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Human immunode	ciency virus infection destroys the body immune system, increases the risk of certain pathologies, damages
body organs such as the brain, kidney, and heart, and causes death. Unfortunately, this infectious disease currently has no cure;
however, there are e
ective retroviral drugs for improving the patients’ health conditions but excessive use of these drugs is not
without harmful side e
ects. �is study presents a mathematical model with two control variables, where the uninfected CD4+T
cells follow the logistic growth function and the incidence term is saturated with free virions. We use the e�cacy of drug therapies
to block the infection of new cells and prevent the production of new free virions. Our aim is to apply optimal control approach to
maximize the concentration of uninfected CD4+T cells in the body by usingminimum drug therapies.We establish the existence of
an optimal control pair and use Pontryagin’s principle to characterize the optimal levels of the two controls.�e resulting optimality
system is solved numerically to obtain the optimal control pair. Finally, we discuss the numerical simulation results which con	rm
the e
ectiveness of the model.

1. Introduction

Acquired immunode	ciency syndrome (AIDS) is caused by a
virus known as human immunode	ciency virus (HIV). Since
HIV emerged in 1981, several studies, includingmathematical
modeling, have been devoted to understand the transmission
of the infection. HIV models can be classi	ed into two
categories: population-level models and within-host models
[1–9]. One of the major havocs wrought by the HIV is the
destruction of CD4+T cells which play a signi	cant role in
the regulation of the body immune system. HIV causes a
decline in the number of functional CD4+T cells thereby
reducing the competency of the body defense mechanism
to 	ght cell infections. Several mathematical models have
been formulated to study the interactions between HIV and
CD4+T cells [10–14]. Although HIV is not yet curable, there
are antiretroviral drugs that help in boosting the immune
system against cell infections. �ese antiretroviral drugs are
categorized into two groups which are reverse transcriptase
inhibitors (RTIs) and protease inhibitors (PIs). RTIs disrupt
the conversion of RNA of the virus to DNA so that new HIV

infection of cells is prevented. On the other hand, PIs hinder
the production of the virus particles by the actively infected
CD4+T cells [13].

In this paper, our objective is to present a within-host
model which is a variant of the model proposed by Perelson
and Nelson [7] with a saturated incidence. We incorporate
two controls into the model and 	nd the optimal treatment
strategy that will produce maximum uninfected cells and
minimum viral load with a minimum dose of drug therapies
to prevent harmful e
ects associated with excessive use of
drugs in the body.

2. Model Formulation

By assuming that the constant recruitment number of new
uninfected cells and the number of death of uninfected
cells have already been incorporated in the logistic growth
function and that the rate of infection of CD4+T cells by free
virions has been saturated probably because of overcrowding
of free virions or as a result of protection measures being
used by the HIV patient, and we obtain the variant model
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described by the following system of equations:

���� = ��(1 − ��max

) − �	�1 + 
	, � (0) = �0 ≥ 0, (1a)

���� = �	�1 + 
	 − �, � (0) = �0 ≥ 0, (1b)

�	�� = �� − �	, 	 (0) = 	0 ≥ 0, (1c)

where � = �(�) denotes the concentration of uninfected
CD4+T cells at time �, � = �(�) denotes the concentration
of infected CD4+T cells, and 	 = 	(�) is the concentration
of free HIV at time �, � is the growth rate, �max denotes
the maximum CD4+T cells concentration in the body, � is
the rate of infection of CD4+T cells by virus, and 
 is the
saturation factor.  is the per capita rate of disappearance of
infected cells and � is the loss rate of free virus. � is the
rate of production of virions by infected cells, where� is the
average number of virus particles produced by an infected
CD4+T cell. All parameters in the model are strictly positive.

�erefore, (1a) represents the rate of change of uninfected
CD4+T cells with respect to time � in the HIV patient which
is made up of the population of the uninfected cells minus
the population of CD4+T cells which becomes infected in the
process of time. Equation (1b) describes the rate of change of
the HIV infected cells given as di
erence in the population of
infected cells and the number of infected cells that disappear
at time �. Lastly, the di
erential equation (1c) gives the rate of
change of the population of the free HIV.

We now introduce a set of controls �(�) = (�1(�), �2(�))
into model (1a)–(1c) simulating the antiviral therapy. �en
the model becomes

���� = ��(1 − ��max

) − (1 − �1) �	�
1 + 
	 ,

� (0) = �0 ≥ 0,
���� = (1 − �1) �	�

1 + 
	 − �, � (0) = �0 ≥ 0,
�	�� = (1 − �2)�� − �	, 	 (0) = 	0 ≥ 0.

(2)

�e two control functions �1(�) and �2(�) are bounded
Lebesgue integrable functions. �e control �1(�) denotes the
e�cacy of drug therapy in blocking the infection of new cells,
and the control �2(�) denotes the e�cacy of drug therapy in
inhibiting the production of virus. If, for instance, �1(�) = 1,
the blockage is 100% e
ective. On the other hand, if �1(�) = 0,
there is no blockage.

3. Optimal Control Problem

Typically, an optimal control problem has an objective func-
tional �((�(�), �(�)), a set of state variables (�(�) ∈ �), and a
set of control variables (�(�) ∈ �) in time �, 0 ≤ � ≤ ��.

In this study, we de	ne our objective functional as

� (�1, �2) = ∫��
0

{� (�) − (�12 �21 + �22 �22)} ��, (3)

where �1 and �2 are positive constants representing the relative
weights attached to the drug therapies. Our goal is to seek to
maximize the objective functional given by (3) by increasing
the population of the uninfected CD4+T cells, reducing the
viral load (the number of free virions), and minimizing the
cost of treatment. In other words, we want to 	nd an optimal
control pair (�∗1 (�), �∗2 (�)) such that

� (�∗1 (�) , �∗2 (�)) = max
(�∗1 (�),�∗2 (�))∈�

� (�1 (�) , �2 (�)) , (4)

where � is the control set de	ned by

� = {� = (�1, �2) : �� is measurable, 0 ≤ �� (�) ≤ 1, 0
≤ � ≤ ��, � = 1, 2} (5)

�eorem 1. Consider the control system (1a)–(1c). �ere exists
an optimal control pair (�∗1 (�), �∗2 (�)) ∈ � such that

� (�∗1 (�) , �∗2 (�)) = max
(�∗1 (�),�∗2 (�))∈�

� (�1 (�) , �2 (�)) . (6)

Proof. See Appendix A.

Further, we discuss the necessary conditions that the opti-
mal control must satisfy. We apply Pontryagin’s maximum
principle to the Hamiltonian function associated with system
(2) which is given by

!(�, �, �, �, 	, "1, "2, "3)
= # (�, �, �) + "1 �� (�)�� + "2 �� (�)�� + "3 �	 (�)�� , (7)

where #(�, �, �) = � − (�1/2)�21(�) + (�2/2)�22(�) and "1, "2,
and "3 are adjoint functions to be determined appropriately.

�eorem 2. Let �∗(�), �∗(�), and 	∗(�) be optimal state solu-
tions with associated optimal controls �∗1 , �∗2 for the optimal
control problem (2) and (3). �en there exist adjoint variables"1, "2, and "3 that satisfy the adjoint conditions:

�"1�� = −1 − "1 [�(1 − 2��max

) − (1 − �1) �	1 + 
�	 ]
− "2 (1 − �1) �	1 + 
	 ,

�"2�� = "2 − "3 (1 − �2)�,
�"3�� = "1 (1 − �1) ��1 + 
	 (1 − 
	(1 + 
	))

− "2 (1 − �1) ��1 + 
	 (1 − 
	(1 + 
	)) + "3�,

(8)
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with transversality conditions

"1 (��) = 0,
"2 (��) = 0,
"3 (��) = 0.

(9)

In addition, the optimal control �∗(�) is given by

�∗1 (�)
= min(max(("1 (�) − "2 (�)) �	∗�∗�1 (1 + 
	∗) , 0) , 1) ,

�∗2 (�) = min(max(−��∗ (�) "2 (�)�2 , 0) , 1) .
(10)

Proof. See Appendix B.

By taking into consideration the property of the control
space, the optimal control�∗(�) is characterized as in (10).�e
optimal control pair and the state variables are determined
by solving the following optimality system which consists
of state system (2), adjoint system (8), and transversality
conditions (9) together with the characterization of the
optimal control pair (10):

��∗�� = ��∗ (1 − �∗�max

) − (1 − �∗1 ) �	∗�∗(1 + 
	∗) ,
��∗�� = (1 − �∗1 ) �	∗�∗1 + 
	∗ − �∗,
�	∗�� = (1 − �2)��∗ − �	∗,
�"1�� = −1 − "∗1 [�(1 − 2�∗�max

) − (1 − �∗1 ) �	∗(1 + 
	∗) ]
− "2 (1 − �∗1 ) �	∗(1 + 
	∗) ,

�"2�� = "2 − "3 (1 − �∗2 )�,
�"3�� = "1 (1 − �∗1 ) ��∗1 + 
	∗ (1 − 
	∗(1 + 
	∗))

− "2 (1 − �∗1 ) ��∗1 + 
	∗ (1 − 
	∗(1 + 
	∗))
+ "3�,� (0) = �0,� (0) = �0,	 (0) = 	0,

"1 (��) = 0,
"2 (��) = 0,
"3 (��) = 0.

(11)

4. Numerical Simulations and Results

In order to solve the optimality system for the optimal
control pair, we employ the Gauss-Seidel-like implicit 	nite-
di
erence method known as the GSS1 method which was
developed in 2001 by Gumel et al. [15]. For details about
the method see [13, 15, 16]. By applying the method to
approximate the state system forward in time and the adjoint
system backward in time, we obtain

�	+1 − �	3
= ��	+1 (1 − �	+1�max

) − (1 − �	1) �		�	+1(1 + 
		) ,
�	+1 − �	3 = (1 − �	1) �		�	+1(1 + 
		+1) − �	+1,
		+1 − 		3 = (1 − �	2)��	+1 − �		+1
"
−	1 − "
−	−113

= −1
− "
−	−11 [�(1 − 2�	+1�max

) − (1 − �	1) �		+1(1 + 
		+1) ]

− "
−	2 (1 − �	1) �		+1(1 + 
		+1) ,
"
−	2 − "
−	−123 = "
−	−12  − "
−	3 (1 − �	2)�,
"
−	3 − "
−	−133

= "
−	−11 (1 − �	1) ��	+1(1 + 
		+1) (1 − 
		+1(1 + 
		+1))

− "
−	−12 (1 − �	1) ��	+1(1 + 
		+1) (1 − 
		+1(1 + 
		+1))
+ "
−	−13 �.

(12)

Now using the following parameter and initial values

� = 0.03,
� = 0.000024,

 = 0.001,
� = 500,
 = 0.02,
� = 2.4,
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�1 = 200,
�2 = 250,

� (0) = 1000,
� (0) = 400,
	 (0) = 80,
�max = 1500,

(13)

and we performed numerical simulations for a period of 100
days to ascertain the e
ectiveness of the proposed model
based on the disease progression before and a�er the intro-
duction of treatment (a pair of controls). �ese parameter
values are obtained from [3, 15, 17, 18].

Figures 1–5 are the simulation results from which we can
draw some conclusions on the e
ectiveness of drug therapies
based on the concentrations of uninfected cells, infected cells,
and free virus. Figure 1 shows the population of uninfected
CD4+T cells with and without control. Without treatments,
the number of uninfected cells decreases drastically. On the
other hand, with treatments the concentration of cells is
maintained from the beginning to the end of the period.
Figure 2 shows the population of infected CD4+T cells with
and without control. �e concentration of infected cells
decreases rapidly right from the very beginning of treatment
and throughout the period of investigation; while the con-
centration of infected cells without treatment grows at the
beginning and become stable toward the end of the period.
Similarly in Figure 3, we see that the viral load increases
drastically without treatments whereas with treatments there
is no increase in the concentration of free virus. In fact,
instead of the concentration to increase it reduces. In Figures
4 and 5, we see optimal treatments �1(�) and �2(�) required
with the change in time to block new infection of cells and
prevent viral production with minimum side e
ects.

5. Conclusion

In this paper, we have proposed and analyzed a mathe-
matical model, with two control variables, describing HIV
infection of CD4+T cells. �e mathematical analysis of
the proposed model, validated by the numerical simulation
results shows the e
ectiveness of the model in maximizing
the concentration of uninfected CD4+T cells, minimizing
the concentrations of infected cells and free virions in
the body with a minimum dose of combination of drug
therapies in order to advert the adverse e
ects associated
with excessive use of drug, and also indirectlyminimizing the
cost of treatment. Certainly, these results could be useful in
developing improved treatment regimen towards addressing
the challenge of HIV/AIDS.

6. Recommendation

Although there is presently no known cure for HIV/AIDS,
there are now available antiretroviral HIV drugs which block
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Figure 1: �(�) with and without control.
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Figure 3: 	(�) with and without control.

infection of new cells and reduce viral load in the body
and so HIV positive individual can now enjoy relatively
good health and increased life expectancy. Early diagnosis
with immediate commencement of the use of approved
antiretroviral drugs before CD4+T cells levels fall below

350 cells/mm3, regardless of whether a person is showing
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Figure 4: First optimal control.
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Figure 5: Second optimal control.

signs of HIV or not, is highly advantageous. Most HIV/AIDS
victimswill have to take two ormore drugs for the rest of their
lives; however, antiretroviral HIV drugs also have side e
ects
like any other drugs. In order to avoid or reduce these side
e
ects, a rightful dose of an appropriate combination of these
drugs is very essential.�erefore, it is important on the part of
HIV positive individual to follow the antiretroviral treatment
regimen. Governments especially in developing countries
should be more responsive in providing improved health
system and antiretroviral drugs for their teeming populations
su
ering and dying unnecessarily because they could not
a
ord the drugs. Educational awareness programmes are still
very much needed to prevent and contain the spread and for
the proper management of the disease.

Appendices

A. Proof of Theorem 1

We use a result in Fleming and Rishel [19] and Hattaf and
Yous	 [18] to prove the theorem. �e optimal solution exists
if the following hypotheses are satis	ed:

(F1) �e set of controls and corresponding state variables
is nonempty.

(F2) �e admissible control set� set is convex and closed.

(F3) �e right hand side of the state system is bounded by
a linear function in the state and control variables.

(F4) �e integrand of the objective functional is concave
on �.

(F5) �ere exists constants ;1, ;2 > 0 and " > 1 such
that the integrand#(�, �, �) of the objective functional
satis	es

# (�, �, �) ≤ ;2 − ;1 (<<<<�1<<<<2 + <<<<�2<<<<2)�/2 . (A.1)

Obviously, condition (F1) is satis	ed. By de	nition, control
set �1, �2 ∈ � is convex and closed. State system (2) is bilinear
in �1, �2, and so the right hand side of the system satis	es
condition (F3), using the boundedness of the solutions. Also,
the integrand of the objective functional is concave on control
set �. Finally, we have the last requirement #(�, �, �) ≤ ;2 −;1(|�1|2 + |�2|2)�/2, where ;2 depends on the upper bound on�, and ;1 > 0 since �1, �2 > 0. �us, there exists an optimal
control pair.

B. Proof of Theorem 2

To determine the adjoint equations and the transversality
conditions, we use the Hamiltonian (7). By substituting�(�) = �∗(�), �(�) = �∗(�), and 	(�) = 	∗(�) and
di
erentiating the Hamiltonian with respect to �(�), �(�), and	(�), we obtain

�"1�� = −?!?�
= −1 − "1 [�(1 − 2��max

) − (1 − �1) �	1 + 
	 ]
− "2 (1 − �1) �	1 + 
	 ,

�"2�� = −?!?� = "2 − "3 (1 − �2)�,
�"3�� = −?!?	

= "1 (1 − �1) ��1 + 
	 (1 − 
	(1 + 
	))
− "2 (1 − �1) ��1 + 
	 (1 − 
	(1 + 
	)) + "3�.

(B.1)

Now, using the optimality conditions, we 	nd

?!?�1 = −�1�1 + "1�	∗�∗1 + 
	∗ − "2�	∗�∗1 + 
	∗ = 0. (B.2)

At �1 = �∗1 (�), we have
�∗1 (�) = ("1 − "2) �	∗�∗�1 (1 + 
	∗) ,
?!?�2 = −�2�2 − �"3�∗ (�) = 0.

(B.3)
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At �2 = �∗2 (�), we 	nd
�∗2 (�) = −�"3�∗ (�)�2 . (B.4)
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