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MATHEMATICAL JUSTIFICATION OF A SHALLOW

WATER MODEL∗

DIDIER BRESCH† AND PASCAL NOBLE‡

Abstract. The shallow water equations are widely used to model the flow of a thin layer of
fluid submitted to gravity forces. They are usually formally derived from the full incompressible
Navier-Stokes equations with free surface under the modeling hypothesis that the pressure is hydro-
static, the flow is laminar, gradually varied and the characteristic fluid height is small relative to
the characteristics flow length. This paper deals with the mathematical justification of such asymp-
totic process assuming a non zero surface tension coefficient and some constraints on the data. we
also discuss relation between lubrication models and shallow water systems with no surface tension
coefficient necessity.
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1. Introduction. The shallow water description through the Saint-Venant sys-
tem is usual for many applications (rivers flow, tidal waves, oceans). Although Saint-
Venant derived it from elementary principle in 1871, one understands only from less
than few years how to derive it formally from the Navier-Stokes equations with free
surface and various bottom boundary conditions assuming the depth to be small
enough, see for instance [16] and [8]–[11] for flat bottom. We also referred the reader
to [4] and [5] for shallow water type equation with arbitrary topography. The flow
these equations describe is the horizontal flow caused by changes in the height of
the pressure surface of the fluid. Whereas the derivation of shallow water equations
from the incompressible Navier-Stokes system with free surface, through a depth in-
tegration of continuity and momentum equations, is now understood, there is still a
lack of mathematical justification of such approaches. In that paper, we present the
derivation of a shallow water system, inspired from [16], that we justify rigorously.
Note that the rigorous derivation is performed under further technical assumptions
that are necessary to have smooth solutions.

First, after a suitable scaling of the Navier-Stokes equations with free surface
boundary conditions and no slip condition at bottom, the solutions are formally ex-
panded with respect to the aspect ratio ε = H/L between the characteristic fluid
height H and the characteristic wavelength L of flow variables. Substituting the as-
ymptotic expansions into the depth averaged continuity and momentum equations,
we obtain a shallow water system in a closed form plus a remainder that formally
tends to 0 as ε → 0.

To justify rigorously such asymptotic, see Theorem 1 and 2, we establish uniform
estimates in classical Sobolev spaces on solutions of the full Navier-Stokes system with
respect to ε and we obtain that the remainder in the shallow water system tends to
0 as ε → 0 as a consequence. Such shallow water approximate system reads, in a
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non-dimensional form,





ht + (hv)x = 0,

(hv)t + (
6

5
h v2 +

c h2

Re
− (2s)2

75
h5)x

−ε2Wh hxxx =
1

εRe

(
2s h− 3 v

h

)

where h denotes the height of the free surface, v is the vertical average of the horizontal
velocity component. The other quantitites c, s, W , ε, Re are respectively cos θ, sin θ
where θ is the slope angle, the Weber coefficient, the aspect ratio of the domain and
the Reynolds number given in (7).

Remark that, to the authors knowledge, such mathematical justification of shal-
low water system seems to be new. In our mathematical study Reynolds number is
assumed to be fixed and some assumptions on various physical quantities sizes are
done such as sin θ/

√
εκ and initial data small enough in some sense, see Theorem (1).

The paper is divided in three parts: The first section, inspired from the recent
derivation in [16], concerns the formal derivation of a shallow water model. The
second section deals with uniform estimates, with respect to the aspect ratio, of
solutions to Navier-Stokes equations combining similar process than those used in [12],
[14] and similar estimates than those in [13]. Using the previous sections, the third
section concludes on the rigourous derivation of the shallow water model. We also give
some comments around lubrication models which are included in the shallow water
mathematical derivation with no surface tension coefficient necessity. The reader,
interested by lubrication models, is referred for instance to [15], [9], [3].

2. Formal derivation of a shallow water model. In what follows, we derive
formally a shallow water model from the incompressible Navier-Stokes equations with
a free surface. The fluid flows downward to an inclined plane under the effect of
gravity. The Navier–Stokes system comes with boundary conditions: we assume a
no slip condition at the bottom and continuity of the fluid stress at the free surface,
the fluid being submitted here to surface tension forces. Moreover, assuming that
the layer of fluid is advected by the fluid velocity, we obtain an evolution equation
for the fluid height. We first scale the equations in the shallow water setting. Then,
we calculate formally an asymptotic axpansion of the flow variables with respect
to the film parameter ε. Inserting the expansion in depth averaged continuity and
momentum equation, we obtain a shallow water model and identify a remainder that
formally tends to 0 as ε → 0.

2.1. Scaling the incompressible Navier-Stokes system. In that paper, we
consider a relatively thin layer of fluid flowing down an inclined plane, at an angle θ
with respect to the horizontal, under the effect of gravity. Remark that we consider
a flat bottom for simplicity. The reader is referred to [5] for formal derivation with
arbitrary topography. The fluid is incompressible and the fluid density is constant
and set to 1. The flow is supposed to be 2-dimensional. A coordinate system (x, z)
is defined as the x-axis downslope along and the z-axis upward normal to the plane
bed. The longitudinal and transverse velocity are denoted (u, w), the pressure by p
and the total flow depth by h. The fluid layer Ωt is the set

Ωt =
{
(x, z) ∈ R

2 : 0 < z < h(t, x)
}

.
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The incompressible Navier-Stokes equations read, for all (x, z) ∈ Ωt:




ut + u ux + w uz + px = g sin θ + ν ∆ u,
wt + u wx + w wz + pz = −g cos θ + ν ∆ w,
ux + wz = 0.

(1)

The ν constant denotes the fluid viscosity and g is the gravity constant. The Navier-
Stokes equations is supplemented with boundary conditions. More precisely, we as-
sume at the bottom a no-slip condition on a flat bottom:

u|z=0 = w|z=0 = 0. (2)

At the free boundary, we assume that the atmospheric pressure patm is constant and
set to 0. The fluid is submitted to surface tension forces. Hence, the continuity of the
fluid stress at the free surface, written σn = κn with σ = −pId+ ν(∇u +∇tu), yields
the following conditions:

p|z=h + κ hxx(1 + h2
x)−

3

2 = −2ν
1 + h2

x

1 − h2
x

ux|z=h,

uz|z=h + wx|z=h = −4
hx

1 − h2
x

wz |z=h,
(3)

where κ measures the capillarity (the curvature). The layer fluid is advected by
the speed ~u = (u, w), giving the evolution equation for the fluid height (the usual
kinematic condition)

ht + hx u|z=h = w|z=h. (4)

This set of equations possesses a classical steady solution, so called Nusselt flow. The
height of the fluid h(x, t) = H is constant, the transverse component velocity w is
equal to 0 and the longitudinal component speed u has a parabolic dependence with
respect to z

U(x, z) =
g

2ν
(2H z − z2) sin θ. (5)

Moreover, the pressure is hydrostatic:

p(x, z) = g(H − z) cos θ. (6)

Adimensionalization and rescaling. We shall use the Nusselt flow in the sequel to scale
the Navier–Stokes equations. With the notation U0 = gH2/2ν, we define the rescaled
variables

z = Hz, h = Hh, x = Lx, ε =
H

L
,

u = U0u, w = ε U0w, p = gHp,

t =
L

U0
t, Re =

HU0

ν
, W =

κ

gH2
.

(7)

In what follows, we denote c = cos θ, s = sin θ. Under the shallow water scaling and
dropping the ·̄, the Navier-Stokes equations read for all (x, z) in Ωt:

ut + u ux + w uz +
2

Re
px =

2s

εRe
+

1

εRe
(ε2 uxx + uzz),

wt + u wx + w wz +
2

ε2 Re
pz = − 2c

ε2 Re
+

1

εRe
(ε2 wxx + wzz), (8)

ux + wz = 0.
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The no-slip condition u|z=0 = w|z=0 = 0 and the evolution equation for h

ht + hx u|z=h = w|z=h, (9)

are unchanged whereas the continuity of the fluid stress reads

p|z=h + ε2 W hxx(1 + ε2 h2
x)−

3

2 = −ε
1 + ε2 h2

x

1 − ε2 h2
x

ux|z=h,

uz|z=h + ε2 wx|z=h = − 4ε2hx

1 − ε2 h2
x

wz|z=h.
(10)

We shall prove that in the asymptotic regime ε → 0, the solutions of the Navier-
Stokes equations (8) with rescaled boundary conditions are close to the stationnary
Nusselt flow and have an asymptotic expansion with respect ε. This is done in the
next section.

2.2. Asymptotic expansion of solutions. Under the shallow water scaling,
the flow variables are close to a Nusselt flow. More precisely, we write the Navier-
Stokes equations as a differential system in the crosstream variable z with boundary
conditions at z = 0 and z = h. First, the longitudinal component velocity u satisfies

uzz + 2 s = 2 ε px + εRe
(
ut + u ux + w uz

)
− ε2 uxx

= Ψu

(
u, w, p

)
(t, x, z),

u|z=0 = 0,

uz|z=h = −ε2 wx|z=h +
4ε2

1 − ε2 h2
x

hx ux|z=h

= Πu

(
u, w

)
(t, x).

(11)

The functions Ψu

(
u, w, p

)
, Πu

(
u, w

)
satisfy formally the estimates

Ψu

(
u, w, p

)
= O

(
ε + εRe

)
, Πu

(
u, w

)
= O

(
ε2

)
. (12)

Integrating (11) with respect to z, we obtain

u(t, x, z) = 2s(h(t, x)z − z2

2
) + Fu

(
u, w, p

)
(t, x, z), (13)

where the function Fu

(
u, w, p

)
is defined by

Fu

(
u, w, p

)
(t, x, z)

= zΠu

(
u, w

)
(t, x) −

∫ z

0

∫ h

z
Ψu

(
u, w, p

)
(t, x, y)dy dz.

(14)

As a consequence, the longitudinal velocity component u expands in the form

u(t, x, z) = 2s(h(t, x)z − z2

2
) + O

(
ε + εRe

)
. (15)

The profile for u is then closed to a Nusselt type flow. We show in a similar way
that the pressure is close to a hydrostatic distribution. More precisely, the pressure p
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satisfies the ”ordinary” differential equation with respect to z:

pz + c =
ε

2
(wzz + ε2 wxx) − ε2 Re

2
(wt + u wx + w wz)

= Ψp(u, w)(t, x, z),

p|z=h = −κ
Re

2

hxx

(1 + ε2 h2
x)

3

2

− ε ux|z=h

1 + ε2 h2
x

1 − ε2 h2
x

= −κ
Re

2
hxx + Πp

(
u
)
(t, x),

(16)

where the constant κ, defined by κ = ε2W , is assumed to be of order O(1) in order to
see the capillarity effects. The functions Ψp(u, w), Πp

(
u
)

satisfy the formal estimates

Ψp(u, w) = O
(
ε
)
, Πp(u) = O

(
ε
)
. (17)

We integrate (16) with respect to z and find

p(x, z, t) = −κ
Re

2
hxx + c(h − z) + Fp(u, w, p)(x, z, t), (18)

where the function Fp(u, w, p) is defined by

Fp(u, w, p) = Πp(u)(x, t) −
∫ h

z

Ψp(u, w)(t, x, y)dy. (19)

The pressure p has, in a first approximation, an hydrostatic distribution and expands
in the form

p(x, z, t) = −κ
Re

2
hxx + c(h − z) + O(ε). (20)

The transverse component velocity w is determined, using the free divergence con-
dition wz + ux = 0 and the no-slip condition w(x, 0) = 0. More precisely, we find

w(t, x, z) = −
∫ z

0

ux(t, x, y)dy. We deduce that w has the asymptotic expansion

w(t, x, z) = −
∫ z

0

ux(t, x, y)dy = −s hx z2 + O
(
ε + εRe

)
. (21)

In the following, we describe an iterative scheme to compute a formal expansion
of Navier-Stokes solutions to any order in ε. First, we define the functions u(0) and
p(0) as

u(0)(t, x, z) = s(2h(t, x)z − z2),

p(0)(t, x, z) = −κRehxx/2 + c
(
h(t, x) − z

)
.

(22)

We write the equations (13,18) in the form

(
u
p

)
=

(
u(0)

p(0)

)
+ F(u, p, ε), (23)

where the function F(u, p, ε) is defined by

F(u, p, ε) =

(
Fu(u, w, p)
Fp(u, w, p)

)
, w(t, x, z) = −

∫ z

0

ux(t, x, y)dy. (24)
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Then, any solution of the Navier-Stokes equations appears as a fixed point of an oper-
ator that is formally O(ε+εRe)-Lipschitz on any bounded set. Following the proof of
the fixed point theorem, we define the sequence of functions

(
un, w(n), p(n)

)
n≥1

such

that
(

u(n+1)

p(n+1)

)
=

(
u(0)

p(0)

)
+ F(u(n), p(n), ε), (25)

and w(n)(t, x, z) = −
∫ z

0

u(n)
x (t, x, y)dy.

We assume that all the derivatives of (u, w, p) remain bounded and the sequence(
un, w(n), p(n)

)
n≥1

is bounded. We can prove by induction the formal estimate

max
(
|u − u(n)|, |w − w(n)|, |p − p(n)|

)
= O

(
(ε + εRe)n+1

)
. (26)

As a consequence, we clearly see that the n-th term of the sequence of functions(
un, w(n), p(n)

)
n≥1

is a formal approximation of a solution of the full Navier-Stokes

equations up to order O
(
(ε + εRe)n+1

)
. In what follows, we use that approximation

of the solutions to close the depth average continuity and momentum equations and
obtain a shallow water model.

2.3. The shallow water model. In the sequel, we write a shallow water model

for the fluid height h and the total discharge rate hv =
∫ h

0 u(., y, .)dy. Here v rep-
resents the mean velocity along the depth flow. On the one hand, integrating the
divergence free condition ux + wz = 0 along the fluid height and using the kinematic
equation for h namely ht + hxu|z=h = w|z=h, we find

ht +
( ∫ h

0

u(x, z) dz
)
x

= ht + (hv)x = 0. (27)

Note that the equation is exact and already in a closed form. Let us now write

an evolution equation for hv =
∫ h

0
u(·, ·, ζ)dζ. For that purpose, we integrate the

evolution equation on the velocity component u along the flow depth and substitute
the boundary conditions (10) into the resulting equation:

(

∫ h

0

u dz)t + (

∫ h

0

u2 dz)x +
2

Re
(

∫ h

0

p dz)x + κ
hxx

(1 + ε2 h2
x)

3

2

hx =

1

εRe

(
2 s h − uz(x, 0)

)
+

ε

Re
(

∫ h

0

2 ux dz)x. (28)

In order to write a momentum equation in a closed form, we shall calculate an
expansion of the averaged quantities in (28) with respect to ε, h, v. First, let us note
that

(hv)(t, x) =

∫ h(t,x)

0

u(t, x, ζ)dζ =

∫ h(t,x)

0

u(0)(t, x, ζ)dζ +

∫ h(t,x)

0

δ u(t, x, ζ)dζ,

= 2s
h3

3
+

∫ h(t,x)

0

δ u(t, x, ζ)dζ.
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Here, the function δu is simply δu = u− u(0). From the previous section, we deduce

the formal estimate δu = O
(
ε + εRe

)
. We compute the average quantities

∫ h

0

u2

and

∫ h

0

p:

∫ h(t,x)

0

u2(t, x, ζ)dζ =

∫ h(t,x)

0

(u(0))2(t, x, ζ)dζ +

∫ h(t,x)

0

(
u2 − (u(0))2

)
(t, x, ζ)dζ,

=
8h(t, x)

15
(s h2(t, x))2 +

∫ h(t,x)

0

(
u2 − (u(0))2

)
(t, x, ζ)dζ. (29)

We substitute 2s h2 = 3v − 1

h

∫ h

0

δu into (29). The average quantity

∫ h

0

u2 reads

∫ h(t,x)

0

u2(t, x, ζ)dζ =
6

5
(hv2)(t, x) + R(1)

1 , (30)

where the function R(1)
1 is defined by

R(1)
1 (t, x) =

∫ h(t,x)

0

(
u2 − (u(0))2

)
(t, x, ζ)dζ

+
12

15
v

∫ h(t,,x)

0

δu(t, x, ζ)dζ +
2

15 h(t, x)

( ∫ h(t,x)

0

δu(t, x, ζ)dζ
)2

.

Inserting the estimate u − u(0) = O
(
ε + εRe

)
into the expression for R1, we find

that, formally, R1 = O
(
ε + εRe

)
. We easily compute the average quantity

∫ h

0

p:

∫ h

0

p(·, ·, ζ)dζ = −κ
Re

2
h hxx + c

h2

2
+ R(2)

1 , (31)

with

R(2)
1 (t, x) =

∫ h(t,x)

0

(
p − p(0)

)
(t, x, ζ)dζ.

We easily prove that, formally, R(2)
1 satisfies the estimates R(2)

1 = O(ε + εRe). Sub-
stituting (30),(31) into (28), one obtains

(hv)t +
(6

5
hv2 +

2

Re
c
h2

2

)
x
− κh hxxx =

1

εRe

(
2s h− uz(x, 0)

)
+ R1, (32)

where the function R1 is defined by

R1 = −∂x R(1)
1 − ∂xR(2)

1

+
ε

Re
∂x

( ∫ h

0

ux(·, ·, ζ)dζ
)

+ κ
((

1 − (1 + ε2h2
x)−

3

2

)
hxhxx

)
(33)

and satisfies the formal estimate

R1 = O
(
ε(Re + 1 + Re−1)

)
.
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Dropping the ”small” term R1, we can see that the momentum equation (32) is almost
in a closed form and yields a shallow water model for h, hv. There remains to eliminate
uz(x, 0). Due to the presence of the singular factor 1/(εRe), we cannot directly use
the expansion

uz(0) = u(0)
z (0) + O(ε + εRe) =

3v

h
+ O(ε + εRe).

In that case, the remainder would be of order O(1). As a consequence, we need an
asymptotic expansion of uz(0) and hv with respect to ε and function of h and its
derivatives up to order 1. For that purpose, we use the function u(1) introduced in
the previous section. Recall that we have the estimate u− u(1) = O

(
(ε + εRe)2

)
. We

aim to compute an expansion of hv and uz(., 0) up to order 1: let us expand u with
respect to ε. We find, using the iterative scheme introduced previously that

u = u(0) −
∫ z

0

∫ h

y

2ε p(0) + εRe
(
u

(0)
t + u(0)u(0)

x + w(0)u(0)
z

)
+ εReR(1)

2 , (34)

where the notation

∫ z

0

∫ h

y

f is used to defined the function of (t, x, z) as

∫ z

0

∫ h

y

f (t, x) =

∫ z

0

∫ h(t,x)

y

f(t, x, z)dzdy.

Moreover the function R(1)
2 is defined as

R(1)
2 =

ε

Re

∫ z

0

∫ h

y

uxx − u(0)
xx −

∫ z

0

∫ h

y

2

Re
(p − p(0))x

− ε z

Re

(
(wx(h) +

wz(h)

1 − ε2h2
x

) − (w(0)
x (h) +

w
(0)
z (h)

1 − ε2h2
x

)
)

+

∫ z

0

∫ h

y

(u − u(0))t + (uux − u(0)u(0)
x ) + (wuz − w(0)u(0)

z ).

It is easily seen that R(1)
2 = O

(
ε(1+Re+Re−1)

)
. In order to simplify the notations,

we denote u(1) the function

u(1) = −2 p(0) − Re
(
u

(0)
t + u(0)u(0)

x + w(0)u(0)
z

)
.

Then, the component velocity u expands in the form

u = u(0) + ε u(1) + εReR(1)
2 . (35)

From (35), we deduce that

uz|z=0 = 2sh + ε ∂zu
(1)|z=0 + εRe∂zR(1)

2 |z=0,

(h v)(t, x) = 2s
h3(t, x)

3
+ ε

∫ h(t,x)

0

u(1)(t, x, ζ)dζ + εRe

∫ h(t,x)

0

R(1)
2 (t, x, ζ)dζ.
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Then, eliminating 2sh from the expansion of uz|z=0, one obtains the asymptotic
expansion

uz|z=0 =
3 v

h
+ ε

(
∂zu

(1)|z=0 −
3

h2

∫ h

0

u(1)
)

+ εRe
(
∂zR(1)

2 |z=0 −
3

h2

∫ h

0

R(1)
2

)
. (36)

We substitute the expansion (36) into the momentum equation (32)

(hv)t +
(6

5
h v2 +

2

Re
c
h2

2

)
x
− κh hxxx =

1

εRe

(
2s h − 3 v

h

)
− τ + R1 + R2, (37)

with τ =
7

120
(2s)2 h4 hx +

1

8
(2s)h2 ht and R2 = ∂zR(1)

2 |z=0 −
3

h2

∫ h

0

R(1)
2 .

Dropping the ”small” term R = R1+R2 = O(ε(1+Re+Re−1)), we obtain a shallow
water model in a closed form




ht + (hv)x = 0,

(hv)t +
(6

5
h v2 +

2

Re
c
h2

2

)
x
− κh hxxx =

1

εRe

(
2s h− 3 v

h

)
− τ.

(38)

The term τ can be written as the sum of a conservative term and a remainder of order
O(ε + εRe). More precisely, we substitute the expansion

hv = 2s
h3

3
+

∫ h

0

(u − u(0)),

into the conservation law ht + (hv)x = 0. As a result we find that

ht = −2s h2 hx − ∂x

(∫ h

0

(u − u(0))
)
,

and the function τ reads τ = − (2s)2

75
(h5)x − sh2

4
∂x

(∫ h

0

(u − u(0))
)
. If we introduce

the notation R̃ = R +
sh2

4
∂x

(∫ h

0

u − u(0)
)
, the momentum equation (37) reads

(hv)t +
(6

5
h v2 +

2

Re
c
h2

2
− (2s)2

75
h5

)
x
− κh hxxx =

1

εRe

(
2s h− 3 v

h

)
+ R̃, (39)

The remainder R̃ is formally of order O(ε(1 + Re + Re−1)). Dropping this ”small”
term, we obtain a conservative form of the shallow water model (38):






ht + (hv)x = 0,

(hv)t + (
6

5
h v2 +

c h2

Re
− (2s)2

75
h5)x

−κh hxxx =
1

εRe

(
2s h − 3 v

h

)
.

(40)

This concludes the formal derivation of a shallow water model from the full Navier-
Stokes equations with free surface. Formally, the remainder term R (resp. R̃) tends to
0 as ε → 0. In what follows, we compute a priori estimates in classical Sobolev norms
on the solutions (u, w, p) of the full Navier-Stokes system. We shall prove rigorously

that the convergence of R (resp. R̃) to 0 holds true in a suitable norm and thus
justify rigorously the formal derivation presented here. Finally, we can easily obtain a
shallow water model without capillarity, setting the capillary coefficient κ to 0 in (40).
However, we shall see later on that capillarity is important to obtain energy estimates
on solutions to Navier-Stokes equations and to justify the asymptotic process.
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3. Uniform estimates and Navier–Stokes Eqs. In that section, we compute
a priori estimates of solutions of the full Navier-Stokes equations in the shallow water
scaling. The method is based on the energy estimates obtained by T. Nishida et

al. [12] to prove the existence of global solutions to the Navier-Stokes flows down an
inclined plane. First, the fluid domain is transformed into a fixed domain through
a suitable change of variable. Then, the Navier-Stokes equations are written in the
neighbourhood of a Nusselt flow and the authors derive a priori estimates on the
perturbations of that steady solutions. Classically, for sufficiently ”small” initial data,
the solutions are proved to be global solutions and decays to 0 as t → ∞. In order
to simplify the discussion, the functions are periodic in the x-direction. This is the
point of view adopted in that paper. The main issue here is to obtain estimates in the
shallow water asymptotic regime ε → 0. The shallow water scaling make the diffusion
term anisotropic: in order to adapt the method of T. Nishida et al., we have chosen
to transform the fixed domain into a thin domain of size ε in the z-direction. In that
setting, the diffusion is isotropic and we can completely follows the approach of T.
Nishida et al.. Their estimates are mainly based on estimates on the Stokes problem.
At this stage, we follow ideas of R. Temam and M. Ziane [13] on the existence
of solutions to Navier-Stokes equations in thin and fixed domain: in particular they
obtain Sobolev inequalities and estimates on the Stokes problem in a thin domain. As
a result of this analysis, provided that the perturbation of the Nusselt flow is small
in a suitable weighted norm, we prove uniform estimates on solutions of the Navier-
Stokes equations in the shallow water regime ε → 0. In all the paper long, we will
denote ‖ · ‖r and | · |r the Lr norm respectively in two-dimensional in space domains
and in the one-dimensional torus T.

3.1. Preliminaries. In that section, we follow the approach initiated by J.T.
Beale [1, 2] to prove the existence of solutions to the Navier-Stokes equations with
a free boundary. We assume that the functions are periodic in the x variable and
consider small perturbations of the Nusselt flow: for a suitable change of variable,
we write the Navier-Stokes equations in a fixed thin domain. Then, we recall briefly
the fundamental inequalities in thin domains that are used in the paper: Sobolev
inequalities and estimates for the Stokes problem in thin domains.

3.1.1. Reduction of N-S equations to a fixed thin domain. The rescaled
Navier-Stokes equations are given in Ωt by

ut + u ux + w uz +
2

Re
px =

2s

εRe
+

1

εRe
(ε2 uxx + uzz),

wt + u wx + w wz +
2

ε2 Re
pz = − 2c

ε2 Re
+

1

εRe
(ε2 wxx + wzz), (41)

ux + wz = 0,

where Ωt = {(x, z) ∈ T × R : 0 < z < h(t, x)} is the fluid domain. The system is
supplemented with boundary conditions: The no-slip condition on the bottom

u|z=0 = w|z=0 = 0,

and the kinematic equation at surface for h

ht + hx u|z=h = w|z=h.
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The continuity of the fluid stress reads

p|z=h + ε2 W hxx(1 + ε2 h2
x)−

3

2 = −ε ux|z=h

1 + ε2 h2
x

1 − ε2 h2
x

,

uz|z=h + ε2 wx|z=h = − 4ε2hx

1 − ε2 h2
x

wz|z=h.
(42)

In order to simplify the N-S equations, we introduce the hydrostatic correction of the
pressure p̃ = p − c z. We also assume that h = 1 + h̃ and h̃ is small. We clearly
see that, in the shallow water scaling, the diffusion is anisotropic: in order to recover
an isotropic viscosity and applies the idea of T. Nishida et al. [12], we write the
equations in a thin domain and introduce the functions ũ, w̃ and P so that

u(t, x, z) = ũ(t, x, ε z), ε w(t, x, z) = w̃(t, x, εz), P =
p

ε
. (43)

We drop the ·̃ for the sake of simplifying the notations. The divergence free equation
reads ux + wz = 0, whereas the momentum equations are given, for all (x, z) ∈
T ×

(
0, ε(1 + h)

)
, by

ut + u ux + w uz + 2µ Px =
2µ

ε2
s + µ ∆ u,

wt + u wx + w wz + 2µ Pz = µ ∆ w,
(44)

where µ is the rescaled viscosity µ =
ε

Re
. In that setting, we write the continuity of

the fluid stress at the boundary z = ε(1 + h) in the form

P − c

ε
(1 + h) + ε W hxx(1 + ε2 h2

x)−
3

2 = −ux

1 + ε2 h2
x

1 − ε2 h2
x

,

uz + wx = − 4ε hx

1 − ε2 h2
x

wz .
(45)

The no-slip condition is unchanged and the kinematic equation for h reads in T

ht + hx u|z=ε(1+h) =
w|z=ε(1+h)

ε
. (46)

In that framework, the steady solution, so called Nusselt flow, is defined by h = 0 and

U(x, z) =
s

ε2
(2ε z − z2), P =

c

ε
. (47)

We consider the Navier-Stokes equations in the neighbourhood of the Nusselt flow
and introduce the functions ũ, P̃ so that

u = U + ũ, P =
c

ε
+ P̃ . (48)

We remove the ·̃ to simplify the notation. The momentum equations read:

ut + (U + u)ux + w (Uz + uz) + 2µ Px = µ ∆ u,

wt + (U + u)wx + w wz + 2µ Pz = µ ∆ w. (49)

The divergence free equation is written

ux + wz = 0. (50)
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The boundary conditions at the free surface z = ε(1 + h) are given by

P − c

ε
h + ε W hxx(1 + ε2 h2

x)−
3

2 = −ux

1 + ε2 h2
x

1 − ε2 h2
x

,

uz + wx − 2 s

ε
h = − 4ε hx

1 − ε2 h2
x

wz.
(51)

We obtain for the evolution equation for h

ht +
(
s(1 − h2) + u(., ε(1 + h))

)
hx =

w(., ε(1 + h))

ε
. (52)

In the sequel, following the approach initiated by J.T. Beale [1, 2], we aim to
write the N-S equations (49),(50), in the fixed thin domain Ω = T × (0, ε). For that
purpose, let us first remark that, integrating the divergence free condition along the
flow depth and using the boundary condition (52), one finds

ht + ∂x

( ∫ (ε(1+h))

0

u
)

= 0.

As a consequence, we obtain
d

dt

∫

T

h(x, t)dx = 0 and the spatial mean of h is constant.

In the sequel, we assume < h >=
∫

T
h(x, t)dx = 0. Under that hypothesis, we define

h the extension of h to Ω as:

h(t, x, z) =
∑

k 6=0

hk(t)

1 + k2(z − ε)2
eikx, ∀x ∈ T. (53)

Now, we define the change of variable from Ω to Ωt in the form:

Θt : T × (0, ε) → T ×
(
0, ε(1 + h)

)
,

(x, z) 7→
(
x, z(1 + h(t, x, z))

)
. (54)

The Jacobian matrix of the transformation is

DΘt =

(
1 0

zhx 1 + ∂z(zh)

)
. (55)

The function Θt is then a diffeomorphism between Ω and Ωt provided that J =
1 + ∂z(zh) > 0 (h̄ is supposed to be small). In order to preserve the divergence free
condition, we introduce the Jacobian decomposition of the fluid velocity

(
u
w

)
=

1

J
DΘt ◦ Θ−1

t

(
ũ
w̃

)
◦ Θ−1

t . (56)

Dropping the ˜from the equations, the momentum equations transform into

ut + U ux + Uz w + 2µ px = µ ∆ u + F1,
wt + U wx + 2µ pz = µ ∆ w + F2,

(57)
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whereas the divergence free condition ux +wz = 0 is preserved. The functions Fi, i =
1, 2 in (57) contain the nonlinear terms:

F1 =
Jt u

J
+ ht z ∂z(

u

J
) − u

J

(
ux − Jx u − hx z(

uz

J
) − Jz u

J2

)

+ U
(
Jx u + z hx∂z(

u

J
)
)
− z hx u

(
Uz +

1

J
∂z(

u

J
)
)
− w∂z(

u

J
)

+ 2µ(hx z pz + (1 − J) px) + µ
(
2 J ux∂x(

1

J
) + J u ∂xx(

1

J
)

− J∂x(
hx z

J
∂z(

u

J
)) − hx z ∂xz(

u

J
) + hx z ∂z(

hx z

J
∂z(

u

J
))

− ∂z(
1

J
)∂z(

u

J
) + (J−2 − 1)∂zzu +

2

J
∂z(

1

J
)uz +

u

J
∂zz(

1

J
)
)
,

F2 = −∂x(
ht z u

J
) +

hx z

J
U ux +

hx z

J
Uz w − Jx

J2
u w − hxx z

J
u2

+
ux w

J
+ (

hx z

J
)2Uz u − u wx

J
− hxxz

J
U u − (hx z)2

J
U∂z(

u

J
)

+ 2µ(
∂z(hx z) − (hx z)2

J
∂zp + hx z px) + µ

(
(1 − J−2)uzx

+ 2
hx z

J
uxx − (

hx z

J
)2 uzx

)
+ µ

(
− 2∂x(

hx z Jx u

J2
)

+ ∂x(
hx z

J
)
Jx u

J
− ∂x(hx z)∂z(

u

J
) + 2∂x(hx z)∂x(

u

J
) + ∂xx(hx z)

u

J

+ ∂x(
hx z

J
u) − hx z

J
∂z(

hx z

J
)ux +

hx z

J
(
Jx

J
− hx z Jz

J2
)
Jx u

J

+ 2(
hx z

J
)2Jx∂z(

u

J
) + (

hx z

J
)2

Jxz u

J
+

Jxz u

J2
+

2Jx

J2
∂z(

u

J
) − Jx Jz u

J4

)
. (58)

In that setting, the continuity of the fluid stress at the fixed boundary z = ε reads,
for all x in T:

uz|z=ε + wx|z=ε − 2
s

ε
h = H1,

P |z=ε −
c

ε
h + ε W hxx + ux|z=ε = H2,

(59)

where the functions Hi, i = 1, 2 contain the nonlinear terms and are given by

H1 =
4ε

1 − ε2 h2
x

( ux

1 + h
− hx

(1 + h)2
∂z(z u) + ε2 hx hzz u

(1 + h)2

)

−ε∂x(
hx u

1 + h
) +

ε hx

1 + h

(
wz +

ε hx uz

1 + h
+ u∂z(

hx z

J
)
)

+ ε
hzz u

(1 + h)3
,

H2 = ε W hxx(1 − (1 + ε2 h2
x)−

3

2 ) +
h ux

1 + h
+

ux

1 + h
(1 − 1 + ε2 h2

x

1 − ε2 h2
x

)

+
1 + ε2 h2

x

1 − ε2 h2
x

( hx

(1 + h)2
∂z(z u) − ε2 hx hzz u

(1 + h)3

)
. (60)

Finally, the time evolution for h is described by the equation in T.

ht + s(1 − h2)hx =
w|z=ε

ε
. (61)
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The N-S equations with free surface are now formulated in a fixed thin domain.
Following the approach of T. Nishida et al., we shall compute estimates in Sobolev
norms on solutions of the Stokes problem. In order to estimate the nonlinear terms,
we shall also write some fundamental Sobolev inequalities in thin domain with a
particular attention on the optimal dependence of Sobolev constant with respect to
ε. This is done in the next section.

3.1.2. Fundamental inequalities in thin domain. In what follows, we write
the classical Poincaré inequalities and Sobolev injections for the thin domain Ω =
T × (0, ε). The resulting inequalities are summarized in the following lemma.

Lemma 1. Assume that u|z=0 = 0 or u|z=ε = 0, there exists a constant C
independent of ε so that the following estimates hold

‖u‖0 ≤ C ε ‖∂z u‖0, ‖u‖L6(Ω) ≤ C ‖∇u‖0,

‖u‖L∞(Ω) ≤ C
√

ε (‖∂z u‖0 + ‖∂z ux‖0),

In the general case, these inequalities read:

‖u‖L6(Ω) ≤ C ε−
1

3 ‖u‖1, ‖u‖L∞(Ω) ≤ C ε−
1

2 ‖u‖2,

For a proof of these Sobolev-type inequalities, see the paper of R. Temam and M.
Ziane [13] on Navier-Stokes equations in thin domain. Those inequalities are deduced
from Poincaré inequalities (Proposition 2.1), Agmon’s inequalities in thin domain
(Proposition 2.2) and anisotropic Ladhyzhenskaya’s inequality (Proposition 2.3). A
straightforward application of this lemma yields the further Sobolev-type inequalities.
We easily prove the following result.

Lemma 2. Denote Hs
0 the subspace of Sobolev space Hs(Ω) vanishing either on

z = 0 or z = ǫ. There exists a constant C, independent of ε so that the following

inequalities hold true:

‖u v‖0 ≤ C
√

ε(‖∇u‖0 + ‖∇ux‖0) ‖v‖0, ∀ (u, v) ∈ H2
0 × L2,

‖u v‖0 ≤ C ε−
1

2 ‖u‖2 ‖v‖0, ∀ (u, v) ∈ H2 × L2,

Moreover, we can also prove that

‖u v‖0 ≤ C ε
1

6 ‖∇u‖0 ‖∇ v‖0, ∀ (u, v) ∈ H1
0 × H1

0 ,

‖u v‖0 ≤ C ε−
1

6 ‖∇u‖0 ‖v‖1, ∀ (u, v) ∈ H1
0 × H1,

‖u v‖0 ≤ C ε−
1

2 ‖u‖1 ‖v‖1, ∀ (u, v) ∈ H1 × H1.

The proof of the first set of inequalities is obtained using the classical Sobolev em-
bedding H2(Ω) →֒ L∞(Ω), with the optimal Sobolev constant defined in Lemma 1.
The second set of inequalities results from the embedding L6(Ω) × L6(Ω) →֒ L2(Ω)
together with the estimate

‖u v‖L2(Ω) ≤ Cε
1

6 ‖u‖L6(Ω) ‖v‖L6(Ω),

with C is independent of ε.
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Applying Lemma 1, we can also obtain estimates of the extension h̄ of h on the domain
Ω. The proof of the following lemma is straightforward.

Lemma 3. There exists a constant C independent of ε such that for any α =
(α1, α2) and n = |α|, the extension h̄ of h on Ω satisfies the estimates

‖∂α
j h‖0 ≤ C

√
ε |∂n

x h|0, ‖∂α
j h‖0 ≤ C |h|n− 1

2

,

Moreover, using the fact that ∂2k+1
z h(x, ǫ) = 0 and Lemma 1, one obtains the

uniform estimates:

‖h‖∞ ≤ C |hx|0, ‖hz‖∞ ≤ C
√

ε|h| 5
2

, ‖hz‖0 ≤ C ε |hxx|0.

Proof. We prove the estimates on ‖∂α
j h‖0 and start with the derivatives in the

x-direction. It is an easy computation to show that

‖∂n
x h‖2

0 =
∑

k 6=0

|hk|2|k|2n

∫ ε

0

dz
(
1 + k2(z − ε)2

)2 . (62)

With a change of variable in (62), one proves that

‖∂n
xh‖2

0 =
∑

k 6=0

|hk|2|k|2n−1f(ε|k|), f(x) =

∫ x

0

du

(1 + u2)2
.

The function f is bounded and |f(x)| ≤ x, ∀x ∈ (0, +∞). We easily prove that

‖∂n
x h‖0 ≤ ε|∂n

x h|0, ‖∂n
xh‖0 ≤ ‖f‖∞|h|n− 1

2

.

In a similar way, one can prove that

‖∂n
x∂zh‖2

0 =
∑

k 6=0

|hk|2|k|2n+1g(ε|k|), g(x) =

∫ x

0

u2du

(1 + u2)4

The function g is bounded and |g(x)| ≤ x, ∀x ∈ (0, +∞). We easily deduce the
estimates on ‖∂n

x ∂zh‖0. The bounds on the higher order derivatives of h̃ follows
similarly.

Following the method of T. Nishida et al. [12] to obtain a priori estimates on
the solutions of the full Navier-Stokes equations, we shall write energy inequalities
involving the fluid velocity (u, w), the time and transverse derivatives ∂α

t ∂β
x (u, w) and

their gradients. We estimate the other derivatives of (u, w) and the pressure p using
the regularity in the Stokes problem. The main issue here is to obtain the dependence
of the regularity constant with respect to ε. In what follows, we consider the Stokes
problem on the thin domain Ω = T × (0, ε) with Dirichlet boundary conditions. We
shall prove the following result.

Lemma 4. Let f ∈
(
H1(Ω)

)2
, φ ∈

(
H

3

2 (T)
)2

and consider the Stokes problem in

Ω:

−∆ u + ∇ p = f,

div u = 0,



102 D. BRESCH AND P. NOBLE

with the boundary conditions

u|z=0 = 0, u|z=ε = φ.

There exists a constant C independent of ε so that for i = 0, 1:

‖u‖2+i + ‖∇ p‖i ≤ C
(
‖f‖i +

|φ1|1+i

ε
3

2

+
|φ2|i
ε

5

2

+ ‖∇ux‖0 + ‖∇uxx‖0

)
. (63)

Proof. We first prove the case i = 0. More precisely, we show that there exists a
constant C independent of ε so that:

‖u‖2 + ‖∇ p‖0 ≤ C
(
‖f‖0 +

|φ1|1
ε

3

2

+
|φ2|0
ε

5

2

+ ‖∇ux‖0

)
. (64)

The case i = 1 follows immediately from that particular case: we derive the Stokes
equations in the x-direction and use the case i = 0 to estimate the functions
∂α

x ∂β
z u, ∂x ∇p for any α ≥ 1, α + β ≤ 3. The other derivatives of w and ∂2

z p are
estimated using the divergence free condition whereas the derivatives of u are esti-
mated using the Stokes equations and in particular

uzz = −f1 + ∂x p − uxx.

Now we prove (64) and write the function u in the form u = (u, w). In the sequel,
we shall note C a constant independent of ε. Using the Poincaré inequality and the
divergence free condition, we easily prove that

‖u‖0 + ‖w‖0 + ‖∇u‖0 + ‖∇w‖0 ≤ C
(
‖∂zu‖0 + ‖∇ux‖0).

From the Stokes equation, we deduce that

‖uzz‖0 ≤ C
(
‖f‖0 + ‖∇ p‖0 + ‖∇ux‖0

)
. (65)

Assume for the moment that ∇p satisfies the estimate

‖∇ p‖0 ≤ C
(
‖f‖0 +

|φ1|1
ε

3

2

+
|φ2|0
ε

5

2

)
. (66)

We want to estimate ‖∂zu‖0. An integration by parts yields
∫

Ω

(∂z u)2 =

∫

T

u(·, ε)uz(·, ε)dx −
∫

Ω

u uzz.

Using the boundary conditions and Cauchy Schwarz inequalities, one finds
∫

Ω

(∂z u)2 ≤ |φ1|0|uz(·, ε)|0 + ε‖∂zu‖0‖uzz‖0.

It is easily proved that

|uz(ε, .)|0 ≤ C
( 1√

ε
‖∂z u‖0 +

√
ε‖uzz‖0

)
.

Using Young’s inequality and the estimate (65) on uzz, we obtain

‖∂z u‖0 ≤ C
(
‖f‖0 +

|φ1|0
ε

3

2

+
|φ2|0
ε

5

2

)
. (67)
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We prove the estimate (66) on ∇p. From the Stokes equation and the divergence free
condition, we easily prove that

‖∂zp‖0 ≤ ‖f‖0 + ‖∇ux‖0.

Let v ∈ H2(Ω) so that

v|z=0 = 0, v|z=ε = φ, div v = 0.

Such a function exists due to potential theory [7]. Let us write u in the form u = v+ũ.
Then we find that ũ, p satisfies the Stokes problem

−∆ũ + ∇p = f + ∆v,

div ũ = 0, ũ|z=0 = ũ|z=ε = 0.
(68)

With a symmetry argument, R. Temam and M. Ziane [13] (Lemma 2.6) proved that
in such a case, there exists C independent of ε so that

‖ũ‖2 + ‖∇ p‖0 ≤ C
(
‖f + ∆ṽ‖0

)
.

The estimates obtained in [7] for ṽ would give

‖u‖2 + ‖∇p‖0 ≤ C
(
‖f‖0 +

|φ1| 3
2

ε
3

2

+
|φ2| 3

2

ε
5

2

)
. (69)

The inequality (69) is not optimal here. In the sequel, we ”improve” that estimate
provided that we add a correction term ‖∇ux‖0. Using the divergence free condition,
the lemma is proved provided that

min
u∈X

‖∆u‖0 ≤ C
( |φ1|1

ε
3

2

+
|φ2|0
ε

5

2

)
, (70)

where X is the functional space

X =

{
u ∈ H2(Ω) : u|z=0 = 0, u|z=ε = φ1,

∫ ǫ

0

ux(·, z)dz = −φ2

}
.

In order to prove (70), we decompose u and φ into Fourier series:

u(x, z) =
∑

k∈Z

uk(z)eikx, φ(x) =
∑

k∈Z

(φ1,k, φ2,k)eikx.

Note that φ shall satisfy the compatibility condition φ2,0 = 0. Then the problem
reduces to find the optimal solution uk, k ∈ Z so that

∫ ε

0

|u′′
k(z) − k2 uk(z)|2dz = min

(∫ ε

0

|v′′(z) − k2 v(z)|2dz
)
,

under the constraints

v|z=0 = 0, v|z=ε = φ1,k,

∫ ε

0

v(z)dz =
iφ2,k

k
. (71)
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It is easily proved that if uk is a solution of the minimization problem, then for any
φ ∈ C∞

c (0, ε), the function uk satisfies the Euler-Lagrange equation

∫ ε

0

(
u

(4)
k − 2k2u

(2)
k + k4uk

)′
φ(z)dz = 0.

As a consequence, the function uk satisfies u
(5)
k − 2k2u

(3)
k + k4u′

k = 0 and can be
written

uk(z) = A + B cosh(kz) + C sinh(kz) + Dz cosh(kz) + Ez sinh(kz).

The minimization problem then reduces to finding (Ak, ..., Ek) so that

∫ ε

0

|k2Ak − 2k
(
Dk sinh(kz) + Ek cosh(kz)

)
|2

= min

∫ ε

0

|k2A − 2k
(
D sinh(kz) + E cosh(kz)

)
|2,

whereas the constraints (71) read

A + B = 0,

A + B cosh(kε) + C sinh(kε) + Dε cosh(kε) + Eε sinh(kε) = φ1,k,

εA + B
sinh(kε)

k
+ C

cosh(kε) − 1

k

+ D
1 − cosh(kε) + εk sinh(kε)

k2
+ E

εk cosh(kε) − sinh(kε)

k2
=

iφ2,k

k
. (72)

We eliminate A from the constraints (72). Furthermore, we can consider, without
loss of generality, the minimization problem in R:

∫ ε

0

|k2Bk + 2k
(
Dk sinh(kz) + Ek cosh(kz)

)
|2

= min

∫ ε

0

|k2B + 2k
(
D sinh(kz) + E cosh(kz)

)
|2,

under the constraints

B(cosh(kε) − 1) + C sinh(kε) + Dε cosh(kε) + Eε sinh(kε) = φ1,k,

B(sinh(kε) − kε) + C(cosh(kε) − 1)

+D(ε sinh(kε) − cosh(kε) − 1

k
) + E(ε cosh(kε) − sinh(kε)

k
) = φ2,k, (73)

where φi,k, Ak, ..., Ek ∈ R. Here, we choose D = E = 0. In that case, we find

B =
cosh(kε) − 1

2(1 − cosh(kε)) + kε sinh(kε)
φ1,k +

sinh(kε)

2(1 − cosh(kε)) + kε sinh(kε)
φ2,k.

In order to simplify the notations, we introduce Ak
1 , Ak

2 so that

B = Ak
1 φ1,k + Ak

2 φ2,k
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and we note u(x, z) =
∑

k∈Z
uk(z)eikx the solution associated to that Fourier decom-

position, we find that

‖∆u‖0 ≤
∑

k

ε |k|4
(
(Ak

1)2|φ1,k|2 + (Ak
2)2|φ2,k|2

)
.

We estimate
∑

k

ε |k|4 (Ak
1)2|φ1,k|2: separating the different cases kε = O(ε), kε =

O(1) and kε ≫ 1, we obtain

∑

k

ε |k|4 (Ak
1)2|φ1,k|2 ≤ C

|φ1|21
ε3

,

with C, a constant independent of ε. Similarly, we prove that

∑

k

ε |k|4(Ak
2)2|φ2,k|2 ≤ C

|φ2|20
ε5

.

As a consequence, we have proved that

‖∇p‖0 ≤ C
(
‖f‖0 +

|φ1|1
ε

3

2

+
|φ2|0
ε

5

2

)
.

This completes the proof of the lemma.

We shall also give a formulation of a Körn’s inequality in the thin domain setting.
H. Ito has proved, in [10], the following result

Lemma 5. Let u ∈
(
H1(Ω)

)2
so that

u|z=0 = 0, div u = 0.

Then the following Körn’s inequality holds

‖D(u)‖2
L2(Ω) =

∥∥∥∥
∇u + ∇ut

2

∥∥∥∥
2

L2(Ω)

≥ 2

3
‖∇u‖2

L2(Ω).

3.2. Classical estimates in the shallow water scaling. In the following,
we shall prove that the energy estimates obtained by T. Nishida and coauthors in
[12] still hold true in the shallow water scaling. We recall the Navier-Stokes system,
written in the fixed domain Ω = T × (0, ε).

ut + U ux + Uz w + 2µ px = µ ∆ u + F1,
wt + U wx + 2µ pz = µ ∆ w + F2,
ux + wz = 0.

(74)

The continuity of the fluid stress at the fixed boundary z = ε reads in T,

uz|z=ε + wx|z=ε − 2
s

ε
h = H1,

P |z=ε −
c

ε
h + ε W hxx + ux|z=ε = H2,

(75)
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whereas h satisfies the equation in T:

ht + s(1 − h2)hx =
w|z=ε

ε
. (76)

We recall that the full expressions of the nonlinear terms F1, F2 in the Navier-Stokes
equations and H1, H2 in the boundary conditions are given by (58),(60). The non-
dimensional constant µ is given by µ = ε/Re. In what follows, we shall denote β(h)

the symmetric matrix β(h) = b(h)
(
Id − b(h)

)−1
with

b(h) =




−∂z(z h) z∂xh

z∂xh
∂z(z h) − (z∂xh)2

1 + ∂z(z h)


 .

The purpose of that section is to prove the following result.

Theorem 1. There exists ε1 > 0 such that if

sin(θ)√
εκ

≤ ε1,
|h0|∞

ε
+ |∂2

xh0|0 + ε
1

4 |h0| 5
2

+
√

ε‖(u0, w0)‖H2 ≤ ε1, (77)

then there exists γ1, so that the following energy estimate holds

∂

∂t

(
E(u, w) + µ K(h)

)
+ γ1µ G(u, w) ≤ 0.

Here E, K, G denote the functions

E(u, w) =

2∑

j=0

‖∂j
x(u, w)‖0 +

(
(Id + β(h))∂tu, ∂tu

)
,

K(h) = c
( 2∑

j=0

|∂j
xh|0 + |∂th|20

)
+ κ

( 2∑

j=0

|∂j+1
x h|0 + |∂xth|20)

G(u, w) =

2∑

j=0

‖∇∂j
x(u, w)‖2

0 + ‖∇∂t(u, w)‖2
0.

Remark. As we shall see later, this estimate is sufficient to obtain estimates of
the fluid speed (u, w) in the classical Sobolev spaces H2(Ω), H3(Ω).

Proof. Following the paper of T. Nishida and coauthors [12], we shall decompose
the proof into several steps. First, we show the following result.

Proposition 1. There exists ε1 > 0 so that for

|h0
xx|0 + ε

1

3 |h0| 5
2

+
√

ε‖(u0, w0)‖2 ≤ ε1,

the solution (u, w),∇p of Navier-Stokes system satisfies for i = 0, 1

‖u‖2+i + ‖∇p‖i ≤
C

µ

(
‖ut‖i + (s + Re−1)

(
‖∇u‖0 + ‖∇ux‖0 + ‖∇uxx‖0

))
. (78)

In order to prove that proposition, we consider the Stokes problem
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−µ∆u + 2µ∇p = F − ut − Uux − U ′(w, 0)t,
div u = 0,
u|z=0 = 0, u|z=ε =

(
u|z=ε, w|z=ε

)
.

(79)

We apply Lemma 4 to the Stokes problem (79) and obtain

µ‖u‖2+i+2µ‖∇p‖i ≤ C
(
‖F−ut−Uux−U ′(w, 0)t‖i+µ

( |u|z=ε|1+i

ε
3

2

+
|w|z=ε|i

ε
5

2

))
. (80)

The boundary terms are bounded by

|u|z=ε|1+i ≤
√

ε
(
‖∇ux‖0 + ‖∇uxx‖0

)
,

|w|z=ε|i ≤ ε
√

ε
(
‖∇ux‖0 + ‖∇uxx‖0

)
.

We obtain the second inequality using the divergence free condition in the form wz =
−ux and a Poincaré inequality. Similarly, the linear term Uux +U ′(w, 0)t satisfies for
i = 0, 1

‖Uux + U ′(w, 0)t‖i ≤ C s
(
‖∇u‖0 + ‖∇ux‖0 + ‖∇uxx‖0

)
,

whereas ‖ut‖i ≤ C‖∇ut‖0. Inserting those inequalities into (80), we obtain

µ‖u‖2+i + 2µ‖∇p‖i ≤
C

(
‖F‖i + ‖∇ut‖0 + (s + Re−1)

(
‖∇u‖0 + ‖∇ux‖0 + ‖∇uxx‖0

))
. (81)

Now we consider the nonlinear terms F = (F1, F2). We can write F in the form

F = µ b(h)∇ p + F̃ where F̃ contains only derivatives of h and u. We easily prove
that

‖µ b(h)∇ p‖i ≤ C
(
|hxx|0 + ε

1

3 |h| 5
2

)
‖∇p‖i.

Under the hypothesis of the proposition and for ε1 sufficiently small, the inequality
(81) still holds with F replaced by F̃ .

The second order terms of F̃ have the form µ aj,k(h,∇h)∂j
z∂k

xu with j + k = 2 and
are estimated by

‖µ aj,k(h,∇h)∂j
z∂k

xu‖i ≤ µ C(ε1)
(
|hxx| + ε

1

3 |h| 5
2

)
‖u‖2+i.

Next, we consider the nonlinear terms involving a third order derivative in h. More
precisely, those terms have the form µ bj,k(h,∇h, z)u ∂j

x∂k
z h with j +k = 3. We prove

easily that

‖ bj,k(h,∇h, z)u ∂j
x∂k

z h‖0 ≤ C(ε1)ε
3

2 |h| 5
2

(
‖∇u‖0 + ‖∇ux‖0

)
,

‖ bj,k(h,∇h, z)u ∂j
x∂k

z h‖1 ≤ C(ε1)
√

ε ‖u‖2 |h| 7
2

.

(82)

We shall obtain a bound for |h| 7
2

: for that purpose, we consider the equation on the
boundary z = ε:

p|z=ε −
c

ε
h + εWhxx + ux|z=ε = H2. (83)
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We apply the operator ∂
3

2
x to (83) and take the scalar product with ∂

7

2
x h. Using

Cauchy Schwarz inequality, we obtain

c

ε
|h|25

2

+ εW |h|27
2

≤ |h| 7
2

(
|∂

3

2
x p|0 + |∂

5

2
x u(ε, .)|0 + |∂

3

2
x H2|0

)
(84)

We set κ = ε2 W . In the derivation of the shallow water model, we assumed that
κ = O(1): in particular, κ can be set to 0. In what follows, we assume for the
moment that κ > 0. We deduce from (84) that

κ |h| 7
2

≤ Cε
(
‖∇p‖1 + ‖∇uxx‖0 + |∂

3

2
x H2|0

)
. (85)

The Sobolev space H
3

2 (T) being an algebra, we easily prove that

|∂
3

2
x H2|0 ≤ C

(
‖∇ux‖0 + ‖∇uxx‖0 + ε‖u‖3

)
+ Cε2(‖u‖2 + |h| 5

2

)|h| 5
2

|h| 7
2

.

Inserting that inequality into (85), one obtains

(
κ − Cε3(‖u‖2 + |h| 5

2

)|h| 5
2

)
|h| 7

2

≤ Cε
(
‖∇p‖1 + ε‖u‖3 + ‖∇ux‖0 + ‖∇uxx‖0

)
. (86)

Substituting (86) into (82), we easily obtain that for ε1 sufficiently small, those terms
have no influence in (78). Furthermore, the other nonlinear terms are of lower order
and have no influence here. The proof of Proposition 1 is then complete.

We are now in a position to obtain energy estimates: according to Proposition 1,
we shall derive estimates for ∂α

x u with α = 0, 1, 2 and ∂t u and their gradients. We
first consider the derivatives in the x-direction. We note γ a constant defined by γ =
2
3 − 2sRe. In the following, we shall denote ‖u‖ = ‖u‖L2(Ω), ((u, v)) = (u, v)(L2(Ω))2

and |h| = |h|L2(T). One can prove the following result.

Proposition 2. Setting u = (u, w), the fluid velocity u and the fluid height h
satisfy

∂t

(‖u‖2

2µ
+

(
c|h|2 + κ|hx|2

))
+ γ‖∇u‖2 ≤ 2s

ε

∫

T

hu|z=ǫ (87)

+

∫

T

H1 u|z=ǫ − 2H2 w|z=ǫ + 2κ s h2hxhxx +
1

µ
((F, u)),

∂t

(‖ux‖2

2µ
+

(
c|hx|2 + κ|hxx|2

))
+ γ‖∇ux‖2 ≤ 2s

ε

∫

T

hxux|z=ǫ (88)

+

∫

T

(H1)x|z=ǫ ux − 2(H2)x wx|z=ǫ − 2s(chx − κhxxx)∂x(h2hx) +
1

µ
((Fx, ux)),

∂t

(‖uxx‖2

2µ
+

(
c|hxx|2 + κ|hxxx|2

))
+ γ‖∇uxx‖2 ≤ 2s

ε

∫

T

hxxuxx|z=ǫ (89)

+

∫

T

(H1)xx uxx|z=ǫ − 2(H2)xx wxx|z=ǫ − 2s(chxx − κhxxxx)∂xx(h2hx) +
1

µ
((Fxx, uxx)).
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Denote F = F̃ +2µ b(h)∇p and β = b(h)(Id−b(h))−1. The function ut and ht satisfy

the estimate

∂t

((
(1 + β(h))ut, ut

)

2µ
+

(
c|ht|2 + κ|hxt|2

))
+ γ‖∇ut‖2 (90)

≤ 2s

ε

∫

T

htut|z=ǫ +

∫

T

(H1)t ut|z=ǫ − 2(H2)t wt|z=ǫ − 2s(cht − κhxxt)∂t(h
2hx)

+
1

µ
((F̃t, ut)) + 2

(
∂tb(h)∇p|z=ǫ, ut|z=ǫ

)
+

1

2

(
∂tβ(h)ut|z=ǫ, ut|z=ǫ

)

+
1

µ

(
β(h)

(
F̃t + 2µ∂tb∇p − Uuxt − U ′(wt, 0)t

)
|z=ǫ, ut|z=ǫ

)
.

Proof. The method for proving (87)– (90) is similar to the one employed by T.
Nishida and coauthors: see [12] for more details. We shall mention here that we have
applied Lemma 5 and used a Körn’s inequality

‖D(u)‖2
(L2(Ω))2 ≥ c(Ω)‖∇u‖2

(L2(Ω))2 ,

with a constant c(Ω) = 2/3 that is independent of ε.

Let us prove Theorem 1: for that purpose, we sum the inequalities (87)–(90). We
obtain

∂

∂t

(E(u, w)

µ
+ K(h)

)
+ γ G(u, w) ≤ Rnl, (91)

where Rnl is defined as

Rnl =
2s

ε

∫

T

hu|z=ǫ + hxux|z=ǫ + hxxuxx|z=ǫ + htut|z=ǫ

+
1

µ

(
(F, u) + (Fx, ux) + (Fxx, uxx) + (F̃t, ut)

)

+
1

µ

(
β(h)

(
F̃t + 2µ∂tb∇p − Uuxt − U ′(wt, 0)t

)
|z=ǫ, ut|z=ǫ

)

+ 2
(
∂tb(h)∇p|z=ǫ, ut|z=ǫ

)
+

1

2

(
∂tβ(h)ut|z=ǫ, ut|z=ǫ

)

+

∫

T

H1 u|z=ǫ − 2H2 w|z=ǫ + 2κ s h2hxhxx

+

∫

T

(H1)x ux|z=ǫ − 2(H2)x wx|z=ǫ − 2s(chx − κhxxx)∂x(h2hx)

+

∫

T

(H1)xx uxx|z=ǫ − 2(H2)xx wxx|z=ǫ − 2s(chxx − κhxxxx)∂xx(h2hx)

+

∫

T

(H1)t ut|z=ǫ − 2(H2)t wt|z=ǫ − 2s(cht − κhxxt)∂t(h
2hx). (92)

We show that under the hypothesis (77), and for ε10 sufficiently small, |R|nl ≤
γ

2
G(u, w): that proves Theorem 1 with the choice γ1 =

γ

2
. Denoting I1 the singular

term in front of 2s/ε, we can prove that

2s

ε
|I1| ≤

2s√
ε
(|hxx| + |ht|)G(u, w)

1

2 .
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Furthermore, we obtain an estimate on |hxx| with the boundary condition

εp|z=ε − ch + κ hxx + εux|z=ε = εH2. (93)

Mutiply (93) with hxx and integrate over T: for ε1 sufficiently small, |hxx| ≤
C

κ
G(u, w)

1

2 . Similarly, using the boundary condition (76), we prove that |ht| sat-

isfies the same estimate. As a consequence, we have proved that

2s

ε
|I1| ≤ C

s

κ
√

ε
G(u, w)

and for ε1 small enough, that term is ”absorbed” in γ G(u, w). We consider the other
boundary terms: one can show that

|
∫

T

∂k
xH1∂

k
xu|z=ǫ| ≤

√
εG(u, w), k = 0, 1, 2. (94)

The boundary terms
∫

T
∂k

xH2∂
k
xw|z=ǫ,

∫
T

∂tH1∂tu|z=ǫ,
∫

T
∂tH2∂tu|z=ǫ satisfy the same

estimate. We consider I2 =
∫

T
sκhxxxx(h2hx)xx:

|I2| ≤ sκ|h|27
2

|h|25
2

≤ C
s√
εκ

(√
ε|h|25

2

)
G(u, w). (95)

The last inequality is obtained with the estimate (86). The other boundary terms
are of lower order and can be bounded similarly.

We finish the proof with the terms involving the nonlinear terms F . Using a Poincaré
inequality and integration by parts in the x-direction, one proves that

|I3| =
1

µ
|(F, u) + (Fx, ux)| ≤ ‖F‖0

(
‖∇u‖0 + ‖∇uxx‖0

)
.

It is a lenghtly but straightforward computation to prove that ‖F‖0 ≤ Cε1 G(u, w)
and I3 is ”absorbed” in the term γG(u, w). We consider the term containing high order
derivatives (Fxx, uxx): an integration by parts yields 1

µ
(Fxx, uxx) = − 1

µ
(Fx, uxxx). We

have to deal with the term I4 =
∫
Ω
(J−2 − 1)uzzxuxxx: the other terms are of lower

order and can be estimated it is easily proved that

|I4| ≤ C(
|h|∞

ε
+
√

ε|h| 5
2

)(µ‖u‖3)‖∇uxx‖0. (96)

Then for ε1 small enough, |I4| is absorbed by γ Fδ(u, w). Similarly, the only term
containing time derivatives that is important here has the form

I5=

∫

Ω

(J−2 − 1)uzztut

=

∫

T

(J−2 − 1)uzt|z=ǫut|z=ǫ −
∫

Ω

(
(J−2 − 1)ut

)
z
uzt. (97)

We deduce uzt|z=ǫ from the boundary condition (75): deriving the equation on uz|z=ǫ

with respect to t, one obtains
∫

T

(J−2 − 1)uzt|z=ǫut|z=ǫ =

∫

T

(J−2 − 1)(H1,t − wxt|z=ǫ − 2
s

ε
ht)ut.
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Those terms have been treated before and we show that |I5| ≤ Cε1 G(u, w).

As a conclusion, we have proved that for ε1 sufficiently small,

Rnl ≤ Cε1 G(u, w) ≤ γ

2
G(u, w).

This completes the proof of Theorem 1.

4. Rigorous derivation of a shallow water model. In that section, we justify
rigorously the derivation of the shallow water model from the Navier-Stokes equations.

Recall that the evolution system for the fluid height h and the discharge rate hv =
∫ h

0
v

can be written, in the shallow water scaling as




ht + (hv)x = 0,

(hv)t +
(6

5
h v2 +

c h2

Re
− (2s)2

75
h5

)

x
− κh hxxx =

1

εRe

(
2s h − 3 v

h

)
+ R̃,

(98)

with R̃ a function of h, (u, w), p and their derivatives. Formally, that function R̃ is
order O(ε(1+Re+Re−1)) and converges formally to 0 as ε → 0. In what follows, we

prove that R̃ converges to 0 as ε → 0 in a suitable functional space. As a byproduct of
the method of derivation, we also obtained lubrication models with a single equation
on the fluid height h that can be justified rigorously.

4.1. Estimate of the remainder in the shallow water model. In that
section, we shall prove that limε→0 R̃ = 0 in a suitable functional space: we first recall
the definition of R̃. Let ũ, w̃, p̃, h̃ a solution of the Navier-Stokes system (74),(75),(76).
We define u, w, p, h = 1 + h̃ solution of the Navier-Stokes system (8), (9), (10) that
was used to derive shallow-water equations associated to ũ, w̃, p̃, h̃ through the change
of variables (43), (48), (56). More precisely, the functions u, w, p reads

(
u

ε−1 w

)
(t, x, z) =

(
U
0

)
+

1

J
DΘt ◦ Θ−1

t (x, ε z)

(
ũ
w̃

) (
t, Θ−1

t (x, εz, .)
)
,

p(t, x, z) = c(1 − z) + εp̃
(
t, Θ−1

t (x, εz)
)
, (99)

with U(z) = s
(
2z − z2

)
and the function R̃ is written

R̃ = R1 + R2 + R3.

The function R1 is defined as

R1 = −∂x R(1)
1 (t, x) − ∂xR(2)

1 (t, x)

+
ε

Re
∂x

( ∫ h(t,x)

0

ux(t, x, ζ)dζ
)

+ κ
((

1 − (1 + ε2h2
x)−

3

2

)
hxhxx

)
(100)

with

R(1)
1 (t, x) =

∫ h(t,x)

0

(
u2 − (u(0))2

)
(t, x, ζ)dζ

+
12

15
v

∫ h(x,t)

0

δu(x, y, t)dy +
2

15 h

( ∫ h

0

δu(t, x, ζ)dy
)2

,

R(2)
1 (t, x) =

∫ h(t,x)

0

(
p − p(0)

)
(t, x, ζ)dζ.



112 D. BRESCH AND P. NOBLE

The function R2 reads

R2 = ∂zR(1)
2 (0) − 3

h2

∫ h

0

R(1)
2 , (101)

with R(1)
2 defined as

R(1)
2 =

ε

Re

∫ z

0

∫ h

ζ

uxx − u(0)
xx −

∫ z

0

∫ h

ζ

2

Re
(p − p(0))x

− ε z

Re

(
(wx(h) +

wz(h)

1 − ε2h2
x

) − (w(0)
x (h) +

w
(0)
z (h)

1 − ε2h2
x

)
)

+

∫ z

0

∫ h

ζ

(u − u(0))t + (uux − u(0)u(0)
x ) + (wuz − w(0)u(0)

z ),

whereas the function R3 is written

R3 =
sh2

4
∂x

(∫ h

0

u − u(0)
)
. (102)

The purpose of that section is to prove the following result.

Theorem 2. Assume that the capillary constant κ has the form κ =
κ√
ε
. Let us

suppose that the initial conditions
(
ũ0, w̃0, h̃0

)
satisfy the assumptions of Theorem 1

and that
sin(θ)

κ
is sufficiently small. Then the function R̃ satisfies the estimate

‖R̃‖
L2

(
0,∞;L2(T)

) ≤ C
√

ε

with C, a constant, that does not depend on ε.

Proof. In what follows, we shall express the remainders Ri as functions of ũ, w̃, p̃, p̃
and use the estimates obtained previously. Let us first note that the functions u, w, p
read

u(t, x, z) = s(2z − z2) +
1

J
ũ(Θ−1

t (x, εz)) = u(0) − 2sh̃z +
1

J
ũ(t, Θ−1

t (x, εz)),

w(t, x, z) = ε
(
w̃ +

zh̃x

J
ũ)

(
t, Θ−1

t (x, εz)
)
,

p(t, x, z) = p(0) − ch̃ + ε p̃(t, Θ−1
t (x, εz)

)

For the sake of simplicity, denote z = θ−1
t (x, εz) defined so that Θ−1

t (x, εz) = (x, z)
and

εz = z
(
1 + h̃(t, x, z)

)
,

The proof of Theorem 2 is done in three steps. We first prove the following result.

Lemma 6. The function R3 satisfies the estimate:

‖R3‖
L2

(
0,∞;L2(T)

) ≤ C
√

ε.
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Proof. The function R3 can be written in the form

R3 =
sh2

4
∂x

(∫ 1+h̃

0

−2sh̃z +
ũ

J
(x, θ−1

t (t, x, εz))dz
)
. (103)

We make the change of variable z(1 + h̃(t, x, z) = εz in the integral (103):

R3 =
sh2

4
∂x

(
− sh̃h2 +

1

ε

∫ ε

0

ũ(t, x, z)dz
)

= −s2h3

4
(1 + 2h̃)h̃x +

1

ε

∫ ε

0

ũx(t, x, z)dz.

Recall that we have obtained an estimate of |hxx|0 in the form

|hxx|0 ≤ C

κ

√
ε
( 2∑

j=0

‖∇∂j
xũ‖0 + ‖∇ũt‖0

)
.

We deduce from Theorem 1 that |h̃|
L∞

(
0,∞;L2(T)

) ≤ C. Furthermore, using Poincaré

inequality, one finds
∣∣∣∣
1

ε

∫ ε

0

ũx

∣∣∣∣
0

≤
√

ε‖∇ũx‖0.

As a consequence, the function R3 satisfies ‖R3‖
L2

(
0,∞;L2(T)

) ≤ C
√

ε. This

completes the proof of the lemma.

We next show that the correction terms obtained from the averaged convection
terms and pressure terms are order O(

√
ε).

Lemma 7. The function R1 satisfies the estimate:

‖R1‖
L2

(
0,∞;L2(T)

) ≤ C
√

ε.

Proof. After a change of variable and using the continuity of fluid stress, We write

R(2)
1

R(2)
1 = ε h

(
H2 − ũx|z=ε

)
+

∫ ε

0

J
(
p̃(t, x, z) − p̃(t, x, ε)

)
dz.

It is a straightforward computation to prove that

|∂xR(2)
1 | ≤ Cε

(
|H2|1 + |ux(·, ε)|0 + |uxx(·, ε)|0

)

+C
√

ε
(
‖p̃ − p̃(·, ε)‖0 + ‖p̃x − p̃x(·, ε)‖0

)
.

From the Poincaré inequality and estimates on ‖∇p̃‖0 and ‖∇p̃x‖0 together with the
estimates on H2, we deduce that

|∂xR(2)
1 |0 ≤ C

√
ε
( 2∑

j=0

‖∇∂j
xũ‖0 + ‖∇ũt‖0

)
.
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Following the method to obtain an estimate of R3, one shows that ∂xR(1)
1 satisfies

|∂xR(1)
1 |0 ≤ C

√
ε
( 2∑

j=0

‖∇∂j
xũ‖0 + ‖∇ũt‖0

)
.

Furthermore, one can prove that

|ε
∫ h

0

∂x ux(t, x, ζ)dζ|0 ≤ Cε
3

2

(
‖∇ũx‖0 + ‖∇ũxx‖0

)
.

Then, there remains to deal with the capillary term Iκ = κ
(
(1− (1+ε2h2

x))−
3

2 hxhxx

)
.

Here we use the fact that |hxx|0 is a bounded function of time and |hx|∞ ≤ |hxx|0:
one can prove that |Iκ| ≤ Cκε2|hxx|0. From the estimates on |hxx|0, we obtain

|Iκ| ≤ Cε
3

2

( 2∑

j=0

‖∇∂j
xũ‖0 + ‖∇ũt‖0

)
.

This completes the proof of the lemma 7.

We finish the proof of the Theorem 2 with the estimate of R2.

Lemma 8. The function R2 satisfies the estimate

‖R2‖
L2

(
0,∞;L2(T)

) ≤ C
√

ε.

Proof. The function R2 is written R2 = ∂zR(1)
2 (0) +

2

h2

∫ h

0

R(1)
2 (t, ., ζ)dζ. We

first consider the function ∂zR(1)
2 (0) defined as

∂zR(1)
2 (0) =

ε

Re

∫ h

0

uxx − u(0)
xx −

∫ h

0

2

Re
(p − p(0))x

− ε

Re

(
(wx(h) +

wz(h)

1 − ε2h2
x

) − (w(0)
x (h) +

w
(0)
z (h)

1 − ε2h2
x

)
)

+

∫ h

0

(u − u(0))t + (uux − u(0)u(0)
x ) + (wuz − w(0)u(0)

z ),

First, following the proof of Lemma 7, one can show that

| ε

Re

∫ h

0

uxx − u(0)
xx −

∫ h

0

2

Re
(p − p(0))x|0 ≤ C

√
ε
( 2∑

j=0

‖∇∂j
xũ‖0 + ‖∇ũt‖0

)
,

|
∫ h

0

(uux − u(0)u(0)
x ) + (wuz − w(0)u(0)

z )|0 ≤ C
√

ε
( 2∑

j=0

‖∇∂j
xũ‖0 + ‖∇ũt‖0

)
.

Furthermore, we easily show, after a change of variable, that

|
∫ h

0

(u − u(0))t|0 ≤ C

ε

( ∣∣∣∣
∫ ε

0

|ũ|
∣∣∣∣
0

+

∣∣∣∣
∫ ε

0

|ũt|
∣∣∣∣
0

)
.
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Then, using Cauchy Schwarz and Poincaré inequalities, one obtains

|
∫ h

0

(u − u(0))t|0 ≤ C
√

ε
(
‖∇ũ|‖0 + ‖∇ũt‖0

)
.

The boundary term −ε(wx(h)−w
(0)
x (h))/Re is written, using divergence free condition

and the no slip condition

− ε

Re
(wx(h) − w(0)

x (h)) =
ε

Re

∫ h

0

(uxx − u(0)
xx ).

That term has been treated previously. Finally, we consider the boundary term

ε

Re
(1 − ε2h2

x)−1
(
wz(h) − w(0)

z (h)
)

=
ε

Re

∫ h

0

(uxz − u(0)
xz ).

After a change of variable, we obtain

∣∣∣
ε

Re
(1 − ε2h2

x)−1
(
wz(h) − w(0)

z (h)
)∣∣∣ ≤ C

( ∣∣∣∣
∫ ε

0

|ũz|
∣∣∣∣ +

∣∣∣∣
∫ ε

0

|ũx|
∣∣∣∣ +

∣∣∣∣|
∫ ε

0

|ũxz|
∣∣∣∣
)

≤ C
√

ε
(
‖∇ũx‖0 + ‖∇ũ‖0

)
.

Finally, the integral term
∫ h

0
R(1)

2 /h2 is estimated similarly. One can prove that

| 1

h2

∫ h

0

R(1)
2 |0 ≤ C

√
ε
( 2∑

j=0

‖∇∂j
xũ‖0 + ‖∇ũt‖0

)

and Lemma 8 is proved.

As a consequence, from Lemmas 6, 7, 8, we deduce that the remainder term R̃ in the
shallow-water system (98) satisfies

‖R̃‖
L2

(
(0,∞),L2(T)

) ≤ C
√

ε.

This concludes the proof of Theorem (2) and the mathematical justification of
the shallow water model (98).

4.2. Lubrication models. As a by product of the derivation of shallow water
equations, we shall obtain a hierarchy of model with a single equation on the fluid
height h̃: these are lubrication models. First let us recall that h, v satisfies the mass
conservation equation

ht + (hv)x = 0. (104)

As a first approximation, hv satisfies the expansion

h v = 2s
h3

3
+

∫ h

0

(u − u(0)). (105)

Substituting equation (105) into (104), one obtains the Burgers type equation

ht + (s
h3

3
)x = −∂x

( ∫ h

0

(u − u(0))
)
. (106)
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We then deduce from the analysis of the previous section that

−∂x

( ∫ h

0

(u − u(0))
)

= O(
√

ε)

in the L2
(
(0,∞), L2(R)

)
-norm and this justifies the fact that the Burgers type equa-

tion (106) is a first approximation of shallow water flows. Furthermore, we can obtain
more accurate models, using the more precise expansion of hv:

(h v)(t, x) = 2s
h3(t, x)

3
+ ε

∫ h(t,x)

0

u(1)(t, x, ζ)dζ + εRe

∫ h(t,x)

0

R(1)
2 (t, x, ζ)dζ, (107)

where u(1) is the function

u(1) = −2 p(0) − Re
(
u

(0)
t + u(0)u(0)

x + w(0)u(0)
z

)
.

Then, it is a lengthly but straightforward computation that h satisfies the lubrication
equation

∂th + ∂x

(h3

3

(
2s + ε(Re

8s2

5
h3 − 2 c)hx + 2εκhxxx

))
= Rlub, (108)

and the function Rlub satisfies the estimate

‖Rlub‖
L2

(
0,∞;L2(R)

) ≤ Cε
3

2 .

This justifies the lubrication approximation for shallow water flows.

∂th + ∂x

(h3

3

(
2s + ε(Re

8s2

5
h3 − 2 c)hx + 2εκhxxx

))
= 0. (109)

At this stage, one can derive a viscous Burgers equation: let us write h in the form
h = 1+εh(ε(x−2s t), ε2τ). This is precisely the diffusive scaling used in [15], to derive
a viscous Burgers equation from the full Navier-Stokes system. Then one proves that
h satisfies, up to zeroth order in ε the equation

∂th + α∂x(h
2
) = β ∂xxh, α, β > 0. (110)

As a conclusion, we recover a result similar to that of H. Uecker [15] in the particular
case of periodic functions in the streamwise variable: here we can also prove that the
perturbation h decays exponentially fast whereas localized solutions of (110) have a
self similar decay.

5. Conclusion. In this paper, we have rigourously justified the derivation of
a shallow water system. Such proof has been possible due to the iterative scheme
which is described in Subsection 2.2. Mathematical justification of the shallow water
derivation described in [8] and for which well posedness has been studied in [6] is
an open problem. It corresponds to a Navier slip boundary condition assumption
on the bottom instead of a no-slip condition with a particular relation between the
Reynolds number and the aspect ratio coefficient. Remark also that our proof has
been written from the 2D Navier-Stokes equations to a 1D shallow water systems
but the generalization to the 3D-2D case may be done in the same way with higher
derivative estimates. The main hypothesis is a non zero surface tension coefficient.
Looking at the vanishing surface tension limit is an interesting open problem that is
postponed to a forthcoming work.
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