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Mathematical Methods for the
Design of Color Scanning Filters

Poorvi L. Vora and H. Joel Trussell, Fellow, IEEE

Abstract—The problem of the design of color scanning filters
is addressed in this paper. The problem is posed within the
framework of the vector space approach to color systems. The
measure of the goodness of a set of color scanning filters presented
in earlier work is used as an optimization criterion to design color
scanning filters modeled in terms of known, smooth, nonnegative
functions. The best filters are then trimmed using the gradient of
the mean square

�✂✁☎✄✝✆
error to obtain filters with a lower value

of perceptual error. The results obtained demonstrate the utility
of the method.

I. INTRODUCTION

F
ILTERS used for multiband image recording for the

purpose of color reproduction are referred to as color

scanning filters even though many modern imaging devices

such as charge-coupled device (CCD) arrays do not “scan.”

These filters are a basic component of many color reproduction

systems. The goal of the color scanning process is to obtain

a linear transformation of the Commission Internationale de

L’Eclairage (CIE) tristimulus values [1]. For color correction

applications, CIE tristimulus values for more than one view-

ing illuminant may be needed. For satellite applications, the

“spectral signatures” may be desired. In any multiband image-

recording problem, physical filters need to be designed and

manufactured. In many instances the filters can be chosen from

a bank of existing filters. In other cases, the filters are to be

custom manufactured. The combined effect of the optical path,

the recording illuminant and the detector sensitivity, which

must also be taken into account, often complicates the design

procedure.

This paper formulates the design of a set of three or

more color scanning filters as an optimization problem. The

optimization criterion is the measure of goodness devel-

oped in [14]. This criterion is different from those used by

other researchers [3], [4], [6], [23] in that it measures the

joint performance of the set of filters as a whole and not

the performance of individual filters. Most of the literature

in the design of color scanning filters reports optimization

routines that minimize a norm of the difference between each

constructed filter and the combined effect of the corresponding
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CIE matching function and viewing illuminant [3], [6], [23]

or maximize the -factor (defined by Neugebauer [10]) of the

individual scanning filters [4]. The measure defined in [5] is

the average of the -factors of the individual filters and, hence,

a measure of individual filter performance. There has been no

reported research on the use of a measure of the entire set of

color scanning filters as an optimization criterion.

In the case when the filters are to be chosen from a discrete

set of filters, the problem of finding a filter set with maximum

value of the measure may be solved by an exhaustive

search. When the filters are to be fabricated (as interference

filters, for example), problems of physical realizability lead

to a parametrized optimization problem which may be solved

using existing optimization algorithms. Filters designed thus

may be trimmed using a perceptual error measure like the

mean square error over a data set. The method described

in this paper has proved useful for colorimetric applications,

as demonstrated in Section IV. It can also be used for the

design of filters for other multiband image recording problems,

specifically for the design of filters with applications in satellite

imagery.

The method proposed can be used for any imaging system

for which the sensor characteristic (defined as the combined

effect of the lamps, light path and sensor characteristic) is

known. It is dependent on accurate sensor characterization, as

are all scanning filter design methods. It has been observed

that, even in the absence of precise scanner characterization,

this method provides results far superior to other methods

using the same scanner characterization. The method assumes,

in particular, that the continuous waveforms representing the

viewing and scanning illuminants, the radiant spectrum to be

measured, etc., have been sampled at a sufficiently high rate in

the wavelength domain. This common assumption forms the

basis of the vector space approach to color.

The method presented here does not restrict the number

of samples per spectrum. The experimental results presented

here assume the commonly accepted 10 nm sampling rate for

illustration purposes and for comparison with other methods

[7] that use this rate. This rate may not be sufficient to

characterize, for example, fluorescent illuminants. The effect

of insufficient sampling on color system design has been

discussed in [12] and [13]. The sensitivity of filter performance

to error in scanner characteristic measurement will not be

addressed here.

It is often not possible to fabricate the designed “optimal”

filters exactly. The fabricated filters will not have the specified
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transmissivities, and this perturbation in filter transmissivities

leads to a general degradation of filter performance demon-

strated by larger perceptual errors and smaller values of the

optimization criterion . The problem of sensitivity of the

measure and the perceptual error to errors in filter fabrication

is the subject of a companion paper [17].

The measure used in this paper is based on Euclidean

distances in and is not a perceptual error measure. A

common perceptual error measure is which is the Eu-

clidean distance in the CIE space. The transformation

from the spectral space of to the CIE space is

linear; however, the transformation from to is

nonlinear [24]. Although the measure is not directly related

to the perceptual error, it has been shown to give a good

indication of the average error over standard data sets

[14]. Because the ultimate performance of the filters depends

on perceptual error, the values of the measure are

included in the data reported in this paper to demonstrate the

power of the design method. For this reason, let us define the

terms here.

The color for a radiant spectrum is determined by

(1)

where is an -vector representing the sampled spectrum of a

radiant source, is an matrix representing the CIE color

matching functions and is a 3-vector representing the CIE

tristimulus values. A reflectance spectrum can be measured by

producing a radiant spectrum

where is a reflectance spectrum and is an

diagonal matrix representing the spectrum under which the

reflecting object is viewed. The color matching functions and

the illuminant can be combined in a single matrix, ,

which defines the human visual subspace (HVSS) under the

illuminant .

Let be the actual CIE

tristimulus values for the reflectance signal for the viewing

illuminant, and be the transformed

(actual) tristimulus vector in CIELAB space. Let

be the estimated CIE tristimulus values for the

reflectance signal given a particular viewing illuminant.

Let be the transformed (estimated)

tristimulus vector in CIELAB space [24]. Then , the

error for reflectance spectrum , is given by

The error vector in CIELAB space is not linearly related to

the corresponding error vector in tristimulus space and the

average error over a data set cannot be characterized by

average, or individual, tristimulus error. The characterization

of average error over a data set will involve the actual

calculation of error at each point in the data set and is

thus, data dependent. This average error is given by

(2)

where represents the sum over the spectra in the data set.

While it is possible to use as an optimization function,

it is most unwieldy.

In this paper, Section II introduces notation and presents

the motivation behind posing the filter design problem as

constrained optimization. Section III presents ways of incor-

porating constraints of physical realizability into the problem,

design procedures for designing a set of filters which may be

fabricated and a method of trimming the parametrized optimal

filters to get filters with optimal performance with respect to

the average square error over a data set. Section IV

implements the parametrizations and the trimming method of

Section III for particular scanner characteristics. Conclusions

are presented in Section V.

II. CONSTRAINED OPTIMIZATION PROBLEM

The goal of color measurement is to determine the

values where is the number of

viewing illuminants. When , the problem has ap-

plications in color correction [20], [21]. The problem of

determining the spectral signatures of portions of the earth’s

surface may be expressed as the problem of determining

, where the columns of represent the responses of

sensors used for remote sensing [2], [16]. The problem of

color scanning may, hence, be generalized to the problem of

obtaining the set of s values . Here, is an -

vector and where may represent a

CIE matching function for a particular viewing illuminant as in

color scanning, or the function characterizing a sensor response

in the satellite imaging problem. The vector may be referred

to as the -stimulus vector.

Suppose the diagonal matrix representing the scanner

characteristic is known. Let represent

a set of scanning filters. The matrix represents the

scanning system or the set of effective scanning filters and

is denoted . The scanning measurements are modeled by

the -vector . The scanning system need not replicate the

columns of as it is sufficient to obtain measurements from

which the values may be determined through a linear

transformation. Thus, the filter design problem is formulated as

one of finding a set of vectors which span a desired subspace,

defined as the range space of . As it may not always be

possible to fabricate a perfect set of filters, it is necessary

to have a means of evaluating an imperfect set of filters. A

measure of a set of filters may be used as an optimization

criterion for filter design.

A. The Data-Independent Measure

The measure, of a set of scanning filters [14] is used

as an optimization criterion in this paper. This measure is

based on minimizing the mean square error of spectra that

are independent and identically distributed (i.i.d.) at each

wavelength [14], i.e., a data set whose autocorrelation matrix

is a scalar multiple of the identity. While real data sets are

usually correlated, the measure is data independent. Another

motivation for the measure is that it measures the “distance”



314 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 2, FEBRUARY 1997

between two subspaces of , the range space of ,

defined by the scanning filters, and the visual space, the range

space of , defined by the visual system. Thus, we write

the measure as a function of these spaces, . An

increase in the measure generally corresponds to a decrease

in average error over common data sets [14], though

there are exceptions.

In order to represent the problem of scanning filter design as

an optimization problem, the measure of the scanning system

may be expressed explicitly in terms of . The expression

for in [14] is

where and are matrices whose columns form an or-

thogonal basis for the range of and , respectively,

represents the th singular value, and and are the

dimensions of the range space of and , respectively.

Substituting for the singular values in the above expression

gives

Trace

Trace

as Trace = Trace . represents the orthogonal

projection onto the range space of , and represents

the orthogonal projection onto the range space of . If the

matrices and are assumed full rank, the projection

operators may be expressed in terms of the matrices and

, respectively, and the expression for the measure is

Trace

(3)

As demonstrated in [14], a value of unity for characterizes

a perfect set of filters. In (3), all matrices except the matrix

are known. The dimension of is where is the

number of scanning filters and is the number of samples

of a visible spectrum between 400–700 nm. In the examples

discussed here, . Without any other restrictions, the

measure is a function of parameters. The goal of filter

design is to maximize the measure with respect to the

parameters.

The measure is related to Neugebauer’s -factor by

where is the -factor with respect to the range space of

, is a set of orthogonal filters spanning the range

space of the matrix , and is the rank of .

Fig. 1. Illuminant 1 or scanner characteristic 1. The combined effect of
a particular scanning illuminant, optical path, and detector sensitivity. This
represents the diagonal values of a particular matrix ✞ used for illustration
and experimental purposes.

B. The Problem of Optimal Filter Design

A simple and straightforward solution to the optimization

problem is

(4)

where is the th element of the vector and

is the normalization constant for the th filter, so that the

maximum transmissivity of each designed scanning filter is

unity. The set of the optimal filters of (4) consists of filters

such that where is a diagonal matrix with

diagonal values . The scanning system will replicate the

vectors exactly.

Consider the actual scanner characteristic shown in Fig. 1

and assume . The three scanning filters defined by

(4) are shown in Fig. 2. Notice that the scanner characteristic

is far from uniform, and that this leads to problems in filter

design. The nonsmoothness of the scanner characteristic is

a characteristic of the illuminant. This characteristic is not

affected by the sampling rate. Smoothness of filter transmis-

sivity curves is an important restriction in the filter fabrication

process, and Fig. 2 indicates that filters designed according to

(4) will not be easy to fabricate exactly. This makes it clear

that each constructable filter does not possess degrees of

freedom and that expressing the measure as a function of

independent variables will not necessarily result in optimal

realizable filters.

III. PHYSICALLY REALIZABLE FILTERS

The measure defined above can be used to select from

among a set of filters or as an optimization function with filter

transmissivities as parameters for custom-designed filters.
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Fig. 2. Filters for the replication of the CIE matching functions with
illuminant 1. Filters which, when installed in a scanner with characteristic
represented by Illuminant 1, will replicate the CIE matching functions. The
highly nonsmooth transmittance curves make these filters difficult to fabricate.

A. An Optimal Subset of a Discrete Set of Filters

A simple formulation of the optimization problem is to

determine the “best” set of filters from a set of existing filters.

Suppose the set is the set of existing filters from which the

best subset of filters is to be chosen. Expression (3)

for the measure may be optimized with respect to subsets of

, of size , by an exhaustive search taking the filters at

a time, each filter representing a scanning filter. If is the

size of set , such a search will involve

evaluations of the measure, where represents the number

of subsets of size of a universal set of size . Heuristic

methods that use specialized knowledge of the filter set, the

scanning problem, or the particular data set could reduce

the computational complexity of the search algorithm. The

results of this approach have been reported in [18] and are

summarized in Section IV.

B. Parametrization of Filter Characteristics

One way of incorporating a manageable dynamic range

and smoothness for filters is by modeling each filter in

terms of smooth, nonnegative functions of a few parameters.

This section discusses the modeling of the filters as single

Gaussians and as the sum of two Gaussians to illustrate the

general procedure of parametrized optimization for scanning

filter design. Other functions, such as raised-cosines, sums of

raised-cosines, and exponential raised-cosines have been used

[16]. The results obtained are not substantially different from

those obtained using the Gaussian functions, and are hence

not presented here. The total number of parameters is less

than in each case, resulting in tractable formulations of

the optimization problem and in physically realizable filters.

The functions were chosen for ease of implementation and

efficiency of the optimization routine.

The functional form of the measure in terms of the

parameters is not simple, and it would be very difficult to find

a closed-form solution to the resulting optimization problem.

Fig. 3. Illuminant or scanner characteristic 2. The combined effect of another
particular scanning illuminant, optical path, and detector sensitivity. This
represents the diagonal values of a particular matrix ✟ used for illustration
and experimental purposes.

It may be possible with current symbolic math software.

Various existing optimization algorithms may be used to find

points of local extrema of the measure with respect to the

parameters. It is not, in general, possible to find global extrema

for functions such as the measure . A common solution is to

obtain a number of local extrema and take the best one among

these as the estimate. In general, the local extremum obtained

depends on the initialization of the optimization algorithm.

If each filter is modeled as a weighted sum of Gaussian

functions of means and , standard deviations and

and weighting factor , the normalized filter vectors

are

(5)

where depends on the sampling of the spectra. Each filter

is a function of five independent variables, and the measure

is a function of independent variables. The resulting

“optimal” filters will be sums of Gaussians and, hence, easy

to fabricate. The number of parameters may be reduced to

by considering , i.e., single Gaussian functions. While

the smaller number of parameters makes finding the optimal

values easier, it is shown in Section IV that this limitation

results in poor performance. The results for the Gaussian filter

models and the scanner characteristic in Fig. 1 and another

actual characteristic shown in Fig. 3 are presented in Section

IV.

C. Trimming Optimal Results

Often, it is desirable to obtain filters that are optimal with

respect to a perceptual error measure such as the error.

Once a set of “optimal” (with respect to the measure ) filters

are found, it is feasible to “trim” these filters using a perceptual
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error. The average square error

(6)

is preferable to (2) as a criterion for trimming because it

is easier to manipulate mathematically as mentioned in Section

I. Note that is used for comparison in the tables.

Trimming involves finding a local minimum of over a

particular data set, using optimal filters with respect to measure

as the starting point for a steepest-descent algorithm [8, p.

285]. During trimming, it is not necessary to use parametrized

models, and the filter transmittances at each wavelength are

free variables. In the terminology of this paper, trimming is

optimization of over a particular data set with respect

to parameters. Allowing the filter transmittances at each

wavelength to be free variables is not expected to affect

smoothness and nonnegativity of the filters greatly because the

trimmed filters ought to be close to the optimal parametrized

filters, which are smooth and nonnegative.

A mathematical expression for the average square error

over a particular data set was obtained. This scalar expression

was differentiated with respect to each of the variables.

The gradient was used to approach a local minimum. Details

of gradient calculation, as well as the final expression, can be

found in [16].

IV. EXPERIMENTAL RESULTS

The measure is first used to choose the best set of three

commercial filters. While this solution is straightforward, it is

also extremely practical and economical. The measure is then

used to design custom interference filters for actual scanners.

The optimal results thus obtained are trimmed as described in

Section III-C.

A. A Subset of a Discrete Set

The Kodak Wratten filters, whose transmissivities are pub-

lished, form the basic collection. The size of the Wratten filter

set is approximately 100. This implies that the number of sets

involved in finding the best set of three filters is

or approximately . Results for an exhaustive search

of the Wrattens to obtain the “best” set of three filters for

and the scanner characteristic of Fig. 3

are tabulated. Table I shows the Wratten filter numbers for

the optimal set and two other “good” sets, the value of the

measure, , and the average error of the

corrected measurements [14] over a 64 data-point subset of

the set of standard Munsell color chips [22]. is the

predicted value of expression (2) for the Munsell chip set,

using tristimulus values calculated using knowledge of the

spectra of the data set. The white point used for the data set

was the white Munsell sample. Filter set 1 was installed in

TABLE I
OPTIMAL SUBSETS OF THE WRATTEN FILTER SET

a scanner with the characteristic shown in Fig. 3 and used

to scan the Munsell chip set. The resulting actual measured

average error, calculated from (2) using tristimulus

values estimated from actual scanner measurements, was 3.02.

The difference from the predicted value of 2.04 may be

attributed to errors in the estimated scanner characteristic.

Even with this difference, the results are a large improvement

compared to an value of 4.5 obtained with the previously

installed set designed by using the standard -factor. These

results have been reported in [18] and are included here for

completeness.

B. Parametrized Filter Models

For the particular scanner characteristics of Figs. 1 and 3,

the parametrizations suggested in Section III-B were imple-

mented to obtain the “best” set of three color scanning filters.

The viewing illuminant was assumed uniform, i.e., . To

test the performance of the filters, the scanning process was

simulated using the set of Munsell chips.

For all parametrizations, the MATLAB [25] function

“fmins” was used to find optimal filters. This function is

an implementation of the Nelder–Meade simplex algorithm.

Clearly, the measure does not have one global maximum as,

for example, the filters in a different order will give a different

point in parameter space but the same value of the measure.

To minimize this effect, several different initial points were

used. The resulting filters gave varying but similar results

(within 5%). Occasionally, the function returned a value that

was clearly not optimal, e.g., , which was easily

recognized and discarded.

The parameters for the single-Gaussian model were calcu-

lated for the scanner characteristics shown in Figs. 1 and 3.

Table II shows the measure of the resulting optimal set of

filters, the parameters defining each filter, and the average and

maximum predicted errors and over the

subset of Munsell chips.

Barr Associates, a filter manufacturer, provided an estimate

of the closest interference filters they could manufacture given

the specifications for filter set 1 of Table II. Note that these

filters were not manufactured and, hence, all errors reported

here are estimated. This estimated realizable filter set had a

measure of 0.9478, a value of 0.86, and a value

of 2.5. The sensitivity of the average square error to

filter fabrication errors is discussed in [17].

The parameter values obtained for the sum-of-Gaussian

filter model of (5) are tabulated in Table III. The designed

filters of set 2 are plotted as solid lines and the estimated

filters (from Barr) are plotted as dotted lines in Figs. 4–6.

The measure of the set estimated is 0.9900, is 0.50
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TABLE II
1 PARAMETERS FOR SINGLE-GAUSSIAN MODEL

TABLE III
PARAMETERS FOR DOUBLE-GAUSSIAN FILTER MODEL

Fig. 4. Designed and estimated (blue) filter for double-Gaussian model and
illuminant 2. Solid: Designed filters. Dashed: Estimated filters.

and is 1.95. This indicates that the design method

can produce excellent practical results. The effective scanning

filters of set 1, i.e., the combined effect of the designed Filter

set 1 and Illuminant 1, are plotted in Fig. 7. These plots

illustrate that the effective filter set need not be “close” to

the CIE matching functions for a “good” filter set.

Results of the method for a set of thin-film filters that

were actually fabricated are presented in [19]. The filters were

designed for the scanner with illuminant 2. The predicted

was 1.25 for the designed set, 1.99 for the fabricated set.

The measured was 2.66. The result was higher than the

prediction but still a significant improvement over the best

Wratten set of Section IV-A.

Fig. 5. Designed and estimated (green) filter for double-Gaussian model and
illuminant 2. Solid: Designed filters. Dashed: Estimated filters.

In general, an increase in the number of parameters used

to define the filters should give better results. Experiments

were performed to obtain the best sum-of-three-Gaussians for

the two illuminants. Using the optimal results for sum-of-two-

Gaussians presented in the previous section as initial estimates

did not result in substantially different filters. Other initial

points provided slightly higher values. Representative results

for one final point for each scanner characteristic are presented

in Table IV. Note that the values of the measure are larger

than the corresponding values of the measure listed in Table

III for the sum-of-Gaussian model for either illuminant, and

that the values of and are considerably smaller for

illuminant 2. The fact that the errors are below vision
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TABLE IV
PARAMETERS FOR SUM-OF-THREE-GAUSSIAN FILTER MODEL

Fig. 6. Designed and estimated (red) filter for double-Gaussian model and
illuminant 2. Solid: Designed filters. Dashed: Estimated filters.

perception [11] implies that it may not be necessary to increase

the number of parameters further. Furthermore, the sum of a

larger number of Gaussians could result in a multimodal curve,

which might be difficult to fabricate.

C. Filter Trimming

The gradient of (6) over the Munsell chip set was used

to trim the single-Gaussian designs for illuminants 1 and 2 and

the double-Gaussian for illuminant 2 [16]. The trimming was

performed using steepest descent programmed in MATLAB

using the mathematical expression for the gradient derived

in [16]. The step size for the steepest descent was chosen

heuristically, between 0.1 and 0.001, and decreased as the

algorithm progressed. The iterative procedure was terminated

when small-valued peaks started appearing in the filter trans-

mittance curves, at wavelengths where filter transmittance

values for the starting point of the gradient descent were close

to zero.

Fig. 7. Designed effective scanning filters for double-Gaussian model and
illuminant 1. Combined effect of scanning filters and scanner characteristic.
If the filters replicated the CIE matching functions, as those in Fig. 2, the
effective scanning filters would be the CIE matching functions themselves. It
is clear from these that good filters need not be close to the CIE matching
functions.

The results of trimming the single-Gaussian filters are

shown in Figs. 8–10. Note that the filter shape has changed

sufficiently so that the trimmed filters may no longer be

modeled as single Gaussians, though the trimmed filters retain

the smoothness of the original designs.

Table V lists the different error measures before and after

trimming. The root mean square error over the Munsell

chip set is denoted RMS. It is not identical to . The value

of RMS is indicative of the improvement in . It is clear that

trimming improves the general performance of the filter set.

The single-Gaussian filter sets have shown more improvement

than the sum-of-Gaussian set because the sum-of-Gaussian set

was a better set initially. Note that the measure may decrease

slightly due to trimming, since the trimming is based on

decreasing the data-dependent error. While increasing
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TABLE V
COMPARISON BETWEEN ERRORS BEFORE AND AFTER FILTER-TRIMMING

Fig. 8. Trimmed blue filter for single-Gaussian model and illuminant 1.
Solid: Designed filters. Dashed: Trimmed filters.

Fig. 9. Trimmed green filter for single-Gaussian model and illuminant 1.
Solid: Designed filters. Dashed: Trimmed filters.

is highly correlated to decreasing , the relation is not

deterministic. Trimming is data dependent because it uses the

data-dependent as an optimization criterion. This provides

a closer-to-optimal solution with respect to perceptual error,

for the particular data set.

V. CONCLUSIONS

The measure of goodness of a set of color filters [14] may be

used to define an optimization criterion. The direct application

is used to choose the best set from a collection of filters

and hardware implementation indicates that this method is

Fig. 10. Trimmed red filter for single-Gaussian model and illuminant 1.
Solid: Designed filters. Dashed: Trimmed filters.

very useful for choosing filters for colorimetric applications.

The modeling of the filters results in a parametrization of

the filter design problem. This problem may be satisfactorily

solved by standard minimization (or maximization) routines

to give filters with fairly high measures . It was shown that

solutions for real scanner characteristics could be fabricated

as interference filters with negligible performance degradation.

The gradient of the average square error may be used

to trim the optimal solutions to significantly improve the

parametrized solutions to produce smooth filters with low

errors.
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