase shifts. For
example, for the case that H(θ)= sin θ then we have

Reλ(p)= πǫ
[
Λ(p,β+)+Λ(−p,β−)

]
,

where

Λ(p,β)=Wc(p+ β)+Wc(p− β)− 2Wc(β), Wc(p)=
∫ ∞

0
W(y) cos(py)dy,

and β± = ±β − 1/(v). A plot of the region of wave stability for the choice W(y)=
exp(−|y|)/2 and ǫ > 0 in the (β, v) plane is shown in Fig. 17. Note that the syn-
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Fig. 17 Stability region (black)
for a phase wave
θ(x, t)=Ωt + βx in the (β, v)
plane for the choice
H(θ)= sin θ ,
W(y)= exp(−|y|)/2 and ǫ > 0

chronous solution β = 0 is unstable for small values of v. For a discussion of more
realistic forms of phase interaction, describing synaptic interactions, see [241].

6.3.1 Phase Turbulence

For appropriate choice of the anatomical kernel and the phase interaction function,
continuum models of the form (40) can also support weak turbulent solutions remi-
niscent of those seen in the Kuramoto–Sivashinsky (KS) equation. The KS equation
generically describes the dynamics near long wavelength primary instabilities in the
presence of appropriate (translational, parity and Galilean) symmetries, and it is of
the form

θt = −αθxx + β(θx)2 − γ θxxxx, (41)

where α,β, γ > 0. For a further discussion of this model see [76]. For the model (40)
with decaying excitatory coupling excitation and purely sinusoidal phase coupling,
simulations on a large domain show a marked tendency to generate phase slips and
spatio-temporal pattern shedding, resulting in a loss of spatial continuity of θ(x, t).
However, Battogtokh [242] has shown that a mixture of excitation and inhibition with
higher harmonics in the phase interaction can counteract this tendency and allow the
formation of turbulent states. To see how this can arise consider an extension of (40)
to allow for a mixing of spatial scales and nonlinearities in the form

∂

∂t
θ(x, t)= ω+

M∑

μ=1

ǫμ

∫

R

Wμ(x − y)Hμ
(
θ(y, t)− θ(x, t)

)
dy, (42)

where we drop the consideration of axonal delays. Using the analysis of Sect. 6.3 the
synchronous wave solution will be stable provided λ(p) < 0 for all p 	= 0 where

λ(p)=
M∑

μ=1

ǫμH
′
μ(0)

[
Ŵμ(p)− Ŵμ(0)

]
, Ŵμ(p)=

∫

R

Wμ
(
|y|
)
eipy dy.

After introducing the complex function z(x, t)= exp(iθ(x, t)) and writing the phase
interaction functions as Fourier series of the form Hμ(θ)=

∑
nH

μ
n einθ then we can
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rewrite (42) as

zt = iz
{
ω+

M∑

μ=1

∑

n∈Z
ǫμH

μ
n z

−nψμn

}
, (43)

where

ψμn (x, t)=
∫

R

Wμ(x − y)zn(y, t)dy ≡Wμ ⊗ zn.

The form above is useful for computational purposes, since ψμn can easily be com-
puted using a fast Fourier transform (exploiting its convolution structure). Battog-
tokh [242] considered the choice M = 3 with H1(θ) = H2(θ) = sin(θ + α), H3 =
sin(2θ + α) and Wμ(x) = γμ exp(−γμ|x|)/2 with γ2 = γ3. In this case Ŵμ(p) =
γ 2
μ/(γ

2
μ + p2), so that

λ(p)= −p2 cos(α)

(
ǫ1

γ 2
1 + p2

+
ǫ2 + 2ǫ3

γ 2
2 + p2

)
.

By choosing a mixture of positive and negative coupling strengths the spectrum can
easily show a band of unstable wave-numbers from zero up to some maximum as
shown in Fig. 18. Indeed this shape of spectrum is guaranteed when

∑
μ ǫμH

′
μ(0) > 0

and
∑
μ ǫμH

′
μ(0)/γ

2
μ < 0. Similarly the KS equation (41) has a band of unstable

wave-numbers between zero and one (with the most unstable wave-number at 1/
√

2).
For the case that all the spatial scales γ−1

μ are small compared to the system size
then we may develop a long wavelength argument to develop local models for ψμn .
To explain this we first construct the Fourier transform ψ̂

μ
n (p, t) = Ŵμ(p)fn(p, t),

where fn is the Fourier transform of zn and use the expansion Ŵμ(p)≃ 1−γ−2
μ p2 +

γ−4
μ p4 + · · · . After inverse Fourier transforming we find

ψμn ≃
[
1 + γ−2

μ ∂xx − γ−4
μ ∂xxxx + · · ·

]
zn.

Noting that H 1
1 = H 1

2 = H 2
3 = exp(iα)/(2i) ≡ Γ with all other Fourier coefficients

zero then (43) yields

θt =Ω + 2 ReΓ
∑

μ=1,2

ǫμe−iθ (γ−2
μ ∂xx − γ−4

μ ∂xxxx + · · ·
)
eiθ

+ ǫ3e−2iθ (γ−2
3 ∂xx − γ−4

3 ∂xxxx + · · ·
)
e2iθ , (44)

where Ω = ω +
∑
μ ǫμHμ(0). Expanding (44) to second order gives θt = Ω −

αθxx + β(θx)2, where α = −
∑
μ ǫμH

′
μ(0)γ

−2
μ and β = −

∑
μ ǫμH

′′
μ(0)γ

−2
μ . Go-

ing to higher order yields fourth-order terms and we recover an equation of KS type
with the coefficient of −θxxxx given by γ =

∑
μ ǫμH

′
μ(0)γ

−4
μ . To generate phase

turbulence we thus require α > 0, which is also a condition required to generate a
band of unstable wave-numbers, and β,γ > 0. A direct simulation of the model with
the parameters for Fig. 18, for which α,β, γ > 0, shows the development of a phase
turbulent state. This is represented in Fig. 19 where we plot the absolute value of the
complex function Ψ = (ǫ1W1 + ǫ2W2)⊗ z+ ǫ3W3 ⊗ z2.
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Fig. 18 Spectrum for the phase oscillator continuum model (42) with a mixture of spatial scales and
nonlinearities. Here H1(θ) = H2(θ) = sin(θ + α), H3 = sin(2θ + α) and Wμ(x) = γμ exp(−γμ|x|)/2
with γ2 = γ3 . Parameters are ǫ1 = 0.5, ǫ2 = 0.15, ǫ3 = −0.3, γ1 = 1/2, γ2 = 1/4, and α = −1.45. There
is a band of unstable wave-numbers with p ∈ (0,pc), with pc ≃ 1.25

Fig. 19 The emergence of a turbulent phase state in a phase oscillator continuum model. The parameters
are those as in Fig. 18 with ω = 0 for which α = 0.63, β = 5.16 and γ = 0.096. The physical domain
size is 27 and we have used a numerical mesh of 212 points with Matlab ode45 to evolve Eq. (43) with
convolutions computed using fast Fourier transforms. As an order parameter describing the system we
have chosen |Ψ |, where Ψ = (ǫ1W1 + ǫ2W2)⊗ z+ ǫ3W3 ⊗ z2

7 Heteroclinic Attractors

In addition to dynamically simple periodic attractors with varying degrees of clus-
tering, the emergent dynamics of coupled phase oscillator systems such as (32) can
be remarkably complex even in the case of global coupling and similar effects can
appear in a wide range of coupled systems. In the case of globally coupled phase
oscillators, the dynamical complexity depends only on the phase interaction function
H and the number of oscillators N . Chaotic dynamics [243] can appear in four or
more globally coupled phase oscillators for phase interaction functions of sufficient
complexity. We focus now on attractors that are robust and apparently prevalent in
many such systems: robust heteroclinic attractors.

In a neuroscience context such attractors have been investigated under several
related names, including slow switching [231, 244–246] where the system evolves
towards an attractor that displays slow switching between cluster states where the
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Fig. 20 Schematic diagram showing a trajectory x(t) (solid line) approaching part of a robust heteroclinic
network in phase space (bold dashed lines). The nodes xi represent equilibria or periodic orbits of saddle
type and the invariant subspaces Pi are forced to exist by model assumptions and there are connecting
(heteroclinic) orbits ci that connect the nodes within the Pi in a robust manner. A neighbourhood of the
connecting orbits ci is an absorbing stable heteroclinic channel that can be used to describe various aspects
of neural system function in systems with this dynamics; see for example [250]

switching is on a time scale determined by the noise, heteroclinic networks [137, 232,
247] or winnerless competition [248–250]. The effects can be seen in “microscale”
models of small numbers of neurons or in “macroscale” models of cognitive function.
In all these cases there are a number of possible patterns of activity that compete with
each other but such that each pattern is unstable to some perturbations that take it to
another pattern—this can be contrasted to winner-takes-all competition where there
is attraction to an asymptotically stable pattern.

These attractors obtain their dynamical structure from the presence of invariant
subspaces for the dynamics that allow the possibility of robust connections between
saddles. These subspaces may be symmetry-induced fixed-point subspaces, spaces
with a given clustering, subspaces forced by multiplicative coupling or subspaces
forced by assumptions on the nature of the coupling. In all cases, there will be a
number of dynamically simple nodes, usually equilibria or periodic orbits, say xi , i =
1, . . . , k each of which is of saddle type. These nodes have unstable manifolds that,
within some invariant subspace, limit to other nodes within the network—usually
because there is a robust (transverse) saddle-to-sink connection between the nodes
within some invariant subspace; see [251]. It can be verified that such heteroclinic
networks can be attracting if, in some sense, the rate of expansion away from the
nodes is not as strong as the rate of contraction towards the nodes—see [129] for
some precise results in this direction. Figure 20 illustrates some of the ingredients for
a robust heteroclinic attractor.

7.1 Robust Heteroclinic Attractors for Phase Oscillator Networks

Hansel et al. [231] considered the dynamics of (32) with global coupling and phase
interaction function of the form (39) for (r,α) fixed parameters. For largeN , they find
an open region in parameter space where typical attractors are heteroclinic cycles
that show slow switching between states where the clustering is into two clusters
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Fig. 21 A robust heteroclinic cycle attractor for the all-to-all coupled 4-oscillator system (32) with phase
interaction function (39) and an open region of parameter space, as in [232]. The figure shows the cycle
in the three-dimensional space of phase differences; the vertices R all represent the fully symmetric (in-
phase) oscillations (ϕ,ϕ,ϕ,ϕ), varying by 2π in one of the arguments. The point Q represents solutions
(ϕ,ϕ,ϕ + π,ϕ + π) with symmetry (S2 × S2)×s Z2 . The heteroclinic cycle links two saddle equilibria
P1 = (ϕ,ϕ,ϕ + α,ϕ + α) and P2 = (ϕ,ϕ,ϕ + 2π − α,ϕ + 2π − α) with S2 × S2 isotropy. The robust
connections G1 and G2 shown in red lie within two-dimensional invariant subspaces with isotropy S2
while the equilibria S have isotropy S3 . This structure is an attractor for parameters in the region indicated
in Fig. 15

of macroscopic size. This dynamics is examined in more depth in [244] where the
simulations for typical initial conditions show a long and intermittent transient to
a two-cluster state that, surprisingly, is unstable. This is a paradox because only a
low-dimensional subset of initial conditions (the stable manifold) should converge
to a saddle. The resolution of this paradox is a numerical effect: as the dynamics
approaches the heteroclinic cycle where the connection is in a clustered subspace,
there can be numerical rounding into the subspace. For weak perturbation of the
system by additive noise, [244] find that the heteroclinic cycle is approximated by a
roughly periodic transition around the cycle whose approximate period scales as the
logarithm of the noise amplitude.

The bifurcations that give rise to heteroclinic attractors in this system on varying
(r,α) are quite complex even for small N . As discussed in [232] one can only find
attracting robust heteroclinic attractors in (32), (39) for N ≥ 4: in this case Fig. 15
shows a region where robust heteroclinic attractors of the type illustrated in Fig. 21
appear. A trajectory approaching such a network will spend much of its time near
a cluster state with two groups of two oscillators each. Each time there is a con-
nection between the states, one of the groups will break clustering for a short time,
and over a longer period the clusters will alternate between breaking up and keep-
ing together. Qualitatively similar heteroclinic attractors can be found for example in
coupled Hodgkin–Huxley type limit-cycle oscillators with delayed synaptic coupling
as detailed in [251] and illustrated in Fig. 22.
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Fig. 22 Robust heteroclinic cycle attractor for all-to-all coupled oscillatory Hodgkin–Huxley systems
with delay synaptic coupling. The top panel shows synchronisation indices rij that only equal one when
the systems i and j are synchronised while the bottom panel shows the action potentials vi for the four
oscillators; see [251] for more details. Observe that the mechanism of symmetry breaking and re-synchro-
nisation of pairs is the same as in Fig. 21

Fig. 23 Raster plot showing a robust heteroclinic attractor in a system of five globally coupled phase
oscillators (32) with phase interaction function (45) and a particular choice of parameters (see text). The

vertical dark lines mark times (t in horizontal axis) when the oscillator represented by θk(t) (k in vertical

axis) passes through zero. Observe that most of the time there are three clusters. Occasionally the clustering
splits and reforms different three clusters reforms, at times indicated by the grey bars, approximately every
70 time units. (Adapted from [252])

The heteroclinic attractors that appear for N > 4 can have more complex struc-
tures. For N = 5 this is investigated in [253, 254] for (32), (39) and in [252] for the
phase interaction function

H(ϕ)= sin(ϕ + α)− r sin(2ϕ + β), (45)

where α, β and r are parameters. Figure 23 illustrates a trajectory of (32) with global
coupling and phase interaction function (45) as a raster plot for five phase oscillators
with parameters r = 0.2, α = 1.8, β = −2.0 and ω = 1.0 and with addition of noise
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Fig. 24 a Graph of heteroclinic connections between three cluster states for a robust heteroclinic attractor
in a system of N = 5 globally coupled phase oscillators. Phase interaction function and parameters as in
Fig. 23; see [252] for more details of the dynamics. Each vertex represents a particular saddle periodic
cluster state that is a permutation of the states shown in b–d. Note that there are precisely two incoming
and two outgoing connections at each vertex. b–d show the relative phases of the five oscillators, indicated
by the angles of the “pendula” at the vertices of a regular pentagon, for a sequence of three consecutive
three saddle cluster states visited on a longer trajectory that randomly explores graph a in the presence of
noise. Inequivalent clusters are characterised by different coloured “pendula” and numbers where yellow

corresponds to 1, green to 2 and blue to 3. The yellow cluster is stable to cluster-splitting perturbations
while the blue cluster is unstable to such perturbations—observe that after the connection the yellow cluster

becomes the blue cluster while the blue cluster splits up in one of two possible ways

of amplitude 10−5. Observe there is a dynamic change of clustering over the course
of the time-series with a number of switches taking place between cluster states of
the type

(θ1, . . . , θ5)=Ωt(1,1,1,1,1)+ (y, y, g, b, b),

where y, g and b represent different relative phases that are coloured “yellow”,
“green” or “blue” in Fig. 24 to other symmetrically related cluster states. One can
check that the group orbit of states with this clustering gives 30 symmetrically re-
lated cluster states for the system; details of the connections are shown in Fig. 24. All
cluster states connect together to form a single large heteroclinic network that is an
attractor for typical initial conditions [252]. Figure 23 illustrates the possible switch-
ings between phase differences near one particular cluster state for the heteroclinic
network in this case. The dynamics of this system can be used for encoding a variety
of inputs, as discussed in [255] where it is shown that a constant heterogeneity of
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the natural frequencies between oscillators in this system leads to a spatio-temporal
encoding of the heterogeneities. The sequences produced by the system can be used
by a similar system with adaptive dynamics to learn a spatio-temporal encoded state
[228].

Robust heteroclinic attractors also appear in a range of coupled phase oscillator
models where the coupling is not global (all-to-all) but such that it still preserves
enough invariant subspaces for the connections to remain robust. For example, [222]
study the dynamics of a network “motif” of four coupled phase oscillators and find
heteroclinic attractors that are “ratchets”, i.e. they are robust heteroclinic networks
that wind preferentially around the phase space in one direction—this means that
under the influence of small perturbations, phase slips in only one direction can ap-
pear.

7.2 Winnerless Competition and Other Types of Heteroclinic Attractor

Heteroclinic connections play a key role in describing winnerless competition dy-
namics [248, 249]. This dynamics is usually associated with a firing rate model of
coupled neurons of “Lotka–Volterra” form

d

dt
xi = xi

(
λi +

N∑

j=1

Aijxj

)
, (46)

where xi(t) is an instantaneous firing rate of a neuron or group of neurons, λi is a
self-excitation term and Aij represents coupling between the xi , though it is also pos-
sible to consider generalisations [134]. These models were originally developed for
predator-prey interaction of species in an ecosystem. Having found wide use in pop-
ulation ecology, they have more recently be applied to evolutionary game dynamics
[256], including applications in economics. Since the seminal paper of May [257] it
has been recognised that (46) can have robust heteroclinic attractors for an open set
of parameter choices λi and Aij , as long as at least three species are involved. Indeed,
the system can show a wide range of dynamics such as “winner-takes-all” equilibria
where there is a stable equilibrium with xi > 0 and xj = 0 for j 	= i (i is the “win-
ner”), “cooperative” equilibria where several of the xi are nonzero as well as non-
trivial periodic or chaotic dynamics. The particular case of “winnerless competition”
gives attractors consisting of chains or networks of saddles joined by connections that
are robust because the absence of a species (or in our case, the lack of firing of one
neuron or group of neurons) xi = 0 is preserved by the dynamics of the model (46).

The simplest case of this appears in a ring of N = 3 coupled neurons with dynam-
ics

d

dt
x1 = x1(1 − x1 − αx2 − βx3),

d

dt
x2 = x2(1 − x2 − αx3 − βx1),

d

dt
x3 = x3(1 − x3 − αx1 − βx2),
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for α + β > 2 and 0 < α < 1 [257], corresponding to cyclic inhibition of the neu-
rons in one direction around the ring and cyclic excitation in the other direction.
This “rock–paper–scissors” type of dynamics leads to winnerless competition that
has been applied in a variety of more complex models of neural systems. The lo-
cal behaviour near connections in such heteroclinic attractors has been called “stable
heteroclinic channels” [250] and used to model a variety of low-level and high-level
neural behaviours including random sequence generation, information dynamics, en-
coding of odours and working memory. We refer the reader to the reviews [133, 134,
250].

Analogous behaviour has been found in a range of other coupled systems, for ex-
ample [137] or delayed pulse-coupled oscillators [167–170, 245, 258]. Recent work
has also considered an explicit constructive approach to heteroclinic networks to re-
alise arbitrary directed networks as a heteroclinic attractor of a coupled cell system
[247] or as a closely-related excitable network attractor that appears at a bifurcation
of the heteroclinic attractor [259].

More complex but related dynamical behaviour has been studied under the names
of “chaotic itinerancy” (see for example [260]), “cycling chaos” [131], “networks
of Milnor attractors” [261] and “heteroclinic cycles for chaotic oscillators” [262].
It has been suggested that these and similar models are useful for modelling of the
functional behaviour of neural systems [263].

Because heteroclinic attractors are quite singular in their dynamical behaviour (av-
erages of observables need not converge, there is a great deal of sensitivity of the
long-term dynamics to noise and system heterogeneity), it is important to consider the
effect of noise and/or heterogeneities in the dynamics. This leads to a finite average
transition time between states determined by the level of noise and/or heterogeneity
(which may be due to inputs to the system) and the local dynamics—see for example
[264]. Another useful feature of heteroclinic attractors is that they allow one to model
“input–output” response of the system to a variety of inputs.

8 Stochastic Oscillator Models

Noise is well known to play a constructive role in the neural encoding of natural
stimuli, leading to increased reliability or regularity of neuronal firing in single neu-
rons [265, 266] and across populations [267]. From a mathematical perspective it is
natural to consider how noise may affect the reduction to a phase oscillator descrip-
tion. Naively one may simply consider the addition of noise to a deterministic phase
oscillator model to generate a stochastic differential equation. Indeed models of this
type have been studied extensively at the network level to understand noise-induced
first- and second-order phase transitions, and new phenomenon such as noise-induced
synchrony [268–270] or asynchrony [271], and noise-induced turbulence [272]. We
refer the reader to the review by Lindner [273] for a comprehensive discussion. More
recently Schwabedal and Pikovsky have extended the foundations of deterministic
phase descriptions to irregular, noisy oscillators (based on the constancy of the mean
first return times) [274], Ly and Ermentrout [275] and Nakao et al. [276] have built
analytical techniques for studying weak noise forcing, and Moehlis has developed
techniques to understand the effect of white noise on the period of an oscillator [277].
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At the network level (global coupling) a classic paper examining the role of exter-
nal noise in IF populations, using a phase description, is that of Kuramoto [278], who
analysed the onset of collective oscillations. Without recourse to a phase reduction it
is well to mention that Medvedev has been pioneering a phase–amplitude approach
to studying the effects of noise on the synchronisation of coupled stochastic limit-
cycle oscillators [194, 279], and that Newhall et al. have developed a Fokker–Planck
approach to understanding cascade-induced synchrony in stochastically driven IF net-
works with pulsatile coupling and Poisson spike-train external drive [280]. More re-
cent work on pairwise synchrony in network of heterogeneous coupled noisy phase
oscillators receiving correlated and independent noise can be found in [281]. How-
ever, note that even in the absence of synaptic coupling, two or more neural oscillators
may become synchronised by virtue of the statistical correlations in their noisy input
streams [282–284].

8.1 Phase Reduction of a Planar System with State-Dependent Gaussian White

Noise

For clarity of exposition let us consider the phase reduction of a planar system de-
scribed by dx/dt = F(x)+ p(x)ξ(t), where ξ(t) is white Gaussian noise such that
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = 2Dδ(t− s), where 〈·〉 denotes averaging over the realisa-
tion of ξ , and D > 0 scales the noise intensity. We employ a Stratonovich interpreta-
tion of the noise (such that the chain rule of ordinary calculus holds). In the absence
of noise we shall assume that the system has a stable 2π/ω-periodic limit-cycle so-
lution, with a phase that satisfies dθ/dt = ω. For weak noise perturbations the state
point will leave the cycle, though will stay in some neighbourhood, which we denote
by U . To extend the notion of a phase off the cycle we let θ be a smooth function of
x such that 〈∇xθ,F (x)〉 = ω holds for any point x ∈ U . We shall denote the other co-
ordinate in U by ρ, and assume that there exists a smooth coordinate transformation
x→ (θ, ρ). For a noise perturbed oscillator, in the new coordinates we have

d

dt
θ = ω+ h(θ,ρ)ξ(t),

d

dt
ρ = f (θ,ρ)+ g(θ,ρ)ξ(t), (47)

where we have introduced h = 〈∇xθ,p〉, f = 〈∇xρ,F 〉 and g = 〈∇xρ,p〉. Note
that the full coordinate transformation (θ, ρ) = (θ(x), ρ(x)) is not prescribed here,
though it is common to use one such that ρ can be interpreted as some distance
from cycle. Thus, although results may be formally developed for the system (47)
they cannot be directly interpreted in terms of a given model until the full coordinate
transformation taking one from x ∈ R

2 to (θ, ρ) is given.
One can transform (47) into a stochastic phase–amplitude equation in the Itō sense,

where it reads

d

dt
θ = ω+D

[
hθ (θ, ρ)h(θ,ρ)+ hρ(θ, ρ)g(θ, r)

]
+ h(θ,ρ)ξ(t),

d

dt
ρ = f (θ,ρ)+D

[
gθ (θ, ρ)h(θ,ρ)+ gρ(θ, ρ)g(θ, r)

]
+ g(θ,ρ)ξ(t),
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where the subscripts θ and ρ denote partial derivatives with respect to θ and ρ, re-
spectively. Using the Itō form we may construct a Fokker–Planck equation for the
time-dependent probability distributionQ(t, θ, ρ) as

∂

∂t
Q= −

∂

∂θ

[{
ω+D(hθh+ hρg)

}
Q
]
+D

∂2[h2Q]
∂θ2

−
∂

∂ρ

[{
f +D(gθh+ gρg)

}
Q
]
+ 2D

∂2[hgQ]
∂θ∂ρ

+D
∂2[g2Q]
∂ρ2

, (48)

with periodic boundary condition Q(t,0, ρ)=Q(t,2π,ρ).
When D = 0 the steady state distribution is given by Q0(θ, ρ)= δ(ρ)/(2π). For

small noise amplitude D we expect Q0 to still localise near ρ = 0 [285], say over
a region −ρc < ρ < ρc. In this case it is natural to make the approximation that for
large t , Q= 0 = ∂Q/∂ρ at ρ = ±ρc. Now introduce the marginal distribution

P(t, θ)≡
∫ ρc

−ρc
Q(t, θ, ρ)dρ.

Following [286] we can integrate (48) over the interval I = [−ρc, ρc] and generate
a Fokker–Planck equation for P . The last three terms in (48) vanish after integration
due to the boundary conditions, so that we are left with

∂

∂t
P = −

∂

∂θ

∫

I

D(hθh+ hρg)Qdρ +D
∂2

∂θ2

∫

I

h2Qdρ.

We now expand about ρ = 0 to give h(θ,ρ) = Z(θ) + ρhρ(θ,0) + · · · and
g(θ,ρ)= g(θ,0)+ ρgρ(θ,0)+ · · · , where Z(θ) is identified as the phase response
〈∇xθ,p|ρ=0〉. In the limit of small D where Q0 ≃ δ(ρ)/(2π) we note that, for an
arbitrary function R(θ),

lim
D→0

∂n

∂θn

∫

I

ρR(θ)Qdρ =
∂n

∂θn
lim
D→0

∫

I

ρR(θ)Qdρ = 0.

Making use of the above gives the Fokker–Planck equation:

∂

∂t
P = −

∂

∂θ

[{
1 +D

(
ZZ′ + Y

)}
P
]
+D

∂2[Z2P ]
∂θ2

, (49)

where Y(θ)= hρ(θ,0)g(θ,0). Hence, the corresponding Itō equation is

d

dt
θ = ω+D

[
Z(θ)Z′(θ)+ Y(θ)

]
+Z(θ)ξ(t), (50)

while the Stratonovich version is

d

dt
θ = ω+DY(θ)+Z(θ)ξ(t). (51)

Equations (50) and (51) are the stochastic phase oscillator descriptions for a limit
cycle driven by weak white noise. These make it clear that naively adding noise to the
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phase description misses not only a multiplication by the iPRC but also the addition
of a further term Y(θ) that contains information as regards the amplitude response of
the underlying limit-cycle oscillator.

We are now in a position to calculate the steady state probability distribution
P0(θ) and use this to calculate the moments of the phase dynamics. Consider
(49) with the boundary condition P(t,0) = P(t,2π), and set Pt = 0. Adopting a
Fourier representation for P0, Z and Y as P0(θ) =

∑
nPneinθ , Z(θ) =

∑
nZneinθ ,

Y(θ)=
∑
n Yneinθ , allows us to obtain a set of equations for the unknown amplitudes

Pl as

−Pl +D
∑

n,m∈Z
ZnZmi(l − n)Pl−(n+m) −D

∑

n∈Z
YnPl−n =Kδl,0, l ∈ Z, (52)

for some constant K . For D = 0 we have P0 =K , and after enforcing normalisation
we may set K = 1/(2π). For small D we may then substitute P0 into (52) and work
to next order in D to obtain an approximation for the remaining amplitudes, l 	= 0, in
the form

Pl =
D

2π

{ ∑

{n,m|n+m=l}
ZnZmim− Yl

}
.

Using this we may reconstruct the distribution P0(θ) for small D as

P0(θ)=
1

2π
+
D

2π

(
Z(θ)Z′(θ)− Y(θ)+ Y0

)
, Y0 =

1

2π

∫ 2π

0
Y(θ)dθ. (53)

The mean frequency of the oscillator is defined by Ω = limT→∞ T −1
∫ T

0 θ
′(t)dt .

This can be calculated by replacing the time average with the ensemble aver-
age. For an arbitrary 2π -periodic function R we set limT→∞ T −1

∫ T
0 R(t)dt =∫ 2π

0 R(θ)P0(θ)dθ . Using (53) and (50) we obtain

Ω = ω+DY0 +O(D),

where we have used the fact that 〈Z(θ)ξ(t)〉 = 〈Z(θ)〉〈ξ(t)〉 = 0. We may also calcu-
late the phase diffusion D̃ as

D̃ =
∫ ∞

−∞

〈[
d

dt
θ(t + τ)−

〈
d

dt
θ

〉][
d

dt
θ(t)−

〈
d

dt
θ

〉]〉
dτ

=
D

π

∫ 2π

0
Z2(θ)dθ +O

(
D2),

where we use the fact that 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = 2Dδ(t − s). This recovers a
well-known result of Kuramoto [5].

8.2 Phase Reduction for Noise with Temporal Correlation

A recent paper by Teramae et al. [287] shows that when one considers noise described
by an Ornstein–Uhlenbeck (OU) process with a finite correlation time then this can
interact with the attraction time scale of the limit cycle and give fundamentally dif-
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ferent results when compared to Gaussian white noise (which has a zero correlation
time). This observation has also been independently made in [286]. Both approaches
assume weak noise, though [286] makes no assumptions about relative time scales,
and is thus a slightly more general approach than that of [287]. Related work by
Goldobin et al. [288] for noise η(t) with zero-mean 〈η(t)〉 = 0 and prescribed auto-
correlation function C(τ)= 〈η(τ)η(0)〉 yields the reduced Stratonovich phase equa-
tion,

d

dt
θ = ω+DỸ (θ)+Z(θ)η(t), (54)

where

Ỹ (θ)=
1

2D
hρ(θ,0)

∫ ∞

0
g(θ −ψ,0)C(ψ)e−λψ dψ, (55)

where λ is the average (linearised) rate of attraction to the limit cycle. Note that
for C(τ) = 2Dδ(τ), Ỹ (θ) = Y(θ) and (54) reduces to (51) as expected. To lowest
order in the noise strength the steady state probability distribution will simply be
P0(θ) = 1/(2π). Therefore to lowest noise order the mean frequency is determined
from an ensemble average as

ω̃= ω+DỸ0 +
1

4π

∫ 2π

0
dθZ′(θ)

∫ ∞

0
dψZ(θ −ψ)C(ψ),

where the last term comes from using the Itō form of (54) and the subscript 0 notation
is defined as in (53). The phase-diffusion coefficient at lowest noise order is given by

D̃ =
1

2π

∫ 2π

0
dθ
∫ ∞

−∞
dτZ(θ)Z(θ + τ)C(τ).

Let us now consider the example of OU noise so that C(τ) = Dγ exp(−γ |τ |).
Furthermore let us take the simultaneous limit γ → ∞ (zero correlation time scale)
and λ→ ∞ (infinitely fast attraction), such that the ratio α = λ/γ is constant. In this
case we have from (55) that

Ỹ (θ)=
Y(θ)

1 + α
. (56)

Hence, when the correlation time of the noise is much smaller than the decay time
constant α = 0 and we recover the result for white Gaussian noise. In the other ex-
treme when α→ ∞, where the amplitude of the limit cycle decays much faster than
the correlation time of the noise, then Ỹ vanishes and the reduced phase equation
is simply dθ/dt = ω + Z(θ)ξ(t), as would be obtained using the standard phase-
reduction technique without paying attention to the stochastic nature of the perturba-
tion.

9 Low-Dimensional Macroscopic Dynamics and Chimera States

The self-organisation of large networks of coupled neurons into macroscopic coher-
ent states, such as observed in phase locking, has inspired a search for equivalent
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low-dimensional dynamical descriptions. However, the mathematical step from mi-
croscopic to macroscopic dynamics has proved elusive in all but a few special cases.
For example, neural mass models of the type described in Sect. 2.6 only track mean
activity levels and not the higher-order correlations of an underlying spiking model.
Only in the thermodynamic limit of a large number of neurons firing asynchronously
(producing null correlations) are such rate models expected to provide a reduction
of the microscopic dynamics. Even here the link from spike to rate is often phe-
nomenological rather than rigorous. Unfortunately only in some rare instances has
it been possible to analyse spiking networks directly (usually under some restrictive
assumption such as global coupling) as in the spike-density approach [289], which
makes heavy use of the numerical solution of coupled PDEs. Recently however, exact
results for globally pulse-coupled oscillators described by the Winfree model [219]
have been obtained by Pazó and Montbrió [290], making use of the Ott–Antonsen
(OA) ansatz. The OA anstaz was originally used to find solutions on a reduced in-
variant manifold of the Kuramoto model [278], and essentially assumes that the dis-
tribution of phases has a simple unimodal shape, capable of describing synchronous
(peaked) and asynchronous (flat) distributions, though is not capable of describing
clustered states (multi-peak phase distributions), and see below for a more detailed
discussion. The major difference between the Winfree and Kuramoto phase oscillator
models is that the former has interactions described by a phase product structure and
the latter a phase-difference structure.

9.1 Ott–Antonsen Reduction for the Winfree Model

The Winfree model is described in Sect. 6 as a model for weakly globally pulse-
coupled biological oscillators, and can support incoherence, frequency locking, and
oscillator death when P(θ)= 1 + cos θ and R(θ)= − sin θ [291]. We note, however,
that the same model is exact when describing nonlinear IF models described by a sin-
gle voltage equation, and that in this case we do not have to restrict attention to weak
coupling. Indeed the OA ansatz has proved equally successful in describing both the
Winfree network with a sinusoidal PRC [290] and a network of theta neurons [292].
A theta neuron is formally equivalent to a QIF neuron with infinite positive threshold
and infinite negative reset values. The PRC of a QIF neutron can be computed using
(27), and for the case described by (1) with τ = 1 and f (v)= v2 and infinite thresh-
old and reset then R(θ)= a(1 − cos θ) with a = 1/

√
I for θ ∈ [0,2π) (which is the

shape expected for an oscillator near a SNIC bifurcation). We shall now focus on this
choice of PRC and a pulsatile coupling that we write in the form

P(θ)= 2π
∑

n∈Z
δ(θ − 2πn)≡

∑

m∈Z
eimθ ,

where we have introduced a convenient Fourier representation for the periodic func-
tion P . We now consider the large N limit in (31) and let ρ(θ |ω, t)dθ be the fraction
of oscillators with phases between θ and θ + dθ and natural frequency ω at time t .
The dynamics of the density ρ is governed by the continuity equation (expressing the
conservation of oscillators)

∂ρ

∂t
+
∂(ρv)

∂θ
= 0, v(θ, t)= ω+ ǫah(t)

[
1 −

(
eiθ + e−iθ )/2

]
, (57)
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where the mean-field drive is h(t) = limN→∞
∑
j N

−1P(θj ). Boundary conditions
are periodic in the probability flux, namely ρ(0|ω, t)v(0, t) = limθ→2π ρ(θ |ω, t)×
v(θ, t). A further reduction in dimensionality is obtained for the choice that the dis-
tribution of frequencies is described by a Lorentzian g(ω) with

g(ω)=
1

π

�

(ω−ω0)2 +�2
,

for fixed � and ω0 (controlling the width and mean of the distribution, respectively),
which has simple poles at ω± = ω0 ± i�.

A generalised set of order parameters is defined as

Zm(t)=
∫ ∞

−∞
dωg(ω)

∫ 2π

0
dθρ(θ |ω, t)eimθ , m ∈ N.

The integration over ω can be done using a contour in the lower half complex plane
so that Zm(t) = 〈e−imθ , ρ(θ |ω−, t)〉, where we have introduced the inner product
〈u(θ), v(θ)〉 = (2π)−1

∫ 2π
0 dθu(θ)v(θ)dθ . The OA ansatz assumes that the density

ρ can be written in a restricted Fourier representation as

2πρ(θ |ω, t)= 1 +
∞∑

m=1

α(ω, t)meimθ + cc, (58)

where cc stands for complex conjugate. Substitution into the continuity equation (57)
and balancing terms in eimθ show that α must obey

∂

∂t
α = −i(ω+ ǫah)α + iǫa

h

2

(
1 + α2). (59)

Moreover, using the inner product structure of Zm we easily see that Zm(t) =
[α(ω−, t)]m. Thus the Kuramoto order parameter Z1 ≡ Re−iΨ is governed by (59)
with ω= ω−, yielding

d

dt
R = −�R − ǫa

h

2

(
1 −R2) sinΨ,

d

dt
Ψ = ω0 + ǫah

[
1 −

1 +R2

2R
cosΨ

]
.

(60)

To calculate the mean-field drive h we note that it can be written as

h=
∫ 2π

0
dθρ(θ |ω−, t)P (θ)=

∑

m

Zm

= 1 +
∞∑

m=1

(Z1)
m + (Z1)

m = 1 +
Z1

1 −Z1
+

Z1

1 −Z1
, |Z1|< 1.

Hence, we have explicitly that h= h(R,Ψ ) with

h(R,Ψ )=
1 −R2

1 − 2R cosΨ +R2
, 0 ≤R < 1. (61)
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The planar system of equations defined by (60) and (61) can be readily analysed using
numerical bifurcation analysis.

Recent work by Montbrió et al. [293] has shown that QIF networks can also be
analysed without having to invoke the OA ansatz. Indeed they show that choosing a
Lorentzian distribution for the voltages also leads to a reduced mean-field description
that tracks the population firing rate and the mean membrane voltage. Interestingly
they also relate these variables back to the complex Kuramoto order parameter via
a conformal mapping. A treatment of QIF networks with gap-junction coupling has
also recently been achieved by Laing [294], using the OA ansatz, showing how this
can destroy certain spatio-temporal patterns, such as localised “bumps”, and create
others, such as travelling waves and spatio-temporal chaos. The OA ansatz has also
proved remarkably useful in understanding nontrivial solutions such as chimera states
(where a sub-population of oscillators synchronises in an otherwise incoherent sea).

9.2 Chimera States

Phase or cluster synchronised states in systems of identical coupled oscillators have
distinct limitations as descriptions of neural systems where not just phase but also fre-
quency clearly play a part in the processing, computation and output of information.
Indeed, one might expect that for any coupled oscillator system that is homogeneous
(in the sense that any oscillators can be essentially replaced by any other by a suitable
permutation of the oscillators), the only possible dynamical states are homogeneous
in the sense that the oscillators behave in either a coherent or an incoherent way.
This expectation, however, is not justified—there can be many dynamical states that
cannot easily be classified as coherent or incoherent, but that seem to have a mixture
of coherent and incoherent regions. Such states have been given the name “chimera
state” by Abrams and Strogatz [295, 296] and have been the subject of intensive re-
search over the past five years. For reviews of chimera state dynamics we refer the
reader to [297, 298].

Kuramoto and Battogtokh [299, 300] investigated continuum systems of oscilla-
tors of the form

∂

∂t
θ(x, t)= ω− ǫ

∫

D

G
(
x − x′) sin

(
θ(x, t)− θ

(
x′, t

)
+ α

)
dx′, (62)

where θ represent phases at locations x ∈D ⊆ R, the kernel G(u)= κ exp(−κ|u|)/2
represents a non-local coupling and ω, α, κ are constants. Interestingly this model
is precisely in the form presented in Sect. 6.3 as Eq. (40) for an oscillatory model of
cortex, although here there are no space-dependent delays and the interaction function
isH(θ)= sin(θ−α). Kuramoto and Battogtokh found for a range of parameters near
α = π/2, and carefully selected initial conditions that the oscillators can split into
two regions in x, one region which is frequency synchronised (or coherent) while the
other region shows a nontrivial dependence of frequency on location x. An example
of a chimera state is shown in Fig. 25.

Note that a discretisation of (62) to a finite set of N coupled oscillators is

d

dt
θ(xi, t)= ω−

ǫ

N

N∑

k=1

Kij sin(θi − θj + α) (63)
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Fig. 25 A snapshot of a
chimera state for the model (62)
in a system of length 4 using 29

numerical grid points and
periodic boundary conditions.
Here ω= 0, ǫ = 0.1, α = 1.45
and κ = 1

where θi ∈ [0,2π) represents the phase at location i = 1, . . . ,N and the coupling ma-
trix Kij =G(|i − j |/N)/N is the discretised interaction kernel (assuming a domain
of length 1). Using different kernels, G(u)= exp(−κ cos(2πu)) and an approxima-
tionG(u)= 1−κ cos(2πu) for small κ , Abrams and Strogatz [295] identified similar
behaviour and [296] discussed a limiting case of parameters such that the continuum
system provably has chimera solutions. The OA reduction discussed in Sect. 9.1 al-
lows an exact reduction of oscillator networks of this form and in the continuum
limit this can give a solvable low-order system whose solutions include a variety of
chimera states [297]. It is useful to note that when α = π/2, pure cosine coupling
results in an integrable system [301], such that disordered initial states will remain
disordered. Thus α determines a balance between spontaneous order and permanent
disorder.

However, it seems that chimera states are much more “slippery” in finite oscillator
systems than in the continuum limit. In particular, Wolfrum and Omel’chenko [302]
note that for finite approximations of the ring (62) by N oscillators, with a mixture
of local and nearest R-neighbour coupling corresponding to (63) with a particular
choice of coupling matrix Kij , chimera states apparently only exist as transients.
However, the lifetime of the typical transient apparently grows exponentially with N .
Thus, at least for some systems of the form (63), chimeras appear to be a type of
chaotic saddle. This corresponds to the fact that the boundaries between the regions
of coherent and incoherent oscillation fluctuate apparently randomly over a long time
scale. These fluctuations lead to wandering of the incoherent region as well as change
in size of the region. Eventually these fluctuations appear to result in typical collapse
to a fully coherent oscillation [302].

Although this appears to be the case for chimeras for (63), there are networks
such as coupled groups of oscillators; [303] or two-dimensional lattices [304] where
chimera attractors can appear. It is not clear what will cause a chimera to be tran-
sient or not, or indeed exactly what types of chimera-like states can appear in finite
oscillator networks. A suggestion of [305] is that robust neutrally stable chimeras
may be due to the special type of single-harmonic phase interaction function used in
(62), (63).

More recent work includes investigations of chimeras (or chimera-like states) in
chemical [306] or mechanical oscillator networks [307]; chimeras in systems of cou-
pled oscillators other than phase oscillators have been investigated in many papers;
for example in Stuart–Landau oscillators [299, 308, 309], Winfree oscillators [290]
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and models with inertia [310]. Other recent work includes discussion of feedback
control to stabilise chimeras [311], investigations of chimeras with multiple patches
of incoherence [312], multicluster and travelling chimera states [313].

In a neural context chimeras have also been found in pulse-coupled LIF networks
[314], and hypothesised to underly coordinated oscillations in unihemispheric slow-
wave sleep, whereby one brain hemisphere appears to be inactive while the other
remains active [315].

10 Applications

We briefly review a few examples where mathematical frameworks are being applied
to neural modelling questions. These cover functional and structural connectivity in
neuroimaging, central pattern generators (CPGs) and perceptual rivalry. There are
many other applications we do not review, for example deep brain stimulation proto-
cols [316] or modelling of epileptic seizures where network structures play a key role
[71].

10.1 Functional and Structural Connectivity in Neuroimaging

Functional connectivity (FC) refers to the temporal synchronisation of neural activ-
ity in spatially remote areas. It is widely believed to be significant for the integrative
processes in brain function. Anatomical or structural connectivity (SC) plays an im-
portant role in determining the observed spatial patterns of FC. However, there is
clearly a role to be played by the dynamics of the neural tissue. Even in a globally
connected network we would expect this to be the case, given our understanding of
how synchronised solutions can lose stability for weak coupling. Thus it becomes
useful to study models of brain like systems built from neural mass models (such as
the Jansen–Rit model of Sect. 2.6), and ascertain how the local behaviour of the os-
cillatory node dynamics can contribute to global patterns of activity. For simplicity,
consider a network of N globally coupled identical Wilson–Cowan [65] neural mass
models:

d

dt
xi = −xi + P + c1f (xi)− c2f (yi)+

ǫ

N

N∑

j=1

f (xj ),

d

dt
yi = −yi +Q+ c3f (xi)− c4f (yi),

for i = 1, . . . ,N . Here (xi, yi) ∈ R
2 represents the activity in each of a pair of coupled

neuronal population models, f is a sigmoidal firing rate given by f (x)= 1/(1+e−x)
and (P,Q) represent external drives. The strength of connections within a local pop-
ulation is prescribed by the coefficients c1, . . . , c4, which we choose as c1 = c2 =
c3 = 10 and c4 = −2 as in [43]. For ǫ = 0 it is straightforward to analyse the dynam-
ics of a local node and find the bifurcation diagram in the (P,Q) plane as shown in
Fig. 26. Moreover, for ǫ ≪ 1 we may invoke weak-coupling theory to describe the
dynamics of the full network within the oscillatory regime bounded by the two Hopf
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Fig. 26 Bifurcation diagram for
an isolated Wilson–Cowan node
in the (P,Q) plane. Here HB

denotes Hopf bifurcation and SN

a saddle node of fixed-points
bifurcation. At points a and c we
find H ′(0) < 0 and at point b

H ′(0) > 0. A breakdown of FC
(loss of global synchrony)
within a globally coupled
network is predicted at points a

and c

curves shown in Fig. 26. From the theory of Sect. 6.2.1 we would expect the syn-
chronous solution to be stable if ǫH ′(0) > 0. Taking ǫ > 0 we can consider H ′(0) as
a proxy for the robustness of synchrony. The numerical construction of this quantity,
as in [317], predicts that there will be regions in the (P,Q) plane associated with a
breakdown of FC (where H ′(0) < 0), as indicated by points a and c in Fig. 26. This
highlights the role that local node dynamics can have on emergent network dynamics.
Moreover, we see that simply by tuning the local dynamics to be deeper within the
existence region for oscillatory solutions we can, at least for this model, enhance the
degree of FC. It would be interesting to explore this simple model further for more
realistic brain like connectivities, along the lines described in [318]. Moreover, given
that this would preclude the existence of the synchronous state by default (since we
would neither have H(0)= 0 nor would

∑
j wij be independent of i) then it would

be opportune to explore the use the recent ideas in [163, 319] to understand how
the system could organise into a regime of remote synchronisation whereby pairs
of nodes with the same network symmetry could synchronise. For related work on
Wilson–Cowan networks with some small dynamic noise see [320], though here the
authors construct a phase oscillator network by linearising around an unstable fixed
point, rather than use the notion of phase response.

10.2 Central Pattern Generators

CPGs are (real or notional) neural subsystems that are implicated in the generation
of spatio-temporal patterns of activity [321], in particular for driving the relatively
autonomous activities such as locomotion [322–324] or for driving involuntary activ-
ities such as heartbeat, respiration or digestion [325]. These systems are assumed to
be behind the creation of the range of walking or running patterns (gaits) that appear
in different animals [326]. The analysis of phase locking provides a basis for under-
standing the behaviour of many CPGs, and for a nice overview see the review articles
by Marder and Bucher [327] and Hooper [328].

In some cases, such as the leech (Hirudo medicinalis) heart or Caenorhabditis

elegans locomotion, the neural circuitry is well studied. For more complex neural
systems and in more general cases CPGs are still a powerful conceptual tool to con-
struct notional minimal neural circuitry needed to undertake a simple task. In this
notional sense they have been extensively investigated to design control circuits for
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Fig. 27 Schematic diagram showing central pattern generators (a) with 4n coupled cells that is used
to model gait patterns in animals with 2n legs [332] and (b) a three-cell motif of bursters with varying
coupling strengths, as considered in [333, 334]

actuators for robots; see for example the review [329]. Recent work in this area in-
cludes robots that can reproduce salamander walking and swimming patterns [330].
Since the control of motion of autonomous “legged” robots is still a very challenging
problem in real-time control, one hope of this research is that nature’s solutions (for
example, how to walk stably on two legs) will help inspire robotic ways of doing this.

CPGs are called upon to produce one or more rhythmic patterns of actuation;
in the particular problem of locomotion, a likely CPG is one that will produce the
range of observed rhythms of muscle actuation, and ideally the observed transitions
between then. For an early discussion of design principles for modelling CPGs, see
[46]. This is an area of modelling where consideration of symmetries as in Sect. 3.6
has been usefully applied to constrain the models. For example [331] examine models
for generating the gaits in a range of vertebrate animals, from those with two legs
(humans) through those with four (quadrupeds such as horses have a wide range
of gaits—walk, trot, pace, canter, gallop—they may use) or larger numbers of legs
(myriapods such as centipedes). Insects make use of six legs for locomotion while
other invertebrates such as centipedes and millipedes have a large number of legs that
are to some extent independently actuated. As an example, [332] consider a schematic
CPG of 2n oscillators for animals with n legs, as shown in Fig. 27(a). The authors
use symmetry arguments and Theorem 3.1 to draw a number of model-independent
conclusions from the CPG structure.

One can also view CPGs as a window into more fundamental problems of how
small groups of neurons coordinate to produce a range of spatio-temporal patterns.
In particular, it is interesting to see how the observable structure of the connections
influences the range and type of dynamical patterns that can be produced. For ex-
ample, [333] consider a simple three-cell “motif” networks of bursters and classify
a range of emergent spatio-temporal patterns in terms of the coupling parameters.
Detailed studies [334] investigate properties such as multistability and bifurcation of
different patterns and the influence of inhomogeneities in the system. This is done by
investigating return maps for the burst timings relative to each other.

The approach of [135, 136] discussed in Sect. 3.12 provides an interesting frame-
work to discuss CPG dynamics in cases where the connection structure is given but
not purely related to symmetries of the network. For example, [141] use that for-
malism to understand possible spatio-temporal patterns that arise in lattices or [100]
that relates synchrony properties of small motif networks to spectral properties of the
adjacency matrix.
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10.3 Perceptual Rivalry

Many neural systems process information—they need to produce outputs that depend
on inputs. If the system effectively has no internal degrees of freedom then this will
give a functional relationship between output and input so that any temporal variation
in the output corresponds to a temporal variation of the input. However, this is not
the case for all but the simplest systems and often outputs can vary temporally unre-
lated to the input. A particularly important and well-studied system that is a model
for autonomous temporal output is perceptual rivalry, where conflicting information
input to a neural system results, not in a rejection or merging of the information,
but in an apparently random “flipping” between possible “rival” states (or percepts)
of perception. This nontrivial temporal dynamics of the perception appears even in
the absence of a temporally varying input. The best studied example of this type is
binocular rivalry, where conflicting inputs are simultaneously made to each eye. It is
widely reported by subjects that perception switches from one eye to the other, with
a mean frequency that depends on a number of factors such as the contrast of the im-
age [335]. More general perceptual rivalry, often used in “optical illusions” such as
ambiguous figures—the Rubin vase, the Necker cube—show similar behaviour with
percepts shifting temporally between possible interpretations.

Various approaches [336] have been made to construct nonlinear dynamical mod-
els of the generation of a temporal shifting between possible percepts such as com-
petition models [337], bifurcation models, ones based on neural circuitry [338], or
conceptual ones [339] based on network structures [340] or on heteroclinic attractors
[341].

11 Discussion

As with any review we have had to leave out many topics that will be of interest
to the reader. In particular we have confined ourselves to “cell” and “system-level”
dynamics rather that “sub-cellular” behaviour of neurons. We briefly mention some
other active areas of mathematical research relevant to the science of rhythmic neural
networks. Perhaps the most obvious area that we have not covered in any depth is
that of single unit (cell or population) forcing, which itself is a rather natural starting
point for gaining insights into network behaviour and how best to develop mathe-
matical tools for understanding response [342, 343]. For a general perspective on
mode-locked responses to periodic forcing see [344] and [76], and for the role of
spatially correlated input in generating oscillations in feedforward neuronal networks
see [345]. Other interesting recent work includes uncovering some surprising nonlin-
ear dynamical properties of feedforward networks [346, 347].

For a more recent discussion of the importance of mode-locking in auditory neu-
roscience see [348, 349] and in motor systems, see [350]. However, it is well to note
that not much is known about nonlinear systems with three or more interacting fre-
quencies [351], as opposed to periodically forced systems where the notions of Farey
tree and the devil’s staircase have proven especially useful. We have also painted the
notion of synchrony with a broad mathematical brush, and not discussed more subtle
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notions of envelope locking that may arise between coupled bursting neurons (where
the within burst patterns may desynchronise) [352]. This is especially relevant to stud-
ies of synchronised bursting [353] and the emergence of chaotic phenomena [354].
Indeed, we have said very little about coupling between systems that are chaotic,
such as described in [355], the emergence of chaos in networks [356, 357] or chaos
in symmetric networks [243].

The issue of chaos is also relevant to notions of reliability, where one is interested
in the stability of spike trains against fluctuations. This has often been discussed in
relation to stochastic oscillator forcing rather than those arising deterministically in
a high-dimensional setting [267, 358–360]. Of course, given the sparsity of firing
in cortex means that it may not even be appropriate to treat neurons as oscillators.
However, some of the ideas developed for oscillators can be extended to excitable
systems, as described in [361–363]. As well as this it is important to point out that
neurons are not point processors, and have an extensive dendritic tree, which can
also contribute significantly to emergent rhythms as described in [241, 364], as well
as couple strongly to glial cells. Although the latter do not fire spikes, they do show
oscillations of membrane potential [365]. At the macroscopic level it is also important
to acknowledge that the amplitude of different brain waves can also be significantly
affected by neuromodulation [366], say, through release of norepinephrine, serotonin
and acetylcholine, and the latter is also thought to be able to modulate the PRC of a
single neuron [367].

This review has focussed mainly on the embedding of weakly coupled oscillator
theory within a slightly wider framework. This is useful in setting out some of the
neuroscience driven challenges for the mathematical community in establishing in-
roads into a more general theory of coupled oscillators. Heterogeneity is one issue
that we have mainly side-stepped, and we recall that the weakly coupled oscillator
approach requires frequencies of individual oscillators to be close. This can have a
strong effect on emergent network dynamics [368], and it is highly likely that even
a theory with heterogeneous phase response curves [369] will have little bearing on
real networks. The equation-free coarse-graining approach may have merit in this
regard, though is a numerically intensive technique [370].

We suggest a good project for the future is to develop a theory of strongly cou-
pled heterogeneous networks based upon the phase–amplitude coordinate system
described in Sect. 5.2, with the challenge to develop a reduced network descrip-
tion in terms of a set of phase–amplitude interaction functions, and an emphasis
on understanding the new and generic phenomena associated with nontrivial am-
plitude dynamics (such as clustered phase–amplitude chaos and multiple attractors).
To achieve this one might further tap into recent ideas for classifying emergent dy-
namics based upon the group of structural symmetries of the network. This can be
computed as the group of automorphisms for the graph describing the network. For
many real-world networks, this can be decomposed into direct and wreath products
of symmetric groups [113]. This would allow for the use of tools from computational
group theory [371] and open up a way to classify the generic forms of behaviour
that a given network may exhibit using the techniques of equivariant bifurcation the-
ory.
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Appendix

The Hodgkin–Huxley description of nerve tissue is completed with

αm(V )=
0.1(V + 40)

1 − exp[−0.1(V + 40)]
, αh(V )= 0.07 exp

[
−0.05(V + 65)

]
,

αn(V )=
0.01(V + 55)

1 − exp[−0.1(V + 55)]
, βm(V )= 4.0 exp

[
−0.0556(V + 65)

]
,

βh(V )=
1

1 + exp[−0.1(V + 35)]
, βn(V )= 0.125 exp

[
−0.0125(V + 65)

]
,

and C = 1 μF cm−2, gL = 0.3 mmho cm−2, gK = 36 mmho cm−2, gNa =
120 mmho cm−2, VL = −54.402 mV, VK = −77 mV and VNa = 50 mV. (All po-
tentials are measured in mV, all times in ms and all currents in μA per cm2.)
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184. Mauroy A, Mezić I. On the use of Fourier averages to compute the global isochrons of

(quasi)periodic dynamics. Chaos. 2012;22:033112.
185. Wedgwood K. Dynamical systems techniques in the analysis of neural systems. PhD thesis, Univer-

sity of Nottingham; 2013.
186. Hale JK. Ordinary differential equations. New York: Wiley; 1969.
187. Ermentrout GB, Kopell N. Multiple pulse interactions and averaging in systems of coupled neural

oscillators. J Math Biol. 1991;29:195–217.
188. Medvedev GS. Synchronization of coupled limit cycles. J Nonlinear Sci. 2011;21:441–64.
189. Ashwin P. Weak coupling of strongly nonlinear, weakly dissipative identical oscillators. Dyn Syst.

1989;10:2471–4.
190. Ashwin P, Dangelmayr G. Reduced dynamics and symmetric solutions for globally coupled weakly

dissipative oscillators. Dyn Syst. 2005;20:333–67.
191. Lee WS, Ott E, Antonsen TM. Phase and amplitude dynamics in large systems of coupled oscillators:

growth heterogeneity, nonlinear frequency shifts, and cluster states. Chaos. 2013;23:033116.

http://arxiv.org/abs/arXiv:1403.7663


Journal of Mathematical Neuroscience  (2016) 6:2 Page 87 of 92

192. Wedgwood KCA, Lin KK, Thul R, Coombes S. Phase-amplitude descriptions of neural oscillator
models. J Math Neurosci. 2013;3:2.

193. Ott W, Stenlund M. From limit cycles to strange attractors. Commun Math Phys. 2010;296:215–49.
194. Medvedev GS. Synchronization of coupled stochastic limit cycle oscillators. Phys Lett A.

2010;374:1712–20.
195. Wang Q, Young L-S. Strange attractors with one direction of instability. Commun Math Phys.

2001;218:1–97.
196. Wang Q, Young L-S. From invariant curves to strange attractors. Commun Math Phys.

2002;225:275–304.
197. Wang Q. Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun Math

Phys. 2003;240:509–29.
198. Lin KK, Young L-S. Shear-induced chaos. Nonlinearity. 2008;21:899–922.
199. Lin KK, Young L-S. Dynamics of periodically kicked oscillators. J Fixed Point Theory Appl.

2010;7:291–312.
200. Lin KK, Wedgwood KCA, Coombes S, Young L-S. Limitations of perturbative techniques in the

analysis of rhythms and oscillations. J Math Biol. 2013;66:139–61.
201. Brown E, Moehlis J, Holmes P. On the phase reduction and response dynamics of neural oscillator

populations. Neural Comput. 2004;16:671–715.
202. Rinzel J, Ermentrout GB. Analysis of neural excitability and oscillations. In: Koch C, Segev I, ed-

itors. Methods in neuronal modeling: from synapses to networks. 1st ed. Cambridge: MIT Press;
1989. p. 135–69.

203. Galán RF, Ermentrout GB, Urban NN. Efficient estimation of phase-resetting curves in real neurons
and its significance for neural-network modeling. Phys Rev Lett. 2005;94:158101.

204. Tateno T, Robinson HPC. Phase resetting curves and oscillatory stability in interneurons of rat so-
matosensory cortex. Biophys J. 2007;92:683–95.

205. Netoff T, Schwemmer MA, Lewis TJ. Experimentally estimating phase response curves of neurons:
theoretical and practical issues. In: Schultheiss NW, Prinz AA, Butera RJ, editors. Phase response
curves in neuroscience: theory, experiment, and analysis. Berlin: Springer; 2012. p. 95–129.

206. Gutkin BS, Ermentrout GB, Reyes AD. Phase-response curves give the responses of neurons to
transient inputs. J Neurophysiol. 2005;94:1623–35.

207. Kotani K, Yamaguchi I, Ogawa Y, Jimbo Y, Nakao H, Ermentrout GB. Adjoint method provides
phase response functions for delay-induced oscillations. Phys Rev Lett. 2012;109:044101.
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