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Abstract 
A Mathematical model has been developed to study the dispersion of pollutants emitted from an area source and the point source on 

the boundary in an urban area. The mathematical model has been solved numerically by using the implicit Crank-Nicolson finite 

difference method. The results of this model have been analysed for the dispersion of air pollutants in the urban area downwind and 

vertical direction for stable and neutral conditions of the atmosphere in the presence of mesoscale wind. The concentration of 

pollutants is less in the upwind side of the centre of heat island and more in the downwind side of the centre of heat island in the case 

of mesoscale wind when compared to without mesoscale wind. In the case of stable atmospheric condition, the maximum 

concentration of pollutants is observed at the ground surface and near the point source on the boundary. Same phenomenon is 

observed in neutral atmospheric condition but the magnitude of concentration of pollutants in the neutral atmospheric condition is 

comparatively less than that of the stable atmospheric condition. 

 

Index Terms: Point Source, Area Source, Mesoscale wind 

-----------------------------------------------------------------------***----------------------------------------------------------------------- 

1. INTRODUCTION 

Pollutants emitted from different surface sources are mixed 

with the air above the earth’s surface. When the concentration 

of different species of pollutants rises above the respective 

threshold value then the living species of the environment get 

affected in several ways preventing their growth and survival. 

This process of mixing air with harmful substances beyond the 

threshold value is called air pollution. For different plant and 

animal species the threshold values of concentrations of the 

single pollutant are different.  

 

In this paper a numerical model for the atmospheric dispersion 

of an air pollutant emitted from an area source and a point 

source on the boundary in the presence of  mesoscale wind is 

described. An area source is an emission source, which is 

spread out over finite downwind distance.  In the absence of 

removal mechanisms the Gaussian Plume model is the basic 

method used to calculate the air pollution concentrate from 

point source (Turner 1970, Carpenter et al 1971, Morgenstern 

et al 1975). Use of the Gaussian plume model began to receive 

popularity when Pasquill (1961) published his dispersion rates 

for plumes over open level terrain. Subsequently, Hilsmeier 

and Gifford (1962) expressed these estimates in a slightly 

more convenient, although exactly equivalent, form and this is 

so called Pasquill-Gifford system for dispersion estimates has 

been widely used ever since. Runca et al (1975) have 

presented time dependent numerical model for air pollution 

due to point source. In this model the boundary conditions at 

the point source are expressed using a delta function and is 

approximated numerically by a one-step function having the 

width kz (source width) i.e., the source is uniformly 

distributed on the vertical grid spacing centered at the point 

source. Arora (1991) used Gaussian distribution for point 

source on the vertical grid spacing centered at the point 

source. In this paper the point source is considered arbitrarily 

on the left boundary of city. The grid points may miss the 

source because the source is at an arbitrary point. In this case 

the grid points have to be taken on the source point. To 

overcome this one can think of the following two methods. 

One is to use Gaussian distribution for pollutants source at the 

initial line which is equivalent to the above point source and 

the other is distributing the point source to its neighbouring 

two grid points. We have used the second procedure in this 

numerical model for air pollutants to take into account of a 

source at an arbitrary point on the left boundary of the city. 

We have equally distributed the point source to its 

neighbouring two grid points on boundary of the city. The 

model has been solved using Crank-Nicolson implicit finite 

difference technique.  Concentration contours are plotted and 

results are analyzed for various meteorological parameters, 

and removal mechanisms, with and without mesoscale winds. 

 

2. MODEL DEVELOPMENT 

The mathematical formulation of the area source air pollution 

model is based on the conservation of mass equation, which 

describes advection, turbulent diffusion, chemical reaction, 

removal mechanisms and emission of pollutants.  It is 

assumed that the terrain is flat, large scale wind velocity is a 

function of height i.e.,  u u z  and mesoscale wind 
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velocities are functions of both distance and height 

i.e., ( )e eW W z  and ( , )e eu u x z . The equation for 

concentration of pollutants can be expressed as follows 

 

x y z

C C C C C C C
U V W K K K RC

t x y z x x y y z z

             
          

             

 
where, C is the pollutant concentration in air at any location 

 zyx ,,  and time t ; xK , 
yK and zK  are the coefficients of 

eddy diffusivity in the x , y  and z  directions respectively; 

U ,V  and W  are the wind velocity components in x , y  and 

z  directions respectively and R  is the chemical reaction rate 

coefficient for chemical transformation. 

  

The physical problem consists of an area source which is 

spread over the surface of the city with finite down wind and 

infinite cross wind dimensions.  We assume that the pollutants 

are emitted at a constant rate from uniformly distributed area 

source. The pollutants are transported horizontally by large 

scale wind which is a function of vertical height (z) and 

horizontally as well as vertically by local wind caused by 

urban heat source, called mesoscale wind. We have considered 

the centre of heat island at a distance / 2x l  i.e., at the centre 

of the city, also the source region within the urban area which 

extends to a distance l  in the downwind x direction  (0  x  

l). In this problem we have taken l = 6km. We compute the 

concentration distribution till the desired downwind distance l 

= 6km i.e., 0  x  l. The pollutants are considered to be 

chemically reactive. We assume that the pollutants undergo 

the removal mechanisms, such as dry deposition, wet 

deposition, gravitational settling velocity and leakage through 

the upper boundary. The physical description of the model is 

shown schematically in figure 1.   

 

 

Fig -1: Physical layout of the model. 

Further we assume that the 

1. Pollutants leak through the top of the boundary i.e. 

we consider leakage velocity at the top boundary, and 

2. Pollutants are chemically reactive, transformation 

process with first order chemical reaction rate. 

3. The lateral flux of pollutants along crosswind 

direction is assumed to be small 

i.e., 0
p p

y

C C
V and K

y y y

  
 

   
, where V  is the 

velocity in the y direction and 
yK  is the eddy-

diffusivity coefficient in the y direction.  

4. Horizontal advection is greater than horizontal 

diffusion for not too small values of wind velocity, 

i.e., meteorological conditions are far from 

stagnation. The horizontal advection by the wind 

dominates over horizontal diffusion, i.e., 

p p

x

C C
U K

x x x

  
  

   
, where U and xK  are the 

horizontal wind velocity  and horizontal eddy 

diffusivity along x direction respectively. 

 

Under the above assumptions the governing partial differential 

equation for the concentration of pollutants is discussed 

below.  

 

33..  MMAATTHHEEMMAATTIICCAALL  FFOORRMMUULLAATTIIOONN    

The basic governing equation of concentration of pollutants 

can be written as 

 ( , ) ( ) ( )
p p p p

z wp p

C C C C
U x z W z K z k k C

t x z z z

    
     

     

.    (1) 

where ( , , )p pC C x z t  is the ambient mean concentration of 

pollutant species, U  is the mean wind speed in x-direction, 

W  is mean wind speed in z-direction, zK  is the turbulent 

eddy diffusivity in z-direction, wpk  is the first order 

rainout/washout coefficient of concentration of pollutants pC  

and k is the first order chemical reaction rate coefficient. 

 

We assume that the region of interest is free from pollution at 

the beginning of the emission. Thus, the initial condition is  

0pC       at    t = 0,  0  x  l    and   0  z  H,                  (2) 

where l  is the length of desired domain of interest in the wind 

direction and H is the mixing height. We assume that there is 

no background pollution of concentration entering at 0x  

into the domain of interest. Thus  

0pC      at   x = 0,   0  z  H    and      t > 0.          (3) 

 

We assume that the chemically reactive air pollutants are 

being emitted at a steady rate from the ground level. They are 
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removed from the atmosphere by ground absorption and 

settling velocity. Hence, the corresponding boundary 

condition takes the form   

p

z s p dp p

C
K W C V C Q

z


  


 at ,0z 0 x l    0t , 

         (4) 

where Q is the emission rate of pollutant species, l is the 

source length in the downwind direction, dpV  is the dry 

deposition velocity and 
sW is the gravitational settling velocity 

of pollutants. We have considered the source region within the 

urban area which extends to a distance l  in the downwind x 

direction i.e., the pollutants are assume to be emitted within 

the city.  The pollutants are confined within the mixing height 

with some amount of leakage across the top boundary of the 

mixing layer.  Thus 

p C
p

z p

C
K

z



 


  at   z = H,   x > 0    t.                          (5) 

 

44..  MMEETTEEOORROOLLOOGGIICCAALL  PPAARRAAMMEETTEERRSS 

To solve equation (1) we must know realistic form of the 

variable wind velocity and eddy diffusivity which are 

functions of vertical distance. The treatment of equation (1) 

mainly depends on the proper estimation of diffusivity 

coefficient and velocity profile of the wind near the ground/or 

lowest layers of the atmosphere. The meteorological 

parameters influencing eddy diffusivity and velocity profile 

are dependent on the intensity of turbulence, which is 

influenced by atmospheric stability. Stability near the ground 

is dependent primarily upon the net heat flux. In terms of 

boundary layer notation, the atmospheric stability is 

characterized by the parameter L (Monin and Obukhov 1954), 

which is also a function of net heat flux among several other 

meteorological parameters. It is defined by 
3

* p

f

u c T
L

gH




  ,                                                     (6) 

 

where *u  is the friction velocity, Hf  the net heat flux,  the 

ambient air density, cp the specific heat at constant pressure, T 

the ambient temperature near the surface, g the gravitational 

acceleration and  the Karman’s constant   0.4. Hf < 0 and 

consequently L > 0 represents stable atmosphere, Hf > 0  and 

L < 0 represent unstable atmosphere and Hf = 0 and L   

represent neutral condition of the atmosphere. The friction 

velocity *u  is defined in terms of geostrophic drag coefficient 

cg and geostrophic wind ug such that 

ggucu *  ,                                         (7) 

where cg is a function of the surface Rossby number 

0*0 / fzuR  ,  where f is the Coriolis parameter due to 

earth’s rotation and  z0 is the surface roughness length. Lettau 

(1959) gave the value of cgn, the drag coefficient for a neutral 

atmosphere in the form 

 10 0

0.16

log ( ) 1.8
gnc

R



.                         (8a) 

The effect of thermal stratification on the drag coefficient can 

be accounted through the relations: 

 cgus  =  1.2 cgn    for  unstable flow,                                (8b) 

 cgs  =  0.8 cgn     for slightly stable flow and                        (8c) 

 cgs  =  0.6 cgn     for stable flow.                                          (8d) 

In order to evaluate the drag coefficient, the surface roughness 

length z0 may be computed according to the relationship 

developed by Lettau (1970) i.e., 0 / 2z Ha A , where H  is 

the effective height of roughness elements, a is the frontal area 

seen by the wind and A  is the lot area (i.e., the total area of 

the region divided by the number of elements).  

 

Finally, in order to connect the stability length L to the 

Pasquill stability categories, it is necessary to quantify the net 

radiation index. Ragland (1973) used the following values of 

fH  (Table 2.) for urban area. 

Table -1: Net heat flux fH )min( 1langley
 

 

Net radiating index:4.0     3.0    2.0      1.0      0.0     -1.0     -2.0 

Net heat flux  fH :0.24  0.18  0.12     0.06     0.0   -0.03   0.06 

 

5. EDDY DIFFUSIVITY PROFILES 

Following gradient transfer hypothesis and dimensional 

analysis, the eddy viscosity, KM, is defined as  
2

*

/
M

u
K

U z

 

.                                                                    (9) 

 

Using similarity theory of Monin and Obukhov (1954) the 

velocity gradient may be written as  

* MuU

z z









 .                                                                  (10) 

 

Substituting this in the equation (9), we have  

*

M

M

u z
K




                 (11) 

The function M depends on /z L , where L  is Monin-

Obukhov stability length parameter. It is assumed that the 

surface layer terminates at     fuz /1.0 *    for neutral 

stability. For stable conditions, surface layer extends to z = 

6L.  

 

For the neutral stability condition with fuz /1.0 *   

(within surface layer) we have  
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M = 1   and  
*MK u z .           (12) 

 

For the stable atmospheric flow with 0 < z/L < 1 we get 

M = 1 + z
L


             (13)  

and  

*

1   
L

M

u z
K

z








.                                       (14) 

For the stable atmospheric flow with  1 < z/L  <  6 we have 

M = 1 +    and *

1  
M

u z
K







.                        (15) 

 

Webb (1970)
 
has shown that   = 5.2. In the PBL (planetary 

boundary layer), where z/L is greater than the limits 

considered above and fuz /1.0 * , we have the 

following expressions for KM.  

 

For the neutral atmospheric stability condition with 

fuz /1.0 *  we have  

2
2 *0.1M

u
K

f
 .                   (16) 

For the stable atmospheric flow with  z>6L, upto H, the 

mixing height, we have 

6
*

1
M

u L
K







.                          (17) 

Equations (11) to (17) give the eddy viscosity for the 

conditions needed for the model.  

 

The common characteristics of Kz is that it has linear variation 

near the ground, a constant value at mid mixing depth and a 

decreasing trend as the top of the mixing layer is approached. 

Shir (1973) gave an expression based on theoretical analysis 

of neutral boundary layer in the form  

4
0.4

*z

z
HK u ze


 ,             (18)  

 

where H is the mixing height 

For stable condition, Ku etal., (1987) used the following form 

of eddy-diffusivity, 

* exp( )
0.74 4.7 /

z

u z
K b

z L


 


,                         (19) 

 b = 0.91,  */( ), / | |z L u fL    .         

The above form of Kz was derived from a higher order 

turbulence closure model which was tested with stable 

boundary layer data of Kansas and Minnesota experiments. 

Eddy-diffusivity profiles given by equation (18) and (19) have 

been used in this model developed for neutral and stable 

atmospheric conditions. 

6. MESOSCALE WIND 

It is known that in a large city the heat generation causes the 

rising of air at the centre of the city. Hence the city can be 

called as heat island. This rising air forms an air circulation 

and this circulation is completed at larger heights. But we are 

interested only what happens near the ground level.  

 

In order to incorporate somewhat realistic form of velocity 

profile in our model which depends on Coriolis force, surface 

friction, geosrtophic wind, stability characterizing parameter 

L  and vertical height z, we integrate equation (10) from z0 to 

z + z0 for stable and neutral conditions. So we obtain the 

following expressions for wind velocity. 

 

In case of neutral atmospheric stability condition with   

*0.1 /z u f   we get 

0*

0

ln
z zu

u
z

 
  

 
.                                      (20) 

It is assumed that the horizontal mesoscale wind varies in the 

same vertical manner as u.  The vertical mesoscale wind 

eW can then be found by integrating the continuity equation 

and obtain.  

  0

0

0

lne

z z
u a x x

z

 
    

 
,                        (21) 

 where a is proportionality constant.  

Thus we have 

    0*

0

0

, lne

z zu
U x z u u a x x

z

  
       

   
                    (22) 

   0

0 0

0

ln lne

z z
W z w a z z z z z

z

  
      

   

        (23) 

In case of stable atmospheric condition 

For  0 1
z

L
   we get 

0*

0

ln
z zu

u z
z L





  
   

   

.                          `      (24) 

 

  0

0

0

lne

z z
u a x x z

z L

  
     

   

                        (25) 

 

    0*

0

0

, lne

z zu
U x z u u a x x z

z L





   
        

     

      (26) 

 

    20

0 0

0

ln ln
2

e

z z
W z w a z z z z z z

z L

  
       

   

  (27) 

For 1 6
z

L
   we get 
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0*

0

ln 5.2
z zu

u
z

  
   

   

.                                                  (28) 

 

  0

0

0

ln 5.2e

z z
u a x x

z

  
     

   

                                (29) 

 

    0*

0

0

, ln 5.2e

z zu
U x z u u a x x

z

   
        

     

       (30) 

 

   0

0 0

0

ln ln 4.2e

z z
W z w a z z z z z

z

  
      

   

        (31) 

 

In the planetary boundary layer   / 6Z L  , above the 

surface layer, power law scheme has been employed.  

 

 
p

sl

g sl sl

sl

z z
u u u u

H z

 
   

 
,                                          (32) 

 

 0

p

sl

e sl

sl

z z
u a x x u

H z

  
     

   

                                   (33) 

 

 , eU x z u u       

        0 01

p

sl

g sl sl

sl

z z
u u a x x a x x u

H z

 
           

 (34) 

 

   
 

1

p

sl sl

e g sl sl

sl

z z z z
W z w a u u z u

p H z

   
     

    

        (35) 

 

where, ug is the geostrophic wind, zsl the top of the surface 

layer, 0x is the x co-ordinate of centre of heat island, H is the 

mixing height and p is an exponent which depends upon the 

atmospheric stability. Jones et al., (1971) suggested the values 

for the exponent p , obtained from the measurements made 

from urban wind profiles, as follows: 

 

0.2       for neutral conditions

0.35     for slightly stable flow

0.5       for stable flow  .

p





 


  

 

Wind velocity profiles given by equations (20), (24), (28) and 

(32) are due to Ragland (1973) and (22), (23), (26), (27), (30), 

(31), (34) and (35) are modified as per Dilley –Yen (1971) are 

used in this model. 

 
 

Fig -2: A simulated urban heat island with the large scale and 

mesoscale winds. 

 

The above wind velocity profiles are valid only for 

   * 0/ 0u a x x    . This relation puts a limit on x. When 

x approaches  * 0/u a x   the Stream lines are 

asymptotically vertical and there will be no transfer of 

material across the vertical plane  * 0/x u a x  . Therefore 

the wind velocity profiles are valid only for  * 0/ .x u a x    

Thus the range of validity increases indefinitely as mesoscale 

wind decreases. In this model we have taken the mesoscale 

wind parameter 0.00004a  . 

 

77..  NNUUMMEERRIICCAALL  MMEETTHHOODD  

Equation (1) are solved numerically using the implicit Crank-

Nicolson finite difference method in this paper. We note that it 

is difficult to obtain the analytical solution for equation (1) 

because of the complicated form of wind speed U(x,z) and 

eddy diffusivity Kz(z) considered in this paper (see sections 5-

6). Hence, we have used numerical method based on Crank-

Nicolson finite difference scheme to obtain the solution. The 

detailed numerical method and procedure to solve the partial 

differential equation (1) is described below (Roache 1976, 

John, F. Wendt 1992). 

 

The governing partial differential equation (1) is  

( , ) ( )
p p pC C C

U x z W z
t x z

  
 

  
  

 ( )
p

z wp p

C
K z k k C

z z

 
      

. 

Now this equation is replaced by the equation valid at time 

step 1 2n and at the interior grid points ( , )i j . The spatial 

derivatives are replaced by the arithmetic average of its finite 

difference approximations at the 
thn and ( 1)thn  time steps 

and we replace the time derivative with a central difference 
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with time step 1 2n . Then equation (1) at the grid points 

( , )i j  and time step 1 2n  can be written as 

1
1

2 1
( , ) ( , )

2

n n n

p p p

ij ij ij

C C C
U x z U x z

t x x

    
  

   
 

 
1

1
( ) ( )

2

n n

p p

ij ij

C C
W z W z

z z

  
  

  
   

 

           

1

1
( ) ( )

2

n n

p p

z z

ij ij

C C
K z K z

z z z z

           
       

  

   11
,

2

n n

wp pij pijk k C C     

for each 2,3,4,.... max, 2,3,4,.... max 1, 0,1,2....i i j j n   
  

       
(36) 

 

Using  
1

1
2

n n n

p pij pij

ij

C C C

t t

  


 
,                                                         (37) 

( , )

n

p

ij

C
U x z

x






1

n n

pij p i j

ij

C C
U

x


 
 

  

,                               (38) 

1

( , )

n

p

ij

C
U x z

x








1 1

1

n n

pij p i j

ij

C C
U

x

 


 
 

  

,                            (39) 

( )

n

p

ij

C
W z

z






1

n n

pij p i j

j

C C
W

z


 
 

  

,                                 (40) 

1

( )

n

p

ij

C
W z

z






 













 





z

CC
W

n

jip

n

pij

j

1

1

1

.                         (41) 

 

 

n

p

z

ij

C
K z

z z

 
 

  
 

     1 1 1 12

1
,

2( )

n n n n

j j pij pij j j pij pijK K C C K K C C
z

   
      
 

                                                                                              (42) 

 

1n

p

z

ij

C
K z

z z



 
 

  
 

 
     1 1 1 1

1 1 1 12

1
.

2

n n n n

j j pij pij j j pij pijK K C C K K C C
z

   

   
      
 

                                                                                              (43) 

 

Equation (36) can be written as  
1 1 1

1 1

n n n

j pij ij pij j pijB C D C E C  

  
 

           1

1 1

n n n n n

ij pi ij j pij ij pij j pij ij pi ijF C G C M C N C A C 

        ,        

for each i = 2,3,4,….. maxi , for each j=2,3,4,……jmax-1 

and  n=0,1,2,3,…….                                                (44) 

Here 

2
ij ij

t
A U

x


 


,  

2
ij ij

t
F U

x





, 

12
( )

24
j j j j

t t
B K K W

zz


  
    

 
,  

12
( )

24
j j j j

t t
G K K W

zz


  
   

 
, 

12
( )

4
j j j

t
E K K

z



  


,     12

( )
4

j j j

t
N K K

z



 


, 

1
2 2

ij ij j

t t
D U W

x z

 
  

 
 

 1 12

1
( 2 ) ,

24
j j j wp

t
K K K k k

z
 


    

  

1
2 2

ij ij j

t t
M U W

x z

 
  

 
 

 2 1

1
( 2 ) .

1 24
wpj j

t
K K K k k

jz 


    

  
 

and  imax is the i value at x = l and jmax is the value of j at 

 z = H. 

The initial condition (2) can be written as  
0 0pijC     for   1,2,......... maxj j , 1,2,......... maxi i  

The point source is considered arbitrarily on the left boundary 

of the city. The grid points may miss the source because the 

source is at an arbitrary point. To overcome this one can think 

of the following two methods. One is to use Gaussian 

distribution for pollutants source at the initial line which is 

equivalent to the above point source and the other is 

distributing the point source to its neighbouring two grid 

points. We have used the second procedure in this numerical 

model for air pollutants to take into account of a source at an 

arbitrary point on the z-axis. We have equally distributed the 

point source to its neighbouring two grid points on z-axis i.e., 

at the beginning of the urban city. The condition (3) becomes  

),(2

11

jiU

Q
C n

pij 
 for ,1i 1,  jsjsj 0,1,2,....n     

1 0n
pijC   for ,1i 1,2,3,... 1, 2, 3,... maxj js js js j      

,........2,1,0n                                    (44a) 

The boundary condition (4) can be written as 

 

  1 1

11 n n

d s pij pij

j j

z z
V W C C Q

K K

 



  
    

 
 

,                             (45)  

 

for   j =1, i = 2,3,4,…….. imax  and   n = 0,1,2,3… .                     
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The boundary condition (5) can be written as 

  1 1

11 0n n

p pij pij

j

z
C C

K
  



 
   

 
 

,                                            (46) 

 

 for   j = jmax, i= 2,3,4…., imax 

In the equation (44) a term with unknown 
1

1

n

pi jC 

 is taken to 

right hand side. Normally all unknown terms should be on the 

left hand side and the system of equations should be solved 

together with
1

1

n

pi jC 

 . In that case the system of equations will 

not be tridiagonal system. Therefore Thomas algorithm cannot 

be applied. 

 

To overcome this we transfer the term with unknown 
1

1

n

pi jC 

  to 

right hand side as seen in equation (44) and solve the system 

first for 2i  and 2,3,4,....... max 1j j  . Now 
1

1

n

pi jC 

  

values are known from the boundary condition (44a) and 

hence it is known. Hence, all the terms on the right hand side 

are known. Now the system of equations (44) for 2i   and 

2,3,4,....... max 1j j  along with the relevant boundary 

conditions (45) for 2i   and 1j  and (46) for 2i   and 

maxjj  become tridiagonal structure which is solved 

using Thomas algorithm. Now the system (44) for 3i  and 

2,3,4,....... max 1j j   along with the relevant boundary 

conditions is solved. Now the values of 
1

1

n

pi jC 

 i.e., 
1

2

n

p jC 
 on the 

right hand side is known from the previous step. Hence the 

system still remains tridiagonal and solved using Thomas 

algorithm. This argument can also be extended for each of the 

remaining values of 4,5,6,....... maxi i . Thus although the 

system equations (44) with boundary conditions  appears that 

it is not tridiagonal, because of boundary condition it becomes 

tridiagonal and the solution of the system is obtained using 

Thomas algorithm. 

 

RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONNSS 

A numerical model for computation of the ambient air 

concentration of pollutants along down-wind and vertical 

directions emitted from an area source along with point source 

on the boundary ( 0x  and 
sz z ) with removal 

mechanisms, mesoscale wind and transformation process has 

been presented. The numerical model permits the estimation 

of concentration distribution for more realistic meteorological 

conditions. An area source is an emission source which is 

spread out over the surface of the city with finite down wind 

and infinite cross wind dimensions where major source being 

vehicular emissions due to traffic flow. In addition to area 

source being mainly vehicular exhausts due to traffic flow, we 

have considered a point source at 0x  and height  sz z  

i.e., at the left boundary of the city. Since the point source is 

assumed to be at an arbitrary point on the boundary and the 

grid lengths are arbitrarily chosen in conformity with the 

numerical scheme there may not be any grid point coinciding 

with the position of point source. In that case the numerical 

scheme will fail to sense the existence of a point source. To 

overcome this difficulty one can use an equivalent Gaussian 

distribution of pollutants along the z-axis in place of a point 

source. One can also use the other method where the source 

strength is distributed equally on the neighboring points of the 

point source. In this paper we have adopted the latter 

procedure. In the present problem the pollutant strength is 

equally distributed on the two neighboring points on the z-

axis. If 1Q  is the strength of the point source then we have 

taken 21Q on each of the neighboring points on the z-axis. 

We have considered the desired domain of length l = 6km and 

mixing height 624m. We have considered grid size 75m along 

x-direction and 1m along z direction. The pollutants are 

chemically reactive and we have considered source region 

extending up to l=6km.  
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Fig -3: Concentration versus Distance of pollutants with and 

without mesoscale wind for stable case. 
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Fig -4: Concentration versus distance of pollutants with and 

without mesoscale wind for neutral case. 

 

In figures 3 and 4 the effect of mesoscale wind on pollutants 

for stable and neutral cases without removal mechanisms is 

studied. The concentration of pollutants is less on the upwind 

side of centre of heat island  kmx 3   and more on the 

downwind side of centre of heat island in the presence of 

mesoscale wind  00004.0a compared to that in the 
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absence of mesoscale wind  0.0a .This is due to the 

horizontal component of mesoscale wind which is along the 

large scale wind on the left and against on the right.  
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Fig -5: Concentration versus height pollutants without 

removal mechanisms for stable case 
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Fig -6: Concentration versus height of pollutants without 

removal mechanisms for neutral case 

 

Figures 5 and 6 demonstrate that the concentration versus 

height at different distances of pollutants for stable and neutral 

cases without removal mechanisms. We have considered a 

point source at x = 0 and height z =20.5m along with area 

source up to the urban city length kml 6 .From the figure 

we find that the concentration of the pollutant is high near the 

ground level due to the area source. As height increases the 

pollutant concentration decreases up to the height 10m and 

then increases up to around 20.5m reaching maximum there, 

since we have considered the point source being at the height 

20.5m. As we move towards the downwind direction the peak 

value of the concentration at 20.5m height decreases. Similar 

effect is observed in neutral atmospheric condition since the 

neutral case enhances the vertical mixing, the concentration of 

primary and secondary pollutants reaches increased heights 

compared to that in the case of stable atmospheric condition. 
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Fig -7: Concentration contours of pollutants for stable case 
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Fig -8: Concentration contours of pollutants for neutral case 

 

The concentration contours of pollutants are drawn in figures 

7 and 8 for both stable and neutral cases. We observe that the 

concentration of pollutants is more at the ground 

level  mz 2 , at the end of the city region  mx 6000  

and near the point source ( 0sx  and mzs 5.20 ). This is 

because we have considered the area source at the ground 

level, the advection is in the downwind direction and the point 

source at 0x  and height z =20.5m i.e., at the beginning of 

the city. The magnitude of pollutants concentration is higher 

in stable case and is lower in the neutral case. This is because 

neutral case enhances vertical diffusion to greater heights and 

thus the concentration is less. 

 

 



IJRET: International Journal of Research in Engineering and Technology                        ISSN: 2319-1163 

 

__________________________________________________________________________________________ 
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org                                                                                  28 

CONCLUSIONS 

The effect of mesoscale wind on a two dimensional 

mathematical model of air pollution due to area source along 

with a point source on the boundary is presented to simulate 

the dispersion processes of gaseous air pollutants in an urban 

area in the presence of mesoscale wind. A numerical model 

for the computation of the ambient air pollutants concentration 

emitted from an urban area source along with a point source 

on the boundary undergoing various removal mechanisms and 

transformation process is presented. The results of this model 

have been analysed for the dispersion of air pollutants in the 

urban area downwind and vertical direction for stable and 

neutral conditions of the atmosphere in the presence of 

mesoscale wind. The concentration of pollutants is less in the 

upwind side of the centre of heat island and more in the 

downwind side of the centre of heat island in the case of 

mesoscale wind when compared to without mesoscale wind. 

This is due to increase of velocity in the upwind direction and 

decrease in the downwind direction of the centre of heat island 

by the mesoscale wind. We notice that as removal 

mechanisms increase the concentration of pollutants 

decreases. In the case of stable atmospheric condition, the 

maximum concentration of pollutants is observed at the 

ground surface and near the point source. Also as the chemical 

rate reaction coefficient increases the concentration of 

secondary pollutant increases. Same phenomenon is observed 

in neutral condition but the magnitude of concentration of 

pollutants in the neutral condition is comparatively less than 

that of the stable atmospheric condition. 
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