
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1973

Mathematical linguistics and automata theory and applications to Mathematical linguistics and automata theory and applications to

biological growth models biological growth models

Paul W. Bennett
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation

Bennett, Paul W., "Mathematical linguistics and automata theory and applications to biological growth

models" (1973). Graduate Student Theses, Dissertations, & Professional Papers. 6670.

https://scholarworks.umt.edu/etd/6670

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F6670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/6670?utm_source=scholarworks.umt.edu%2Fetd%2F6670&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

MATHEMATICAL LINGUISTICS AND AUTOMATA THEORY
AND APPLICATIONS TO BIOLOGICAL GROWTH MODELS

By
Paul ¥. Bennett

B.E.E., M.S., Cornell University, 1963-64

Presented in partial fulfillment of the requirements for
the degree of

Master of Arts
University of Montana

1973

Approved by:

Chairman, iBoard' o^Examiners

Dear^ Gradû a.'te' School

Date yf // 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EP37471

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
OiwwWion F\jUi«hing

UMI EP37471
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor. Ml 4 8 10 6 -1 34 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-1

PHEPACS

The idea of a mathematical grammar was introduced
by Chomsky (1956) as an independent subject, formalizing
the intuitive notions of a grammar in languages used for
communication, in terms of a set of substitution rules
which generate a set of "words" or a "language". The study
of these grammars developed concurrently with automata
theory, and each of these subjects has been used in study­
ing the other, thus becoming closely intertwined.

Recently a new class of automata known as "develop­
mental systems" has appeared, originally introduced as a
model for certain types of biological growth. These autom­
ata are now being actively investigated using mathematical
linguistics as a tool.

In the first two chapters we bring together the
fundamental known results about the basic types of automata
and mathematical grammars. In Chapters 3 and 4 we describe
developmental systems, and present some language-theoreti­
cal results pertaining to them, some of which are new and
some that have already appeared. Chapter 5 deals with
computer simulation of developmental systems, using some
specific models for illustration.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

The author -wishes to acknowledge the patience, en­
couragement, and valuable help of Prof. P. N. Springsteel,
which made this thesis possible.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OP CONTENTS

Chapter Page
1. BASIC RESULTS OP AUTOMATA THEORY 1

Plaite Automata. 1
State Graphs and Regular Expressions 5
Properties of Regular Languages............. 11
Turing Machines..................... 13

2. PHRASE-STRUCTURE GRAMMARS....................... 17
The Classification of Grammars 17
Regular Languages........................... 20
Context-free Languages............. . . . 21
Recursively Enumerable Languages 24

3. SYNCHRONOUS DEVELOPMENTAL MODELS 26
Examples of L-systems..................... .29

4. DEVELOPMENTAL SYSTEM LANGUAGES 33
Some Basic Results......................... 33
OL-systems................................. 35
IL-systems................................. 38
2L-systems................. 40
Summary..................................... 45

5. COMPUTER SII^ULATION OP DEVELOPMENTAL SYSTÊ IS . . 46
OL-systems................................. 46
IL-sy stems................................. 46
2L-systems................................. 50

REFERENCES... 65
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

BASIC RESULTS OP AUTOMATA THEORY

The study of automata theory began with the intro­
duction of Turing machines (Turing, 1936). This was prob­
ably the first mention of an abstract mathematical "mech­
anism" . Later the idea of a finite automaton was crystal­
lized, also as a mechanism or device, but operating in a
much more restricted way. Its relation to linguistics as a
recognizer of a certain type of mathematical language was
quickly established, as well as the convenient properties
of those languages. These results led to the search for
other classes of automata capable of recognizing different
classes of languages. In this chapter we outline the idea
of a finite automaton and the characterization of its lan­
guage in terms of regular expressions, and then briefly
examine Turing machines. In the interest of brevity and
clarity only outlines of proofs and constructions are given.

1. FINITE AUTOMATA

The system that is now known as a finite automaton
has evolved as the most basic generalization of discrete
systems, i.e. systems which can exist in any of a finite
number of states and change state at discrete points in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time. Such systems have appeared in various fields such as
mechanics, biology (McCulloch and Pitts, 1943), and finally
digital computer design, at which time interest in studying
the basic properties of discrete systems developed.

Definition A finite automaton (f.a,) is a system
(K,r , S , P) where

K is the finite set of internal states
21 is a finite input alphabet
6: K It Z --- > K is the next state function
q e K is the initial state 0 ----------------
F 6 K is the set of final states.

Definition 1. 21* is the set of "words" or "sentences'*
consisting of strings of symbols in Z , including the empty
word € (the word consisting of no symbols). % is called
the "star closure" of Z , or the free monoid generated by Z.

2- I* - .
The finite automaton K can be thought of as a mach­

ine receiving an input word of finite length, one symbol at
a time. As each input symbol is received, the S function
is applied to determine the next state of the machine. The
argument of the S function can be extended to include input
words, instead of single input symbols, by a recursive def­
inition:

6{q,xa) = £ { G(q,x) ,a) for any x € 21*, a € 21
and S (q,€) = q where € is the empty word.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 1. A finite automaton M accepts a word x 6 ^
If , x) Is in F.

2. L(M) = ̂X e X * I x) € p J (the set of
words In X accepted by M).

3* S Is a rep:ular set if S = L(M) for some finite
automaton M,

Definition An equivalence relation R over a set T Is
right Invariant If x R y Implies xz R yz for all z in T.

Theorem 1,1 (Myhlll, 1957) Suppose L. — Then the
following are equivalent:

1, L Is a regular set
2, L Is a union of equivalence classes of a right

Invariant equivalence relation over X of finite index.
(An equivalence relation has finite Index If Its set of
equivalence classes Is finite,)

3, The equivalence relation R Is of finite index,
%r-where R Is defined by: x R y if and only If for all z € 2_

xz € L when yz € L.

Proof, 1 2: Suppose L Is accepted by a f,a, M,
Define S by x E y If and only If 5(q^, x) = ^(q^, y). E
Is right invariant, and has finite Index since K is a finite
set. Then L is the union of equivalence classes containing
a word x such that S>(q.qi x) £ F,

2 =^3: Any equivalence relation S satisfying con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dition 2 is a refinement of the equivalence relation R,
hence E having finite index implies R has finite index,

3 1: Construct the f.a, M' = (K', % S'» Q-o'»^*)
as follows :

K' is the set of equivalence classes of R, Denote
the equivalence class containing x by [x].

r = i
6'([x3, a) = [xa] (consistent since R is right in­

variant)

p' = {[x] 1 X € .
Then S' (ig', x) = [x], and hence M' accepts L. Q.B.D.

Corollary The minimum state f.a, accepting L is unique,
and is isomorphic to M ' of the previous theorem.

Proof. Prom the previous theorem, any f.a. M accept-
ing L defines an equivalence relation in % which is a re­
finement of R, so that M has at least as many states as M'.

Furthermore if M has the same number of states as M*,
each state of M can be identified with one of the states of
M'. Q.B.D.

Definition A non-deterministic finite automaton is a sys­
tem satisfying the previous definition of a (deterministic)
finite automaton, except that for any q 6 K and a C % ,
G(q,» a) oao be any subset of K, instead of a single state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in K, with the Interpretation that in any particular in­
stance, the next state can be chosen to be any state con­
tained in this subset.

A word X is accepted by a non-deterministic f.a. M
if there is a sequence of states possible under the input
X leading to a state in P.

Theorem 1.2 If L is accepted by a non-deterministic f.a.
M, it is accepted by a deterministic f.a. M'.

Proof. M* can be constructed from M by defining the
states of M' to consist of all subsets of the states of M.
The set of final states of M' will be the set of all sub­
sets of states of M containing a final state of M.

2. STATE GRAPHS A.HD REGQLAR EXPRESSIONS

A state graph for a f.a. presents a simple picture
of the operation of the machine, and has been a traditional
means of specifying a particular machine behavior. Regular
expressions were introduced as a way of specifying the lan­
guage, or set of words, recognized by a particular f.a.
We now study the relation between these two characteriza­
tions of a f.a.

Definition A state diagram or graph is a finite directed
graph in which the vertices represent states of a f.a. and
the arrows represent transitions between states in accord­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ance with the next state function.

M o m y l e 1.2a Suppose K = f ̂» 21 =■ [0, 1 } , F = q^,
and S is given by S(q^, 0) = q^, S(q^, 1) = q^, S(q^,o)
= q^» ^(q^, 1) = q̂ .̂ The corresponding state graph is

0

0
This is an example of a deterministic finite automaton.

Jbc ample 1.2b Suppose K = fq^, q̂ _. q^ % , Z = f 0, l{ ,
F = q^, and S is given by $ (q_, O) = q , S(q , 1) =c O 0 0i q̂ , q^ I , S(q̂ , 0) = q̂ , S(q̂ , 1) = q̂ , SCq^, 0) = ÿ ,
SCqg» 1) = ^ .

The state diagram is
0

0

Note that this machine is non-deterministic.

Definition 1. E S = f x y | x € R , y ^ s } .
2. E -f S = ̂% | x € E o r x £ S ^ ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition A regular expression is an expression obtained
by a finite number of applications of the above operations
and star closure * (see definition on p. 2) to elements of
21 f ̂ \ , and to expressions obtained from them by
such applications of these operations.

Every regular expression represents a set of words
in 21*, I.e. a "language”. However an arbitrary subset of
21* may not be representable by a regular expression.

Theorem 1.3 below will state that a subset of 21*
is a regular set, or regular language, if and only if it is
representable in terms of some regular expression.

Definition If R Is any set of words In and x € 21 *,
the derivative of R with respect to x is defined as

D%R = ̂t I xt € R.)
The derivatives of any regular expression can be

computed using the following rules:
€ if e is in R

>,(R) , ,
P if 6 is not in R

X(RS)= X(R)'XCS)

D^(b) = 4̂ for b =■ C or b = ^ , or b ^ a
D̂ (R':̂) - D^(R) R̂ ^
BjRS) = D^(R) S + \(R) Da(S)
D^(R+S) = Da(R) +Da(S)

Note that although € denotes the empty word, it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

can be an element of a language, hence Is distinguished
from the empty set .

Every regular expression has a finite number of dis­
tinct derivatives.

Theorem 1.5 (Kleene, 1956) If M is any finite automaton,
Xi(K) can be represented by a regular expression over Z. >
and for every regular expression R there is a f.a. M such
that L(M) is represented by R.

Proof. The idea of the construction in both cases
is that each distinct derivative of R corresponds to a
state of the machine. The initial state always corresponds
to D^(R) = R, and will now be denoted q^, instead of q^ as
was the case previously, to avoid confusion. The state
diagram consists of transitions of the form

(5) a
^

where q^ is identified with D^(R), and q̂ ^̂ with ,
because of the relation D^g^(R) = D^CD^j-CR)).

Hence to construct the state diagram given a regular
expression, compute the distinct derivatives and associate
a state with each, according to the above system. The re­
sulting f.a. is the minimal one for the given language.

Given a state diagram, to construct the correspond­
ing regular expression, form a system of equations of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e

form

Where Z a^, .. ., a^ { and «X. = 6 if the stat
associated with D^R is a final state, <P otherwise. There
will be one equation for each state of M. Then use the
state diagram to identify equal derivatives, and solve the
system of equations for R. Q.E.D.

An inference rule that is often useful in solving
the system of equations is

R = S R + T R = S*T
if € is not in S, where R,S,T are regular expressions.

These procedures are illustrated by the following
examples,

Example 1,2c Suppose R = 0(0^'^10)^0. Construct the corres­
ponding state diagram,

For simplicity let stand for D̂ -R:
Dg = R
Dq = (0^^10)*0
Dqo = (o^io)(o^ao)^o
^ooo = (0*"l0)(0*10)*0
I>, = Doi ” D.I - D q o , “ ^ 0 1 1 “ ^

^10 “ ^(00 ~ ^
^01 0 “ ^o

Hence there are three distinct derivatives (in addit­
ion to = R), so there are four states, and the state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

graph is;

ooo

00

Note that the initial state is and the final
state is .00

This is the minimal f.a. accepting the language rep­
resented by the given regular expression.

Example 1.2d Find the regular expression associated with
the diagram

0

The final state is B,
Associate with A and “ D, with B. Then form

the equations
Dg = R = ODq + ID.
D, = OE ID,. e

From the diagram it is clear that Dq = Lç, D^^ = D g ,
and D„ * D,. Hence the equations become

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

R = OR + ID,
D, = OR + ID, + €

Using the previously mentioned inference rule, the second
equation can he solved for D,:

D, = l'*^(OR+ €) = 1*0R + 1^
This expression is substituted into the first equation to
get

R = OR 4- Kl^^OR 4* 1*)
= OR + 11*0R 4- 11̂ *̂
= (0 4- 11*0)R 4- 11*

R = (0 4- 11^0)'"ll*.

3. PROPERTIES OP REGULAR LANGUAGES

In this section we present the convenient properties
of the class of regular languages.

Theorem 1.4 If L is a regular set, then - L = L*' is
a regular set.

Proof. L regular implies L is accepted by a f.a.
M = (K,Z, S, q^, ?). Then L' is accepted by M* = (K, Z ,
S , K - p).

Theorem 1,5 If L-̂ and Lg are regular sets then L-j_ A Lg
is regular.

Proof. Lj is a union of equivalence classes of a
right Invariant equivalence relation R^, and Lg is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

union of equivalence classes of a right invariant equiv­
alence relation Rg. Then the intersection of these two
unions is a union of equivalence classes of the common
equivalence relation R^^n Rg.

Theorem 1,6 If and Lg regular then vj Lg is
regular.

Proof. ^ ^2 ^ ' A Lg*)'» and apply the two
preceding theorems.

Corollary The class of regular sets forms a Boolean al­
gebra.

Theorem 1.7 Any finite set is regular.

Proof. A f.a. accepting a single word a^ag ... a^
can be constructed by identifying each a^ with a state of
M, and adding an initial state and a final state. Then any
finite set is a union of single words, hence is regular by
application of Theorem 1.6.

Theorem 1.8 If înd Lg are regular, then L^̂ Lg —
^ xy I X Ê L^, y € Lgl is regular.

Proof. A non-determiniStic f.a. can be construc­
ted which initially behaves like the f.a, accepting L^,
and as the input is read, at any point chooses either to
remain as or convert to simulation of Mg, the f.a. ac­
cepting Lg. Then accepts L]_L2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Theorem 1.9 If L is regular then L* is regular.

Proof. If K is a f.a. accepting L, then a non-deter-
ministic f.a. M' can be constructed which acts like M until
a final state is reached, then chooses either to stop or
return to and continue reading the input.

With the above results, Kleene's theorem may now be
restated in terms of the closure properties of regular lan­
guages.

Theorem 1.10 The class of regular sets is the smallest
class containing all finite sets and closed under union,
concatenation (as defined in Theorem 1.8) and star closure,

4. TURING >1A0HINES

The Turing machine (TM) is a device which has very
general powers of computation and recognition; in fact no
"procedure**, i.e. finite sequence of instructions has been
found that could not be modeled by a Turing machine. This
leads to the conjecture, known as Church's thesis, that
there is a TM which realizes any algorithm or procedure.

A Turing machine basically consists of;
1 a tape divided into cells which is infinite

in length in one direction
2 a finite set r* of tape symbols
3 a finite control which at any time contains

one of a finite set K of control states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

4 a tape head which scans one cell of the tape
at a time.

A Turing machine is defined as a system T =
(K,SI,r, 6, çLq , P), with K and P as specified above, and

- | b ^ 1 s the input alphabet, where B is
the blank symbol,

S : K » P --- > K » P % { l , r J is the transi­
tion function,

q.̂ €: K is the start state,
P G K is the set of final states.

A single move involves reading the symbol under the
tape head, and then

1 writing a symbol on that cell,
2 changing the control state, and
3 moving right or left one cell,

all in accordance with the transition function S .
Initially an input word of length n is entered in

the leftmost n cells of the tape. The machine, starting in
state scanning the leftmost cell, then performs a compu­
tation consisting of a series of moves determined by the
transition function. The machine halts if it enters a con­
figuration for which its S function is not defined.

vrhen used as a recognizer, the TM accepts or rejects
any input word presented to it. The language accepted by a
TM is defined to be the set of words in 51* which cause the
TM to enter a final state and halt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

It is often convenient in Turing machine construction
to make use of ’’modifications'* of the basic TM definition:

A non-determiniStic TM is not limited to a single
choice for the next move in all configurations, but rather
may have several choices.

A multi-track TM has its tape divided into several
tracks, with a one-to-one correspondence between the cells
on each pair of tracks. This essentially amounts to con­
sidering a tape symbol as a k-tuple.

A multi-tape TM has several tapes, each with its own
independent tape head.

These modifications, as well as others, do not in­
crease the computing power of the TM, and it can be shown
that there is a standard TM equivalent to each of these
modified machines.

(gn I)As an example, consider the language 1 1 I n ^ 0;.
b'e describe macroscopically a TM M accepting this language.
M has a second tape with its own head, which is used as a
binary counter, with the least significant digit in the
leftmost cell. M scans the input word moving left to right.
If a symbol other than 1 is encountered, the machine halts
and rejects. Every time a 1 is read, M increases the
stored count by one, so that tape 2 contains a count of the
number of I's scanned. When the end of the input word is
reached, M accepts if the word on tape 2 is of the form
0. ..01.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

A linear bounded automaton (Iba) is a single-tape
TM which uses only the input word portion of the tape for
computing. P contains two special endmarker symbols which
are placed at the ends of the input, and which form spacial
operating bounds for the machine. The terms "deterministic"
and "non-determiniStic" have the same meaning for Iba's as
for general Turing machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

PHRASE-S THi;0TtJH3 GRAMMARS

Mathematical grammars are formalizations of the gram­
mars that we use in natural languages. A grammar consists
of a set of symbols and a set of rules for constructing
"sentences" or "words" (both terms are used interchange­
ably), Just as in English a sentence is made up of a noun
phrase and a verb phrase, a formal grammar contains a spe­
cial symbol S called a "sentence symbol", and a rule S — > oC
where oC is a string of symbols, corresponding to the rule
(sentence) ---> (noun phrase)(verb phrase) in English. The
remaining rules are used to generate sentences from oC.
The collection of all sentences derivable by a grammar is
called the language of that grammar.

This chapter defines and examines the hierarchy of
mathematical grammars,

1. THE OLASSIPIOATION OP GRAÎ^MARS

Definition A phrase structure grammar is a system G =
(N,T,P,S) in which

E is a finite set of variables.
T is a finite set of terminal symbols,
S £ N is the start symbol or sentence symbol,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

P is a set of productions of the form oc— > p ,
where oC € (N w T)’®*' - J6} and (3 e (N u t)*.

If oC — > p is a production in G and Y and S are
strings in (H T)*, then y oC 6 Y p 5 is a direct déri­
vât i on in G. If OC ̂ ^ oC g , OC g ^ oC. ̂ ̂ • • • • ^
o(^_2.=^ i^OT some m$s 1) then =.-==:.f>oC^ is a
derivation in G.

Definition L(G), the language generated by the grammar G,
is the set f w € I* j 3 = = > w } .

Examol e 2.1a Suppose N = f 3, a }, T’ = fo, 1 } , and
P consists of the productions:

8 - OA (PI)
A -— OA (P2)
A - IS (P3)
A -— » 0 (P4)

Then L(G) is the set represented by the following
regular expression:

L(G) = 0 (0^ 1 0)* 0
PI P2 P3 PI P4

where each component arises from application of the indi­
cated production. Examples of sentences in L(G) are 00,
0100, 000100, 00010000100. (The finite automaton accepting
this language was constructed in Example 1.2c.)

It is not always easy to characterize explicitly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

the language generated by a grammar.

Definition 1. A context-sensitive grammar Is a grammar
with the property that If oC— ̂p is a production In P,
then loci $ |p| , where | y I denotes the number of symbols
in a string Y .

Since p cannot be 6 , a context-sensitive language
cannot contain € .

2. A context-free grammar is one such that for
every production oC ^ p in P, oC is a single variable
in N and p is any string of variables and terminals.

The definition implies that in a derivation any
variable can be replaced independent of the context in
which it appears.

3. A regular grammar is a grammar such that the
only productions are of the form A — > aB or A — ̂a where
A,B € N and a € T.

Example 2.1a presented a regular grammar. Some
further examples now follow.

Example 2.1b The language a’̂̂'b'**’ corresponds to the follow­
ing regular grammar: N = ̂8, t J, T = Ja, b | , and P
consists of:

S — > aS V > bV
S > bV V ---> b
8 a S > b

This language is called a regular language since it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

is generated by a regular grammar.

Sxample 2,1c Let N = f s i , T = (a, b { , P = J (S — » aSb),
(S— » ab)j . Then G is a context-free grammar, with L(G) =
^a^b^ 1 n ^ l\ . Compare this context-free language with
the regular language in example 2.1b.

Example 2.Id The language L(G) * \ a^b^c^ I n > 1^ is
context-sensitive since it corresponds to the grammar whose
productions are

S -- ̂ aSBO bO > be
S — > aBQ cO > CO

OB -- » BO aB > ab
bB '— > bb

2. REGULAR LANGUAGES

The following two theorems provide the connection
between regular languages and finite automata.

Theorem 2.1 If G = (N,T,P,S) is a regular grammar, then
there is a f.a. M = (K, 2 , S , q^, P) vfhich accepts L(G),
i.e. L(M) = L(G).

Proof. Construct M from G as follows:
K = N U { a } (a ^ H)

T
^0 = 2

(?S,
i if P does not contain S
A } if P contains S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

C f 0 P contains B — ̂aC } if B — »a is not in P
g(B, a) = < 1 1 - 7I % G I P contains B — > aO % A3 if B — » a is in P.
Then the non-deterministic f.a. M accepts 1(G), Q.E.D.

Theorem 2.2 If M is a finite automaton, there is a reg­
ular grammar G such that 1(G)= 1(M).

Proof. Define G as follows; If M = (K , ^ , S , ,P),
then G = (E,T,P,S) where N = K , T = Z , S=rq^ and P is de­
fined hy

1. B > aC is in P if S (B, a) = 0
2. B ÿ a is in P if S(B, a) = 0 and G is in P.

Then G generates 1(M). Q.B.D.

3. CONTSXT-PREE 1ARGÜAGES

let us now examine some properties of context-free
languages and some decidability questions concerning these
languages.

Theorem 2.3 If G is a context-free grammar, there is an
algorithm for determining if G generates a non-empty lan­
guage.

Proof. This follows from the fact that if N con­
tains k symbols, then if 1(G) is non-empty there must be a
minimal derivation of length less than or equal to k of a
word in T**',

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Theorem 2,4 If L is a context-free language, there exist
constants p and q such that if z is in L, and |z| > p, then
z = uvwxy where |vwx| 6 q, v and x not "both 6 , and uvWx^y
is in L, for i ^ 0.

Proof. Let p be the maximum length of all words
generated by derivations of length less than or equal to n,
the number of symbols in H, Thenjzl > p implies there is a
variable A appearing twice in the derivation, hence the
derivation contains a subderivation of the form A ==^ vAx
j— > vwx. Ivwxl is bounded since the derivation is finite,
and A ==> vAx implies A ■ s v^Ax^ — ^ v^wx^. Since A ==^
vwx is a subderivation of z, z can be written as uvwxy, and
uv^wx^y is derivable for all i > 0. Q.S.D.

Theorem 2,5 If L is a context-free language, L is infin­
ite if and only if 1 contains a word of length greater than
p and less than or equal to p + q , where p and q are the
constants of the preceding theorem.

Proof, If w € L, |w| > p, then L is infinite by
theorem 2,4. If L is infinite then there is z = uvwxy in
L where |z| > p -t- q, and |vwx| 6 q, and uv^wx^y fe L for all
i, by theorem 2,4, Then uwy 6 L, with |uwy| > p. If |uwy)
is greater than p 4- q, the procedure can be repeated until
a word of length less than or equal to p-h q (and greater
than p) is found, Q.E.L.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Corollary There is an algorithm to decide if a context-
free grammar generates a finite or infinite number of words.

Certain classifications are commonly used in connec­
tion with context-free languages and grammars;

Definition 1. A grammar G is self-embedding if P contains
a production A = > oC^A where ^ 6 .

2. G is linear if P consists of A ==> uBv or A u
for A,B 6. N and u,v 6 T.

3. G is sequential if N can be ordered such that if
Aĵ — > oC is in P, then A^ is not in for j < i.

4. L is bounded if L ^ . Wjj."**' for some k
and w^ 6 T.

5. G is ambiguous if G contains a word with more
than one distinct leftmost derivation. A leftmost deriva­
tion is one in which the leftmost variable is replaced at
each step.

The following theorem gives a sufficient condition
for a grammar to generate a regular language. Since the
proof is involved it is omitted (see Hopcroft and Ullman,
1969, p. 61).

Theorem 2,6 If G is a non-self-embedding context-free
grammar then L(G) is regular.

Definition A language L is recursive if there is an al­
gorithm which decides whether any word x belongs to L.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Theorem 2.7 If G is context-sensitive then L(G) is recur­
sive.

Proof. An algorithm for deciding if any word x is
in L(G), by classifying words in the language according to
their minimal derivation length, is given in Hopcroft and
Ullman, I 9 6 9 , p. 17.

4. R.SGIJRSIVELY ENUMSRABLB LANGUAGES

We now wish to characterize all phrase structure
languages as a general class.

Definition A set is recursively enumerable (r.e.) if a
finite procedure exists which generates the elements of the
set.

The transition function of any Turing machine is a
finite procedure, hence a Turing machine language is always
r.e. Conversely, recall that by Church's thesis there is a
Turing machine corresponding to any finite algorithm.

Thus the following theorem characterizes phrase struc*
ture languages as r.e. sets.

Theorem 2.8 If G is any phrase structure grammar, then
there is a TM which recognizes L(G). Conversely if any TM
accepts a language L, there is a grammar G which generates
L.

Proof. The constructions of a TM from a grammar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

and of a grammar given a TM, can be found in Hopcroft and
Ullman, I969, PP. 111-112.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

SYxVOHRONOaS DEVELOPMENTAL MODELS

In 1968, A. Lindenmayer introduced systems which
model the growth process of one-dimensional cellular arrays
(Lindenmayer, 1968). These models are referred to as "Lin­
denmayer systems" o r ‘'developmental systems." Although the
initial investigation recognized that these systems were re­
lated to automata theory, it concentrated mainly on the bio­
logical ramifications. Subsequently mathematicians have
been actively studying Lindenmayer systems, for two reasons :
first, the systems are interesting mathematically in their
own right, from the standpoints of their computing ability
and the languages they generate; second, it is possible that
results from mathematical linguistics may have significant
biological interpretations.

A Lindenmayer system is a linear array of cells.
Each cell acts as a finite automaton, with a finite set of
states and a (normally deterministic) transition function, Sj
receiving an input sequence which, in the most general case,
consists of the succession of states through which neigh­
boring cells progress. The cells can change state, accord­
ing to the transition function, only at discrete points in
time, which are the same for all the cells. Hence we can
think of the process as being timed by a discrete clock

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

having an arbitrary time interval.
There are three classifications accorçling to the man­

ner in which a cell receives input; in a 21-system the states
of the left and right neighbors of a cell are inputs to the
cell; thus the argument of the G function for each cell con­
sists of the state of the cell and the two adjacent cell
states. In a 11-system a cell receives input only from the
cell on its left. A 01-system is one in which a cell receives
no input, and changes state only on the basis of what its
present state is. Hence three different types of cellular
interactions can be modeled.

A lindenmayer system, then is a linear array of such
cells, all with the same set of possible states and governed
by the same S function. In a 21-system the two end cells
receive only partial inputs, and by convention do not change
state, (Alternatively, we can think of the end states as
being constant "environmental inputs".) In a 11-system the
left end cell remains constant.

The individual cells differ from ordinary finite auto­
mata in that the value of the S function under certain
values of the argument is allowed to be a string of cell
states, rather than a single state, indicating cell division.
This feature allows a string of cells to grow in length.
Where the value of the G function is the empty word C ,
cell death is indicated.

Formally an il-system (i = 0,1,2) is a construct

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

(A, o(, S) such that A = ̂ Sg..., s } is a finite non-
empty set of cell states, oC 6 A is the starting configura­
tion (oc ^ 14-1), and S : A^ ^ (A^) is the tran­
sition function.

Notation conventions for the 5 function are;
For 1 = 1 , S(left input, present state) = next state.
For 1 = 2 , S(left input, present state, right input) = next
state.

The argument of the 6 function consists of a cell
state and inputs to it during a single time interval. The
domain of S can be extended recursively to include a string
of cells, and a sequence of inputs instead of a single time
Interval input:

i = 0: g (s^...s^) = S(si) ^(sg...s^)
1 = 1 : S(s, S-J_...S^)= S(s, 8^) S'(s^, Sg. . . 8^)

and $(s]_... 8^, U) = ^(sg. .. Sĵ , ^ (s^, oC))
i = 2: 5(s , s^. . . s^, s^) = Sis , s^, s^)

(̂ 1 » Sg» • • 8^ , 8) and S (8]̂ ... 8ĝ , , t^ • • • tĝ) = 5̂ (Sg* • • Sĝ ,
S (^ f t2»»»tjjj).

An L-system is said to be deterministic if S : A^ ^
— ^ A^; prooapiatin^ if 6 : A^ ^ ^ > (?(A^) and growing
if it is propagating and the image of S contains a string
of length greater than 1, Hence strings generated by pro-

^Recall that A^ denotes A* without Ê , and (A^)
is the set of subsets of A"*" .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

pagating systems cannot decrease in length, and growing
systems can increase in length.

The set of words produced by an 1-system M will be
denoted X.(M).

1. EXAMPLES OF L-SYSTEMS

Example 3.1a

As a simple example, consider the IL-system in which
S is specified

present
0 1

0 10 0
1 1 0

input

The first eight words produced are
00
010
001
0100
00110
010001
00110100
0100010110

If the starting word is changed to 100, the output
becomes

100
1110
1001
11100
100110
1110001
100110100
11100010110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

If the starting configuration is 101, the output al­
ternates between 101 and 110. Thus the set of words gener­
ated depends strongly on OC, as well as the S function.

% ample 3.1b
An example of a unary developmental system is the fol­

lowing ; i = 0 , A = î l J , «<*=1, and 5 (1) = 11. Then the
system generates the language [1^^ | n ̂ o} . A Turing
machine recognizing this language was described in Section
1.4.

The remaining examples illustrate special types of
developmental patterns in IL-systems. Lindenmayer has given
proofs of the statements specifying the general conditions
under which each type of pattern is obtained (Lindenmayer,
1968). In these statements X (/> ,<5“) is the sequence of
states of the rightmost cell of the resulting sequence of
strings when is applied to <5" , X therefore can be thought
of as a kind of output function,

Example 3.1c
(Linear growth). If S (/> , (T) =z , 5 (y) , T) — T

and X(y> , T) = /> , then S (/?̂ , <T) = T^<r for /> ,<r , T 6 A*
and n ^ 0.

Let A = f 0,li , oC = 01, 6 (0,0) = 0 and S (0,1) = 01.
Then the set generated is \ 0^1 | n ̂ 1 | i

01001
0001
00001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Example l.ia
(Banded pattern) If S (yO , o") = o-m and X(/? , (r) =

/>, then C-) = for /> , <T Ê m,n > 0.
Let A = ̂0,1^ , oC •= 010, S given by the table;

present state
0 1

0 1 0
input

1 10 1
The output is a series of two alternating repetitious

patterns ;
010
0010
01010
0010010
010101010
0010010010010
01010101010101010

Example 3.le
(Constant apical pattern). If S(yc,<T) = C“T', then

G (f9 (r) = S (, <r) 6 , where 9 - S (A (/̂ ̂ , (T"), T),
for p ,cr ,T G A*, n > 1.

Thus if S (^ ̂ , then with a starting con­
figuration of /> (T" a series of strings is produced in which
each string consists of the previous string with an addition­
al new section concatenated (the ” 0 ” mentioned above). The
strings appear to be growing only at the right end whereas
cell divisions are occurring at several places along the
whole length of the string at each step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

input

Ï 0 ,1 i , oC %=- 10, S

present state
0 1

0 1 0
1 01 1

Output of the system is;
10
101
1010
101001
10100110
10100110101
101001101010010
101001101010010011001

Example 3.If
(Combined constant apical and banded pattern). Let

A = f 0,1] , 0110, G given by: S (0,1) = 1, S(l,l) = l,
S (1,0) = 0110. Then the output is;

0110
0110110
0110110110110
0110110110110110110110110

Lindenmayer has also formulated a scheme for applying
these models to branching filaments. These systems are less
interesting mathematically since the output of'such a system
is not a set of words in the language-theoretical sense.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

DEVELOPMENTAL SYSTEI4 LANGUAGES

Theoretical biologists study formal languages in
relation to L-systems from the point of view of discovering
rules that model the development of known organisms. On
the other hand the interesting questions mathematically
are : what type of language does a particular L-system pro­
duce, and how general are the different kinds of L-systems
in terms of the languages they are capable of generating?

Some basic results concerning the class of all L-
systems will be mentioned first, then we will consider the
languages resulting from each of the three types of L-sys-
tems. Theorems 4,7 and 4.8 give new concise proof cons­
tructions characterizing propagating systems. The rest of
the theorems bring together known results, for which proof
outlines or references to existing proofs are given,

1. SOME BASIC RESULTS

Theorem 4.1 If M is a non-growing L-system, then aC(M)
is finite, hence regular.

Proof, If M is non-growing then Z. (M) is length-
limited, Since there are a finite number of symbols,Z(M)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

is finite. Q.S.D.
If M is a non-growing OL-system, it is easy to deter­

mine the size of X-(M), For each a € A, the transition func­
tion has the form S (a) = b for some b € A, or 5 (a) = € .
Then if oc is the starting configuration of M, there is an
integer t such that 5^(06) does not contain any symbols
for which *b(aj_) = € . That is, the length of ô) is
constant for r > t. If S^(c/) = € , then JC (M) has t dis­
tinct words. If not, then (V) = (3 = s^Sg ••• ®n* For
each s^ there is a least integer r̂ _ for which 6̂ (̂Sj|_) =
Then if q. = lorn r%,rg, . . . , r^ ̂, S^(0) = P , and)
4= P for p < q.. Hence ̂ (M) contains t + q. distinct words.

Theorem 4.2 (Herman, van. Dal en) If M is an iL-system
(i = 0, 1 or 2) then X(M) is an r.e. language. Conversely
any r.e. language is X(M) for some 2D-system M.

Proof. The class of 2L-systems, which contains the
ID and OD-systems as subclasses, is equivalent to the class
of Turing machines. The constructions for this equivalence
are shown in Herman, 19^9 or van Dalen, 1971. Theorem 2.8
then applies. Q.E.D.

The following sections will consider the language-
theoretical properties of certain subclasses of the class of
all D-systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

2. OL-SXSTEMS

OL-systems are capable of producing finite languages;
this happens when the system is non-growing (Theorem 4.1).
In this case 8(a) € A or S(a) = € for all a 6 A. It is
also possible for a OL-system to grow initially but be
length-limited, and therefore have a finite language, as in
the case:

A = C 0,1,2,3 I , = 01,
^ (0) = 0, 8 (1) = 02, 8 (2) = 03, 8(3) = 0

JC(M) = t 01, 002, 0003, 0000 } .

Theorem 4.3 The set of deterministic OL languages has a
non-empty intersection with the class of regular languages.

Proof. The machine described above provides an ex­
ample. Q.E.D.

An example of a regular OL-system which is not length
limited is: A = { 0, 1] , ©C = o, 8 (0) = 10, 8 (1) = 1.
Then this system's language is the one corresponding to the
regular expression (l̂ 'o).

A terminal symbol or state of a OL-system (A, oC, S)
is a symbol a € A such that 8(a) = C A non-terminal
symbol is one that does not have this property.

Theorem 4.4 (Lindenmayer, 1968) If M is a OL-system
(A, ©C, 8) such that for all a € A, 8 (a) = t or S (a) = t b ,
where b is a non-terminal and t is a terminal or € , then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

is regular.

Proof, Given M = (A,©<, S) satisfying the hypothe­
sis, then A = P Q where P is the set of non-terminals
in A and Q is the set of terminals. Construct the grammar
G = (N,T,P,S) where

IT = 5 [a] I a € P ̂
T = A = P Q

and the productions of P are :
1. S ---» oC
2. ̂[a] — » t I t € Q and 6 (a) = t \
3. f [a] — » tb I S (a) = tb }

f I [®-] ^ ^ •
Then for any word w € (M), G derives w from oC by

imitating the 8 function of M, Furthermore any word de­
rivable in G is a word of X(M), Thus X-(M) = X,(G), and
the theorem follows since G is regular. Q.E.P.

An illustrative example is provided by the determin-
4i-istic system mentioned earlier which generates 1 0.

Theorem 4.5 The set of deterministic OL languages has a
non-empty intersection with the set of non-regular context-
free languages, and with the set of non-context-free lan­
guages.

Proof. 1. Let M be the machine specified by;
A = { 0,1 I , <<■= 101, S (0) = 101, S (1) = 1. Then X(M)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

is the set \ 1^01^ 1 n ̂ , which is context-free since
it is generated by the productions S — » ISl, S — > 0.

2. (van Dal en) Let M = (A, oC, S) with A = Î a} ,
oC = a, S(a) = aa. Then X(M) =: f â °" (n 0 } . A lan­
guage t a^ I i € A \ is context-free only if A is an ulti­
mately periodic index set (Ginsburg, 1966, p. 86), hence
X.(M) is not context-free. Q.S.D.

The following theorem gives a sufficient condition
for a non-deterministic OL model to have a context-free
language,

Theorem 4.6 (Lindenmayer, 19711 p. 482) If M = (A,*< , S)
is a OL-system such that a 6 S(a) for all a € A, then
J1(M) is context-free.

Proof. Suppose M = (A,^, S) satisfies the hypothe­
sis. For any w = a]̂ a2 ... a^ € A*, define [w] = [â] [ag]
.. . [a j , and [c] = C

Let G = (N,T,P,S) where
a € A %

T = A
and P consists of

1. 8 --- ? cC
2. [[a)--> [w] I S (a) = w in M ?
3 . [Ca] — > a I a € a].

Then if p € jC(M), G derives a word [p] using rules
1 and 2, then rule 3 obtains (3 from [(3] . Conversely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

If y €X(G), any substitution of type 2 used in deriving
Y from oC can be simulated by M using the corresponding
function transition on the subword which is replaced, and
the identity transition on the rest of the symbols in the
word. Hence X (M) = X(Gr), which is context-free. Q.E.D,

The example in the proof of Theorem 4.5 (1) shows
that the hypothesis is not a necessary condition.

An open question is: if (R is an arbitrary context-
free language is there a OL-system M such that (R. — X(M)?

3. IL-SYSTEMS

IL-systems model developmental situations in which
information passes in one direction along the array of
cells.

Since the IL-systems contain the OL-systems as
special cases, Theorems 4.3 and 4.5 apply to IL-systems.

Definition A left context-sensitive grammar is a context-
sensitive grammar in which ? consists of rules of the form
ocp — V y where oC 6. T* and (i 6 The following theorem
states that the class of left context-sensitive languages
contains the IL languages.

Theorem 4.7 If M is a propagating IL-system, X.(M) is
left context-sensitive.

Proof. We will construct a grammar which generates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

the language of any given IL-system, The simplest grammar
makes use of endmarkers (#) on both ends of a string. If
M = (A, «(, S) where A = f • • • »&n Î » let G = (N,T,P,S)
where

® \ } ^ \ if I

T ~ A ~ ̂ 2̂. » • * • » %
and P consists of the rules

s — $

V^p where ÇÎ €
— 9 #a^.

The endmarkers are not considered to be part of a
word derivable by G,

To show JC(G)= X.(M), suppose oC is the string
V s ... Then let g (of) = t^P 12^23 Pm-l,m
Where P ^ S(t^,tj). Now in G there is a derivation of
£ () :
S -n;» A ^ t g ... t^# >#ti ... m-l,m^

#t^ ... ^ m-2, m-1 m-1 ,m^ — ' >

^1*^12 ' P m - l , m ^ ^ ̂ "^iP 12 ' " P m-l,m^"

Similarly starting with S (oC), there is a deriva­
tion in G of any word which M can produce from £(oL). By
induction then, X (M) S X (G) . On the other hand, a re-

, *verse argument shows that if << =.. > w in G, then there is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

a sequence of steps of M ■which generates w from cC . Hence
X(M) — X(G), which is left context-sensitive. Q.E.D.

It would be possible to avoid end markers in the
grammar at the cost of increasing the number of variables
in by using special variables to stand for the end cells.

Example 4.3a Consider the system of Example 3.2d. For
this case G = (N,T,P,S) where N = f] , T = { 0,1 } ,
and P consists of the rules given in the theorem. The deri­
vation of the first three words by G is as follows;
S --- ̂#010# -- » #01Vq# --* #07^10# --> #Vq010#-- » #0010#
#0010# -- » #001Vq# ---» #00V^10# -- » #0VqO10# ---» #Tq1010#
 > #01010#.

It should be mentioned that the grammar in this
theorem is more interesting mathematically than biologically,
since many substitutions of the grammar are required to sim­
ulate a single time interval step of the IL-system, and
hence the mechanics of the grammar do not offer any new in­
sight into the biological operation of the system,

4. 2L-SYSTEMS

2L-systems are the most complex type of developmen­
tal system since the cells can interact in both directions,
but they are often the most natural type to use in cons­
tructing certain models.

The analog of Theorem 4,7 for 2L-systems now follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Theorem 4,8 If M is a propagating 2L-system,]C(M) is
context-sensitive.

Proof. (This theorem was also proved by van Dalen
using a more complicated grammar. See van Dalen, 1971.)

Again we will use a grammar with end markers. If
M = (A,oC, S), let G = (H,T,?,S) where

M 1 I = 1,2...
T — A — f , &2, • • *, ̂

and the productions in ? are:
S . # oC #

 * P i 3k ^ 3k & (® i , ® j ' ® k)

Vij# *
If oC = t^tg .*• then S () is a word of the

form t^P 123 P m-2,m-l.m'^^m* ^ derivation in
G of this word as follows:
S -- ̂^titg. > ^^1^12^3" • *^m^ -- > ^^1^ 123^23* • *^m^

 > ••• --- > 123^ 234 P m-2,m-l,m ^m^

 > #tl^ 123^234 Pm-2,m-l,m = S (oC).

Then if S^(oC) is any word following $ (<<) in
X(M), there is a similar derivation of it in G starting
with S (oC). Also any word derivable by G can be produced
hy M using the corresponding 6 function transitions.
Hence by induction X. (M) =• X (G) , which is context-sensi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

tive since G Is a context-sensitive grammar. Q.E.D,
Note that locl ̂ 2 for M and G to be defined.

Example 4.4a Suppose M =- (A,«< , S) where A = f 0,1 } ,
«< %r 010, and 5 is the transition function below:

present state
0

right
0

input
1

present state
1

right
0

input
1

0 00 1 0 11 1left left
input 1 1 0 input 1 00 0

#011V]_o#

Then g(o()= 0 ^ (0 1 0) 0 = 0 1 1 0
S2(oC)= 0 S (Oil) S (110)0 = 01000

Applying G,
S > #010# -- > #0Vq3_0# — > #0 (OlO)ViQ# —
 » #0110#
#0110# y #0Vq ^10# ---> #01V]^]_0# ---#0100V]^g# ---- #01000#.

We now obtain a further characterization in terms of
linear bounded automata (see Sec. 1.4).

Theorem 4.9 If M is a deterministic propagating 21-system
then X(M) is recognized by a deterministic linear bounded
automaton K*.

Proof. This construction is an extension of that of
Hopcroft and Ullman, 1969, p. 116. M ‘ has a tape contain­
ing three tracks. The input string to be recognized (0)
is placed on track 1 (with end markers).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Suppose M = , §) with oC = a^ag ... a^. M*
goes through the following procedure.

1. Enters onto track 2 with a^ in the leftmost
cell.

2. Reads a-j_, ag, a^ and replaces ag with
S (a-j_, ag,aj), shifting a^ ... a^ to the right if necessary.
M' stores a^ in its internal control.

3. For each consecutive triple a^_]_a^a^^2. re­
places a^ with 5 (a^_]^, a^, ̂ i+i) » stores aĵ , shifts a^^^...ajjj
to the right as far as necessary, and proceeds to the next
triple aiai+iS-i+2' (This procedure, continued until the
right end of the string is reached, imitates a single tran­
sition of the 2L-system K.)

4. If this operation (steps 2 and 3) would cause
a^ to be shifted onto the square occupied by the right end
marker, M' halts and rejects.

5. After â ,̂ ̂ is replaced by f M'
then compares track 1 and track 2 square by square. If
they are identical M' halts and accepts.

If the track 2 word is shorter than track 1, M* re­
peats the transition routine (steps 2 and 3) starting at
the left of the existing track 2 word, and derives a new
word.

6. If the strings on tracks 1 and 2 are the same
length but not identical, M' first copies the string on
track 2 onto track 3. It then returns to the left of track

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

2 and repeats steps 2 through 5.
7. The procedure of steps 2 through 5 is repeated

until either (a) tracks 1 and 2 are identical and M* ac­
cepts, (b) the right end limit of track 2 is exceeded and
K' rejects, (c) track 2 again becomes identical to track 3.
In the latter case M' halts and rejects,

M' is constructed to simulate the grammar presented
in the previous theorem, so any string it computes on track
2 must be a word in (M); in fact the sequence of words
derived on track 2 is identical to the sequence generated
by M. Since this sequence increases monotonically in
length (because M is propagating) then all words in JC. (M)
of length equal to |p I occur consequtively, and there is a
finite number of these. Hence if the derivation on track 2
reaches a point at which its length would exceed that of
track 1, without ever matching, then (3 cannot be a member
of X(M).

Steps 6 and 7 of the construction are included in
case JC (M) does contain more than one word having the same
length as the input word.

Since M' operates according to a well-defined algor­
ithm, and the S function is deterministic, M' is determin­
istic. This theorem includes as special cases the classes
of deterministic OL and IL-systems. Q.E.D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

5. SUMMARY

We have seen that the class of languages produceable
by Lindenmayer developmental systems is restricted because
of the requirement of simultaneous replacement. However it
is a difficult problem to determine exactly what languages
they are capable of producing, and many of the results ob­
tained to date are "intersection" theorems rather than
equivalence or containment ones (although all these types
have been mentioned here).

As we have seen, a deterministic OL-system (LOL-sys-
tem) can be regular, but the class of regular languages
they can model is probably quite limited, as shown by the
fact that even is not a DOL language (since a DOL-system
must increase in length monotonically, and cannot do so
linearly with a single letter alphabet). Theorem 4.4 shows
that it is much "easier" for non-deterministic OL-systems
to produce regular languages than deterministic ones. In
fact if a OL transition function is constructed randomly
the chances are that it will be non-context-free.

With regard to constructing a system to have a pre­
determined language, the examples have shown that the sys­
tems with interaction (IL and 2L) are more flexible and
permit more variety than the OL-systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

OOMPUTEE SIMULATION OP DEVELOPMENTAL SYSTEMS

Computer programs that simulate L-systems are an aid
in determining the language of a particular L~system, espec­
ially with systems having a large alphabet. A common prob­
lem, for example, is to see how the language corresponding
to a fixed transition function varies for different initial
configurations. Programs are given here that simulate de­
terministic OL, IL and 2L systems, along with examples il­
lustrating their use. Some of the examples are not complex
enough to warrant computer analysis, but are used to show
how the programs are applied.

The programs are written in the SNOBOL 4 language,
which is a string manipulation system and hence well suited
for this type of application, but is comparatively slow and
requires a large amount of computer memory. This language
allows the programs themselves to be quite short.

1. 0L-SYSTEI4S

Example 5.1
Figure la gives a program to simulate any OL-system

which has an alphabet A = ^1,2,5,4j . The input data con­
sists of the transition function matrix, the initial string,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

and the number of words to be outputted (in addition to the
initial word). The program works from left to right, exam­
ining each character in the current string and replacing it
by its successor according to the transition matrix.

Input data is entered following the END statement,
in the order; S (a^), 5(ag), ... $^(a^), cK, number of
words; each on a separate line.

Simulation of a OL-system with a different alphabet
requires only a simple modification (statements 4-7).

The output of the program in Figure la is the first
five words of the system below:

A * f 1,2,3,4} , çC = 1234, with transition function;

present state
1 2 3 4

successor 11 22 33 44

The n^^ word in the language of this simple system
is 1^^ ^2^^~ ̂ 3^^ *" This exponentially increas­
ing language probably has no realistic biological applica­
tion, but provides an example of one type of (context-sen­
sitive) language that OL-systems are capable of producing.

Figure lb gives the SNOBOL statistics for this ex-
ample.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

2. 1L-SYST3MS

Bxample 5.2a
The program for IL-systeins, shown in Figure 2 is

similar to the one for OL-systems except that it examines
pairs of characters, and works right to left, similar to
the operation of the IL grammar of Section 4.3. The pro­
gram in Figure 2 incorporates the data for a specific sys­
tem into the main part of the program, although this is not
necessary (see next example).

The particular system in this example, like the pre­
vious one, has as its language strings consisting of four
equal length bands, increasing monotonically in length.
However the IL-system by virtue of cell interactions is
able to model this type of growth at a linear, rather than
exponential rate, and so is more realistic as a biological
model.

The data for this system are A = J 1,2,3,4] ,
oC = 1234, with transition matrix

input

present state

12

The n^^ word in the language is 1^2^3^4^.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

"Sxample 5.2b
Figure 3 presents a general program for IL-systems,

in the form accepting the alphabet f 1,2,3} . This program
has the ability to repeat the simulation for more than one
starting configuration, with a fixed S function. The
order for entering input data after the BND statement is:
6(1,1), 6(1,2), 6(1,3), 6(2,1), ... , 6(3,3), number of

words (same for each case), ... , <3̂ *̂
Figure 3 illustrates the use of this program in

simulating a linearly growing, repeating, banded pattern.
The bands remain constant in length here, in contrast to
the previous examples. The data are: A = { 1,2,3^ ,
oC= 211, S given by;

input

present state

11

Example 5.2c
The following system can produce several different

languages, depending on oc (see Figure 4): A = { 1,2,3} ,
S given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

present state

11
11

input

= 12, o<2 ^ 21, «^3 ^ 15, = 121
The four languages are all of the "constant apical" type
(Section 3.2e). There are at least three different possible
patterns, as the first three sets show» The fourth set is
the same pattern as in the first one, but the strings grow
faster in the fourth set.

5. 21-6YSTBMS

Example 5.5a
The program imitating 2L-systems (Figure 5) operates

on the same principle as the 2L grammar given in Section 4,4,
and as shown her accepts data consisting of O's and I's,
The order of entering the data is the same as for the IL
case, with the order for the S function shown in statements
4-10 of the program.

Figure 5 shows the first 11 words for the system;
A = { 0 ,ll,cK. = 11111, S given by

present
state 0

right input
0 1 present

state 1
right input
0 1

0 0 1 0 11 11left leftinput 1 1 1 input 1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

Example 5»3b
The biologists' interest in L-systems is to discover

what different kinds of naturally occurring growth they are
able to model. One specific phenomenon which occurs com­
monly in nature is length-limited growth, in which a filament
grows to a predetermined length and remains at that length
in a dynamic state; i.e. cells continue to divide and die
even after the full length is reached. As an example of a
more complex developmental system requiring computer aided
analysis, we will construct an L-system which models this
phenomenon and present some sample simulation runs.

The specific problem to be oonsidered is to construct
a system starting with a short Initial configuration, pro­
ducing strings which increase linearly up to a certain
length and then remain at that length; and with the addition­
al feature that if at any time the current string is "cut,"
i.e. a right-hand section removed, the string will regrow
out to the limiting length.

One way to model a length-limited filament is to have
the first few cells in the string act as a counter, in con­
junction with a special cell which divides at each clock
time. When a certain count is reached the dividing cell is
replaced by a non-dividing one. This method allows one to
set the limiting length at any desired number. However
such a device would not have the "regrowth" feature.

A model that has this property is presented in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Figure 6, The model is a 2L-system with a ten-symbol al­
phabet, so that the transition function is relatively com­
plex, The program realization (Figure 7) consists of the
basic 21-system program followed by an implementation of
the function as a series of predicate statements. Figure
8a shows the first 50 strings.

The basic operation is as follows;
1, At every fourth clock time a signal is

created which moves right one position at
each time interval,

2, When the signal reaches the right end of
the string it is reflected and becomes a
left-moving signal.

3, The left-moving signal keeps a count of the
number of right-moving signals it has crossed

4, Vfinen a left-moving signal that has crossed
five right signals reaches the left end,
cell division is stopped, but the system
continues to send out a signal on every
fourth word,

5, If after growth has stopped a left-moving
signal reaches the left end with a count
smaller than five, cell division begins
again.

Thus the length of the string is kept constant in a
type of dynamic equilibrium, after the initial growth. If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

part of the string is removed, growth is resumed. When
growth again stops, the length of the string will be egtual
to or close to its former length. This is illustrated in
Figure 8b, which shows the results of applying the program
to the first five symbols in the final string of Figure 8a.
(This number is selected at random.) A **0’* is added at the
right end, and may be thought of as an environmental input.
The final length is now 22, compared to 19 for the original
growth. When the first ten symbols of the final string in
Figure 8a are used as the starting configuration, the result
is as shown in Figure 8c.

The computer can thus be an indispensible aid in
constructing and analyzing complex models. Certain func­
tional differences could be effected in all three basic
programs; for example we might wish the simulation to stop
when a certain string length is exceeded, or we might want
to print out only every third or fourth string. The pro­
grams given here are basic ones that can be modified to fit
given situations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

SN0B0L4 (VERSION 3.4.3, JAN. 16, 197 1)

DIGITAL EQUIPMENT CORP., POP-10
I &TRIM = l; &ANCHOR = 1
3 D = ARRAY(4)
4 D<1> = INPUT; D<2> = INPUT
6 D<3> = INPUT; D<4> = INPUT
8 STR = INPUT
9 NUM = INPUT
10 LI OUTPUT = STR
II M = LT(M,NUM) M + 1 îFCEND)
12 X =
13 L2 STR X LET'JCl) . A = X D<A> :FCL1>
14 X = X D<A> : (L2)
15 END
NO ERRORS DETECTED IN SOURCE PROGRAM

1234
I 1223344
II I 1222233334444
11 1 1111 1222222223333333344444444
1111111111111111222222222222222233333333333333334444444444444444

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 1 I

Pig, la. Program for simulation of OL-systems with A=^l,2,3,4]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

SN0B0L4 STATISTICS SUMMARY-
797 MS. COMPILATION TIME
2549 MS. EXECUTION TIME
147 STATEMENTS EXECUTED, 5 FAILED
4 ARITHMETIC OPERATIONS PERFORMED
64 pattern MATCHES PERFOPd-IED
2 REGENERATIONS OF DYNAMIC STORAGE
6 READS PERFORMED
5 WRITES PERFORMED

36 K CORE USED, 4 195 FREE WORDS LEFT
17.34 MS. AVERAGE PER STATEMENT EXECUTED

Fig. 11). Program statistics for example 5.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

S^0B0L4 (VERSION 3.4.3, JAN. 16, 1971)

DIGITAL EQUIPMENT CORP., POP-10
1
3
4
811
12
13
14
15
16
17
18
19
20

LI

&TRIM = l; &ANGHOR = 1
D = ARRAY C’4,4•)
D<1,1> = l; D<2,2> = 2; D<3,3> = 3,' D<4,4> = 4
D<i,2> = 12; D<2,3> = 23; D<3,4> = 344
STR = 1234
NUM = 8
PAT = TAB(*(I - N)) . X LENCl)
OUTPUT = STR
M = LT(M,NUM) M + 1 :F(END)
I = SIZE(STR)
N = 1
N = LT(N,I) N + 1 :FCL1)
STR PAT = X A D<A,B> :<L2)

A LENCl) B

L2
END

NO ERRORS DETECTED IN SOURCE PROGRAM

234
1223344
11222333444
1 I 1222233334444
1111222223333344444
11111222222333333444444
1 1 1 1 1 1222222233333334444444
111 1 1 1 1222222223333333344444444
1 111 1 1 I 1222222222333333333444444444

Pig. 2. Program for simulation of example 5.2a,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57
SN030L4 (VERSION 3.4.3, JAM. 16, 1971)

DIGITAL EQUIPMENT CORP., PDP-10
1 &TRIM = 1 ; &ANCHOR = I3 D = ARRAY('3,3')4 D< 1, i> = i n p u t; D<1,2> = INPUT; D<1,3> = INPUT7 D<2, l> = i n p u t; D<2,2> = INPUT; D < 2 , 3 > = INPUT10 D<3, i> = i n p u t; D<3,2> = INPUT; D<3,3> = INPUT13 NUM = INPUT
14 L0 STR = INPUT ;F(END)
15 M = 0
16 PAT = TAB(*(I - N)) . X LEN C 1) . A LEM C 1) . B
17 L 1 OUTPUT = STR
18 M = LTCM,NUM) M + 1 :FCL3)
19 I = SIZECSTR)
20 N = 1
21 L2 N = LTCN,I) N + 1 :FCL I)
22 STR PAT = X A D<A,B> ; CL2)
23 L3 OUTPUT =
24 OUTPUT = : CL0)
25 END
NO ERRORS DETECTED IN SOURCE -PROGRAM

21 1
21 12
21 122
211223
2112233
21 12233 1
2112233 1 1
21 12233 1 12
21122331122
211223311223
2112233112233
21 122331 12233 1
21 122331 12233 1 1
21 122331 12233 1 12
21 122331 12233 1 122
21122331 122331 1223
21 12233 I 12233 I 12233

Fig. 3. Program for simulation of IL-systems with A.= fl,2,3l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12
122
122 1
122 1 1 1
122 11133
122 1 1 133332
12211133332223
1221 1 1333322231 12
12 21 1 13 33 322231 121 1322
122 11133332223112113221133331
122 1 1 1333 3222 3 1 12 1 13221 133 33 1 1 1333222 1 1

58

21
21 1
21 13
21 1333
21 133322
21 1333223 1
21 1333223 12
21 1333223 12
21 1333223 12
21 1333223 12
21 1333223 12

13
133
1332
13323
133232
1332323
13323232
133232323
1332323232
13323232323
133232323232

121
1 2 2 1 1
1221113
1221113333
1221113333222
1221 1 13333222311
1221 1 133332223112113
1221 I 13333222 31 121132211333
122111333322231121132211333311133322
12211133332223112113221133331113332 221133332231
1221 1 1333322231 121 13221133331 1 13332221 133332231 11 13332223121 1

Fig, 4. Simulation of example 5.2c.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

SN0B0L4 (VERSION 3.4.3, JAN. 16, 1971)

digital e q u i p m e n t CORP., PDP-10
1 &ANCHOR = l; &TRIM = 1
3 D = a r r a y ('0:1,0:1,0:1')
4 D<0,0,0> = i n p u t; D<0, 0, 1> = INPUT
6 D<1,0, 0> = INPUT; D<1,0, 1> = INPUT
8, D<0,1,0> = INPUT; D<0,1,1> = INPUT
10 D<1,1,0> = INPUT; D<1,1,1> = INPUT
12 STR = INPUT
13 MUM = INPUT
14 PAT = *% LEN (1) . A LEN Cl) . B LEN Cl) . 0
15 LI OUTPUT = STR
16 M = LT(M,NUM) M + 1 :FCEND)
17 X =
18 STR PAT = A D<A,B,G> B G
19 X = A
20 L2 X = X D<A,B,G>
21 STR PAT = X D<A,B,C> B C :S(L2)
22 STR RTAEC2) . P LENCl) LENCl) . Q = P 0 :(Ll)
23 END
NO ERRORS DETECTED IN SOURCE PROGRAM

11111
10001
1101 1
10 1111
1 1 1 1 0 0 1
10 00 1 1 1
1 1 0 1 1 1 0 1
10 1 1 1 0 0 1 1
1 1 1 1 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1 0 0 0 1
1101 I 10001011

Fig. 5. Program for simulation of 21-systems with A= Î 0,lj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

î 0,1,2,3.4,5,6,7,8.9Î

(02x) =s 31 (x?t7,9) (047) - 5
(03x) = 4 (x^k7,9) (049) = 9
(04x) = 58 (x^7,9) (49x) ^ 8
(05x) = 2 (x^7,9) (49x) = 18

(x9y) = 9(x8y) = y+ 1 (1 < y ̂ 6)
(x9y) = 1

(x87) = 7 (09x) = 2(x88) = 9 (Oxy) =S X
(x80) = 2

(05x) = 2
(x8l) = 1 (x?fc9) (97x) = 1
(981) = 8

(x7y) = 9
(8xy) = 8 (1« xé7) (xly) = y(88x) ~ 1 (xyz) = 1

(Ixy) = 1

(x = l,7)
(2 € z é5)
(x^t4, y = 1,7)
(x^ 4, y ?tl,7)

(x = 7,9)

(2f z ̂ 5)
(x#8, l ^ y < 7)
(xÿ. 2, 2 s y é 6)
(x^ 2)

1 6 x,y,z ^ 9 except as indicated.

Figure 6. S function for length-limited 2L-system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-UIvILl ST

LI

L2
L3

&ANCHOR = IS & T R IM =
D E F I N E C ' N (X , Y , 2) ’)
STR = IN P U T
NUM = IN P U T
O UTPUT = D U P L C ’
M = L T C M j N U M) M

61

,20) STR

END....
049110
50

A

X =
STR
B C
X =
X =
STR
NEXT =
STR X

X LENC1)
I

A LENC I)
PC END)

B LENC 1)

X NC A, B, C)
X LENCl)

N C A, B, C)
A =' X NEXT

. A LENC 1) . B LENC 1)

C = A MCA, B, C)

FCL4)

X = X NEXT : CL3)L4 STR RTABC2) # P. LENC. 1) LENCl) . Q = P QN N = EO.C C A B O', 111) 1 : SC RETURN)
EQCB, 6) :FCR1)
N = EEC C, 2) LECC, 6) C + 1 : SC RETURN)
N = EQC C, 0) 2 ; SC RETURN)
N = EQC C, 7) 7 : SC RETURN)
N = EOC C,8) 9 : SC RETURN)
N = NEC A, 9) 1 : SC RETURI\I)
N = 8 : SC RETURN)

R1 EOCE, 1) : PC R2)
N = NEC A, 8) NEC G, 8)'NECC, 0) G : SC RETURN)
N = NEC A, 8) 1 SC RETURN)

R2 N = EQC A, 8) 8 Î SC RETURN)
EO.C A, 0) ; PC R4)
N = G EC E, 5) 2 : SC RETURN)
LTC C,7) : PC R3)
N = EOC E,2) 31 ; SC RETURN)
N = E0CB^3) 4 : SC RETURN)
N = EQC E, 4) 58 : SC RETURN)

R3 N = NEC C B C),49) B + 1 : SC RETURN)
N = 9 ; SC RETURN)

R4 EQCB,9) :FC R6)
EQC A, 4) ; PC R5)
N = G EC C, 2) LECC, 6) 18 : SC RETURN)
N = 8 SC RETURN)

R5 N = G EC C, 2) LECC, 5) 1 : SC RETURN)
N = 9 SC RETURN)

R6 N . = EQCA, 1) 1 : SC RETURN)
EQCB,7) ' : F C R7)
N = EQC A, 9) 1 : SC RETURN)
N = 9 : SC RETURN)

R7 N = LEC B, 6) 1 ; SC RETURN)
N = B Î C RETURN)

CL 1)

Figure 7. Program for example 5.3b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62
020
03 10
04 1 0
05810
02 180
031120
0412 10
0582 î 10
0238 1 10
03111810
04 1 1 1 180
058111120
02 18112 10
0311182110
0411138110
0581 13 II 8.10
02183111180
03 1 1481 1 1 120
041411811210
0584111182110
0258111138110
03111811311810
04111183111180
058 1 1 1 1481 1 1 120
02181 14 11811210
031 1 1841 1 I 182 1 10
041 1 1581 1 I 1381 10
K«58 1 151 181 131 1810
02185111183111180
031 1681 1 1 1481 1 1 120
04161181 14 1 181 1210
0586111184111182110
02781 1 1 1581 1 1 1381 10
0391811511811311810
0491185111183111180
0981 1681 1 1 1481 1 1 120
0288611811411811210
039781 1 184 1 1 1 1821 10
0491181 1581 1 I 138 1 10
0981118511811311810
0288116811183111180
0391861 181 1481 1 1 120
0491781 1 1841 181 1210
0987 1 181 1581 1 1821 10
02781 1 1851 181 1381 10
039 161 1681 1 1831 1810
049 1 1861 181 1481 1 180
0981178111841181120
02887 1 181 15811 18210
0397811185118113810
0491 181 1681 1 1831 180

Pig. 8a. Simulation output (a) for example 5,3b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63
049 I 10
098 1 10
028810
039180
049120
0982 10
0233 10
03 1 1 180
0411120
05811210
02182110
031 1381 10
041311810
0583111180
024 8 1 1 1120
031 I 18112 1 0
041 1 1 182 1 1 0
0581 1 1 1331 10
02181131 1810
0311183111180
0411148111120
05811411811210
021841 1 I I 821 10
031 1581 1 1 1381 10
041511811311810
05851 1 1 1831 1 1 180
0268111143111120
031 118114 1 181 1210
041 1 1 1841 1 1 182 1 10
0581 1 1 1581 1 I 138110
021811511811311810
03 1 1 185 1 1 1 183 1 1 1 180
0411168111148111120
0581 161 181 141 181 1210
02 186 1 1 1 184 1 1 1 182 1 10
031 178 1 1 1 1 581 1 1 138 1 10
04 1 7 1 1 8 1 1 5 1 1 8 1 1 3 1 1 8 1 0
0587 1 1 1 1851 1 1 1831 1 1 180
0278 1 1 1 1681 1 1 148 1 1 1 120
039181 161 181 141 181 1210
049 118611 1 1841 1 1 1821 10
0981 1781 1 1 1581 1 1 1381 10
02887 1 181 151 181 131 1810
039781 1 1851 1 1 1831 I 1180
0491 18 1 1681 1 1 1481 11120
0931 1 186 1 181 141 131 1210
0288 1 1781 1 1841 1 1 182110
039 187 1 181 1581 1 1 1381 10
049 17 8 1 1 1851 181 131 1810
0987 1 181 1681 1 1831 1 1 180
02781 1 1861 181 143 1 1 1 120

Fig. 8b. Simulation output (b) for example 5.3b,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64
0491181 1680
09811186120
02881178210
039187 13810
049 17831 180
0987 1481120
027 84 1 182 10
039581 13810
041 1 183 1 180
058111481120
021814118210
0311181113810
0411118 13 1180
05811 1 1 181 1 120
02181111181210
031 1 181 11118110
041 1 1 181 1 1 1 1810
0581 1 1 1 181 1 1 1 180
0218111118111120
0311 181 1 1118112 10
0411 1 1811 I 11821 10
058111118111138110
0218 I i 1 1ibi1311810
031 1 181 1 1 1 1831 11 180
041 1 1 181 1 1 1481 11 120
05811111811411811210
02181 1 1 1 184 1 1 1 1821 10
031118111158111138110
041111811511811311810
058 I 1 1 1 1851 1 1 1831 1 1 180
02181 1 1 1681 1 1 1481 1 1120
0311181161181141181 1210
041 1 1 1861 1 1184111 1821 10
05811117 8111158111138110
02181 171181 151 1811311810
031 1 1871 1 1 1851 I 118311118 0
04 11178111168111148111120
05811711811611811411811210
021871 1 1 1861 1 1 1841 1 1 182 1 10
0311781111781111 58 111138110
041711811711811511811311810
0587 1 1 1 187 1 1 I 1851 1 1 1831 1 1 180
027 8111178111168111148111120
039 181 171 181 161 181 14 1181 1210
0491 187 1 1 1 1861 1 1 1841 1 1 182 1 1 0
09811781111781111 58 111138110
0288711811711811511811311810
0397811187 111185111183 111180
04 91181178111168111148111120
09 811187 11811611811411811210
02881 1781 1 1861 1 1 1841 1 11821 10

Pig, 8c. Simulation output (c) for example 5.3b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

REPSRSÎÎOES

Aho, A. and Ullman, D. I968. **The Theory of Languages”.
Mathematical Systems Theory 2: 97-125.

Chomsky, U. 1956, "Three Models for the Description of
Language”, 1RS Trans. Information Theory 2: 113-
124,

Doucet, P, and Rozenberg, G. 1971. ”0n OL Languages”,
Information and Control 19: 302-318.

Ginsburg, S. 1966. The Mathematical Theory of Context-
Free Languagces. New York: McGraw-Hill.

Herman, G, I969. "The Computing Ability of a Development­
al Model for Filamentous Organisms”. Theoretical
Biology. 25: 421-435.

Hezman, G. 1970. "The Role of Environment in Development­
al Models", £, Theoretical Biology 29: 329-342.

Hopcroft, J. and Ullman, J. I969. Formal Languages and
Their Relation to Automata, Reading, Mass,:
Ad d i s 0 n-W e siey.

Kleene, S. 1956, "Representation of Events in Nerve Nets
and Finite Automata", Automata Studies. Princeton
Univ. Press, Princeton, N.J.: 3-42.

Kuroda, S. 1964, "Classes of Languages and Linear Boun­
ded Automata". Information and_ Control 7: 207-220.

Llndenmayer, A. I968. "Mathematical Models for Cellular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Interactions in Development”. J. Theoretical Biol­
ogy 18: 200-315.

Lindenmayer, A. 1971. “Developmental Systems Without
Cellular Interactions: Their Languages and Grammars”.
J. Theoretical Biology 30: 455-484.

McCulloch, W. and Pitts, W, 1943. ”A logical Calculus
for the Ideas Immanent in Nervous Activity”. Bull.
Math. Biophysics 5: 115-133.

Myhi11, J. 1957. “Finite Automata and the Representation
of Byents”. Wright Air Development Center Technical
Report 57-624.

Rabin, M. and Scott, D. 1959. “Finite Automata and Their
Decision Problems”. IBM J_, Research and Develop­
ment 3: 115-125.

Springsteel, F. 1972. “Language Recognition by Marking
Automata”. Information and Control 20-4: 313-330.

Turing, A. 1936. “On Computable Numbers with an Appli­
cation to the Bntscheidungsproblem”. Proo. London
Mathematical Society 2-42: 230-265.

Van Dalen, D. 1971. “A Note on Some Systems of Linden­
mayer”. Math. Systems Theory 5: 128-140.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Mathematical linguistics and automata theory and applications to biological growth models
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.YaKb3

