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PREFACE

The idea of a mathematical grammar was introduced
by Chomsky (1956) as an independent subject, formalizing
the intuitlive notions of a grammar in languages used for
communication, in terms of a2 set of substitution rules
which generate a set of "words" or a "language". The study
of these grammars developed concurrently with automata
theory, and each of these subjects has been used in study-
ing the other, thus becoming closely intertwined.

Recently a new class of automata known as "develop-
mental systems" has appeared, originally introduced as a
model for certaln types of bilologieal growth. These autom-
ata are now belng actively investigated using mathematical
linguistics as a tool.

In the first two chapters we bring together the
fundamental known results about the basic types of automata
and mathematical grammars. In Chapters 3 and 4 we describe
developmental systems, and present some language-theoreti-
cal results pertaining to them, some of which are new and
some that have already appeared. Chapter 5 deals with
computer simulation of developmental systems, using some

specific models for illustration.

i1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENT

The author wishes to acknowledge the patience, en-
couragement, and valuable help of Prof. F. N. Springsteel,
which made this thesis possible.

iiil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Chapter
1. BASIC RESULTS OF AUTOMATA THEORY . . « & « &
Finite Automata. ¢« ¢ o « o o ¢ e s e v .

State Graphs and Regular Expresslons . .

2. PHRASE-STRUCTURE GRAMMARS.: « o « o« o o o o
The Classification of Grammars . . . .
Regular LanguagesS. «. « o « « o o o o o
Context-free Languages + « o o o o o«
Recursively Enumerable Languages . . .
5. SYNCHRONQUS DEVELOPMENTAL MODILS . . . . .
Examples of L-systemsS. « o ¢ o ¢ o o @
4, DEVELOPMENTAL SYSTEM LANGUAGES , . . . .
Some Basic Results . + ¢ ¢ o ¢ o « o« &
OL-systems . « « o o s o o o o o o« o &
JL-systems « + + ¢ o v o+ s o ¢ o o & o
2L-systems . . . . . . c o & e ¢ s
SUNNMEBYY e o ¢ o o o o s » o s s & o o o

5. COMPUTER SIMULATION OF DEVELOPMENTAL SYSTEMS
OL-systems . o« o ¢« « o ¢ o o o o o o o
lL=sSystems « o« ¢« ¢ ¢ o o o « ¢ s o o o
2L-SysStems « o« ¢ o « o ¢ o 4 o 0 @ o
REFERENCES. . « ¢ & o ¢ o o « o = . ¢« e s

iv

Properties of Regular lLanguages.

Turing Machines. .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1l
13
17
17
20
21
24
26
29
33
33
35
38
40
45
46
46
48
50
65



Chapter 1
BASIC RESULTS OF AUTOMATA THEORY

The study of automata theory began with the intro-
duction of Turing machines (Turing, 1936). This was prob-
ably the first mention of an abstract mathematical "mech-
anism". Later the idea of a finite automaton was crystal-
lized, also as a mechanism or device, but operating in a
much more restricted way. Its relation to lingulstics as a
recognizer of a certain type of mathematical language was
quickly established, as well as the convenlent properties
of those languages. These results led to the search for
other classes of automata capable of recognizing different
classes of languages. In this chapter we outline the idea
of a finite automaton and the characterlization of 1its lan-
guage in terms of regular expressions, and then briefly
examine Turing machines. In the interest of brevity and

clarlty only outlines of proofs and constructions are given.
1. PINITE AUTOMATA

The system that is now known as a finlte automaton
has evolved as the most basic generalization of discrete
systems, l.e. systems which can exist in any of a finite

number of states and change state at dliscrete points in

1
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time. ©Such systems have appeared in various fields such as
mechanics, biology (McCulloch and Pitts, 1943), and finally
digital computer design, at which time interest in studying

the baslic properties of discrete systems developed.

Definition A finite automaton (f.a.) is a system

(k, 2, 5, Qs F) where
K 1is the finlte set of internal states

2 is a finite invut alphabet
$: Kx¥X —— K 1is the next state function

q, € X 1s the initial state

F €K 1is the set of final states.

Definition 1. ¥ is the set of "words" or "sentences"

consisting of strings of symbols in 2 , including the empty

word € (the word comsisting of no symbols). 2:% is called

the "star closure" of 2 , or the free monoid generated by Z.
2. Z7= 5% . Sel .

The finite automaton M can be thought of as a mach-
ine receiving an input word of %inite length, one symbol at
a time. As each input symbol is received, the © function
is applied to determine the next state of the machine. The
arpument of the © function can be extended to include input
words, instead of single input symbols, by a recursive def=-
inition:

6(a,xa) = §( 5(q,x),a) for any x € ¥¥, a € L

and S(q, €) =q where € is the empty word.
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3

Definition 1. A finite automaton M gccepts a word x € Z;*

if S(qo, x) is in P. :
2. L(M) = ixe Z* , S(qo, x) € F} (the set of
words in ¥ accepted by M).

2. S is a regular set if 8 = L{M) for some finite

automaton M,

Definition An equlvalence relation R over a set T is

right invariant if x R y implies xz R yz for all z in T.

Theorem 1.1 (Myhill, 1957) Suppose L € S ¥. Then the
followlng are equivalent:

l. L 1s a regular set

2. L is a unlon of equivalence c¢lasses of a right
invariant equivalence relaiion over E:* of finite index.
(An equivalence relation has fianite index if its set of
equivalence classes is finite.)

3. The equivalence relation R is of finite index,
where R 1s defined by: x R.y if and only if for all ze S
xz € L when yz € L. |

Proof. 1 => 2: Suppose L is accepted by a f.a. M.
Define E by x E y if and only if S(qo, x) = &(ags ¥y). E
is right invariant, and has finite 1ndex since K is a finite
set. Then L is the union of equivalence classes containing
a word X such that S(QO, x) € P,

2 =>»3: Any equivalence relation E satisfying con-
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dition 2 1s a refinement of the equivalence relation R,
hence E having finite index implies R has finite index,

3 = 1: Construct the f.,a, M'= (X', 3', &', q,',F')
as follows:

K' is the set of equivalence classes of R. Denote
the equivalence class contalning x by [X].

=3

&' ([x], a) =[xa] (consistent since R is right in-

variant)
1
a,' =[€]
o= fix] | xesl.
Then ¢'(q,', x) =[x], and hence M' accepts L. Q.E.D.

Corollary The minimum state f.a. accepting L is unique,

and 1s isomorphic to M' of the previous theoren.,

Proof. From the previous theorem, any f.a. M accept-
ing I defines an equivalence relation in Z% which 1s a re-
finement of R, so that M has at least as many states as M',

Furthermore if M has the same number of states as M?!,
each state of M can be ldentified wlith one of the states of
M'. Q. E.D.

Definition A non=-deterministic finite automaton is a sys-

tem satisfying the previous definition of a (deterministic)
finlte automaton, except that for any q € K and a € 3 ,

§(a, a) can be any subset of K, instead of a single state
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in X, with the 1nterpretatlon that in any particular in-
stance, the next state can be chosen to be any state con-
tained in this subset.

A word x is accepted by a non-deterministic f.a. M
i1f there 1s a sequence of states possible under the input

X leading to a state in F.

Theorem 1.2 If L is accepted by a non-deterministic f.a.

M, it is accepted by a deterministic f.a. M'.

Proof. M' can be constructed from M by defining the
states of M' to consist of all subsets of the states of M.
The set of final states of M' will be the set of all sub-

sets of states of M contalning a final state of M.
2. STATE GRAPHS AND REGULAR EXPRESSIONS

A state graph for a f.a. presents a simple picture
of the operation of the machine, and has been a traditional
means of specifying a particular machine behavior. Regular
expressions were introduced as a way of specifying the lan-
guage, or set of words, recognized by a particular f,a.

We now study the relation'between these two characteriza-

tions of a f.a.

Definition A state diagram or graph is a finite directed

gravh in which the vertices represent states of a f.a. and

the arrows represent transitions between states in accord-
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ance with the next state function.

Example 1.2a Suppose K = fqo, q1§ , Z=f0,1%, 7= a
and S is given by S(qoy O) = qO’ S(qos 1) = ql’ S(Ql9o)

= q_, S(ql, 1) = q,. The corresponding state graph is

1

(L] () )"

0

This 1s an example of a deterministic finite automaton.

Example 1.2b Suppose XK = {qo, a qeg , S=4%o0, l; ,

| ,» ola, 1) =
$ays qzi, S(ql, 0) = q_, 5(ay» 1) = a, S(qa. o)=¢,
olay, 1) = b .

The state diagram 1s

F=q,, and S is given by S(qo, 0) = q

Note that this machine 1s non-deterministic.

Definition 1. RS = $xy | x €R, y€ s}.
2. R+s=§x |xerorxes}.
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7

Definition A regular expression is an expression obtained

by a finite number of applications of the above operations
and star closure % (see definition on p. 2) to elements of
Tufel vigl , and to expressions obtained from them by
such applications of these operations.

Every regular expression represeats a set of words
in &%, i.e. a "language". However an arbitrary subset of
zﬁ'may not be representable by a regular expression.

Theorem 1.3 below will state that a subset of 2:*
is a regular set, or regular language, if and only if it is

representable in terms of some regular expression.

Definition If R is any set of words in >* and x € Z*,

the derivative of R with respect to X is defined as

DR= ]t | xt€R.]S

The derlvatives of any regular expression can be

computed using the following rules:
€ iAf € is in R
A(R) =
$ if € is not in R
A(RS) = A(R) A(s)
D,(a) = €
D,(b) = P forv =€ orb=¢, or b £ a
. — L
D (R*) = D,(R) R
D,(8S) = D,(R) 8 + X(R) Du(S)
D(R+S) = Dy(R) + Da(s)

Note that although € denotes the empty word, it
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can be an element of a language, hence 1s distinguished
from the empty set ¢ .
Every regular expression has a finite number of dis-~

tinet derivatives.

Theorem 1.3 (Xleene, 1956) If M is any finite automaton,
L(M) can be represented by a regular expression over Z,
and for every regular expression R there is a f.a. M such

that L{(M) is represented by R.

Proof. The idea of the construction in both cases
1s that each distinct derivative of R corresponds to a
state of the machine. The initial state always corresponds
to Dg(R) = R, and will now be denoted Qe» instead of q, as
was the case previously, to avoid confusion. The state

diagram consists of transitions of the form

a
~

where q_ 1s identified with Dx(R)’ and g, with Deo(R) s

because of the relation Dxa(R)'= Da(Dx(R))'

Hence to construct the state dlagram glven a regular
exvression, compute the distinct derivatives and assoclate
a state with each, according to the above system. The re-
sulting f.a. i1s the minimal one for the given language.

Given a state diagram, to construct the correspond-

ing regular expression, form a system of equations of the
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form
DR = all)xaR-i--" -i-aananR + oK

where 2. =§al, Boy seey anl and o< = € 1f the state
assoclated with DxR is a final state, ¢ otherwise. There
wlll be one equation for each state of M. Then use the
state diagram to 1dentify equal derlvatives, and solve the
system of equations for R. Q.E.D.

An inference rule that is often useful in solving
the system of equations is

R=SR+T = R = §°7T

if € is not in S, where R,S,T are regular expressions.

These procedures are illustrated by the following

examples.

Example 1l.2c¢ Suppose R = 0(0%10)*0. Construct the corres-
ponding state diagram.

For simplicity let Dx stand for D R:

De = R

D, = (0¥10)%0

D,, = (0¥10)(0*10)%0

Dy, = (0¥10)(0%*10)%0

D, = Doy™ Du = Dy, = Do, = P
Dio= Digo = B

Dovo™ Do

Hence there are three distinct derivatives (in addit-

ion to D, = R), so there are four states, and the state
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graph is:

Note that the initial state is Qe

and the final
state 1is qoo'

This 1is the minimal f.a. accepting the language rep-

resented by the given regular expression.

Example 1l.2d Find the regular expression assoclated with

the diagram

The final state is B.

Assoclate D, with A and D, = D, with B. Then form
the equatlions

D¢ = R = 0D, T 1D,
Dy, = OD 4 ip, + €

From the dlagram 1t is clear that D, = D¢, D5 = Deo
and D, = D;. Hence the equations become

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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11

R = OR + 1D,

D, = OR + 1D, + €
Using the previously mentioned inference rule, the second
equatlion can be solved for D,:

p, = 1%(or+ € ) = 1¥R + 1%

This expression 1s substituted into the first equation to
get

R = OR + 1(1%0r + 1%)
= OR + 11%OR + 11*
= (0 + 11%0)R + 11%
R = (0+ 11%0)*11%.

3. PROPERTIES 0F REGULAR LANGUAGES

In this section we present the convenient properties

of the class of regular languages.

Theorem 1.4 If L is a regular set, then 7_* - L = L' is

a regular set.

Proof. L regular implies L is accepted by a f.a.
M =(K,Z2,95, q,» F). Then L' is accepted by M'= (X,Z,
S ’ qoi K - F)-

Theorem 1.5 If L, and L, are regular sets then Iy N L,y

is regular.

Proof. I; is a union of equivalence classes of a

right invarlant equivalence‘relation Ry, and L2 is the
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union of equivalence classes of a right invariant equiv-
alence relation R,. Then the lntersection of these two
unions is a union of equivalence classes of the common

equivalence relation er\ RE'

Theorem 1.6 If Iy and L, are regular then Iy VU L, 1is

regular.

Proof. Iy LV L, =(Iy'n Le')', and apply the two

preceding theorems.

Corollary The class of regular sets forms a Boolean al-

gebra.,
Theorem 1.7 Any finite set is regular.

Proof. A f.a. accepting a single word 8180 see ap
can be constructed by ldentifyling each a; with a state of
M, and adding an initial state and a2 final state. Then any
finite set 1s a union of single words, hence is regular by

application of Theorem 1.6,

———

Theorem 1.8 If I, and L, are regular, then L1L2 =
ixy I x€ L, vy€ I‘Z} is regular.

Proof. A non-deterministic f.a. M3 can be construc-
ted whlch initlally behaves like My, the f.a., accepting L,
and as the input is read, at any voint chooses either to
remaln as Ml or convert to simulation of M,, the f.a. ac-

cepting Lp. Then M3 accepts Ljlo.
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Theorem 1.9 If L 1s regular then 1* 1is regular,

Proof. If M is a f.,a. accepting L, then a non-deter-
ministic f.a. M' can be constructed which acts like M until
a final state 1s reached, then chooses either to stop or
return to q, and continue reading the input.

With the above results, Kleene's theorem may now be
restated In terms of the closure properties of regular lan-

guages,

Thegrem 1.10 The class of regular sets 1s the smallest
class contalning all finite sets and closed under union,

concatenation (as defined in Theorem 1.8) and star closure.
4, TURING MACHINES

The Turing machine (TM) is a device which has very
general powers of computation and recognition; in fact no
"srocedure', i.e. finite sequence of instructions has been
found that could not be modeled by =a Turing machine., This
leads to the conjecture, known as Church's thesis, that
there 1s a TM which reallzes any algorithm or procedure.

A Turing machine baslcally consists of:

l a tape divided into cells which is infinite
in length in one direction

2 a finite set I of tape symbols

2 a finlte control which at any time contains

one of a finite set K of control states
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4 a tape head which scans one cell of the tape
at a time.
A Turing machine 1s defined as a system T =
(x,>,I", 5, ag,s F), with K and " as specified above, and
Z =2 EB} is the input alphabet, where B is
the blank symbol,
8: K*M —— K M x {L, R} 1is the transi-
tion functlion,
qo € K 1s the start state,
&€ K is the set of final states.
A single move lnvolves reading the symbol under the
tape head, and then
1l writing a symbol on that cell,
2 changing the control state, and
3 moving right or left one cell,
all in accordance with the transition function & .
Initially an input word of length n is entered in
the leftmost n cells of the tape. The machine, starting in
state q, scanning the leftmost cell, then performs a compu-~
tation conslisting of a serlies of moves determined by the
transition function. The machine halts 1f it enters 2 con-
figuration for which its ® function is not defined.
When used as a recognizer, the TM accepts or rejects

any lunput word presented to it. The language accepted by a
TM is defined to be the set of words in 3.* which cause the

™ to enter a final state and halt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

It is often convenient in Turing machine construction
to make use of "modifications" of the basic TM definitilon:

A non-deterministic TM i1s not limited to a single
cholce for the next move in all configurations, but rather
may have several choices,

A multi-track T has its tape divided into several
tracks, with a one-to-one correspondence between the cells
on each pair of tracks. This essentlally amounts to con-
sidering a tape symbol as a k«tuple.

A multi-tape TM has several tapes, each with its own
independent tapre head.

These modifications, as well as others, do not in-
crease the computing power of the TM, and it can be shown
that there is a2 standard TM equivalent to each of these
modified machines.

As an example, consider the langusage E l2n i nz O}.
Wie describe macroscopically a ™ M accepting this language.
M has a second tape with its own head, which is used as a
binary counter, with the least significant digit in the
leftmost cell. M scans the input word moving left to right.
If a symbol other than 1 1s encountered, the machine halts
and rejects. LEvery time a 1 is read, M lncreases the
stored count by one, so that tape 2 contains a count of the
number of 1's scanned. When the end of the input word is

reached, M accepts 1f the word on tape 2 is of the fornm

000301-
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A linear bounded automaton (lba) 1is a single-tape
TM which uses only the input word portion of the tape for
computing. ™ contains two speclal endmarker symbdbols which
are placed at the ends of the input, and which form spacial
operating bounds for the machine. The terms "deterministic"
and "non-deterministic" have the same meaning for lba's as

for genereal Turing machines.
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Chapter 2
PHRASE~STRUCTURE GRAMMARS

Mathematical grammars are formallzations of the gram-
mars that we use in natural languages. A grammar consists
of a set of symbols and a set of rules for constructing
"sentences" or "words" (both terms are used interchange-
ably). Just as in English a sentence is made up of a noun
phrase and a verb phrase, a formal grammar contains a spe-
cial symbol S called a "sentence symbol", and a rule S— o«
where ol is a string of symbols, corresponding to the rule
(sentence) —> (noun phrase)(verb phrase) in English. The
remaining rules are used to generate sentences from oC.

The collectlion of all sentences derivable by a grammar 1s
called the language of that grammar,

This chapter defines and examines the hierarchy of

mathematical grammars.
l. THE CLASSIFICATION OF GRAMMARS

Definition A phrase structure grammar is a system G =

(¥,?,P,S) in which
N is a finlte set of variables,

T 1s a finite set of terminal symbols,

S € N 1s the start symbol oxr sentence symbol,

17
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P is a set of productions of the form ot—s B
where L € (NuU T)* = {€} and g € (N v T)¥,
If &« — # 1s a production in G and ¥ and & are
strings in (N v T)¥, then ¥ o« § = ¥p§ is a direct deri-
vation in G. If XK= K,, X,= 0(3, cees

L3
O(m_lﬁ DLm (for some m 2 l) then O(l =:0(m is a

derivation in G.

Definition L(G), the language generated by the grammar G,

is the set iwe T I S=%=>w}.

Exam»le 2.1a Suppose N =% 8, A}, ™ = §0, 1}, and
P consists of the productlions:

S —» 04 (P1)

A—> 04 (P2)

A——> 18 (P3)

A—>0 (P4)

Then L{G) is the set represented by the following
regular expression:
Lcg)=0 (0 10)0
Pl P2 P3 P1 P4

where each component arises from application of the indi-
cated production. Examples of sentences in L(G) are 00,
0100, 000100, 00010000100. {The finite automaton accepting

this languacze was constructed in Examvle l.2c.)

It is not always easy to characterize explicltly
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19
the language generated by a grammar.

Definition 1. A context-sensitive grammaxr is a grammar

with the property that if oc-—e.p is a production in P,
then lol € |B|l , where |¥| denotes the number of symbols
in a string ¥ .

Since 3 cannot be € , a context-sensitive language
cannot contaln € .

2. A context-free grammar is one such that for

every production «X—=f in P, & is a single variable
in N and @ 1s any string of variables and terminals.

The definition implies that in a derivation any
variable can be replaced independent of the context in
which it appears.

3. A regular grammar 1s a grammar such that the
only productions are of the form A—> 2B or A ~-» & wWhere
A,BE N and a € T.

Example 2.la presented a regular grammar. Some

further examples now follow.

Ixamole 2.1b The language a¥p* corresponds to the follow-
ing regular grammar: N = i S,‘V} , T = § a,'bg y and P

consists of:

S —>» asS V — bV
S — bV V-~ 1D
S —p a S—>b

This language is called a Tregular language since it
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20
is generated by a regular grammar,

Example 2.1lc Let N = fS}, Tr= {a, be}, ?=§(S-——99.Sb),

(s — ab)} . Then G is a context-free grammar, with L(G) =
ianbn | nz 1§ . Compare this context-free language with

the regular language in example 2.1b,

Example 2.1d The language L(G) = ianbncn ln > 1} is
context-sensitive since 1t corresponds to the grammar whose

productions are

S —» aSBC bC — be
s —» aBC ¢cC —3 cc
CB — BC aB —» ab
bB /™ bb

2. REGULAR LANGUAGES

The following two theorems provide the connection

between regular languages and finite automata.

Theorem 2.1 If ¢ = (N,7,P,S) is a regular grammar, then
there is a f.a. ¥ = (¥,Z, S, q,, F) which accepts L(G),
1.e. L(M) = L(G).

Proof. Construct M from G as follows:

K=NUVU {a} (A € X)
=7
q,= S

_ { fAl if P does not contain S
iS..A} if P contains S
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' ¢ l P contains B— aC} if B—>a is not in P
S(B; a) =

{G l P contains B—yaCiV fal if B—a 1s in P.

Then the non-deterministic f.a. M accepts L(G). Q.E.D.

Theorem 2,2 If M is a finite automaton, there is a reg-

ular grammar G such that L(G)= L(M).

Proof. Define G as follows: If M = (K,%, &, q,,F),
then G = (N,T,P,S) where N= K, T=5 , §=q_ and P is de-
fined by

1. B—> aC is in P if $&(B, a) = ¢C

2. B~—>a is in P if S(B, a) = C and C is in P.

Then G generates L(M). Q.E.D.
S CONTEXT—FREE LANGUAGES

Let us now examine some properties of context-free
languages and some decidability questions concerning these

languages.

Theorem 2,3 If G 1s a context-free grammar, there ls an
algorithm for determining if G generates a non-empty lan-

guage.

Proof. This follows from the fact that if N con-
tains k symbols, then if L(G) 1s non-empty there must be a

minimal derivation of leﬁgth less than or equal to k of a

word in T*.
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Theorem 2.4 If L is a context-free language, there exist
constants p and q such that if z is in L, and lz] > p, then
z = uvwxy where |vwx| € q, v and x not both € , and uviwxiy

is in L for 1 2z O.

Proof. Let p be the maximum length of all words
generated by derivations of length less than or equal to n,
the number of symbols in N, Thenlzl > p implies there is a
variable A avpearing twice in the derivation, hence the
derivation contalns a subderivation of the form A — vAx
== vwx. |vwx| is bounded since the derivation is finite,
and A == vAx implies A — viaxl === viwxl, since A =
vwx is a subderivation of z, z can be written as uvwxy, and

uviwxiy 1s derivable for 211l i 2 0. Q.ZE.D.

Theorem 2.5 If L is a context-free language, L 1s infin-
ite if and only if L contains a word of length greater than
p and less than or equal to p+4+ q, where p and q are the

constants of the preceding theorem.

Proof., If wé€ L, |w > p, then L is infinite ﬁy
theorem 2.4, If L is infinite then there is z = uvwxy in
L where |z| > p + q, and |vwx| £ q, and uviwxly € L for all
i, by theorem 2.4. Then uwy € L, with |uwy| > p. If |uwy]
is greater than p + q, the procedure can be repeated until
a word of length less than or equal to p + ¢ (and greater

than p) i1s found. Q.E.D.
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Corollary There is an algorithm to decide if a context-

free grammar generates a finite or infinite number of words.
Certaln classifications are commonly used in connec-

tion with context-free languages and grammars:

Definition l. A grammar G 1s self-embedding if P contailuns

a production A => O(;A of,, where &y, «, *+ €.
2. G is linear i1f P consists of A =» uBv or A=—>u
for A,B € N and u,v € 7.

3 G is seguential if N can be ordered such that if

Ay —> o is in P, then A, is not in & for j < i.

J
4, L is bounded if L & wl*wg%... wk* for some k
and Wy e 7.

5. G is ambiguous 1f G contains a word with more

than one distinct leftmost derivation. A leftmost deriva-
tion is one in which the leftmost variable 1s replaced at
each step.

The following theorem gilves a sufficlent condition
for a grammar to generate a regular language. Since the
proof is involved it is omitted (see Hopcroft and Ullﬁan,
1969, p. 61).

Theorem 2.6 If G 1is a non-self-embedding context-free

grammar then L(G) is regular.

Pefinition A language L is recursive if there is an al-

gorithm which decides whether any word x belongs to L.
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Theorem 2,7 If G is context-sensitive then L(G) is recur-

sive.

Proof. An algorithm for deciding if any word x is
in L(G), by classifying words in the language according to
their minimal derivation length, is given in Hopcroft and

Ullman’ 1969’ p. 17.
4. RECURSIVELY ENUMERABLE LANGUAGES

We now wish to characterize all phrase structure

languages as a general class.

Definition A set is recursively eanumerable (r.e.) if a

finite procedure exists which generates the elemeants of the

set.

The transition function of any Turing machine 1is a
finite procedure, hence a Turing machine language is always
r.e. Conversely, recall that by Church's thesis there is a
Turing machine corresponding to any finlte algorithm,

Thus the following theorem characterizes phrase struce

ture languages as r.e. sets.

Theorem 2.8 If G 1s any phrase structure grammar, then
there is a TM which recognizes L(G). Conversely if any TM

accepts a language L, there is a grammar G which generates

L.

Proof. The constructions of a IM from a gramnmar,
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and of a grammar given a TM, can be found in Hoperoft and

Ullman, 1969, pp. 11ll-112.
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Chapter 3
SYNCHRONOUS DEVELOCPMENTAL MODELS

In 1968, A. Lindenmayer introduced systems which
model the growth process of one-dimensional cellular arrays
(Lindenmayer, 1968). These models are referred to as "Lin-
denmayer systems" or 'developmental systems." Although the
initial investigation recognized that these systems were re-
lated to automata theory, it concentrated mainly on the bilo-
loglcal ramifications. Subsequently mathematiclans have
been actively studying Lindenmayer systems, for two reasons:
first, the systems are interesting mathematlcally 1n their
own right, from the standpoints of thelr computing ability
and the lauguages they generate; second, it is possible that
results from mathematical linguistics may have slgniflcant
biological interpretations.

A Lindenmayer system is a linear array of cells,

Fach cell acts as a2 finite automaton, with a2 finite set of
states and a (normally deterministic) transition funcﬁion, 5,'
receiving an input sequence which, in the most general case,
consists of the succession of states through which neigh-

boring cells progress, The cells can change state, accord=

ing to the transition function, only at discrete points in
time, which are the same for all the cells. Hence we can

think of the process as being timed by a dlscrete clock

26
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'having an arbitrary time interval.

There are three classifications according to the man-‘
ner in which 2 cell recelves 1nput: 1in a 2L-system the states
of the left and right neighbors of a cell are inputs to the
cell; thus the argument of the ® function for each cell con-
slsts of the state of the cell and the two adjacent cell
states. In a 1lL-system a cell receives input only from the
cell on its left. A OL-system is one in which a cell receives
no input, and changes state only on the basis of what its
present state is. Hence three different types of cellular
interactions can be modeled.

A Lindenmayer system, then is a linear array of such
cells, all) with the same set of possible states and governed
by the same ® function. 1In a 2L-system the two end cells
recelve only partial inputs, and by convention do not change
state., (Alternatively, we can think of the end states as
being constant "environmental inputs".) In a lL-system the
left end cell remains constant.

The individual cells differ from ordinary finite auto=-
mata in that the value of the © functlon under certain
values of the argument is allowed to be a striag of cell
states, rather than a single state, indicating cell division.
This feature allows a string of cells to grow in length.
Where the value of the & function is the empty word € ,
cell death is indicated.

Formally an il-system (i = 0,1,2) is a coustruct
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(A, o, 8) such that A = § 59, 5,000 sn§ is a finite non-

2
empty set of cell states, &K € A¥ 1s the starting configura=
tion (X > 1+ 1), and §: a1 T 1 o @(A*) is the tran-
sitlion function.
Notation conventions for the © function are:
For i =1, S (left input, present state)= next state.
For 1 = 2, $(left input, present state, right inout) = next
state. |
The arsument of the ® function consists of a cell
state and lnputs to it during a single time interval. The
domain of © can be extended recursively to include a string
of cells, and a sequence of inputs instead of a single time
interval input: _
1= 0: §(sy..es,) = &(s1) $(spe..5,)
i=1: §(s, 8y...8,) = S (s, s1)  S(sq, Spee-8))
and S(_Sl"'sm’ &) = §(sp...85, S(sy, X))
i=2: §(s , Sy.-. Sy, Sr) = S(s , 515 S5)
S (s1, Spe+e5,, S) and S(sl._..sm, & , tl...tm)=5(52...sm,
S(sys X, 1), to...ty)e
An L-system 1s said to be deterministic if S:att 1

—> 1% provasating if 6: At Y 11— (P(a? ;1 ana growing

if it 1s propagating and the image of & contains a string

of length greater than l. Hence strings generated by pro-

lRecall that A+ denotes A¥ without € , and (?(A*')
4s the set of subsets of AY .
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'pagating systems cannot decrease in length, and growing
systems can lncrease in length.

The set of words produced by an L-system M will be
denoted d (M).

1. EXAMPLEZS OF L-SYSTEMS

Ixample 3.la

As a simple examdle, consider the ll-system in which

A={0,13, &= 00, and & 1is svecified by the table

present state

0 1
0 10 0

input
1 0

The first elght words preduced are

00

010

001

0100

00110
010001
00110100
0100010110

If the starting word is changed to 100, the output

becomes

100

1110

1001

11100
100110
1110001
100110100
11100010110
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If the starting configuration is 101, the output al=-
ternates between 101 and 110. Thus the set of words gener-

ated depends strongly on o, as well as the & function.

Txamvle 3,1b

An examvle of a unary developmental system i1s the fol-
lowing: 1=0, A =131}, &=1, and §(1)= 11. Then the
system generates the language { 127 I n 2 O} . A Turing
machine recognlzing this lancuzage was described in Section
l.4.

The remaining examples i1llustrate speclal types of
developmental patterns in lL-systems. Lindenmayexr has given
proofs of the statements specifying the general conditions
under which each type of pattern is obtained (Lindenmayer,
1968). 1In these statements A ( P »6°) 1s the sequence of
states of the rightmost cell of the resulting sequence of
strings when P is avplied to 6, A therefore can be thought

of as a kxind of output function.

Example 3.lc
(Linear growth). If S(/a ,6 )= TOo , S(P'T) = 7T
and A p ,T)= p , then §(p" ¢ )= 77 for p,c,T € A¥
and n 2 O.
Let A= 0,13, e =01, §(0,0)= 0 and $ (0,1)= OL.
Then the set generated is § 0°1L | n 2 14 :
081

0001
00001
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Examole 3,14

(Banded pattern) If $( P y0 )= oMm and >\(p,6') =
P> then S(pn,d’)z 1%, for P,G6 € A¥, mn > 0.
Let A= §0,1} , &= 010, § glven by the table:

present state

0 1
0 1 0

input
1 10 1

The output 1s a series of two alternating repetitious

patterns:

010

0010

01010

0010010

010101010
0010010010010
01010101010101010

Examnle 3,le

(Constant eplcal pattern). If & p,O') = ¢ T, then
S(/:n"'l, o )= S(pn,o‘)e, where 6= §(A(r,%, 0o ),T),
mrp,w,Tefﬂnblu

Thus if §( p,0 )= 0T, then with a starting con-
figuration of P 0 a serles of strings is produced in which
each string consists of the previous string with an addltlon-
2l new sectlion concatenated (the " ©" mentioned above). The
strings appear to be growling only at the right end whereas
cell divisions are occurring at several places along the

whole length of the string at each step.
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As an example let A= f O,l} y &K = 10, & given by:

present state

l ) 1
0 1 0

input
1 ol 1

OQutput of the system is:

10

101

1C1¢

101001

10100110

10100110101
101001101010010
101001101010010011001

Example 3,1Ff

(Combined constant avical and banded pattern). Let
A= §f 0,1}, &= 0110, 6 given by: $(0,1) =1, &(1,1) = 1,
$(1,0) = 0110. Then the outvut is:
0110
0110110
0110110110110
0110110110110110110110110
Lindenmayer has also formulated a scheme for apolyling
these models to branching filaments. These systems are less

interesting mathematically since the output of.such a system

is not a set of words in the language-theoretlcal sense.
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Chapter 4
DEVELOPMENTAL SYSTEM LANGUAGES

Theoretical blologists study formal languages in
relation to L-systems from the point of view of discovering
rules that model the development of known organisms. On
the other hand the interesting questions mathematically
are: what type of language does a particular Le-system pro-
duce, and how general are the different kinds of L-systems
in terms of the languages they are capable of generating?

Some basic results concerning the class of all L~
systems will be mentioned first, then we will consider the
languages resulting from each of the three types of L-sys-
tems. Theorems 4.7 and 4.8 give new concise proof coans-
tructions characterizing propagating systems. The rest of
the theorems bring together known results, for which proof

outlines or references to existing vroofs are given.
1. SOME BASIC RZISULTS

Theorem 4.1 If M is a non-growing L-system, then L (M)

is finite, hence regular.

Proof. If M is non-growing then L (M) is length-

limited. Since there are a finite number of symbols, L (M)

33
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is finite. Q.E.D.
If M is a non-growing OL-system, it is easy to deter-’
mine the size of L (M). TFor each a € A, the transition fune-
tion has the form & (a) = b for some b € A, or S (a)= € ,
Then if &KX is the starting configuration of M, there is an
integer t such that St(ch does not contain any symbols ay
for which S(ai) = € ., That is, the length of §&¥( ) 1is
constant for r > t. If &% o) = € , then £ (M) has t dis-
tinct words. If not, then §¥(«)=@ = sysp ... sy. For
each sy there is a least integer ry for which Sri(si) = s4.
Then 1f q = lem §T1,Tp, eees T i, €4 B) =@ , and §P(8)
# P for p < q. Hence & (II) contains t + g distinct words.

Theorem 4.2 (Herman, van Dalen) If M is an il-system
(1= 0, 1 or 2) then L (M) 1s an r.e. language. Conversely

any r.e. langusge is L (M) for some 2L-system M.

Proof. The class of 2L-systems, which contains the
1L and OL-systems as subclaéses, 1s equivalent to the class
of Turine machines. The constructions for this equivalence
are shown in Herman, 1969 or van Dalen, 1971. Theorem 2.8
then applies. Q.E.D.

The following sections will coasider the language-
theoretical properties of certain subclasses of the class of

all L-systens.
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2. OL-SYSTEMS

OL-systems are capable of producing finite languages;
this happens when the system 1s non-growing (Theorem 4.1).
In this case S(a) € Aor &(a)= € for all a € A, It is
also posslible for a OL-system to grow initially but be
length-limited, and therefore have a finite language, as in
the case:

A= {0,1,2,3%, o= o01,
$(0)= 0, &(1)= 02, S(2)=03, $(3)=0
L (M) = § o1, 002, 0003, 0000} .

Theorem 4.3 The set of deterministic OL languages has a

non-empty intersection with the class of regular languages.

Proof., The machline described above provides an ex-
amole. Q.E.D.

An example of a regular OL-system which 1s not length
limited is: A= {0, 13, &= 0, §(0) =10, §(1) = 1.
Then this system's language 1s the one corresponding to the
regular exvression (1%0).

A terminal symbol or state of a OL-system (4, K, &)
is a symbol a € A such that $(a) = {a}. A non-terminal

symbol is one that does not have this property.

Theorem 4.4 (Lindenmayer, 1968) If M is a OL-systenm
(A, X, &) such that for all a € A, &(a)= t or §(a) = tb,

where b 1s a non-terminal and + is a terminal or € , then
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L (M) is regular.

Proof. Given M = (A, &K, §) satisfying the hypothe
sis, then A = PV Q vwhere P is the set of non-terminals
in A and Q is the set of terminals. Construct the grammar
G = (N,T,P,S) where

N= i [2] ‘ a € P'g
T = A=PvVQ
end the productions of P are:
1. S§S——>«
2. §[a]l—t | t €qana S(a) =t §
3. {[eJ—>tb | §(a) =t}
4, f[a]-—aal[a]é N}.

Then for any word w € L. (M), G derives w from o« by
imitating the & function of M. Furthermore any word de=-
rivable in G is a word of &L (M). Thus L (M) = L (G), and
the theorem follows since G is regular. "Q.E.D.

An illustrative example 1s provided by the determin-

#*
istic system mentioned earlier which generates 1 O.

Theorem 4.5 The set of deterministic 0L languages has a
non-empty intersection with the set of non-regular context-

free languages, and with the set of non-context-free lan-

_guages.

Proof. 1. Let M be the machine specified by:
A= {0,1}y, «=12101, §(0)= 101, §(1)= 1. Then X (M)
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1s the set '{1n01n I n 2 l} » which is context-free since
it is generated by the productions S -—>181, s-—>O0.

2. (van Dalen) Let M= (A,L, $) with A =fa} ,
o= a, S(a)= aa. Then JL(M)= fazn ' ne 0} . A lan-
guage fai | i€ A.g is context-free only if A is an ulti-
mately periodic index set (Ginsburg, 1966, p. 86), hence
L (M) is not context-free. Q.Z.D.

The following theorem gives a sufficient condition

for a non-deterministic 0L model to have a context-free

language.

Theorem 4.6 (Lindenmayer, 1971, p. 482) If M= (4,%€,8)
is a OL-system such that a € S (2) for all a € A, then

L (M) is context-free.

Proof. Suppose M= (A,%, $§) satisfies the hypothe-
sis., For any w = 2185 «.. 2, € A*, define [w] = [9‘1][32]
...[a,), ana (€] = € .
Let ¢ = (N,T,P,S) where
N= §[a]| a€a s
T = A
and P couslsts of
1. S—=—y &
2. { {21 —[v) | $(a)= w tn '}
3. f[a]—g.a | a € A}.
Then if @ € L (M), G derives a word[P] using rules

1 and 2, then rule 3 obtains 3 from [{5] . Conversely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

if Y € X(G), any substitution of type 2 used in deriving
¥ from « can be simulated by M using the corresponding
function transition on the subword which 1s replaced, and
the ldentlty transition on the rest of the symbols 1in the
word. Hence L (M) = L (G), which is context-free. Q.E.D.

The example in the proof of Theorem 4.5 (1) shows
that the hypothesls is not a necessary condition.

An open questlion is: 1if G{ is an arbitrary context-

free language is there a OL-system M such that R = L2
3, 1lL-SYSTEMS

lL-systems model developmental situations in which
information passes 1n one direction along the array of
cells.

Since the 1lL-systems contaln the OL-systems as

special cases, Theorems 4.3 and 4.5 apply to lL-systems.

Definition A left context-sensitive grammar is a context-

sensitive grammar in which P consists of rules of the form
o(B-—-—»Y where « € T* and (:5 e N¥. The following theorem
states that the class of left context-sensitive languages

contains the 1L languages.

Theorem 4.7 If M is a propagating lL-system, L(M) is

left context-sensitive.

Proof., We will construct a grammar which generates
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the language of any given lL-system.

The simplest grammar
makes use of endmarkers (#) on both ends of a string.

M= (4,o, $) where A
where

If
i al,ag’-oo,an} ’ let G = (NDT.P’S)

N= §vi,V,,...,V, 3 VU §#3

A-:‘ i al’...,ans
rules

T =
and P consists of the

S —» # o #
ai# —_— Vi#
aivj —_ Viﬁ

where (3 € S(ai,aj)
#Vi —_— #ai.

The endmarkers are not considered to be part of a
word derivable by G.

To show 4 (G) = I_(M), suppose of is the string
tyty «.. ty. Then let § (o) = 43P 15P 03 -+ Byog,p

where (513 € S(ti,tj). Now in G there is a derivation of

§(el):s

S — #tlta .o tm# — #tl ¢ o0 tm_lvm# ﬁ#tl. . .Vm_lﬁ m-l,m#
— #tl e vm_eam_2’m_lpm_l’m# —  ® * ® ————

#Vlﬁlz *e Pm-l,m#_"#tlﬁ' 12 °°° ("'m-l,m#‘

Similarly starting with § (ol ), there is a deriva-

tion in G of any word which M can produce from S(ol).

By
fnduction then, L (M) € L (a).

On the other hand, a re-
*
verse argument shows that if & =—>w in G, then there is
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a sequence of steps of M which generates w from &K . Hence

L(m)= :((G), which 1s left context-sensitive. Q.E.D.
It would be possible to avoid end markers in the

grammar at the cost of increasing the number of variables

in N, by using special variables to stand for the end cells.

Example 4.3a Conslder the system of Example 3.2d4. For
this case G = (N,T7,P,S) Wwhere N = iVo,Vl,#} , T = { O,l} ’
and P consists of the rules given in the theorem. The deri-
vation of the first three words by G is as follows:

S ——» #010# ~—— #OlVo#'——a #ovllo# —_— #V0010#-——* #0010#
#0010# —> #OOIVO#-——4 #oovllo#-—a.#ov001o# ———>#W0101O#
——> #01010#.

It should be mentioned that the grammar in this
theorem is more interesting mathematically than blologically,
since many substitutions of the grammar are required to sim-
ulate a single time interval step of the lL-system, and
hence the mechanics of the grammar do not offer any new in-

sight into the blological operation of the system.
4, 2L=-SYSTEMS

L-systems are the most complex type of developmen=-
tal system since the cells can interact in both directions,
But they are often the most natural type to use in cons-
tructing certain models.

The analog of Theorem 4,7 for 2L-systems now follows.
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Theorem 4,8 If M is a propagating 2L-system, I (M) is

context-sensitive.

Proof. (This theorem was also proved by van Dalen
using a more complicated grammar. See van Dalen, 1971.)
Again we will use a grammar with end markers. If
M= (A,&£,8), let G = (N,T,?,S) where
N={ vy, | 1= 1,2,...,0 %
T = A= §ay,85500058, §
and the productions in P are:
S — # X #
#aiaj — #aivij
Vija}&__a B3 ijkvjk where Bijke S(ai,aj,ak)
Vyig# —> a#
If L = tyty +.. t,, then S() is a word of the

form t1P 155 ... B m-2,m-1,pfm+ There is a derivation in
G of this word as follows:

S —> #tytoeeety# —> #tqVyots. . ty# — #5918 103V0z. oty #
—_— e —— #1B 123@234 teT ‘Bm-Q,m-—l,m Vit
—> #6138 103P 234 " Bup-2,m-1,n twf = S(K).

Then if 52(0() is any word following §(<«) in
L (M), there is a similar derivation of 1t in G starting
with S(). Also any word derivable by G can be produced
by M using the corresponding $ function transitions.

Hence by inductlion LM)y= Z(G), which 1s context-sensi-
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tive since G is a context-sensitive grammar. Q.E.D.

Note that ||> 2 for M and G to be defimed.

Example 4.4a Suppose M= (A,X , $) where A = § 0,11 ,
o = 010, and © 4is the transition function below:

present state |right input present state | right input
0 0 1 1 0] 1
0 00 1 O 11 1
left left
input 1 1 0 input 1 00 0

Then $(X)= 08(010)0 = 0110
§2(ct )= 08(011) §(110)0 = 01000
Applying G,
S —> #01O# ~——> #0Vy,0# —> #0 (010)V;o# — #011Vq o#
——> #0110# |
#0110# —= #OV,10# — #OL1Vy10# —> #OLOOV, o# —> #01000#.

We now obtain a further characterization in terms of

linear bounded automata (see Sec. l.4).

Theorem 4.9 If M is a deterministic propagating 2L-system
then L (M) is recognized by a deterministic linear bounded

automaton M'.

Proof. This construction is an extension of that of
Hoperoft and Ullman, 1969, p. 116, M! has a tape contain-
ing three tracks. The input string to be recognized (f )

is placed on track 1 {(with end markers).
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Suppose M= (A, , 9§ ) with £ = 8185 ee. 8. M
goes through the following procedure.

1. Enters X onto track 2 with a; in the leftmost
cell.

2. Reads 81y Bpy 23 and replaces as with
S(al,ae,aB), shifting az ... a; to the right if necessary.
M' stores an in its internal control.

3. For each consecutive triple aj_j8385,q M' re-
places ay with S(ai~l'ai’ai+l)’ stores aj, shifts aj ...y
to the right as far as necessary, and proceeds to the next
triple a584,12440- (This procedure, continued until the
right end of the string is reached, imlitates a single tran-
sition of the 2L-system M.)

4, If this operation (steps 2 and 3) would cause
an to be shifted onto the square occupled by the right end
marker, M' halts and rejects.

5. After aj_; is replaced by S(am_g,am_l,am), M
then compares track 1 and track 2 square by square. If
they are identical M' halts and accepts.

If the track 2 word is shorter than track 1, M' re-
peats the transition routine (steps 2 and 3) starting at
the left of the existing track 2 word, and derives a new
word.

6. If the strings on tracks 1 and 2 a2re the same
length but not identical, M' first coples the string on

track 2 onto track 3. It then returns to the left of track
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2 and repeats steps 2 through 5.

T. The procedure of steps 2 through 5 is repeated
until either (a) tracks 1 and.z are identical and M' ac-
cepts, (b) the right end limit of track 2 is exceeded and
1" rejects, (c) track 2 again becomes identical to track 3.

In the latter case M' halts and rejects.

M' is constructed to simulate the grammar presented
in the previous theorem, so any string it computes on track
2 must be a word in L (M); in fact the sequence of words
derived on track 2 i1s identical to the sequence generated
by M. Since this sequence increases monotonically in
length (because M is propagating) then all words in L (1)
of length equal tolBl occur consequtively, and there is a
finite number of these. Hence if the derivation on track 2
reaches a point aﬁ which 1ts length would exceed that of
track 1, without ever matching, then 8 cannot be a member
of L ().

Steps 6 and 7 of the construction are included in
case IL(M) does contalin more than one word having the same
length as the input word.

Since M' operates according to a well-defined algor-
i1thm, and the © function is deterministic, M' is determin-
istiec. This theorem includes as special cases the classes

of deterministic OL and llL-~systems. Q.E.D.
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5. SUMMARY

We have seen that the class of languages produceable
by Lindenmayer developmental systems 1s restricted because
of the requirement of simultaneous revplacement. However it
is a difficult problem to determine exactly what languages
they are capable of producing, and many of the results ob-
tained to date are "“intersection" theorems rather than
equivalence or containment ones (although all these types
have been mentioned here).

As we have seen, a deterministic OL-system (IOL-sys-
tem) can be regular, but the class of regular languages
they can model is vrobably quite limited, as shown by the
fact that even a" is not a DOL language (since a DOL-system
must increase in length monotonically, and cannot do so
linearly with a single letter alphabet). Theorem 4.4 shows
that it is much "easier" for non-deterministic OL-systems
to produce regular languages than deterministic ones. 1In
fact if a OL transition function is constructed randomly
the chances are that it will be non-context-free. |

With regard to comstructing a system to have a pre-
determined language, the examples have shown that the sys-
tems with interaction (1L and 2L) are more flexible and

permit more varlety than the OL-systems.
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COMPUTER SIMULATION OF DEVELOPMENTAL SYSTEMS

Computer programs thaﬁ slmulate L-systems are an aid
in determining the language of a particular L-system, espec-
ially with systems having a large alphabet. A common prob-
lem, for example, is to see how the language corresponding
to a fixed transition function varies for different initial
configurations. Programs are given here that slmulate de-
terministic OL, 1L and 2L systems, along with examples 1il-
lustrating thelr use. Some of the examples are not complex
enough to warrant computer analysis, but are used to show
how the programs are applied.

The programs are written in the SNOBOL 4 language,
which 1s a string manipulation system and hence well suited
for this type of application, but 1s comparatively slow and
requires a large amount of computer memory. This language

allows the programs themselves to be quite short.

l. OL-SYSTEMS

Example 5.1
Figure la glves a program to simulate any OL-system
which has an alphabet A = {11,2,3,4} . The input data con-

sists of the transition function matrix, the initial string,

46
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énd the number of words to be outputted (in addition to the
initial word). The program works from left to right, exam-
ining each character in the current string and replacing it
by its successor according to the transition matrix.

Input data 1s entered following the END statement,
in the order: S(al), 6]32), ... &(a,), &, number of
words; each on a separate line.

Simulation of a OL-system with a different alphabet
requires only a simple modification (statements 4-7).

The output of the program in Figure la 1ls the firstg
five words of the system below:

A= {1,2,3,4} , o = 1234, with transition function:

present state
1 2 3 4
successor | 11 22 33 4y

The n*® word in the language of this simple system

1211-12211-13211—14211—- 1

is . Thls exponentlially lincreas-

ing language probably has no realistic biological applica-
tion, but provides an example of one type of (context-sen-
sitive) language that OL-systems are capable of producing.

Figure 1b gives the SNOBOL statistics for this ex-

ample.
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2. 1L-SYSTZEMS

Example 5.23

The program for lL-systems, shown in Pigure 2 is
similar to the one for OL-systems except that it examines
palirs of characters, and works right to left, similar %{o
the operation of the 1L grammar of Section 4.3. The pro-
gram in Flgure 2 incorporates the data for a specific sys-
tem into the main part of the program, although this 1s not
necessary (see next example).

The particular system in this example, like the pre-
vious one, has as 1ts language strings consisting of four
equal length bands, increasling monotonically in length.
However the lL-system by virtue of cell interactlions is
able to model this type of growth at a linear, rather than
exponential rate, and so is more realistic as a blological
model.

The data for this system are A= i 1,2,3,4} ’

ol = 1234, with transition matrix

present state

(1 2 3 &

1|1 12 - -

2 « 2 23 -

input 3 . _ 5 344
41 - - - 4

The n'® word in the language is 18283841
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Bxampnle 5.2b

Filgure 3 presents a general progranm for lL-systens,
in the form accepting the alphabet {1,2,3}. This program
hes the ability to repeat the simulation for more than one
starting configuration, with a fixed 8 function. The
order for entering input data after the END statement is:

§(1,1), &(1,2), §(1,3), 5(2,1), ... , §(3,3), number of
words (same for each case), &X,, 0C2, cee 300,

Figure 3 illustrates the use of this program in
slmulating a linearly growing, repeating, banded pattern.
The bands remalin constant in length here, in contrast to
the previous examples. The data are: A= 5'1,2,33 ’

K=211, & gilven by:

present state

1 2 3

1 2 2 -

input 2 11 3 3
3 1 - 1

Example 5,2c

The following system can produce several different
languages, depending on ok (see Figure 4): A = { 1,2,3} ’
& given by
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present state
1 2 3

1 3 22 33
input 2 11 1 2

3 11 3 2

Xy =12, &Ky =21, &5 =13, X =121
The four languages are all of the "“constant apical' type
(Section 3.2e). There are at least three different possible
patterns, as the first three sets show, The fourth set 1s
the same pattern as in the first one, but the strings grow

faster in the fourth set.

3¢ 2L=-SYSTEMS

Examonle S, 3a

The program imitating 2L-systems (Figure 5) operates
on the same principle as the 2L grammar given in Section 4.4,
and as shown her accepts data consisting of O0's and 1's.
The order of entering the data is the same as for the 1L
case, wlth the order for the © function shown in statements
4-10 of the program.

Filgure 5 shows the first 11 words for the system;
A= §0,1}3, o<=11111, & given by

right input right input
present present
state 0 0 1 state 1 0 1
0 ) 1 Ol11 11
left left
input 111 1 input 1] 0 ©
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Examole 5,3b

The biologists' interest in L-systems is to discover
what different kinds of naturally occurring growth they are
able to model. One specific phenomenon which occurs com=-
monly in nature 1s length-limited growth, in which a filament
grows to a predetermined length and remalns at that length
in a dynamlc state; l1.e. cells continue to divide and die
even after the full length 1s reached. As an example of a
more complex developmental system requiring computer alded
analysis, we will construct an L-system which models this
vhenomenon and present some sample simulation runs.

The speclific problem to be considered 1s to construct
a system starting with a short initial configuratlion, pro-
ducing strings which increase linearly up to a certain
length and then remain at that length; and with the additlon-
al feature that 1f at any time the current string is "cut,"
1.e. a right-hand section removed, the string will regrow
out to the limiting length.

One way to model a length-limited filament 1s to have
the first few cells in the string act as a counter, in coun-
Junction with a special cell which divides at each clock
time. When a certain count is reached the dividing cell is
replaced by a non-dividing one. This method allows one to
set the limiting length a2t any desired number. However
such a device would not have the "regrowth" feature.

A model that has this property is presented in
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Flgure 6. The model is a 2L-~system with a ten-symbol al-
phabet, so that the transition function is relatively com-
plex. The program realization (Pigure T7) conslists of the
basic 2L-system program followed by an implementation of
the function as a series of predlicate statements. TFlgure
8a shows the first 50 strings.

The basic operation is as follows:

l. At every fourth clock time a signal 1is
created which moves right one position at
each time interval.,

2. When the signal reaches the right end of
the string it 1s reflected and becomes a
left-moving signal.

3+ The left-mbving signal keeps a count of the
number of right-moving signals it has crossed.

4, VWhen a left-moving signal that has crossed
five right signals reaches the left end,
cell division is stopped, but the system
continues to send out a signal on every
fourth word.

5. If after growth has stopped a left-moving
signal reaches the left end with a count
smaller than five, cell divislon begins
agaln,

Thus the length of the string is kept constant in a

type of dynamic equilibrium, after the initial growth. If
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part of the string 1s removed, growth is resumed. When
growth again stops, the length of the string will be equal
to or close to its former length. This 1s illustrated in
Figure 8b, which shows the results of applylng the program
to the first five symbols in the final string of Figure 8a.
(This number is selected at random.) A "O" is added at the
right end, and may be thought of as an environmental input.
The final length 1s now 22, compared to 19 for the origlinal
growth. When the first ten symbols of the final string in
Figure 8a are used as the starting configuration, the result
1s as shown in‘Figure 8c.

The computer can thus be an indispensible aid in
constructing and analyzing complex models. Certaln func-
tional differences could be effected in all three basic
programs; for example we might wish the simulation to stop
when a certain string length is exceeded, or we might want
to print out only every third or fourth string. The pro-
grams given here are baslc ones that can be modified to fit

given situations.
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SNOBOL4 (VERSION 3.4.3, JAN. 16, 1971)

DIGITAL EQUIPMENT CORP., PDP-10

1 &TRIM = 1; &ANCHOR = 1

3 D = ARRAY(4)

4 D<i> = INPUT; D<2> = INPUT

6 D<3> = INPUT; D<4> = INPUT

g STR = INPUT

9 NUM = INPUT

12 L1 OUTPUT = STR

1! M = LT(MLNUM) M + 1 tFCEND)
12 Y =

13 L2 STR Y LENC(CI)Y « A = ¥ D<A> tFCL D)
14 A = X D<A> : (L2)
15 END

NO ERRORS DETECTED IN SOURCE PROGRAM

1234

11223344

1111222233334444

11111111222222223333333344444444
111111111111111122222222222222223333333333333333444444044804444844

NORMAL TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED WAS 11

Fig. la. Program for simulation of OL-systems with A=fl,2,3,4}
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SNOBOL4 STATISTICS SUMMARY-

797

2549

147

4

64

36

17« 34

MS. COMPILATION TIME

MS. EXECUTION TIME

STATEMENTS EXECUTED. 5 FAILED
ARITHMETIC OPERATIONS PERFORMED
PATTERN MATCHES PERFORMED
REGENERATIONS OF DYNAMIC STORAGE
READS PERFORMED

WRITES PERFORMED

K CCRE USED., 4195 FREE WORDS LEFT

MS. AVERAGE PER STATEMENT EXECUTED

Fig. 1b. Program statlistlics for example 5.1.
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SNOBOL4 (VERSICN 3.4.3, JAN. 16, 1971)

DIGITAL EQUIPMENT GORP., PDP-10

1 &TRIM = 13 &ANCHOR = |

3 D = ARRAY('4.,4')

4 D<l,1> = 13 D<2,2> = 2; D<3,3> = 33 D<4,4> = 4
8 D<1,2> = 125 D<2,3> = 23; D<3,4> = 344

11 STR = 1234

12 NUM = &

13 PAT = TAB(*(I - N)Y) « X LENC1) « A LENC1) . B
14 L1 QUTPUT = STR

15 M = LT(MNUM) M + 1 tFCEND)

16 I = SIZECSTR)

17 N = 1

18 L2 N = LT(NLI) N + 1 sFCL)

19 STR PaT = X A D<A,B> : (L2)

29 END

NO ERRORS DETECTED IN SOURCE PROGRAM

1234

11223344

111222333444

1111222233334444
11111222223333344444
111111222222333333444444
1111111222222233333334444444
11111111222222223333333344444444
111111111222222222333333333444444444

Fig. 2. Program for simulation of example 5.2a,
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SNOBOL4 (VERSION 3.4.3,

JAN. 16, 1971
DIGITAL EQUIPMENT CORP., PDP-1p
1 &TRIM = 13 &ANCHOR = 1
3 D = ARRAY('3,3")
4 D<1,1> = INPUT; D<1,2>
7 D<2, 1> = INPUT; D<2,2>
1@ D<3, 1> = INPUT; D<3,2>
13 NUM = INPUT
14 Lo STR = INPUT
15 M =8
16 PAT = TAB(*(l - N)Y) .
17 L1 OUTPUT = STR
18 M = LT(MLNUM) M + 1
19 I = SIZE(STR)
29 N = 1
21 L2 N = LT(NLI> N + 1
22 STR PAT = X A D<A,B>
23 L3 CUTPUT =
24 ouUTPUT =
25 END

NC ERRORS DETECTED IN SOURCE .PROGEAM

211

2112

2llae

211223

2112233

211222331

211223311
2112233112
21122331122
211223311223
2112233112233
2112233112233
21122331122331!
2112233112233112
21122331122331122
211223311223311223
2112233112233112233

Pig. .

57+

D)
= INPUT; D<1,3> = INPUT
= INPUT; D<2,3> = INPUT
= INPUT; D<3,3> = INPUT
tFC(END)
X LENC!Y> - A LEN(l)Y « B
tF(L3)
sFCL D)
: (L2)
: (L3

Program for simulation of lL-systems with A=:fl,2,33
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122

1221

122111

12211133

12211133332

12211133332223

12211133332223112
1221113333222311211322
12211133332223112113221133331
122111333322231121132211333311133322211

21

211

2113

211333

21133322

2113332231

2113332231211

211333223121122113
21133322312112211322111333
211333223121122113221113333111333322
211333223121122113221113333111333322211333322231

13

133

1332

13323
133232
1332323
13323232
133232323
1332323232
13323232323
133232323232

121

12211

1221113

1221113333

1221113333222

1221113333222311

12211133332223112113
122111333322231121132211333
122111333322231121132211333311133322
12211133332223112113221133331113332221133332231
1221113333222311211322113333111333222113333223111133322231211

Fig. 4. Simulation of example 5.2c.
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SNOBCL4 (VERSION 3.4.3, JAN. 16, 1971)

DIGITAL EQUIPMENT CORP., PDP-10

1 &ANCHOR = 13 &TRIM = 1

3 D = ARRAY('@:1,8:1,0:1")

4 D<@, @,@> = INPUT: D<@,8s1> = INPUT

6 . D<1,08,08> = INPUT; D<1,0,1> = INPUT

g D<@, 1,0> = INPUT; D<@,1,1> = INPUT

12 D<l1,1,0> = INPUT; D<l1l,1,1> = INPUT

12 STR = INPUT

13 NUM = INPUT

14 PAT = %> LENCI) « A LENCI!) « B LENC1) « C
15 L1 QUTPUT = STR

16 M = LT(MNUMY M + 1 :F(END)
17 X =

18 ST PAT = A D<AsB,C> B C

19 X = A

20 L2 X = ¥ D<A B.J C>

21 STR PAT = X D<A,B,C> B C :SCL2)

22 STR RTAB(2) . P LEN(!) LENC(1) « Q@ = P Q (i)
23 END

NO ERRORS DETECTED IN SOURCE PROGRAM

11111

10201

11911

171111
1111201
1692111
11611101
121118211
11110011111
160011110001
1101110081811

Fig. 5. Program for simulatlon of 2L-systems with A= i 0,1;.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.: i 031,2,3’4’5’6!7’8’9}

(02x)
(03x)
(04x)
(05x)

(x8y)
(x87)
(x88)
(x80)
(x81)
(981)
(8xy)
(88x)

e
—

-
-

i I | S | R | I

H oo O H WY N

i

31
4
58
2

y+1

(x#7,9)
(x+£7,9)
(x#7,9)
(x£7,9)

(1< y<6)

(x#9)

(lex<7)

(047)
(049)
(49x)
(49x)
(x9y)
(x97)
(09x)
(Ooxy)
(05x)
(97x)
(x7y)
(x1y)
(xyz)
(1xy)

l< x,y,2 < 9 except as indicated.

Figure 6.

i

1

i

H

il

i

]

il

i

|

60

(x=1,7)
18 (2<x¢5)

9 (x#4, y=1,T7)

1 (x#4, y#1,7)

2

x 1 (x=2,3, y=7,9)
2 (x=7,9)

1

9 (2€x<5)

y (x#8, 1sy<T7)

1 (x22, 2y <6)
1 (x2 2)

$ function for length-limited 2L-system.
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&ANCHOR = 13 &TRIM = |
DEFINEC('NC(X,Y,2Z) ")
STR = INPUT '
- NUM = INPUT
L1 OUTPUT = DUPL(' ',2@) STR
M = LT(M,NUMY) ™M + 1 : FCEND)
X = ’
STR X LEN(CI!) « A LENCIY « BLENCI) « C =
+ B C o T T
X = A
L2 X = X NCA,R,C) .
L3 STR X LENC1) « A LENC1) « B LENC!) « C
. NEXT = NCA,B,CY o o
STR X A = X NEXT
X = X NEX s (L3
L& STR RTAB(2) « P LEN(1Y LENC!> « @ =P @
N N = ECcCA B C,111)> 1 : SCRETUTND
EQC(B, 8> sFCED) .
N = BGE(C,2) LECC,6)Y C + 1 : SC RETURN)
N = EQCC>@) 2 : SC RETURN)
N = EQC,7) 7 : SCRETURN)
N = EGCCs8) 9 : SC RETURN)
N = NEC(A,9) 1 : SCRETURN)
, N = 8 : SCRETURND
R1 EQCEs 1D t:FT(R2)
N = NECA,8) NECC,8) NE(C,@) C : SCRETURN)
N = NECA>E)Y 1 T SCRETURND
R2 N = EQCA,8) & t SCRETURN)
EQCA, O t F (R
N = GE(E»S5)> 2 : SCRETURN)
LTCCs7) , :FCR3
N = EQCRE,2) 31 :S(RETURND
N = EQCB,3) 4 : SCRETURN)
N = EQCE,4) 58 ¢t SCRETURN)
R3 N = NECC(B CY»49) B + 1 :SC(RETURN)
N =9 ' : SCRETURND
B4 EQCE, 9 :F(R6)
EQC A, &) :FCRS
N = GE(C»2) LECC,6) 18 : SCRETURND
N =8 ' T SCRETURND
R5 N = GE(C,2) LE(CC,5) 1 :t SCRETURN)
N =9 o . 1 SCRETURN)
R6 N = EQCA,1Y 1 : SCRETURND
EQC(B.7> .. s FCRT)
N = EQCA,9)Y | : SCRETURN)
N =9 ) . : SCRETUERN)
R7 N = LE(B,6) 1 : SCRETURND
N = B ’ :t { RETURN)
END. ...
gu911o
58
Figure T. Program for example 5.3b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A NCA,B, O)

$FCL )

: (L1



222

2319

2410

B5819

221802

231129

Bal1219

8582110

g238110

03111810

64111180

@58111120

p21811210
311182110
411138119
58113118182
2183111180
831148111120
ralgrigrlizioe
584111182110
2581111381182
3111811311818
4111183111180
P58111148111120
g21811411811210
2311184111182110
R411158111138110
vo¥11511811311810
2185111183111188
31168111148111120
palerl18r1aliglizle
Z25861111841111821140@
P278111158111138110
2391811511811311810
491185111183111180
?9811681111481111280
2esgse11811411811210
39781118411118211@
491181158111138110
298111851181131181@
2288116811183111180
@391861181148111120
P491781118411811210
2987118115811182110
P278111851181138110
2391811681118311810
491186118114811180
2981178111841181120
Pp288711811581118210
2397811185118113810
G491181168111831180

Fig. 8a. Simulation output (a) for exzmpnle 5.3b.
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P49 110

29811g

228817

239180

049120

298210

p23310

P31118¢

Ga11120

P5811210

@218211¢

831138110

241311810

PSE3111180

@248111120

3111811218
g4111182110
2581111358118
@218113118190
2311183111180
P411148111120
P5811411811210
P2184111162110
231158111138118
?41511811311818
@585111183111180
P268111145111128
@3111811411811210
PA111164111182110
P58111158111138110
Z21811511811311810
B311185111183111180
P411168111148111120
@5811611811411811218
P2186111184111182110
¢31178111158111138110
P41711811511811311810
P567111185111183111180
P278111168111143111120
3391811611811411611210
P49 1186111184111182110
pO81178111158111133110
228871181151181131181@
P397&11185111183111180
R491181165111148111120
2981118611811411811210
P25B117811184111182110
P39187118115811113811¢@
G491781116511811311810
?987118116811183111180
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Fig. 8b. Simulation output (b) for example 5.3b.
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Fig. 8c. Simulatlion output (¢) for example 5.3b.
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