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Mathematical method and proof

Jeremy Avigad (avigad@cmu.edu)
Carnegie Mellon University

Abstract. On a traditional view, the primary role of a mathematical proof is to
warrant the truth of the resulting theorem. This view fails to explain why it is very
often the case that a new proof of a theorem is deemed important. Three case studies
from elementary arithmetic show, informally, that there are many criteria by which
ordinary proofs are valued. I argue that at least some of these criteria depend on
the methods of inference the proofs employ, and that standard models of formal
deduction are not well-equipped to support such evaluations. I discuss a model of
proof that is used in the automated deduction community, and show that this model
does better in that respect.

Keywords: Epistemology of mathematics, mathematical proof, automated deduc-
tion

1. Introduction

It is generally acknowledged that at least one goal of mathematics is
to provide correct proofs of true theorems. Traditional approaches to
the philosophy of mathematics have therefore, quite reasonably, tried
to clarify standards of correctness and ground the notion of truth.

But even an informal survey of mathematical practice shows that a
much broader range of terms is employed in the evaluation of math-
ematical developments: concepts can be fruitful, questions natural,
solutions elegant, methods powerful, theorems deep, proofs insightful,
research programs promising. Insofar as judgments like these channel
the efforts and resources we devote the practice, it is both a philosoph-
ical and pragmatic challenge to clarify the meaning of such terms.1

Value judgments applied to mathematical proofs provide particu-
larly interesting examples. For, on a traditional view, the role of a proof
is to demonstrate that a theorem is true; but it is very often the case
that new proofs of an old theorem are valued, a fact that is rendered
utterly mysterious by the standard characterization. Salient examples
of the phenomenon are Dedekind and Weber’s algebraic proofs of the
Riemann-Roch theorem, the Selberg-Erdös proofs of the Hadamard-de
la Vallée Poussin prime number theorem, or the 150 or so proofs of
the law of quadratic reciprocity that have been published since Gauss’
Disquisitiones Arithmeticae2; but the phenomenon is ubiquitous, from
the most elementary mathematical proofs to the most complex.3
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Put simply, the challenge is to explain what can be gained from a
proof beyond knowledge that the resulting theorem is true. Of course,
one sense in which a proof may be viewed as constituting an advance
is that it may actually establish a stronger or more general statement,
from which the original theorem easily follows. But even in cases like
these we need to account for the intuition that the proof can also
augment our understanding of the original theorem itself, providing
a better sense of why the theorem is true.

Such proofs are sometimes called explanatory in the philosophical
literature, and there is a small but growing body of work on the notion
of explanation in mathematics (e.g. [50, 38, 39]). I will use the term
here only gingerly, for two reasons: first, the term is not so very often
used in ordinary mathematical discourse; and, second, it is certainly not
the only term which is used to voice positive judgments about proofs.
Here, I would prefer to remain agnostic as to whether there is a single
overarching concept that accounts for all such positive judgments, or
rather a constellation of related notions; and also as to whether the
particular virtues considered here are best labeled “explanatory.” A
further difficulty with respect to obtaining a satisfactory theory is that
judgments often vary as to the relative merits of different proofs; this is
why it is common to find a dozen specialists in a subject writing thirteen
introductory textbooks. The best we can therefore hope for is a theory
that clarifies the factors that underly such judgments and helps explain
the differences, e.g. ascribing them to differences of context, purpose,
or emphasis.4

We do have some fairly good intuitions as to some of the reasons
that one may appreciate a particular proof. For example, we often value
a proof when it exhibits methods that are powerful and informative;
that is, we value methods that are generally and uniformly applicable,
make it easy to follow a complex chain of inference, or provide useful
information beyond the truth of the theorem that is being proved. As
a philosophical thesis, however, this claim is lacking. For one thing,
it is vague: I have not said what it means for a proof to “exhibit”
a “method,” let alone what it means for a method to be general and
uniformly applicable; nor have I said anything about how methods help
render a proof intelligible, or the types of information they can convey.
A second objection is that the claim is rather toothless: few would deny
that the attributes indicated are generally desirable.

My goal here is to suggest that the first objection can be reasonably
addressed. In other words, it is possible to develop an analytic theory
of proof and method that can do philosophical work, and, in particular,
can be used to clarify such evaluatory terms. To that end, I will dis-
cuss a model of proof that is currently used in the field of automated
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deduction, and attempt to enlist the corresponding terminology and
framework for a more conceptual analysis. If this is successful, the
second objection noted above will, instead, become an asset: insofar
as the terms can be made sense of, the result will be a philosophical
claim that stands a good chance of being correct.

The analysis begun here rests on the central assumption that at
least some of the value judgments that are commonly applied to math-
ematical proofs are actually derivative of value judgments applied to
associated methods. This association can happen in at least two ways.
Sometimes new methods are introduced in the course of a proof; for
example, Gauss’ sixth proof of the law of quadratic reciprocity intro-
duced the method of Gauss sums, which paves the way to higher-order
generalizations; and the Dedekind-Weber proof of the Riemann-Roch
theorem was ground-breaking in its introduction of algebraic methods
to the study of function spaces (cf. the discussion in Corfield [13]).
Sometimes, in contrast, old results are reproved in order to illustrate the
benefits of methods that have been introduced in the development of a
more general theory. For example, Dedekind often went out of his way
to show how the new methods developed in his theory of ideals result
in perspicuous proofs of established theorems of number theory, from
Fermat to Kummer (see, for example, [16, §26–27]). In both situations,
praise for the proofs can be read, at least in part, as praise for the
associated methods.

The project begun here should be situated with respect to the
much broader program of developing a theory of mathematical under-
standing. This can involve characterizing various mathematical activ-
ities (e.g. computing, conjecturing, problem solving, theory building),
as well as characterizing the complex network of mathematical goals
and subgoals (e.g. proving certain theorems, classifying structures, un-
derstanding mathematical phenomena, discovering important truths).
This larger program is dauntingly vague, broad, and open-ended, and
my hope is to make incremental progress by isolating a small, inter-
esting, and more manageable subtopic. Such a separation, however,
will make my account in some ways unnatural and in very many ways
incomplete, and so some reference to the broader context will help
clarify the scope of the restricted endeavor.

What I hope to begin to understand here are those features of mathe-
matical practice that make a proof intelligible, for example, enabling us
to see that a conclusion Y follows from hypotheses X1, X2, . . . , Xn in a
“straightforward” way. In other words, the kinds of methods I will focus
on are best characterized as methods of inference. This way of setting
things up blurs the distinction between the context of discovery and the
context of justification: we verify that Y follows from X1, X2, . . . , Xn by
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searching for an appropriate justification, using appropriate methods.
A more significant difference is one of scale: in this essay I will focus
on the process of understanding relatively small inferential steps. This
leaves out the more complex, creative, and heuristic processes involved
in finding complex proofs ab initio, attacking open problems, or devel-
oping theoretical machinery to support such efforts. Attention has been
given to such higher processes in the automated deduction literature
(see, for example, the literature on proof planning and rippling, in which
[8] was seminal). Understanding the lower-level processes that I address
is certainly relevant to understanding the higher-level ones, but I will
not speculate here as to whether the difference is primarily one of scale,
or whether a qualitatively different type of analysis is needed.

The notion of a method can, and has, been fruitfully used to charac-
terize other types of mathematical activity as well. That is to say, there
is also a literature on methods of solving mathematical problems (see,
for example, [45]), methods of forming new concepts and conjectures
(Lenat’s Ph.D. thesis [37] was an early and important contribution,
and [11] is a more recent one), and so on. Although I will not consider
these here either, it will become clear in the discussion below that
such issues lurk nearby. For example, we will see informally that some
proofs are informative because they show us how an associated problem
can be solved; thus methods of proof are related to methods of problem
solving. At times we will even find that higher-order methods are called
for: for example, we often wish to speak of methods of proof that can
be generalized, talk which can naturally be understood to imply that
there are second-order methods that transform specific proof methods
into more general ones.

The structure of this essay is as follows. In Section 2, I will present
three basic yet important theorems from elementary number theory,
and discuss, informally, some of the benefits of various proofs of each.
In Section 3, I will call attention to some of the features of proofs that
seem to be relevant to this discussion. After showing that standard
models of formal deduction fail to make these features apparent, I will
discuss the model of proof alluded to above, and show that it fares
better in this regard. The passage from Section 2 to Section 3 will be
seen to be a move from language that is vague to language that is overly
specific. The challenge, then, is to formulate a framework that abstracts
away features that are “implementation specific,” yet remains concrete
enough to be informative. In Section 4, I will speculate as to how we
can develop such a theory.

To be clear, then, this essay does not offer a general theory of math-
ematical understanding, or even a fragment of one. It does not go so far
as to provide a framework that explains how mathematical proofs are
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evaluated. It does, however, take some initial steps towards developing
such a framework, using informal case studies to identify some features
of proofs that a satisfactory theory must take into account.

It will become apparent that the approach I am advocating is res-
olutely syntactic. An anonymous referee has reasonably questioned
whether such an approach will be able to deliver philosophical expla-
nations that we will find satisfying, with respect to a general theory
of mathematical understanding or even the narrower issues addressed
here; or whether alternative, semantic approaches are more appropri-
ate. Although this is the kind of question that cannot be resolved at
the outset, it should be kept in mind throughout the inquiry. I return
to this issue briefly in Section 4.

2. Case studies

In this section, I will discuss three theorems of elementary number
theory, none of which require mathematical background beyond ele-
mentary algebra and arithmetic. We will see that all three were known
to Euler in eighteenth century, and were historically important to the
development of the subject. In each case, I will present three distinct
proofs. An informal discussion of the various advantages of each will
provide us with a starting point from which to begin a more careful
analysis.

Historical details beyond those mentioned here can be found in [21,
28, 44, 53] and Stillwell’s introduction to [16]. Ultimately, Dickson’s
exhaustive [17] is the definitive reference for developments in number
theory through the end of the nineteenth century.

2.1. Fermat primes

If x and y are integers, we say that x divides y, written x|y, if there is
an integer z such that xz = y. The integers ±1 are called “units,” and,
since they divide 1, they divide every integer. An integer x not equal
to ±1 is called irreducible if it has no nontrivial divisors, that is, no
divisor that is neither a unit nor a unit multiple of x. An integer x not
equal to ±1 is called prime if whenever x|yz, then x|y or x|z.

What I have called “irreducible” is what often goes by “prime” in
an elementary mathematics education. Fortunately, when it comes to
the integers, there is no difference: every irreducible number is prime,
and vice-versa. The harder direction, i.e. the fact that every irreducible
number is prime, is a consequence of the fact that the greatest com-
mon divisor of any two positive integers can be expressed as a linear
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combination of these two integers. The Euclidean algorithm yields an
explicit means of doing so, and that algorithm, in turn, relies on the
division algorithm: given any integer x and nonzero dividend y, we can
write x = qy + r, where q is the “quotient” and r is the “remainder,”
the latter satisfying 0 ≤ r < |y|.

You should note that on the definition above, both 5 and −5 are
considered prime. In fact, they are essentially the same prime, since
they differ by a multiplicative factor of a unit. Below, however, it will
be more convenient to use the word “prime” to denote the positive
primes. Let us therefore adopt this convention.

It turns out that the numbers 220

+ 1, 221

+ 1, 222

+ 1, 223

+ 1, and
224

+1 are all prime. As early as 1640, Fermat conjectured that 22n

+1
is prime for every natural number n, and in 1659 he hinted that he had
a proof. The statement, however, was refuted by Euler [22].

THEOREM 2.1. 225

+ 1 is not prime.

Proof #1. A calculation shows that

225

+ 1 = 232 + 1 = 4294967297 = 641 · 6700417,

as required. ¤

Sometimes a proof is nothing more than a calculation. In some
contexts, this is optimal: it can provide a straightforward verification,
requiring little thought or background knowledge.

Some ingenuity, however, makes it possible to shorten the calculation
considerably. The next proof5 is naturally expressed using a notation
for congruence that was introduced by Gauss [27], and was therefore
unavailable to Euler. Two integers x and y are said to be congruent
modulo a third integer z, written x ≡ y (mod z), if z divides x − y. In
other words, all the following statements are equivalent:

− x ≡ y (mod z)

− z|(x − y)

− x − y = kz, for some integer k.

It will be convenient below to pass between these various representa-
tions freely. The relation of being congruent modulo an integer z is
an equivalence relation, which is to say, it is reflexive, symmetric, and
transitive. Furthermore, it respects addition and multiplication; that is,
if x1 ≡ y1 (mod z) and x2 ≡ y2 (mod z), then x1+y1 ≡ x2+y2 (mod z)
and x1y1 ≡ x2y2 (mod z). These facts make it possible to transfer valid
forms of reasoning about arithmetic equations to congruences.
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Proof #2. First, note that 641 = 5 · 27 + 1, so

5 · 27 ≡ −1 (mod 641).

Raising both sides to the fourth power, we have

54 · 228 ≡ 1 (mod 641).

On the other hand, we also have 641 = 54 + 24, that is,

54 ≡ −24 (mod 641).

Multiplying both sides by 228 we have

54 · 228 ≡ −232 (mod 641).

From the second and fourth congruences we have

1 ≡ −232 (mod 641).

In other words, 641|232 + 1 = 225

+ 1, as required. ¤

The use of congruence notation is by no means essential to the proof;
for example, the second congruence, which is equivalent to the assertion
that 641|54 · 27·4 − 1, can be obtained using the identity

(54 · 27·4 − 1) = (5 · 27 + 1)(5 · 27 − 1)(52 · 27·2 + 1).

This identity lies hidden in the appeal to the properties of the congru-
ence relation in the proof above; the notation is effective in removing
such clutter.

One thing that can be said immediately about this proof is that
it requires less tedious calculation than the first. One can certainly
make sense of this in terms of the number of computation steps, given
certain algebraic and arithmetic operations as “basic.” But we can
find additional virtues in the second proof. It can be said, perhaps,
to partially explain what is special about 641, i.e. the fact that it can
be written both as 5 · 27 + 1 and 54 + 24. It also makes good use of
properties of exponentiation, thereby explaining why that operation is
relevant in the statement of the theorem. The proof also suggests a
more general method by which other Fermat numbers can be shown
to be composite; this method, and a precise sense in which it can be
viewed as a generalization of the calculation above, is given by Baaz
[3].

The previous proof may leave one wondering, however, how Euler
initially hit upon 641. A later paper gives a clue: Euler [23] showed
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that if x and y are relatively prime (that is, have no common factor
other than ±1), then every factor of x2n

+y2n

is either 2 or of the form
2n+1k+1; he also noted that (taking x = 2 and y = 1) this implies that

any factor of 225

+ 1 must have a factor of the form 64k + 1. The proof
relies on Fermat’s little theorem, which asserts that if p is prime and x
is any integer not divisible by p, xp−1 ≡ 1 (mod p). Taking this theorem
for granted, the following proof encapsulates Euler’s observation.

Proof #3. Suppose we are looking for a prime divisor p of 232 +1, that
is, a solution to

232 ≡ −1 (mod p).

Squaring both sides, we wish to find a p satisfying

264 ≡ 1 (mod p).

By Fermat’s little theorem we know

2p−1 ≡ 1 (mod p).

Let d be the least positive integer satisfying 2d ≡ 1 (mod p). Then
d must divide p − 1; otherwise, we could write p − 1 = qd + r with
0 ≤ r < d, in which case

2p−1 ≡ 2qd2r ≡ (2d)q2r ≡ 2r ≡ 1 (mod p),

contrary to the choice of d. By the same reasoning, d must divide 64,
and so must be a power of 2. But d cannot be less than or equal to 32,
because otherwise we would have 232 ≡ 1 (mod p); by the first congru-
ence, this would imply −1 ≡ 1 (mod p), that is, p|2, contradicting the
hypothesis that p is a prime dividing 232 + 1. So d has to be 64, and
p has to be of the form 64k + 1. The first few primes of this form are
197, 257, 449, 577 and 641. Trial and error shows that 641 is the first
one that works. ¤

As far as verification is concerned, this proof is certainly no savings
over the first; in fact, the net result is that one has to do the same
calculation (and more). But the proof is explicitly designed to show
how 641 could have been discovered in practice. Here, too, the proof
displays ideas that are useful in related contexts; for example, the same
method can be used to show that 224

+ 1 is prime.
In principle, the fact that 232+1 is composite could have been discov-

ered by a brute force enumeration. Proofs that provide more palatable
alternatives in situations like these can provide interesting case studies.
Consider, for example, the following special case of Ramsey’s theorem,
which is often given to students as an exercise:6
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Suppose any two people at a party are assumed to either mutually
know each other or not. Then at any party with six people, there
will either be a group of three people all of whom know each other,
or a group of three people all of whom do not know each other.

Once again, this can be shown, in principle, by enumerating all 215

possibilities, but exploiting symmetries inherent of the formulation
cuts down on the number of cases dramatically. Label the six people
a, b, c, d, e, and f . Then of the other five, either there will be three
people that a knows, or three people that a does not know. Assume,
without loss of generality, the former, and, relabeling if necessary, call
them b, c, and d. If none of these three know each other, we are done;
otherwise, two of them, say b and c, know each other, and a, b, c is the
desired triple.

There are reasons to prefer such a proof over a computer-assisted
verification, beyond the savings in time. For example, the proof above
gives hints as to how one may easily find a counterexample among five
people (start by picking two people for a to know, and two for a not
to know); and it can, perhaps, be said to explain “why 6” (roughly,
because 6 = 1+(2 ·2+1)). Most importantly, it conveys ideas that will
help prove generalizations; for example, for every k there is an n big
enough such that the statement above holds with “6” and “3” replaced
by “n” and “k.”

The examples we have just considered also show that sometimes the
additional information valued in a proof can involve methods of solving
an associated problem. Consider the following three:

− Show that 225

+ 1 is composite.

− Determine whether or not 225

+ 1 is composite.

− Find a nontrivial factor of 225

+ 1.

I will take it that, in each case, a satisfactory solution has to include
an explicit or implicit proof that the answer is correct. (We tell our
students ad infinitum that in mathematics one must always justify
one’s answer.) But the three instructions request different sorts of
information: the first asks for a proof; the second for a decision; the
third for a factor. Thus viewing the theorem in terms of an associated
problem often makes it clearer what additional information one might
want, and what types of generalizations may be sought.

Finally, let us take note of the role played by the definitions of divis-
ibility and congruence in the proofs above. We have already observed
that such definitions can allow one to transfer methods of reasoning
that are effective in other contexts, or are subsumed under a more
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general framework. For example, we have seen that congruence modulo
an integer is an equivalence relation, inheriting some of the properties
of ordinary equality; and divisibility is a partial order, which is to say,
the relation x|y has some of the same properties of the ≤ relation on
the integers, or the ⊆ relation on sets.

Notice also that the definition of divisibility involves an existen-
tial quantifier, and thus, derivatively, the notion of congruence does
also. The fact, for example, that x|y and y|z implies x|z, or that
x ≡ y (mod z) implies xw ≡ yw (mod z), expand to first-order implica-
tions with existential quantifiers in the antecedents and the conclusion;
and their proofs show how witnesses in the conclusion are instanti-
ated, given witnesses to the hypotheses. Later appeal to these general
lemmas then eliminates the need to exhibit witnesses explicitly in the
proof. We have already seen this at play in the discussion following the
second proof above. The use of definitions to facilitate quantificational
reasoning is an important one in mathematics; in fact, Tappenden [51]
suggests that Frege’s notion of a fruitful definition rests precisely on
the use of quantifiers.

2.2. Products of sums of squares

In the Arithmetic, Diophantus notes that the product of 5 = 22 + 12

and 13 = 32 + 22 is 65, which is again a sum of two squares. (In fact,
65 is equal to both 82 + 12 and 72 + 42.) This is an instance of the
following:

THEOREM 2.2. If x and y can each be written as a sum of two integer
squares, then so can xy.

Proof #1. Suppose x = a2 + b2, and y = c2 + d2. Then

xy = (ac − bd)2 + (ad + bc)2,

a sum of two squares. ¤

Writing xy as (ac+bd)2+(ad−bc)2 works just as well, accounting for
the two representations of 65 indicated above. These equations are im-
plicit in Diophantus, and according to Dickson [17, vol. II, p. 226], can
be found explicitly in Leonardo Pisano’s Liber Quadratorum of 1225.
The simplicity of the calculation has an added payoff: the proof uses
only the commutativity and associativity of addition and multiplica-
tion, the distributivity of multiplication over addition and subtraction,
and the fact that subtraction is an inverse to addition; hence it shows
that the theorem is true much more generally in any commutative ring.
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Our second proof of Theorem 2.2 involves a detour through the
theory of Gaussian integers Z[i], that is, complex numbers of the form
a + bi, where a and b are integers, and i is a square root of −1. If
α = u + vi is any complex number, its conjugate, α, is defined to be
u − vi. It is easy to check that conjugation is an automorphism of the
field of complex numbers, which is to say, it preserves addition and
multiplication. (Roughly speaking, this reflects that from the point of
view of the real numbers and the field operations, the elements i and
−i are indistinguishable.) In particular, α · β = α · β for any α and β.

The norm N(α) of a complex number α is defined to be αα. From
the definition it is easy to see that the norm is multiplicative as well,
i.e.

N(αβ) = αβ · αβ = α · β · α · β = αα · ββ = N(α)N(β).

Notice that if α = a+bi is a Gaussian integer, then N(α) = a2+b2 is an
ordinary integer. Conversely, we can always write a2 + b2 = N(a + bi).
In other words, the integers that can be written as the sum of two
squares are exactly those that are norms of Gaussian integers. This
gives a remarkably short proof of Theorem 2.2:

Proof #2. Suppose x = N(α) and y = N(β) are sums of two squares.
Then xy = N(αβ), a sum of two squares. ¤

This brevity is in a sense misleading, since, in the final accounting,
the relevant properties of the norm function have to be proved as well.
But this is tempered by the fact that the notion of the norm of a
complex number is much more generally useful. The (positive) square
root of the norm is usually called the modulus or absolute value, and
corresponds to the distance from the origin to the associated point in
the Euclidean plane. As a result, the norm and modulus have useful
geometric significance, the latter playing a role similar to the usual
absolute value on the real numbers. For example, the Gaussian inte-
gers also satisfy a form of the division algorithm: any two Gaussian
integers α and β can be written α = βη +ρ, where N(ρ) < N(β). Thus
one can show, just as for the integers, that the notions “prime” and
“irreducible” coincide for the Gaussian integers. We will make use of
this important fact below.

In short, one can argue that the expense incurred in deriving prop-
erties of the norm should be entered as a capital improvement, and not
charged against our particular application. Only with this understand-
ing does it make sense to say that the second proof is shorter than the
first.7

Our second proof also leads to interesting generalizations. The com-
plex numbers, C, are an example of a two-dimensional associative di-
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vision algebra over the real numbers, R. A theorem of Frobenius from
1877 asserts that aside from R itself, there is only one other finite-
dimensional structure of this sort, namely, Hamilton’s four dimensional
algebra H, the quarternions. Indeed, the corresponding notion of quar-
ternion norm yields a product rule for four squares, originally due to
Euler. The structures R, C, H all have the technical properties of being
alternative and quadratic real algebras, with no zero divisors. If one is
willing to give up associativity, a theorem by Zorn from 1933 shows that
there is only one more structure of this sort: Cayley’s eight-dimensional
algebra O, the octonians. And, sure enough, the octonian norm yields a
product rule for sums of eight squares. Zorn’s structure theorem can be
used to prove a theorem due to Hurwitz in 1898, to the effect that these
are the only product laws for sums of squares of this sort.8 Thus, our
second proof yields generalizations that not only explain other product
laws and bring them under a uniform framework, but, in fact, lead
to an algebraic classification that explains why there are no others. A
lovely presentation of the mathematical and historical details can be
found in chapters by Koecher and Remmert in [18].

The proof has generalizations in other directions, as well. Below
we will consider Euler’s use of Gaussian integers to prove Theorem 2.2.
This use was a harbinger of what is probably the most significant trend
in nineteenth century number theory: the use of finite algebraic exten-
sions of the rational numbers, like the Gaussian integers, to address
questions about the ordinary integers. The notions of conjugate and
norm generalize to such number fields, and are useful there for exactly
the same reason they are useful in our proof; namely, they exploit
symmetries and relate properties of the extension to properties of the
ground field. Even today we share in the nineteenth century fascination
at the fruitfulness of this transfer. In 1860, in his Report on the theory
of numbers, H. J. S. Smith wrote that

. . . the complex numbers of Gauss, Jacobi, and M. Kummer force
themselves upon our consideration, not because their properties are
generalizations of the properties of ordinary integers, but because
certain of the properties of integral numbers can only be explained
by a reference to them. (Smith [46, Art. 64], quoted in Corry [14,
pp. 91–92].)

This language is compelling and mysterious: what can it mean for
mathematical objects to “force themselves upon us,” and wherein lies
their explanatory power? Our second proof of Theorem 2.2, as simple
as it is, provides an illustrative example.

There is another sense in which this proof is historically signifi-
cant. Much has been written about the late nineteenth century em-
phasis on “conceptual methods” over calculation, forcefully advocated
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by Riemann in his development of the theory of complex functions,
and by Dedekind in his development of algebraic number theory. (See
[26, 29, 35, 49] for characterizations of this emphasis, as well as [19, 20]
for less sanguine views as to the effects on algebraic number theory.)
For example, Dedekind writes:

Even if there were such a theory, based on calculation, it still would
not be of the highest degree of perfection, in my opinion. It is
preferable, as in the modern theory of functions, to seek proofs
based immediately on fundamental characteristics, rather than on
calculation, and indeed to construct the theory in such a way that
it is able to predict the results of calculation. . . (Dedekind [16, §12],
quoted by Stein [49, page 245])

This language is equally mysterious: what can it mean to base proofs
on “fundamental characteristics rather than calculation,” yet somehow
“predict the results of calculation”? Once again, an analysis of our
second proof of Theorem 2.2 can serve as a starting point for attempts
to understand the phenomenon.

There is a proof that is intermediate between the two we have seen
so far:

Proof #3. Suppose x = a2 + b2 and y = c2 + d2. Then

xy = (a2 + b2)(c2 + d2)

= (a + bi)(a − bi)(c + di)(c − di)

= (a + bi)(c + di)(a − bi)(c − di)

= ((ac − bd) + (ad + bc)i)((ac − bd) − (ad + bc)i)

= (ac − bd)2 + (ad + bc)2,

a sum of two squares. ¤

This is the proof given by Euler in his Algebra [24] of 1770. Cauchy
gave essentially the same proof in his Cours d’analyse [10, VII §I] of
1821, after introducing the term “conjugate,” and before launching into
a detailed presentation of the complex numbers and their properties.
Our third proof is more or less the result of “unwinding” our second
proof, expanding the definition of norm and including the steps needed
to establish the supporting lemmas. To the extent to which we recognize
this proof as different, we see that these aspects of the presentation are
important. In other words, the ways in which information and inferen-
tial steps are encapsulated in definitions and lemmas has at least some
bearing on what we can say about a proof.

Even such a minor rewriting can make a difference. Presenting the
proof this way, one is apt to note that the terms can be grouped
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differently into conjugate pairs,

xy = (a + bi)(c − di)(a − bi)(c + di),

yielding a second representation of (a2+b2)(c2+d2) as a sum of squares,
(ac+bd)2+(ad−bc)2. In the next section, we will consider the question
as to exactly which integers can be represented as a sum of two squares.
Having both representations of a product is relevant to determining the
number of ways such integers can be represented, a problem of equally
longstanding concern in number theory.

2.3. Representability by sums of squares

In this section we will consider three proofs of the following theorem:

THEOREM 2.3. Every prime number congruent to 1 modulo 4 can be
written as a sum of integer squares.

Remember that saying that p is congruent to 1 modulo 4 is equivalent
to saying that p is of the form 4k + 1, or that p − 1 is a multiple of 4.

In contrast to the theorems of Sections 2.2 and 2.1, proving The-
orem 2.3 requires some sophistication. I have included a discussion of
some of the proofs here because I felt that the subsequent analysis
would be bolstered by an example of a “nontrivial” theorem of mathe-
matics. On the other hand, most of the themes that arise have already
made an appearance in the previous examples, and the conclusions
I wish to draw will be summarized at the beginning of Section 3.1.
Therefore, the reader who is eager to get to the point may well wish to
skip this section on a first reading, and leave the more extended case
study for a rainy day.

Note that every odd number is congruent to either 1 or 3 modulo
4, and so the square of an odd number is congruent to 1 modulo 4.
Similarly, the square of any even number is congruent to 0 modulo 4,
and so the sum of any two squares is always congruent to either 0, 1,
or 2 modulo 4. This shows that no prime congruent to 3 modulo 4 can
be written as a sum of squares. Since 2 is the only even prime, and
2 = 12 +12, Theorem 2.3 yields a precise characterization of the primes
that can be written as sums of two squares.

In fact, it yields more. Suppose a positive integer n > 2 is written
as a product of powers of distinct primes,

n = pa1

1 pa2

2 . . . pak

k .

The preceding theorem and discussion, combined with Theorem 2.2,
tells us that if those primes pi that are congruent to 3 modulo 4 (if
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any) occur to an even power (and so, are perfect squares), then n
can be written as a sum of squares. In fact, the converse also holds;
which is to say that if a prime congruent to 3 modulo 4 occurs with
an odd exponent in the prime factorization of n, n cannot be written
as a sum of squares. Proving this fact is somewhat easier than proving
Theorem 2.3.9 Thus, Theorem 2.3 is the most difficult component in
the following characterization of the integers that can be written as the
sum of two squares:

THEOREM 2.4. A positive integer n can be written as a sum of two
squares if every prime congruent to 3 modulo 4 occurring in the factor-
ization of n occurs to an even power.

Theorem 2.4 was stated, without proof, by Girard in 1632. We have
seen that an interest in the types of integers than can be written as
sums of two squares traces back to Diophantus, and, indeed, Theo-
rem 2.3 appears as one of Fermat’s marginal notes to his copy of
Bachet’s edition of the Arithmetic. In letters to Pascal, Digby, and
Carcavi, in 1654, 1658, and 1659, respectively, Fermat claimed to have
a proof of Theorem 2.3; in the last, he said he used the “method of
infinite descent,” of which more will be said below. (Further historical
details can be found in [21, 28, 44, 53], and there is an exhaustive
historical account in Dickson [17, Vol. II Chap. VI].) All the proofs we
will consider rely on the following lemma:

LEMMA 2.5. If p ≡ 1 (mod 4), there is a natural number m such that
m2 ≡ −1 (mod p).

Note that by the observations above, the hypothesis is e.g. equivalent
to saying that p is of the form 4n + 1, and the conclusion is equivalent
to saying that p divides m2 + 1. For completeness, I will sketch various
proofs of Lemma 2.5 in a footnote,10 but these will not be needed in
the discussion that follows.

The first proof we will consider is adapted from Euler’s original proof
from 1747:11

LEMMA 2.6. Let x = a2 + b2 and p = c2 + d2 each be a sum of two
squares, with p prime. If p|x, then x/p is also a sum of two squares.

Proof. By hypothesis, p divides x, so it also divides

a2p− c2x = a2(c2 +d2)− c2(a2 + b2) = a2d2− b2c2 = (ad− bc)(ad+ bc).

Since p is prime, it must divide one of these two factors. Suppose it
divides (ad− bc). Using one of the formulas for the product of sums of
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squares, write

px = (a2 + b2)(c2 + d2) = (ad − bc)2 + (ac + bd)2.

Since p divides the left-hand side and ad−bc, it must also divide ac+bd.
Dividing both sides of the equation by p2 yields

x/p = ((ad − bc)/p)2 + ((ac + bd)/p)2,

as required. If, instead, p divides (ad + bc), use the product formula

px = (ad + bc)2 + (ac − bd)2

and proceed similarly. ¤

Proof #1. By Lemma 2.5, it suffices to show that every prime number
p dividing a number of the form m2 + 1 can be written as a sum of
two squares. Suppose otherwise; then there is a smallest prime p that
divides a number of the form m2 + 1 and cannot be written as a sum
of two squares. Pick such an m corresponding to this p, and by the
division algorithm, write m = qp + r, with 0 ≤ r < p. Then p divides

m2 + 1 = (qp + r)2 + 1 = q2p2 + 2pqr + r2 + 1.

Since p divides the first two terms on the right, it must also divide r2+1.
Write r2 + 1 = py; since r < p we have r2 < p2, and so r2 + 1 < p2. (If
r2+1 were exactly equal to p2, we would have p2−r2 = (p+r)(p−r) = 1,
contradicting the fact that p ≥ 2.) Hence y < p. Factor y into primes
q1, . . . , ql; then each qi is less than p, and so, by our assumption on p,
can be written as a sum of squares. Applying Lemma 2.6 l times, we
conclude that p can be written as a sum of squares, contrary to our
hypothesis. ¤

As I have presented it, the proof is nonconstructive; instead of show-
ing how p can be written as a sum of squares, it shows that the contrary
assumption is contradictory. Of course, if one believes the conclusion,
one can find a sum of squares by a methodical search. But the argument
above can easily be turned into a direct proof. Given a prime p of
the form 4n + 1, the second and fourth proofs sketched in footnote 4
show, explicitly, how to obtain an m such that p divides m2 + 1. The
next lemma and the proof of the theorem then show, explicitly, how to
reduce the problem of writing the prime p as a sum of two squares to
the problem of writing the smaller primes q1 . . . ql, which divide r2 +1,
as sums of two squares. (In fact, the algorithm can be improved; see
the discussion in [21, Section 2.6].)
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This proof, then, has a lot going for it; it is elementary, straightfor-
ward, and computationally informative. It also illustrates Fermat’s oft
used “method of descent,” that is, showing how a putative counterex-
ample in the positive integers can be repeatedly replaced by a smaller
one.

The formula x2 + y2 is an instance of a binary quadratic form with
integer coefficients, which are expressions of the form ax2 + bxy + cy2,
with a, b, c integers. I will call these “forms” for short, and use (a, b, c) to
denote the form with with given coefficients. The values one obtains by
substituting integer values for x and y are called the integers represented
by the form. Thus Theorem 2.4 solves one instance of the problem of
determining which integers can be represented by a given form. The
second proof we will consider uses the notion of equivalence of forms,
which was introduced by Lagrange and further developed by Gauss,
and used by both to address the more general problem.

Consider what happens when we make the substitutions

x = rx′ + sy′

y = tx′ + uy′

The reader can check by straightforward calculation that the form ax2+
bxy+cy2 becomes a new form a′x′2+b′x′y′+c′y′2 in the variables x′, y′,
where

a′ = ar2 + brt + ct2

b′ = 2ars + b(ru + st) + 2ctu

c′ = as2 + bsu + cu2

I will say that the form (a, b, c) has been transformed into (a′, b′, c′) by
the transformation

S =

(

r s
t u

)

.

Clearly, any integer represented by (a′, b′, c′) can be represented by
(a, b, c); if a′x′2 + b′x′y′ + c′y′2 = n, then x = rx′ +sy′ and y = tx′ +uy′

is a solution to ax2 + bxy + cy2.
Under what conditions can (a′, b′, c′) be transformed back into (a, b, c)?

A bit of algebraic manipulation shows that if δ = ru − ts is nonzero,
the transformation

(

u/δ −t/δ
−s/δ r/δ

)

brings x′, y′ back to x, y. If δ = ±1, the entries above will be integers, in
which case the argument above shows that the two forms will represent
exactly the same values. One can check that the process works the other
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way round: applying the second transformation to a quadratic form and
then the first brings one back to the initial starting point; and the value
δ′ = (ru− ts)/δ2 associated with the second transformation is also ±1.
Two forms that are related this way are said to be equivalent, and the
associated transformations are said to be unimodular. Clearly every
form is equivalent to itself, and we have just seen that if (a, b, c) is
equivalent to (a′, b′, c′), then (a′, b′, c′) is equivalent to (a, b, c). Another
straightforward calculation shows that the result of composing two
unimodular transformations is again a unimodular transformation, so
that equivalence is transitive as well. In other words, equivalence really
is an equivalence relation.

We need one last ingredient. The discriminant of the form (a, b, c) is
defined to be the integer b2 − 4ac. A straightforward calculation shows
that if (a, b, c) and (a′, b′, c′) are equivalent forms, they have the same
discriminant; in other words, the discriminant is an invariant of the
equivalence relation.

LEMMA 2.7. Every form is equivalent to a form (a, b, c) in which |b| ≤
|a| ≤ |c|.

Proof. Notice that the unimodular transformation
(

1 s
0 1

)

transforms (a, b, c) into a form (a′, b′, c′) in which a′ = a and b′ = 2as+b.
By a suitable choice of s, we can always guarantee that |b′| ≤ |a′| = |a|.
(To do so, first note that without loss of generality, we may assume
that a is positive; otherwise, solve the problem with −a in place of
a and then replace s by −s. Assuming a is positive, use the division
algorithm to write −b = (2a)s + r, where 0 ≤ r < 2a. If r > a, replace
s by s + 1 and r by r − 2a, so −b = (2a)s + r, with |r| ≤ a. Then
b′ = −r = (2a)s + b satisfies |b′| = |r| < |a|, as required.)

If |a′| ≤ |c′|, we are done. Otherwise, the unimodular transformation
(

0 −1
1 0

)

transforms (a′, b′, c′) into a form (a′′, b′′, c′′) in which a′′ = c′, so that
now |a′′| = |c′| < |a|. We now return to the first step with (a′′, b′′, c′′)
in place of (a, b, c); the fact that |a| decreases at each step guarantees
that the algorithm must ultimately terminate successfully. ¤

A form (a, b, c) satisfying the conclusion of the lemma is said to be
reduced. Note that in any reduced form we have

c2 = |c|2 ≥ |a||c| ≥ |a|2 = a2 ≥ |b|2 = b2.
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If ac is positive, then 4ac − b2 is positive, and we have

4ac − b2 ≥ 4a2 − a2 = 3a2.

If ac is negative, then 4ac − b2 is negative, and we have

b2 − 4ac = b2 + 4|ac| ≥ 4|ac| ≥ 4a2 > 3a2.

Either way, we have shown that in any reduced form, 3a2 is less than
or equal to the absolute value of the discriminant, |b2 − 4ac|. This
tells us that there are only finitely many reduced forms with a given
discriminant, since there are only finitely many values of a and b that
are small enough in absolute value, and these determine c.

Now consider the reduced form x2 + y2, which has discriminant −4.
Note that if ax2+bxy+cy2 is also in reduced form and has discriminant
−4, then 3a2 ≤ 4, so a can only be −1, 0, or 1. Trying these same
possibilities for b shows that the only reduced forms with discriminant
−4 are x2+y2 and −x2−y2. In other words, any form with discriminant
−4 that represents a positive integer is equivalent to x2 +y2. This gives
us an easy proof of our main theorem:

Proof # 2. Suppose p is of the form 4n + 1. By Lemma 2.5, choose
m so that p|m2 + 1. Then p is clearly represented by the form px2 +

2mxy + m2+1

p
y2, taking x = 1 and y = 0. This form has discriminant

−4, and so, by the preceding discussion, is equivalent to x2 + y2. ¤

There is a lot to like about this proof. The argument shows, straight-

forwardly, how one can transform the form px2 + 2mxy + m2+1

p
y2 to

x2 + y2, and hence how to transform the integers 1, 0 representing p
in the first form into integers representing p in the second. As in the
first proof, it is easy to see what is getting smaller at each stage. This
provides us with not just an explicit algorithm, but also a strong sense
as to why the theorem is true.

It also provides a general strategy for studying other forms. In-
deed, the argument generalizes immediately to forms like x2 + 2y2 and
x2 +3y2, where one can again show that all positive-valued forms with
the corresponding discriminants are equivalent. The fact that there
are inequivalent forms with the same discriminant as x2 + 4y2 helps
explain comparatively anomalous behavior of numbers represented by
this latter form. (See, for example, the helpful discussion in Stillwell’s
introduction to [16].) It also raises the question of determining the
number of inequivalent forms of a given discriminant. For suitable
discriminants, this is known as the class number of an associated finite
field extension of Q, the determination of which plays a central role in
modern number theory.
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But there is more we can say. The notion used above to represent
transformations may call to mind the matrices one encounters in an
introductory course in linear algebra. This is no coincidence. If one
associates to the form (a, b, c) the symmetric matrix

A =

(

a b/2
b/2 c

)

,

then for every x and y the value ax2 + bxy + y2 can be obtained by the
matrix product

(

x y
)

(

a b/2
b/2 c

) (

x
y

)

involving A. The discriminant of the form is just −4 times the determi-
nant of A. The form corresponding to the transformation S described
above is just the one associated to the matrix product StAS, where St

denotes the transpose of S, that is, the result of exchanging entries of
S across the main diagonal. The composition of two transformations
corresponds to the product of the associated matrices; unimodular
transformations correspond to matrices with determinant ±1; and the
fact that equivalent forms represent the same integers simply reflects
the fact that the corresponding matrices have inverses with integer
entries. In short, the proof can be recast as a perspicuous and fruitful
application of the methods of linear algebra, which, by the end of the
nineteenth century, had become a central tool in arithmetic, algebra,
geometry, and analysis. In fact, Gauss’ implicit use of ideas from linear
algebra in his analysis of forms was instrumental in the development of
the theory of matrices and determinants (see [33]). Thus, we appreciate
our second proof because it makes effective use of linear algebra, and,
indeed, played a part in the historical development of this very useful
collection of tools.

But the importance of our second proof runs even deeper than that.
The argument exploited a number of general strategies: introducing
an equivalence relation that filters out representational features that
are subordinate to the solution of the problem, assigning a suitable
invariant to the associated equivalence classes, and choosing canoni-
cal representatives whenever possible. These strategies are pervasive
in modern mathematics, and nineteenth century mathematicians were
eminently conscious of this fact. In this respect as well, our second proof
is commonly viewed as an early and important archetype. Thus we
can admire the proof for exhibiting one of the most generally valuable
strategies in modern mathematics, and, indeed, for being instrumental
in the development thereof.

The last proof we will consider makes use of the Gaussian integers,
and, in particular, the following key fact:
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LEMMA 2.8. Every irreducible element of Z[i] is prime.

We have already noted in Section 2.2 that given the notion of the
norm of a Gaussian integer, the lemma can be proved much the same
way one proves the corresponding statement for the integers. With this
in hand, we have a quick proof of Theorem 2.3:12

Proof #3. By the lemma, let m be such that p|m2 + 1. Passing to the
Gaussian integers, we have

p|m2 + 1 = (m + i)(m − i).

On the other hand, p does not divide either of m + i or m − i, since
the quotients m/p + i/p and m/p − i/p are not Gaussian integers.
So p, when considered as a Gaussian integer, is not prime. Hence, by
Lemma 2.8, it is not irreducible. Hence, it can be written p = xy,
where x and y are Gaussian integers that are not units. Taking norms,
we have p2 = N(p) = N(xy) = N(x)N(y). But now this is an equation
in the positive integers; since neither of N(x), N(y) is equal to 1, we
have N(x) = N(y) = p, so p is a sum of two squares. ¤

Proof #3 is remarkably short. To be sure, it requires Lemma 2.8,
which is the key component in showing that the Gaussian integers
satisfy the unique factorization property; and the proof of this lemma
requires work. But as Dedekind was fond of pointing out, once one
is careful to identify the properties of the integers that are used to
prove unique factorization there, the generalization to the Gaussian
integers comes at little extra cost. The axiomatic characterization of a
Euclidean domain makes it possible to account for both these instances
by subsuming them under a more general theorem, and makes our third
proof seem like a bargain.

This proof is, in fact, constructive; the greatest common divisor of
m + i and p can be computed by the Euclidean algorithm, and yields
a nontrivial factor x of p satisfying p = N(x). But the details of the
algorithm are relegated to more fundamental aspects of the theory,
leaving the focus of the proof on the algebraic properties of the Gaussian
integers.

Finally, our proof fares well with respect to generality and fruitful-
ness. Similar methods can be used in any finite extension of the ratio-
nals satisfying unique factorization. This makes it possible to transfer
intuitions about the natural numbers to intuitions about the rings
of “integers” in these more general fields, and use these intuitions
to understand complex phenomena in the ordinary integers. The fact
that there are such extensions for which unique factorization fails was
the primary impetus to the theory of ideal divisors, which began with
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Kummer and received fuller, though distinct, treatments in the hands
of Kronecker and Dedekind. This theory, which managed to restore the
phenomenon of unique factorization through the creation of an enlarged
domain of “ideal” prime factors, was the most important nineteenth
century development in algebraic number theory, and many natural
questions about quadratic forms and the like can usefully be posed in
this general framework. For example, the problem of determining the
class number of a form, described above, translates to the problem of
determining the cardinality of an associated group of ideal divisors. In
[16, §27], Dedekind shows how our Theorem 2.3 follows from a much
more general theorem, typical of the theory, due to Kummer.

There are many other proofs of Theorem 2.3, including proofs using
continued fractions, by Hermite [32] and Smith [47].13 A proof using
Minkowski’s important geometric methods can be found e.g. in [31]. In
recent years, Conway [12] has provided an intuitive and visual represen-
tation of the Gauss-Lagrange reduction procedure. Aigner and Ziegler
provide a proof by Don Zagier [57] in their Proofs from the Book, the
title of which is a reference to Paul Erdös’ oft-repeated claim that God
has a book with the most elegant proof of every mathematical theorem.
Whether or not one agrees with their assessment of Zagier’s argument,
their choice shows that mathematicians can still wax enthusiastic at
the appearance of new proof, more than 350 years after the theorem
was apparently first proved by Fermat, and almost 250 years after a
proof was published by Euler.

3. Towards a better understanding of proof

3.1. Reflection on the case studies

Our case studies have provided us with a corpus of examples, in which
we have discerned a grab bag of virtues that mathematical proofs can
enjoy. Some of these virtues may be classified as explanatory: a proof
can explain how it might have been discovered, how an associated
problem was solved, or why certain features of the statement of the
theorem are relevant. Proofs may also establish stronger statements
than the theorem they purport to prove; they may introduce definitions
and methods that are useful in other contexts; they may introduce
definitions and methods that can fruitfully be generalized; or they may
suggest solutions to more a general problem. They can also suggest
related theorems and questions. We can add a few more fairly obvi-
ous virtues to the list: a good proof should be easy to read, easy to
remember, and easy to reconstruct. Sometimes our criteria are at odds
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with one another: for example, we may value a proof for providing
explicit algorithmic information, whereas we may value another proof
for downplaying or suppressing calculational detail.14

This informal analysis should be viewed as a starting point for
philosophical inquiry, rather than as a satisfactory conclusion. What,
exactly, does it mean to say that a proof shows us how a problem is
solved? How, exactly, do proofs reveal or suppress algorithmic informa-
tion? Precisely what features of a mathematical presentation make it
easy to follow? The challenge now is to clarify what it is that we think
proofs are doing, and understand the mechanisms by which they do it.

If we are to take the informal discussion in Section 2 seriously, the
general character of the remarks will put serious constraints on the way
we try to account for the data. For example, all of the following were
implicit in the informal analysis:

1. A proof is some kind of communicable text (which may involve
diagrams) that, in particular, provides sufficient information to
establish that the purported theorem is true.

2. Beyond correctness, proofs can be evaluated with respect to differ-
ing (and sometimes competing) desiderata.

3. Higher-level features of the presentation of a proof, such as the
organizational role of lemmas and definitions, are relevant to the
evaluations.

4. The evaluations, with respect to both correctness and other stan-
dards of merit, are carried out with respect to appropriate back-
ground contexts.

This list clarifies what a general philosophical theory of proof should do.
Among other things, it should spell out the various standards by which
proofs are evaluated, as well as the types of contextual information
that are relevant to the evaluations. First and foremost, however, it
should provide an understanding of “proof” that is robust enough to
support such a study. The remainder of this essay takes some initial
steps towards developing such an understanding.

The model of proof standardly used in mathematical logic today is
that of formal axiomatic deduction.15 This formal notion is supposed to
provide an explication of the informal notion of proof, one that explains
the virtue by which an informal proof is judged to be correct, as well
as what it means for a theorem to be a deductive consequence of some
assumptions. I take this theory to be one of the true mathematical and
philosophical success stories of the late nineteenth and early twentieth
centuries; it provides a solid basis for mathematical and philosophical
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theorizing, one that is more robust than anyone before Frege could
expect. However, the theory of deduction was not designed to address
the broader epistemological issues we are concerned with here, and, in
that respect, we can identify ways in which the model falls short.

Consider, for example, the role of definitions in a proof. Our informal
discussion called attention to the ways in which notions like divisibility,
congruence, and norm aid our understanding of a proof. More extensive
historical narratives support this point of view. In his book, The emer-
gence of the abstract group concept [56], Hans Wussing traces the rise of
the notion of a group in algebra, number theory, and geometry, in the
nineteenth century. The text distinguishes between early, implicit uses
of group-theoretic reasoning, to conscious, explicit uses of the group
concept by the century’s close. This strongly presupposes that there
is an important difference between the former and the latter, that is,
between considering particular instances of groups and using certain
types of reasoning, and explicitly labeling the instances as such and
identifying the patterns of reasoning in use. To support this type of
analysis we need a model of proof that clearly distinguishes between
the two.

In standard logic textbooks, however, definitions are usually treated
outside the deductive framework; in other words, one views definienda
as meta-theoretic names for the formulas they stand for, with the un-
derstanding that in the “real” formal proof it is actually the definientia
that appear.16 If one is working in the language of set theory, for
example, occurrences of the group notion become buried in a haze of
quantifiers, connectives, and epsilons; and it is hard to differentiate
“explicit” uses of the notion from undistinguished appearances of the
defining formula, or any of its logical equivalences.

Similarly, it is not clear how to analyze the role of contextual back-
ground knowledge in the standard logical model. Our discussion shows
that proofs are evaluated not just with respect to a particular set
of goals and values, but also with respect to a set of resources that
are assumed to be generally available. From the point of view of ax-
iomatic deduction, however, a proof is a self-contained warrant, whose
correctness is judged solely in the context of the relevant axiomatic
system.

In short, standard models of deduction currently used in mathemat-
ical logic cannot easily support the type of analysis we are after, for the
simple reason that they were not designed to. Thus we need a model of
proof that is better suited to the work we are now asking of it. In the
next section, I will consider a model that rises better to the task.
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3.2. The view from automated deduction

On the formal notion of deduction, a proof is (more or less) a sequence
of assertions, each one of which is a principle of logic or a basic math-
ematical axiom, or which follows from previous assertions by a logical
rule of inference. But proofs in an ordinary mathematical text don’t
look much like these formal derivations. For example, in a standard
undergraduate textbook one often finds phrases like the following:

“. . . the first law may be proved by induction on n.”

“. . . by successive applications of the definition, the associative law,
the induction assumption, and the definition again.”

“By choice of m, P (k) will be true for all k < m.”

“Hence, by the well-ordering postulate. . . ”

“From this formula it is clear that. . . ”

“This reduction can be repeated on b and r1. . . ”

“This can be done by expressing the successive remainders ri in
terms of a and b. . . ”

“By the definition of a prime. . . ”

“On multiplying through by b. . . ”

“. . . by the second induction principle, we can assume P (b) and
P (c) to be true. . . ”

“Continue this process until no primes are left on one side of the
resulting equation. . . ”

“Collecting these occurrences, . . . ”

“By definition, the hypothesis states that. . . ”

“. . . Theorem 10 allows us to conclude . . . ”

These examples are taken from actual proofs in Birkhoff and MacLane’s
A Survey of Modern Algebra [6]. In fact, they are all found in Chapter 1,
which develops the basic properties of the integers needed in Section 2
above. What these snippets indicate is that “real” proofs often contain
more elaborate instructions as to how one can “see” that an assertion
follows from its predecessors. The usual story is that such proofs are
simply higher-level, informal texts that indicate the existence of the

method_synthese.tex; 30/01/2005; 20:42; p.25



26

lower-level formal ones; i.e. they are recipes, or descriptions, that pro-
vide enough information, in principle, for a fastidious formalizer to fill
in every last detail.

The observation I would like to make here is that these two fea-
tures of ordinary proofs – the informality, and the level of detail – are
independent of one another. On one hand, one can imagine a tedious
informal proof in which every inferential step is spelled out in complete
detail. On the other hand, and more interesting for our purposes, it is
also possible to imagine higher-level proofs that are nonetheless pre-
sented in a language that has been fully specified, so that the resulting
proofs can be checked by purely mechanical procedures.

The evidence that it is possible to imagine such languages, proofs,
and verification procedures is that, in fact, they exist. The last few
decades have seen the advent of mechanized proof assistants, which are
designed to facilitate the development of formally verified axiomatic
proofs. These include systems like Mizar, HOL, Isabelle, PVS, Coq,
NuPrl, and ACL2, and many others. (Some of these were designed with
the goal of formalizing specifically mathematical theories, others with
the goal of proving the correctness of various hardware and software
specifications; and, whatever the origins, most of the systems have been
adapted and developed to support both purposes.) Proof development
is an interactive process between the user, who has some informal
proof in mind, and the machine, which keeps the user painfully honest.
Though systems incorporate different interface enhancements to help
the user along, the final products are always “proof scripts.” From the
user’s point of view, a proof script provides a (semi-)intelligible repre-
sentation of the proof he or she had in mind; from the machine’s point
of view, the proof script provides explicit instructions for constructing
a low-level axiomatic proof of the traditional sort.

Most proof assistants support a type of interaction based on goal
refinement. First, one specifies the theorem that one intends to prove;
this is tantamount to declaring a certain goal. Then one iteratively
applies methods that reduce a current goal to others that are hopefully
simpler. At any point in the process, the set of goals to be met constitute
the state; when this set is empty, the theorem in question has been
proved. The most basic types of methods are those that invoke a logical
inference or a previously proved theorem, or expand a definition. More
complex methods are built up from these. Correctness is guaranteed by
the fact that ultimately the only way a complex method is allowed to
modify the system’s state is by applying the basic ones.

Using system known as Isabelle [58, 41], for example, one can con-
struct proofs in a version of Church’s higher-order logic. Goals are
natural deduction sequents of the form X1, X2, . . . , Xn ⇒ Y , repre-
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senting the task of deriving Y from hypotheses X1, X2, . . . , Xn.17 The
command apply (rule andI) applies the logical “and introduction” rule,
which reduces a goal of the form

X1, X2, . . . , Xn ⇒ Y ∧ Z

to the two subgoals

X1, X2, . . . , Xn ⇒ Y
X1, X2, . . . , Xn ⇒ Z.

Applying the command apply (erule andE) applies the logical “and
elimination” rule, which reduces a goal of the form

X1, X2, . . . , Xn, Y ∧ Z ⇒ W

to the subgoal

X1, X2, . . . , Xn, Y, Z ⇒ W .

A branch of reductions is completed when one is reduced to a trivial
subgoal of the form

X1, X2, . . . , Xn, Y ⇒ Y ,

which is finished off by the command apply (assumption). Thus, even
though one is always working backwards from goals, the sequent form
allows one to reason both forwards from hypotheses and backwards
from a conclusion.

In Isabelle, one may also apply more powerful, automated methods.
For example, each of the commands on the following list is paired with
an informal translation:

apply (induct-tac x ) “Use induction on x.”

apply (unfold Definition-2a) “Expand Definition 2a.”

apply (simp add : Equation-a) “Simplify, using Equation a.”

apply (auto add : Lemma-3 ) “Straightforward, using Lemma 3.”

apply (arith) “Use arithmetic reasoning.”

To illustrate, the following proof script shows that for every integer
x and y, and every natural number n, if x|y, then xn|yn.

theorem (a::int) dvd b ==> aˆn dvd bˆn
apply (induct-tac n)
apply (subst power-0 )+
apply (rule zdvd-1-left)
apply (subst power-Suc)+
apply (rule zdvd-zmult-mono)
apply (assumption)+
done

When writing proofs in Isabelle, one uses expressions like aˆn dvd bˆn in
place of an|bn. At the risk of causing some confusion, I will use Isabelle
notation when displaying proof commands, but ordinary mathematical
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notation when describing the resulting states. The theorem command
declares the initial goal,

a|b ⇒ an|bn,

representing the theorem to be proved. In the command, the notation
(a::int) specifies that the variable a is supposed to range over integers,
whereas the fact that b ranges over integers as well is then inferred from
the context. The first command declares that the proof is to proceed
by induction on n, resulting in two subgoals:

a|b ⇒ a0|b0

a|b, an|bn ⇒ an+1|bn+1

The theorem power-0 states that x0 = 1 for any integer x, and so the
next command repeatedly substitutes 1 for terms of the form x0. This
reduces the first goal to

a|b ⇒ 1|1.

This is polished off by the theorem zdvd-1-left, which asserts that 1|x
for any integer x. The next command replaces an+1 by a · an and bn+1

by b · bn in the second goal. The theorem zdvd-zmult-mono asserts

x|y, w|z ⇒ x · w|y · z,

and applying it to the current goal yields two subgoals,

a|b, an|bn ⇒ a|b
a|b, an|bn ⇒ an|bn.

Each of these is finished off simply by noting that the desired conclusion
is one of the hypotheses.

You may reasonably object that the script above looks nothing
like an ordinary proof. Even a seasoned Isabelle veteran will have a
hard time determining the outcome of each instruction, without the
computer’s interactive responses or the kind of play-by-play account
provided above. This is even more true when one uses more advanced
methods, whose behaviors are complex and open-ended. Perusal of any
math text quickly reveals the problem: the substance of an ordinary
proof invariably lies in the statements, rather than the instructions. In
other words, an ordinary proof is essentially a sequence of assertions;
the instructions provide the minimum guidance needed for a competent
reader to verify that each assertion follows from previous ones, but these
instructions play a supporting role, and may be left out entirely when
the appropriate justification can be inferred.

The good news is that that there are proof languages that are de-
signed to capture this style of proof. Andrzej Trybulec’s Mizar language
[43] is an early and important example. More recently, Markus Wenzel
([55]; cf. also [54]) developed a similar proof language, called Isar, and
implemented it in the Isabelle framework. Here is an Isar proof of the
theorem above:
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theorem (a::int) dvd b ==> aˆn dvd bˆn
proof −
assume a dvd b
show aˆn dvd bˆn
proof (induct n)
show aˆ0 dvd bˆ0
proof −
have aˆ0 = 1
by (rule power-0 )

moreover have (1 dvd bˆ0 )
by (rule zdvd-1-left)

ultimately show ?thesis
by simp

qed

next

fix n
assume aˆn dvd bˆn
show a ˆ Suc n dvd b ˆ Suc n
proof −
from prems have a ∗ aˆn dvd b ∗ bˆn
by (intro zdvd-zmult-mono)

moreover have a ˆ Suc n = a ∗ aˆn
by (rule power-Suc)

moreover have b ˆ Suc n = b ∗ bˆn
by (rule power-Suc)

ultimately show ?thesis
by simp

qed

qed

qed

The proof proceeds by induction on n. The base case, and the inductive
hypothesis, are established by appeal to the same theorems as before;
the difference is that the outcomes are made explicit. (In the proof,
the word ?thesis refers to the claim being justified; thus, in the first
instance, it refers to the base case a0|b0, and, in the second, it refers to
the claim that an+1|bn+1. The word prems refers to the local premises,
that is, the assumptions that are in place in the current proof context.)
With respect to readability, this presentation, although not perfect, is
a step in the right direction. Concerning proof style, the Isar tutorial
[40] advises:

Do not manipulate the proof state into a particular form by applying
tactics but state the desired form explicitly and let the tactic verify
from this form that the original goal follows.

Here, “tactic” is just Isabelle terminology for “method.” The tutorial
continues to note that following the advice “yields more readable and
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also more robust proofs.” This readability has a lot to do with the fact
that the resulting formal proofs are closer to ordinary, informal ones.

In fact, Wenzel’s implementation works by translating each proof
written in the Isar language into a sequence of applications of Isabelle’s
methods. The philosophical advance embodied in this achievement is
that ordinary mathematical texts can be understood in terms of the
goal-refinement model. Wenzel’s thesis and the Isar documentation
show how this can be done; roughly, a simple finite state model does the
bookkeeping, and various mathematical buzzwords (“hence,” “thus,”
“have,” “from,” “with,” “show,” “moreover,” and so on) provide flexi-
ble ways of specifying which hypotheses and assertions are relevant at
each point in the text. It is surprising how far one can get with this
model.

Incidentally, it turns out that the theorem that I have chosen as an
example has a one line proof:

theorem (a::int) dvd b ==> aˆn dvd bˆn
by (induct n, auto intro: zdvd-zmult-mono)

This translates, roughly, to the following informal proof: “Use induction
on n. The verification is straightforward, using theorem zdvd-zmult-mono.”
Thus, here we are in the fortuitous situation where a proof that is easy
for us is also easy for the system. Alas, all too often, this is not the
case.

In any event, since its syntax is fully specified, the Isabelle/Isar
proof language is an example of a formal language, and we have seen
that it provides a higher-level characterization of a mathematical proof.
Whether one chooses to make the assertions or the intermediate states
more prominent, the two types of formal text rest on the same model
of proof at the core: a proof is a specification of a sequence of methods
of inference, each of which transforms (reduces) the epistemic require-
ments needed to verify that the purported theorem follows from the
relevant axioms and definitions. It is important to emphasize that
this characterization extends the standard notion of correctness in a
conservative way: what makes a proof script valid is simply that it is
an effective warrant for the kind of low-level axiomatic deduction that
logicians know and love. From the point of view of correctness, then, the
new notion is just an embellishment of the standard logical model. The
hope, however, is that the higher-level formulation will better support
an analysis of the broader evaluatory terms that we are concerned with
here.

Consider the list of observations presented in Section 3.1. The first
was that a proof should be understood as some kind of communicable
text; proof scripts certainly have that character. The second was that
proof can be evaluated with respect to different desiderata. Further
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work is necessary to determine whether or not the model can support
the kinds of analysis we are interested in, but here, at least, we can
begin to assess its prospects.

The third observation was that our model of proof should take
lemmas and definitions seriously. Recall that one of our objections to
the use of formal axiomatic deduction as a suitable model was that
definitions are usually assumed to be expanded in the metatheory.
In contrast, Isabelle never expands a definition, unless one explicitly
instructs the system to do so. Doing otherwise would defeat the purpose
of using definitions in the first place. Typically, we introduce a definition
to avoid having to repeat the definiens; after establishing the relevant
properties of the defined notion, we rely on these as far as possible.

Because definitions have a recognizable status in Isabelle, one can
easily do an exhaustive search on theorems and rules in the current
environment in which a certain definiendum occurs. Indeed, much of
the Isabelle’s development has focused on providing adequate support
for the various types of definitions one wants to use, in practice. The
issues are subtle, because definitions affect the behavior of automated
methods by providing patterns that methods can match against: the
mere occurrence of the token for “norm” or “group” can be used to
trigger the invocation of lemmas and rules in a search procedure, or to
instruct the simplifier to express appropriate terms in canonical forms
that are justified by the group axioms or properties of norms. Thus,
tokens like “norm” and “group” may have a number of associations in
the system, including their definitions in particular instances; theorems,
lemmas, and rules in which they occur, which can be made available to
the general automated reasoners and term simplifiers in various ways;
more specialized automated methods that are designed to act on states
in which these tokens are found; implicit or explicit definitions with
respect to general algebraic structures, of which particular definitions
are instances; and so on. Thus the mechanisms for handling definitions
have a tremendous effect on the system’s ability to construct proofs
simply and automatically. It would be surprising if the study of these
“pragmatic” mechanisms were to have to have no positive effects on
the development of a more robust epistemology of mathematics.18

The final observation was that we would like to be able to evaluate
individual proofs against a suitable background context, whereas, in
contrast, traditional axiomatic proofs stand alone. Mechanized proof
assistants, however, distinguish between the underlying axiomatic sys-
tem, standard libraries of theorems, specialized libraries of theorems,
lower- and higher-level methods, as well as general and more specialized
methods. A particular proof script can therefore only be understood
and evaluated with respect to the more general resources available to
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the system. (The fact that libraries and automated methods can change
while the proof assistant is under development is the constant bane
of formalizers.) Thus, careful attention to the practice of automated
deduction should help us in our conceptual analysis by providing us,
at least, with concrete, working models of mathematical context.

3.3. A case study, revisited

The attention we have given to mechanized proof assistants suggests
a certain methodology for getting at the methods that are implicit in
an informally presented proof. Start by translating the proof into a
formal proof language, as straightforwardly as possible, with the goal
of verifying it mechanically. You will find that the steps in an ordinary
proof are too large, and the instructions too vague; the computer needs
more information in order to be able to fill in the gaps. Making this
information explicit will require you to reflect carefully on the theo-
rems, simplification rules, and other mechanisms by which you are able
to recognize the ordinary proof as valid. Once you spell out all the
details, then, you will have before you a formal representation of the
background context and methods that are needed to make the original
proof intelligible.

This, reflexively, provides you with a partial explanation of why
these methods are valuable: they make it possible to read the proof
at hand. The case is bolstered considerably when the same methods
are shown to be more generally useful. Thus, for example, a single
proof may help one initially uncover certain mechanisms for reasoning
about groups or norms; a comparative analysis will help show how these
mechanisms function more widely.

Of course, our discussion shows that there are other virtues we would
like to ascribe to methods. We would like to understand what it means
to say that a method shows how a related problem can be solved, or how
to obtain an algorithm; or, for example, what it means for a method to
be “generalizable” to other contexts. The type of analysis just described
provides a starting point, by providing concrete representations of the
“methods” in question. This lays a foundation, on which we can begin
to build a more elaborate theory.

Let us consider, as an example, the product law for sums of squares
that we studied in Section 2.2. The first proof has a short Isabelle
formalization:

theorem EX (x ::int) y . (aˆ2 + bˆ2 ) ∗ (cˆ2 + dˆ2 ) = xˆ2 + yˆ2
proof (rule exI )+
show (aˆ2 + bˆ2 ) ∗ (cˆ2 + dˆ2 ) = (a ∗ c − b ∗ d)ˆ2 +

(a ∗ d + b ∗ c)ˆ2
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by (simp add : zadd-zmult-distrib zadd-zmult-distrib2
zdiff-zmult-distrib zdiff-zmult-distrib2 power2-eq-square)

qed

In other words, we simply provide explicit terms that express the prod-
uct of (a2 + b2) and (c2 + d2) as sums of squares. Verifying that these
terms do the job is a straightforward calculation using basic proper-
ties of integers, the distributivity of multiplication over addition and
subtraction in particular.

Analyzing our second proof, the one that uses the concept of the
norm of a Gaussian integer, requires a good deal more work. The
appendix to this essay contains an Isabelle development of the theory
of Gaussian integers that is just barely sufficient to prove the theorem
at hand. (It is modeled after Jacques Fleuriot’s development of the
complex numbers, which is included in the Isabelle 2004 distribution.)
The reader need not be concerned with the specific mechanisms invoked
to define the Gaussian integers as new objects; the net effect is that we
then have variables ranging over Gaussian integers, a function gauss(a,b)

that turns a pair of integers a and b into the Gaussian integer a + bi,
as well as functions gauss-re(x ) and gauss-im(x ) that return the real and
imaginary parts of a Gaussian integer, respectively. These satisfy the
expected identities:

lemma [simp]: gauss-re(gauss(a,b)) = a
lemma [simp]: gauss-im(gauss(a,b)) = b
lemma gauss-gauss-re-im-conv [simp]:

gauss(gauss-re(z ),gauss-im(z )) = z
lemma gauss-gauss-eq [simp]:

(gauss(a,b) = gauss(c,d)) = (a = c & b = d)

The annotation [simp] in the statements of these theorems tells the
system that these equalities should always be applied in the left-to-
right direction when simplifying terms. The last lemma is an important
boolean identity, telling the system that demonstrating the equality of
two Gaussian integers amounts to proving the identity of the real and
imaginary components; when we are presented with Gaussian integers
in these terms, we should always simplify the former task to the latter.
Our ability to do so depends on the fact that gauss is injective, which
is to say, our representations are unique.

The number of preparatory lemmas may seem daunting, but, at
least, most of the proofs are one-liners. Recall that the methods “auto”
and “simp” are essentially Isabelle’s way of saying “obvious,” at least
given the background resources and those explicitly provided. So, for
example, the lemmas

lemma gauss-mult-commute [simp]: (w ::gauss-int) ∗ z = z ∗ w
lemma gauss-mult-assoc [simp]: ((u::gauss-int) ∗ v) ∗ w = u ∗ (v ∗ w)
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establish that the multiplication we have defined for Gaussian integers
is commutative and associative. These identities are made available to
the automated simplifier. The proofs are entirely straightforward, given
the definition of multiplication for Gaussian integers, and the relevant
properties of multiplication and addition for ordinary integers. The
lemma

lemma gauss-conj-mult : gauss-conj (w) ∗ gauss-conj (z ) =
gauss-conj (w ∗ z )

shows that conjugation is multiplicative; again, this is easy, given the
definitions of conjugation and multiplication. The Lemma gauss-norm-conj

establishes the relationship between the norm and the conjugate. The
lemma

lemma gauss-norm-mult [simp]: gauss-norm(x ) ∗ gauss-norm(y) =
gauss-norm(x ∗ y)

asserts that the norm is multiplicative, a fact that follows easily from
the two lemmas gauss-norm-conj and gauss-conj-mult.

The final lemma and theorem provide the dénouement. The lemma
shows that every sum of squares is the norm of a Gaussian integer:

lemma sum-squares-eq-norm-gauss: aˆ2 + bˆ2 = gauss-norm(gauss(a,b))
by (simp add : gauss-norm-def )

This is immediate, given the definition of norm. The final theorem is
our Theorem 2.2:

theorem EX (x ::int) y . (aˆ2 + bˆ2 ) ∗ (cˆ2 + dˆ2 ) = xˆ2 + yˆ2
by (auto simp add : sum-squares-eq-norm-gauss)

In other words, the theorem is obvious, given the preceeding lemma.
Despite the length, this example is misleadingly simple; the fact

that almost every lemma has a one-line proof shows that in this case
most of the verification can be reduced to unwinding definitions, sim-
plifying terms, and using basic logical inferences. Generally speaking,
automated deduction begins to get hard (and therefore interesting)
when this is not the case. At one end of the spectrum of mathematical
activity, there is routine calculation and verification, where the appro-
priate means of proceeding is clear and straightforward; at the other,
there is blind search and divine inspiration. Mathematical methods are
designed to shift as much as possible to the first side, so that serious
thought and hard work can be reserved for tasks that are truly difficult.
The project proposed here is to better understand how they do this.

Even in our simple example, however, interesting phenomena emerge.
For example, consider the following lemma:

lemma gauss-gauss-ex-intro [intro]: EX z . P(z ) ==>
EX x y . P(gauss(x ,y))
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This tells us that to prove that a property P holds of x + iy for some
x and y, it suffices to prove that P holds of some Gaussian integer.
This inference is declared suitable for use by the automated reasoners.
We carry out steps like this implicitly when reasoning about Gaussian
integers, and it may be hard to believe that a proof assistant has to
be told, explicitly, to do the same. But, in general, working backwards
using rules like this does not always preserve validity; that is does in
this case is guaranteed by the fact that gauss is surjective. Thus, our
formalization, in getting us to uncover the principles of reasoning that
should be automatic, at the same time forces us to identify the features
of our domain that are basic to reasoning about it.

Note that in addition to associativity and commutativity, we also
provide the simplifier with a lemma that embodies a funny combination
of the two:

lemma gauss-mult-left-commute [simp]:
(u::gauss-int) ∗ (v ∗ w) = v ∗ (u ∗ w)

There is a good reason for this. Clearly there is a problem with declaring
a term like a + b, in general, to be a simplification of b + a: iterated
application can leave the system “simplifying” ad infinitum. Isabelle’s
simplifier is smart enough to recognize such “permutative conversion
rules,” and will apply them only in cases where doing so results in
a reduction with respect to a somewhat arbitrary ordering of terms.
But this renders associativity and commutativity too weak. Adding
left commutativity for addition to the mix has the net effect that a
nested sum of terms is rewritten so that the terms appear in a fixed
order, with parentheses grouped to the right; this convention makes
it possible to match such terms. The epistemological moral is that a
proper understanding of the arithmetic operations requires not just
knowing that they satisfy associativity and commutativity, but also
knowing how to make use of this fact. In particular, a certain faculty
is required to ignore parenthetical groupings in iterative applications
of an associative operation, and to recognize that sums like a + b + c
and c + a + b are equal. With complex expressions, we are apt to do
this by ticking off terms; in any event, it is a capability that is available
to any practicing mathematician, and one that is usually carried out
without comment or fanfare. It is only the discipline of formalization
that brings this to the fore.

Another subtlety that emerges has to do with the handling of inte-
gers as a subdomain of the complex numbers. In Section 2.2, I noted
that if z is any Gaussian integer, then zz is an integer. This is not
exactly true; zz is really a Gaussian integer whose imaginary part
happens to be 0. The statement only becomes true when one takes these
Gaussian integers to be identified with their ordinary integer counter-
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parts. If one views the integers as a subset of the Gaussian integers,
one has to recognize that this subset is closed under the operations of
addition and multiplication; if, alternatively, one views the integers as
embedded in the Gaussian integers via the mapping x 7→ x + 0i, one
needs to recognize that this function respects the arithmetic operations.
In the formalization in the appendix, the predicate gauss-IsInt holds
of the Gaussian integers that have imaginary part 0. Then, the two
lemmas

lemma gauss-mult-int [simp]: gauss-IsInt x ==> gauss-IsInt y ==>
gauss-IsInt (x ∗ y)

lemma gauss-mult-int-eq [simp]: gauss-IsInt x ==> gauss-IsInt y ==>
gauss-re x ∗ gauss-re y = gauss-re(x ∗ y)

show, first, that the collection of Gaussian integers with this property
is closed under multiplication; and, second, that the effect of such a
multiplication is simply to multiply the real parts. Thus, once again,
the act of formalization forces us to articulate a pattern of reasoning
that typically passes unnoticed.

Other rules that are declared as “simplifications” in the appendix
merit further consideration. For example, the final proof requires the
fact that our statement of gauss-norm-mult declares the term gauss-

norm(x * y) to be a simplification of gauss-norm(x ) * gauss-norm(y).
But, in general, is this a good thing? Further formalization efforts
may show that it is not always desirable to have automated meth-
ods apply this rewriting strategy. We may then choose to remove the
declaration, in which case the identity has to be added explicitly to the
list of resources in our formal proof of Theorem 2.2. To make matters
worse, we may decide that the reverse direction constitutes a better
default simplication,19 in which case we would have to explicitly tell
the simplifier to treat this case as an exception.

What this shows is that calculation becomes more complex when one
is forced to use identities in which there is no clearly preferred direction
for rewriting terms. The distributivity laws for multiplication over ad-
dition and subtraction are examples of such identities: sometimes one
wants to multiply a term through a sum or difference, whereas at other
times it is desirable to factor a term outside an expression. Having
to specify the appropriate means of proceeding at each stage can be
tedious; the alternative is to train the automated methods to pick up
contextual clues, as we do, to determine what types of rewriting are
likely to be fruitful in specific instances.

Finally, it is interesting to note that there is some redundancy in
our formalization. One of our simplification rules,

lemma gauss-mult-gauss [simp]: gauss(a,b) ∗ gauss(c,d) =
gauss(a ∗ c − b ∗ d , a ∗ d + b ∗ c)
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is simply the multiplication rule for Gaussian integers. If we remove
the declaration to the simplifier, every proof in the appendix still goes
through, unchanged. The same is true if we remove the rule gauss-

gauss-ex-intro, discussed above. But if we remove both of these, the final
proof fails. What happens is that the system gets stuck trying to find
appropriate terms s and t satisfying

gauss-norm(gauss(a,b) * gauss(c,d)) = gauss-norm(gauss(s,t)).

In other words, the last theorem is obvious only if we employ either
the multiplication rule for Gaussian integers, or a faculty to recognize
that the specific terms are irrelevant in this case. Determining which
of these strategies is more natural or more useful, in this specific case
or more generally, is no easy matter.

The fact that so many subtle issues emerge from such a simple
example suggests that there is a wealth of insight to be harvested from
even slightly more complex examples. At present, the faculties by which
we navigate even the most familiar mathematical terrain are far from
clear. This fact can be expressed in the form of a slogan: what is obvious
is not at all obvious.

At any rate, the discussion up to this point has been intended to
show that mechanically assisted formalization can help us detect the
various methods of inference that are needed to make an ordinary
mathematical proof intelligible. The reflections in Section 3.1 provide a
sense of some of the criteria by which such methods may be evaluated;
the next step is to formulate these criteria more precisely. While I will
not begin to undertake this broader project here, let me briefly indicate
two directions in which formal work with Isabelle may again provide
some insight.

The notion of generality of method was a constant theme in the
discussion in Section 2. Isabelle supports the notion of an axiomatic
type class, that is, an axiomatic characterization of a class of structures,
of which particular domains may be shown to be instances. In Section 2,
we noted that the first proof of Theorem 2.2 works, more generally, for
any commutative ring. In fact, there are Isabelle formalizations of the
notion of a commutative ring, and our formalization of the first proof
works equally well for such an axiomatic class, provided we cite the
more general distributivity laws. Similarly, we noted in Section 2 that
the notion of “norm” makes sense for more general classes of structures.
With more work, we can axiomatize, for example, the relevant proper-
ties of finite field extensions of the rational numbers, and show that the
Gaussian integers are a particular instance; most of the theorems in the
appendix can then be proved in the more general framework. Thus, one
can show how a more general body of methods can be used to support
a formal proof of Theorem 2.2. This falls short of characterizing the
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sense in which the specific methods associated to Gaussian integers are
generalizable; that is, it does not characterize the higher-level methods
(or heuristics) one can use to obtain appropriate generalizations. But it
does provide a clear sense in which methods developed to reason about
the Gaussian integers are instances of more general ones.

Also discussed in Section 2 was the notion that some methods show
us how an associated problem was solved. Isabelle was not designed
to solve mathematical problems, other than the problem of finding a
proof. But there are ways we can begin to creep up on such issues. For
example, in Isabelle’s interactive mode, one may specify a theorem with
metamathematical parameters that are to be instantiated. Writing

theorem (aˆ2 + bˆ2 ) ∗ (cˆ2 + dˆ2 ) = ?xˆ2 + ?yˆ2

declares the goal of finding terms to substitute for ?x and ?y and a
proof of the resulting theorem. In our example, if one issues the same
proof script before, the system happily reports that a theorem has suc-
cessfully been proved; ?x and ?y are instantiated to ac− bd and ad+ bc,
respectively. Thus, we have a precise sense in which these methods
provide additional information, beyond the fact that the statement of
the theorem is true; that is, they show us how to find specific witnesses
for x and y.

4. Towards a general theory

Adapting a system like Isabelle for use in our project of understanding
value judgments that are applied to proofs involves an awkward type
mismatch, in that we are using a specific implementation of a proof
language to address general questions about the nature of proofs. In
our analysis, we are not so much concerned with the fact that certain
definitions, theorems, and methods in Isabelle make it possible for that
particular system to verify a proof script; but, rather, that a certain
body of definitions, theorems, and methods in mathematics make it
possible for a mathematical cognizer to understand a certain proof.
Thus, we need to develop a way of speaking about methods and proofs
at a level of abstraction that strips away whatever it is we take to be
ad-hoc and specific to a certain implementation. At the same time, such
a framework has to be concrete enough to support a rigorous analysis.

Some essential features of our framework can easily be discerned.
First of all, we need an appropriate notion of a proof state, which
characterizes, among other things, the locally-available knowledge and
the immediate subgoals at each stage of a proof in progress. I have
implicitly assumed that such a state can be represented syntactically,
which is to say, it can be stored, communicated, and acted upon by a
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computational agent. The second essential component of the account
is that of a method, that is, an algorithmic procedure which acts on a
proof state and transforms it into another. It is these methods that are
to be the basic objects of evaluation.

At this level of generality, however, the framework is unlikely to be
useful. For example, if we take the initial proof state to be simply a
statement of the theorem to be proved, there is a single method that
always succeeds in finding a proof if there is one: blind, systematic
search. Of course, in practice, this is a lousy way to proceed. Instead of
methods that are generally foolproof but impractical, we seek methods
that are effective in particular contexts. Characterizing such methods
will require more nuanced ways of describing both proof states and the
algorithms that act upon them. But then we are pushed back to the
problem of overspecificity: what more can we do beyond choosing a par-
ticular representation of proof states, and a particular “programming
language” for methods?

Here I am encouraged by historical precedent. Before the nineteenth
century it may have seemed unlikely that any neat theory could account
for the correctness of the bewildering range of styles and methods of
mathematical argumentation. Now, a couple of hundred years later,
the modern theory of mathematical proof provides just such a theory.
Achieving our modern understanding required both philosophical and
mathematical reflection, as well as a good deal of mucking around,
and it was a long time before the outlines of a robust and stable theory
began to emerge. Eventually, conceptual pieces began to fall into place,
terminology and notation began to stabilize, important deductive sys-
tems like first-order logic and higher-order logic were isolated, semantic
notions were clarified, and interesting axiomatic systems like set theory
and arithmetic were identified. It seems to me unlikely that we can
obtain a similarly robust theory of proof, of the kind described above,
without reconciling ourselves to a period of untidy exploration.

Pushing the analogy may be fruitful. One of the factors that con-
tributed to the identification of first-order logic as an important frag-
ment of reasoning was its characterization in non-syntactic terms. De-
ductive systems for first-order logic vary widely in choice of primitives,
axioms, and rules; what they all have in common is that they give
rise to a notion of consequence that is sound and complete for first-
order semantics. Analogously, we can ask: can methods of inference be
fruitfully characterized in more “semantic” or algebraic terms?

The development of an appropriate framework has to go hand in
hand with initial attempts to answer the types of questions that the
framework is supposed to address. Here are some:
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1. What methods of inference are required to understand proof X?

2. What are the methods of inference that are used in the branch of
mathematics X?

3. Are there useful and informative ways of characterizing and classi-
fying methods?

4. What are the types of methods that are used in the branch of
mathematics X?

5. What are the types of methods that are used in mathematics sim-
pliciter?

6. To what extent do methods vary across the branches of mathemat-
ics?

7. How do methods from the different branches interact?

8. In what contexts is the collection of methods X useful?

9. What are the methodological / epistemic benefits of methods X?

10. What are the methodological / epistemic benefits of methods of
type X?

Here I am using “method” to refer specifically to the kind of low-
level methods of inference we have been discussing, so this list does
not even begin to address broader issues related to problem solving,
generalization, and the like. It is common in mathematics to classify
various methods as algebraic, analytic, combinatorial, geometric, and
so on, and one might hope to shed light on such a taxonomy. Aside
from logical and philosophical interest, this could also raise interesting
mathematical questions; for example, it could provide a clear sense
to the question as to whether a particular result can be obtained by
certain methods.

As noted in the introduction, the framework I have proposed is based
on a distinctly syntactic view of mathematical practice. A benefit is
that the philosophical analysis does not presuppose or depend on any
substantial portion of this practice; all that is needed at the core is a
theory of syntactic entities and computational procedures. On the other
hand, from a naturalist perspective, it would be perfectly legitimate to
bring the full weight of our contemporary mathematical understanding
to bear. One may therefore wonder whether a more semantic framework
would be more appropriate. For example, a referee suggests that the
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“higher-order” methods, like generalization, alluded to in the intro-
duction are better understood in terms of analogies between semantic
objects.

I admit to a bias against such approaches. Put crudely, I doubt that
accounting for the utility of the notion of a group in terms of references
to actual groups will have much explanatory value. Furthermore, I
expect that insights from a semantic account can easily be translated
into syntactic terms: simply speak of “uses of the term ‘group’” rather
than “references to groups.” But, to be fair, this misses the point of
the referee’s objection: what is at issue is the most natural level of
description rather than inter-translatability, and the approach I have
suggested may simply miss the conceptual forest for the syntactic trees.

I see, however, no reason that different perspectives should not be de-
veloped in parallel. I think it likely that they will converge in the limit,
and that there is much to be gained by understanding the relationships
between them. Ultimately, only time will tell which perspectives yield
the most insight. In the meanwhile, you pays your money, and takes
your chances.

My claim in the introduction that a good theory of proof will help
explain the ways in which certain methods of inference render a proof
intelligible may suggest that the program I am proposing has a psychol-
ogistic component, aiming to clarify human cognition. Indeed, it may
well be the case that the kind of theory I am after can inform such an
empirical study, and can, in turn, benefit from the results. Similarly, I
expect it can be informed by historical and contemporary mathematical
case studies, and can, in turn help us understand these cases. I hope
my discussion also suggests that a good theory can be informed, and
can serve to inform, research in automated deduction; and that it can
benefit from an appropriate mathematical understanding, and provide
specifically mathematical insights.

That said, let me make it clear that the type of theory I am after
is neither psychological nor historical in nature. By that, I only mean
to say that I believe it possible to develop a general epistemological
framework for characterizing mathematical methods and goals in terms
that are independent of these disciplines. The approach I have described
has a Kantian transcendental flavor: taking, as a starting point, the
fact that ordinary mathematical proofs are intelligible, the challenge
is to characterize the cognitive mechanisms that make them so. It also
has a phenomenological feel: what must be accounted for is not the
nature of mathematical objects in and of themselves, but, rather, our
representations of these objects, and the way we interact with these
representations in our mathematical experience.
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How should we gauge the success of such a theory? Of course, by the
usual philosophical standards: its internal coherence and consistency,
the extent to which it accords with intuition, and the extent to which
it provides a useful conceptual apparatus for those disciplines that
touch upon such epistemological issues. It is not clear to me whether
there is anything else one has a right to expect from the philosophy of
mathematics; in any event, these goals are certainly enough to justify
the effort.
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Notes

1 Many have raised issues like these, and I am not claiming originality or priority
in that respect. In particular, Manders has long been emphasizing the need for more
general theories of mathematical understanding, which would presumably address
questions like the ones I raise here. But if I were to try to attribute to him a particular
way of framing the issues, I would run the risk of mischaracterizing his views; so,
instead, this note will have to suffice to acknowledge his general influence.

2 A list, with references, can be found in Lemmermeyer [36, Appendix B].
3 John Stillwell has suggested to me that it would be fruitful to consider various

proofs of the fundamental theorem of arithmetic and the Pythagorean theorem in
the same vein.

4 In my view, Steiner [50], in particular, does not sufficiently acknowledge this.
His analysis proceeds by comparing multiple proofs of sample theorems, and noting
positive and negative features of the various proofs; I often find myself in disagree-
ment only at the point where he judges a particular proof to be the most explanatory
simpliciter. So, here I will strive to provide a framework in which one can clarify
such evaluatory claims, without trying to provide a single uniform measure.
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After circulating a draft of this paper, I received a copy of [30], which adopts a
similar attitude, and urges a “bottom-up” methodology similar to the one I follow
here. It also provides a forceful criticism of the conclusions in [50].

5 This is essentially the one given by Coxeter [15, p. 27], who credits M. Kraitchick,
and, later but independently, J. E. Hoffmann. It can also be found in Hardy and
Wright [31], which cites (the first edition of) Coxeter [15], but credits Kraitchick and
Bennett. A presentation in terms of congruences can be found in Baaz [3], which,
however, mistakenly attributes the proof to Euler.

6 Dana Scott used this example, in discussing the notion of mathematical proof,
in a colloquium he gave at Carnegie Mellon, in the spring of 2002.

7 There is a subtle interplay between such local and global considerations, that
is, between valuing lemmas and definitions for their ability to help us understand a
particular proof, and for their utility in more general contexts. In commenting on
this paper, William Tait has emphasized that one should be careful not to devalue
the former in favor of the latter. For example, even though Dedekind’s notion of an
ideal is now ubiquitous in commutative algebra, Dedekind was clearly pleased with
its role in the develoment of the unique factorization theorem for algebraic integers,
before its more global utility was established.

8 that is, in which the terms used to express the product are real bilinear forms
in the values that are squared and summed in the factors.

9 See e.g. [21, Section 1.7], [28, Section 12.6], or [31, §366].
10 One way to prove this is to appeal to Fermat’s little theorem, which asserts that

if p does not divide x, xp−1 ≡ 1 (mod p). In particular, if p is of the form 4n + 1,
each of the numbers 1, 2, . . . , 4n satisfies the equation x4n ≡ 1 (mod p), and hence
x4n − 1 ≡ (x2n + 1)(x2n − 1) ≡ 0 (mod p). By Lagrange’s theorem, the polynomial
x2n − 1 has at most 2n roots modulo p; thus the remaining 2n numbers between 1
and 4n satisfy x2n + 1 ≡ 0 (mod p), that is, (xn)2 ≡ −1 (mod p).

Another way to prove Lemma 2.5 is to appeal to Wilson’s theorem, which
asserts that (p − 1)! ≡ 0 (mod p) when p is prime. When p − 1 = 4n, note
that the numbers 2n + 1, 2n + 2, . . . , 4n − 1, 4n are congruent, respectively, to
−2n,−2n−1, ...,−2,−1 modulo p, which implies (2n+1)(2n+2) · · · (4n−1)(4n) ≡
(−1)2n(2n)! ≡ (2n)! (mod p). Appealing to Wilson’s theorem, we have (4n)! ≡
(2n!)2 ≡ −1 (mod p), so we can let m = (2n!) in the statement of the lemma. This
proof was given by Lagrange in 1771.

A third way to proceed is to first prove the weaker statement that there are rela-
tively prime x and y such that p|x2+y2 by iteratively applying a differences operator
to the sequence 12n, 22n, . . . , 44n, as did Euler in 1749 (cf. the next footnote). The
desired conclusion follows from the fact that y has a multiplicative inverse modulo
p.

A very direct and elegant fourth proof can be found in [1]: partition the p − 1
nonzero residue classes modulo p into sets of the form {x,−x, x−1,−x−1}, where −x

and x−1 denote, respectively, the additive and multiplicative inverses of x modulo
p. Most of these sets have four elements, but some collapsing can occur. When p is
an odd prime, x and −x are always distinct; but x = x−1 exactly when x2 = 1, i.e
x = ±1, resulting in one set with two elements. When p− 1 is a multiple of 4, there
has to be exactly one other two-element set: this occurs when x = −x−1, which is
equivalent to the assertion that x2 ≡ 1 (mod p).

Some textbooks use the fact that the group of 4n nonzero residues modulo p is
cyclic, and hence has an element m of order 4. But every proof of this fact that I
know of (i.e. that there is a primitive element modulo any prime) uses Lagrange’s
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theorem, and constitutes essentially a strengthened form of the second argument
above.

Proofs of Fermat’s theorem, Lagrange’s theorem, and Wilson’s theorem can be
found in almost any elementary textbook on number theory; see for example [31, 42].

11 Euler’s proof assumed a slightly weaker form of Lemma 2.5, which he was unable
to prove until 1749. See the discussions in [21, 44, 53], and also footnote 4.

12 This proof is commonly found in textbooks today, but I do not know who first
discovered it. It was certainly accessible to Gauss, who proved Lemma 2.8 in 1828.
Dickson [17, II, p. 233] notes that L. Wantzel states in a paper of 1848 that the use
of Lemma 2.8 provides the simplest proof of the fact that every prime divisor of a
sum of two squares is again a sum of two squares.

13 I can’t resist including one last proof, adapted from [42], which is very elemen-
tary and direct. Using Lemma 2.5, start with an integer m such that m2 ≡ 1 (mod p).
First, I claim that there is a solution to x ≡ my (mod p), with 0 < |x|, |y| <

√
p.

To see this, consider the values u − mv for all pairs u, v satisfying 0 ≤ u, v <
√

p.
Since there (1+ ⌊√p⌋)2 ≥ p such pairs, there are two distinct pairs u0, v0 and u1, v1

such that u0 − mv0 ≡ u1 − mv1 (mod p). Let x = u0 − u1, and let y = v0 − v1.
At least one of these is nonzero since the pairs are distinct, and so they satisfy the
requirements of the claim.

Now note that we have x2 ≡ m2y2 ≡ −y2 (mod p), so that p|x2 + y2. Since
0 < x2 + y2 < 2p, the only possibility is that x2 + y2 = p.

14 This tension was a focal point of foundational debate in the late nineteenth
century, and even though modern mathematics embraces a full range of viewpoints,
from explicitly computational to resolutely abstract, such differences can still incite
passion in serious practitioners of the subject. Although an adequate treatment of
the topic is well beyond the scope of this essay, a few clarificatory words are in order.

From the bias of a modern, set-theoretic, point of view, we can distinguish
between statements that are constructively valid, and statements that are true but
not constructively valid. A statement is “constructively valid” if it remains true on
a computational reading of its quantifiers; for example, a constructive reading of
a theorem of the form “for every x there is a y such that . . . ” should provide an
algorithm for producing a y from any given x. A simple instance of a statement that,
on the modern view, is true but not constructively true is the following: “for every
Turing machine x, there is a number y, such that x halts in y steps when started on
empty input, if it halts at all.”

It can happen that a nonconstructive proof can have a constructively valid
conclusion. Saying that a proof is nonconstructive means that it relies on theorems
that are not constructively valid, or, more generally, on methods of reasoning, like
proof by contradiction and the law of the excluded middle, that do not in general
guarantee constructive validity. Indeed, nonconstructive methods are often praised
for making it possible to obtain even explicitly computational results more easily.

Mathematical logic and the theory of computability provide a clear sense in
which a statement can be constructively valid, or not. There are also various char-
acterizations of constructively valid methods of proof; see, for example, [4, 52, 7].
Proof theory, in an extended version of Hilbert’s program, provides many ways in
which nonconsructive theories can be interpreted in constructive terms; many of the
articles in The Handbook of Proof Theory [9] can be interpreted in this light (see
also, e.g., [2]). Recent work in logic has even focused on ways of extracting useful
constructive information from nonconstructive proofs in practice; see, for example,
[34, 5].
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The discussion in Section 2 shows, however, that even when a proof is con-
structive, we may pass judgment as to whether it makes computational information
explicit or not; or that we can declare that even though a proof is nonconstructive,
an associated algorithm is “easily obtained.” In other words, in ordinary practice,
there are degrees of salience and more subtle ways in which constructive information
can be transmitted. These more nuanced distinctions are not captured well by the
standard logical models, but these types of judgments are of interest here.

15 For concreteness, we can fix on the notion of computably-axiomatized theories
in many-sorted classical first-order logic, and, in fact, little will be lost if we focus
on theories axiomatized by finitely many schemata. Note that such theories include
deductive systems for higher-order logic, which can be expressed in such a many-
sorted first-order framework, as well as axiomatic set theory. From our perspective
it matters little whether one prefers an axiomatic, natural deduction, or sequent for-
mulation, since these are easily and efficiently intertranslatable. Anyone who wishes
to include intuitionistic or type-theoretic foundational frameworks as well is welcome
to do so; all I am assuming is that the systems we consider are syntactically specified,
in such a way that there are effective procedures for verifying the well-formedness
of assertions and validity of inferences.

16 To be sure, logicians also sometimes use the notion of a definitional extension of
a theory, in which one extends the language of the original theory with new function
and relation symbols, together with their defining axioms. But outside the field of
proof complexity (where one is interested in the effects of such extensions on lengths
of proofs), the notion does not play an important role in the subsequent development
of the theory; which is to say, after the first chapter it is rare that any assertion in a
logic textbook depends on whether one is thinking in terms of definitional extensions
or definitions in the metatheory.

17 I am simplifying somewhat. Isabelle’s goals are actually higher-order sequents,
which is to say, hypotheses can themselves be sequents of the form W1, W2, . . . , Wm ⇒
Z; and one is allowed to use variables and universal quantifiers ranging over arbitrary
terms in higher-order logic. For details, see [41], as well as the other documentation
at [58].

18 For example, a token with a suitable list of associations may be able to stand
duty for the notion of a “mathematical concept.” It could help explain, e.g., how it is
that we can sometimes identify an implicit historical use of a concept, before a precise
definition is in place; how a concept can be instantiated in different foundational
frameworks; or how mathematical concepts can change over time, and yet preserve
some of the same meaning. I am not yet convinced, however, that for our purposes
talk of concepts has any benefits over more direct talk of methods and the tokens
they detect; so, for the time being, I will stick with the latter.

19 In fact, Tobias Nipkow tells me that this would be his initial impulse. Isabelle
2004’s standard HOL library does not currently declare either simplication rule for
the absolute value function on ordered rings, and more thought and experimentation
is needed to determine whether it should.
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Appendix

theory GaussInt = Main:

typedef gauss-int = {p::(int∗int). True}
by auto

instance

gauss-int :: times..

constdefs

gauss :: int ∗ int => gauss-int
gauss p == Abs-gauss-int(p)

gauss-re :: gauss-int => int
gauss-re(z ) == fst(Rep-gauss-int z )

gauss-im :: gauss-int => int
gauss-im(z ) == snd(Rep-gauss-int z )

gauss-conj :: gauss-int => gauss-int
gauss-conj z == gauss(gauss-re z , −gauss-im z )

gauss-norm :: gauss-int => int
gauss-norm z == gauss-re(z ) ˆ 2 + gauss-im(z ) ˆ 2

gauss-IsInt :: gauss-int => bool
gauss-IsInt z == (gauss-im z = 0 )

defs

gauss-mult-def :
w ∗ z == gauss(gauss-re(w) ∗ gauss-re(z ) − gauss-im(w) ∗ gauss-im(z ),

gauss-re(w) ∗ gauss-im(z ) + gauss-im(w) ∗ gauss-re(z ))

lemma [simp]: Rep-gauss-int(Abs-gauss-int(a,b)) = (a,b)
by (rule Abs-gauss-int-inverse, simp add : gauss-int-def )

lemma [simp]: (Abs-gauss-int(a,b) = Abs-gauss-int(c,d)) = ((a,b) = (c,d))
by (simp add : Abs-gauss-int-inject gauss-int-def )

lemma [simp]: gauss-re(gauss(a,b)) = a
by (simp add : gauss-re-def gauss-def )

lemma [simp]: gauss-im(gauss(a,b)) = b
by (auto simp add : gauss-im-def gauss-def )
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lemma gauss-gauss-re-im-conv [simp]: gauss(gauss-re(z ),gauss-im(z )) = z
by (auto simp add : gauss-def gauss-re-def gauss-im-def

Rep-gauss-int-inverse)

lemma gauss-gauss-eq [simp]:
(gauss(a,b) = gauss(c,d)) =(a = c & b = d)

by (auto simp add : gauss-def )

lemma gauss-mult-gauss [simp]:
gauss(a,b) ∗ gauss(c,d) = gauss(a ∗ c − b ∗ d , a ∗ d + b ∗ c)

by (auto simp add : gauss-mult-def )

lemma gauss-gauss-ex-intro [intro]: EX z . P(z ) ==> EX x y . P(gauss(x ,y))
apply (erule exE )
apply (subgoal-tac P(gauss(gauss-re(z ),gauss-im(z ))))
by (auto simp del : gauss-gauss-re-im-conv , simp)

lemma gauss-mult-int [simp]: gauss-IsInt x ==> gauss-IsInt y ==>
gauss-IsInt (x ∗ y)

by (simp add : gauss-IsInt-def gauss-mult-def )

lemma gauss-mult-int-eq [simp]: gauss-IsInt x ==> gauss-IsInt y ==>
gauss-re x ∗ gauss-re y = gauss-re(x ∗ y)

by (simp add : gauss-IsInt-def gauss-mult-def )

lemma gauss-mult-commute [simp]: (w ::gauss-int) ∗ z = z ∗ w
by (auto simp add : gauss-mult-def zmult-commute zadd-commute)

lemma gauss-mult-assoc [simp]: ((u::gauss-int) ∗ v) ∗ w = u ∗ (v ∗ w)
by (auto simp add : gauss-mult-def zmult-ac zadd-zmult-distrib

zadd-zmult-distrib2 zdiff-zmult-distrib zdiff-zmult-distrib2 )

lemma gauss-mult-left-commute [simp]: (u::gauss-int) ∗ (v ∗ w) = v ∗ (u ∗
w)
by (auto simp add : gauss-mult-def zmult-ac zadd-zmult-distrib

zadd-zmult-distrib2 zdiff-zmult-distrib zdiff-zmult-distrib2 )

lemma gauss-conj-mult : gauss-conj (w) ∗ gauss-conj (z ) = gauss-conj (w ∗ z )
by (simp add : gauss-conj-def gauss-mult-def )

lemma gauss-mult-conj-self : z ∗ gauss-conj (z ) = gauss(gauss-norm(z ),0 )
by (auto simp add : gauss-norm-def gauss-conj-def gauss-mult-def

power2-eq-square)

lemma gauss-norm-conj : gauss-norm(z ) = gauss-re(z ∗ gauss-conj (z ))
by (simp add : gauss-mult-conj-self )
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lemma gauss-mult-conj-self-int [simp]: gauss-IsInt (x ∗ gauss-conj x )
by (simp add : gauss-mult-conj-self gauss-IsInt-def )

lemma gauss-norm-mult [simp]: gauss-norm(x ) ∗ gauss-norm(y) =
gauss-norm(x ∗ y)

by (simp add : gauss-norm-conj gauss-conj-mult)

lemma sum-squares-eq-norm-gauss: aˆ2 + bˆ2 = gauss-norm(gauss(a,b))
by (simp add : gauss-norm-def )

theorem EX (x ::int) y . (aˆ2 + bˆ2 ) ∗ (cˆ2 + dˆ2 ) = xˆ2 + yˆ2
by (auto simp add : sum-squares-eq-norm-gauss)

end
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