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ABSTRACT

FlowAinducedvvibrétions.iﬁ heat exchanger éube banks are well knéﬁn.
‘Tube ;ibrétions ha?e’reéﬁlted in failure due to mechanical wear, fretting
corrosioh;'énd'fatigue_éraéking.  The detrimental effect of.flow-induced'
Qibrations has led_té ﬁumerous investigations for a better ﬁnderstanding
df the'phenomena in heat exchangers, particularly in high temperature,
high performance heat excﬁéngers used in nuclear reactor systems.

Several excitation mechanisms have been considered'including vorték
shedding, fluidelastic excitation, jet switching, turbulence buffeting, and
acoustic excitation. Based on different excitation mechanisms, different
matheﬁatical models have been developed. As we know, a tube bank may:be
subjected to several excitations simultaneously, and sometimes it is diffi-
cult to identify which 1is the dominant excitation. A model considering
only a sing;e excitation mechanism is obviously inadequate. Furthermore,
those models do not account for all the fluid coupliﬁg in a fube bank.
Therefore, the objective of this report is to propose a mathematical model
including multiple tubes and mﬁltiple excitation.mechanisms.

The méthematicai model presented in this report iﬁcludes the effects
of Vortex.shedding,,flﬁidelastic coupling, drag force, and fluid inertia
coupling. Once the(fluid forces are known, the model can predict the
details of complex tube-fluid interactions: (1) natural frequencies and
mode shapes of céupled vibrations; (2) critical flow velocities; (3) respon-
ses to vortex shedding, drag force, and ofher types of excitations; and
(4) the dominant excitation mechanism at a given flow velocity. The analyti-
cal results are in good agreement with the published experimental results.
The following are some general conclusions: (a) Multiple tubes must be
considered in a mathemafical model for closely spaced tube banks in a .

dense fluid. (b) Tube banks respond as an integrated system rather than



-as a collection of many-indi§idﬁal tﬁbes. (c) Natural frequencies of"
thﬁe‘banks-iﬁcreése.slightiy with incfeasing crossflow velocity. (d)
Flutter flow'velocity méy be smallér or larger than that'aSSOCiated‘with
vortéxfshéddiné.' (e) ﬁetuning the tubes has a beneficial effect on
~sta§ility. (£) flu;céf flow vélocity varies with tube number and system
démﬁing.' (g) The most critiéal instébility mode is assdtiated-with tﬁe 4
motion invoiving a tube vibrating predominantlyAin the streamwise direc~.
tion, while its two neighboring tubes vibr;te predomiﬁantly in tﬁg tréns—
verse'directién with a phase'shift of 180°. (h) Fluidelastic coupling
makes_tﬁbe motion orbital.

In conciusion, tﬁere is'é great need for a useful mathematical model
for cross-flow-induced vibrations of tuBe banks. Tﬁe model pfesented in-
this.report has‘demonstrated that it is capable of pfedicting the details
of tube-fluid interaétions.includiﬁg instabilities and responses to various

types of excitations. With this model, improved design criteria caq'be

established to eliminate detrimental flow-induced vibrations in tube banks.
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* NOMENCLATURE

Generalized coordinates

:Viscous damping coefficient:aséociated with the motion in the . -

X direé¢tion

© . Lift coeffiéients

~Drég coefficient

Tube diameter

. Viscous daﬁping coefficient associated with the motion in the

y direction

Reference Viscous damping‘coefficient'

Young's modulus

Natural.frequency of coupled mode

' Total external forces per unit length

Fluid inertia forces
Hydrodynamic damping

Lift forces

Fluidelastic forces
" External forces associated with other flow noises

Generalized forces given in Eq. (17)

Drag force
Gap

Moment of inertia in the x and y directions

" Number of tubes

Tube length

Mass matrix given in Eq. (19)

Tube mass per unit length

Dispiacéd mass of fluid per ﬁnit length
Generalized forces given in Eq. (17)

Generalized force vector
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. NOMENCLATURE (Contd.)
Damping matrix given in Eq. (19)

Strouhal number

Time

Stiffness matrix giVen in Eq. (19)
Tube displacement in the x direction
Tube displacement in the y direction

Flow veiocity

.Critical flow velocity

Cartesian coordinates

Added mass coefficients '

Eigenvalue of added mass matrix

-A- small number .

. Modal damping ratio of coupled mode

Modal damping fatios'given in Eq. (17)

'Eigenvalue of Eqs. (23) and (24)

Fluiaelastic coefficients

Fluidelastic coefficients

Fluid density

Hydrodynamic damping coefficients

Orthonormal function of tube in vacuo

- Phase angles of 1ift and drag forces

Natural frequencies of tubes in vacuo
Circular frequency of vortex shedding
Circular frequency

Natural frequency of coupled modes



" I." INTRODUCTION
 Fi§wrinduced‘vibrations in heat exchangér.tube'banks afe well knqwﬁ,A
Tﬁbe vibfations have'fesﬁlted in failure due to héchaﬁigél wear, fretting

‘cqfrosion, and fatigue crééking [1]. The detfimentél effect of flow-
'}indﬁéed'Vibfations has led to ﬁumerbué investigations for a better under-

standing of the phenomena iﬁ heat exchangers, parﬁiculérly in high temperature,

high performanée heat éxchangers used.in nucleaf reactor systems.

frdm a practibal point of view, what.heét exchanger designers need

is to knéw whén:and th flow—iﬁduced vibrgfion orAinstability occurs and how

to suppress them. TéAbe able to answer. these questions, one mﬁst_undérstand

the ﬁechanisms invélﬁed. Several excitation mechanisms are briefly feviewed
. as follows:

A. Vortex:Shedding

Vortex induced vibration of tube banks has beén extensively studied by
Chen [2,3] and others. When one of the natural frequencies of a tube bank -
"~ is near the Strouhal frequency, the tubes can bé'excited to have 1argg
oscillations. Although voftex sheading process will be modified by tube
motions and synchronizes with tube oscillations, it is the vortex shedding
that initiates tube'vibration.

Vortex shedding can induce transverse tube oséillations. In dense
fluid; drag force can also induce tube oscillations in the streamwise di-
rection. Coupled vibration of multiple tubes in}the flow direction has. -
been observed by King and Johns [4]. In light fluid, if tubes are given
a relativély large motion in the flow direction, tube osciilationé in the
flow direction are aléo possible. This‘has been demonstrated by Griffin
and Ramberg for a single tube in wind tunnel [5].

Based on the vortex shedding theofy, 1f one knows the Strouhal number

as a function of the array geometry, the flow velocity at which resonance



occurs can be predicted. However, there is litt1e détai1ed information

on the.vélocigy rangerver‘which'"lock—in" occurs,-orbital péths of fube
motiéns, and  amplitudes of tube displécements, One éf fhe main assumptions
in.this theory is the existence ofAvortex shedding ﬁithin tube-baﬁks,
Alfhbugh ﬁany investigétors have méaéﬁred the Strouhal number in tube baﬁks,
summariéea-recently by Fitz-Hugh [6], it is étill quéstionable whether
vortex- shedding exists.in the middle of tube banks.

B. . Fluidelastic Instability

Connors is the first investigator recognizing the fluidelastic mechanism
of tube banks subject to cross flow [7]; The instability belongs to the
classical flutter #henomenon-which has been extensively studied in aero-
‘space ihdustry. The essential paraieters assoéiated with this méchanism
are system damping and fluidelastic forces. When the flow velocity is
increased to a certain value, the work done on the tube system by fluid-
elastic forces will be 1argef than dissipation by damping; therefore, large-
amplitude oscillations will occur. Based on the experimentally observed
tube oscillations and measured fluidelastic coefficients, Connérs developed
a simple instabiiity criterion for crossflow-induced instability of tube-
rows by analyzing the motion of a single tube in a tube row.

Fluidelast?c instability has been further considered by Blevins (8],
Gorman and Mirza [9], Hallé et al. [10], andbErskine'and Waddington [11].
However, the dependence.of fluidelastic~instability thresholds for tube
banks on system parametgrs, such as tube patfern; tube pitch, individual
tube natural frequencies? and tube damping, is not well understood. The
mathematical approach used by Blevins. [8] includes multiple tubes with
- fluidelastic céupling but fluid inertia coupling, which is imporﬁant for

tube banks. vibrating in dense fluid, is not aécoﬁnted. Furthermore, in



10

existing mathematical models, the tubes are assumed to be in tunej varia-
tions in tube properties have not been considered.

'C. Turbulent Excitations

In a tube bank, there exist random fiow noises including turbulent
preésure fluctuatipns and faf—field flow noises with éome br litﬁle coher-
ence. wﬁen_tubes are subjected to those random égcitationé; the fubes
will respond primarily at thé natural frequencies of the system. Owen [12]
has made one of the most complete thebretical abproaches to this problem.
He disregardslaﬁy theory of a superposed regular pattern of excitatidns;

If one knows tufBulence spectrum and spatiél correlation in a tube.
bank'and assumes that structural oscillations do not affect the fluid
p:eésure field, it is-possible to calcﬁlate tube-bahk<responses. Howeﬁer,
very little has been doﬁe in literaFure for tube banks.

| In a flow loop, tﬁrbulent pressure fluctuations and other flow noises
will always existgvthe magnitudes of.those nolses are, most likely, system
dependent. In modeling a tube bank, the random flow noises should be
accounted for in'additién to other excitations.'

D. Acoustic Excitations

Acoustic excitations can cause tube vibration normal.tb the flow
direction and tube axis. When the natural frequency of vortex shedding at
a particular flow :ate coincides with the acoustic frequencies, two systems
(fluid flow and acoustic field) are coupled and reinforce each other. The
. worst case is that when acoustic f;equgncy, tube frequency and vortex-
shedding frequency are the same [13,14,15].

Little consideration has been given t0‘the'interactions of acoustic
waves with tube banks in the past. The problem includes transmission,

scattering, and radiation of acoustic waves by a group of elastic tubes.

Obviously it is not an easy problem to solve, particularly when acoustoelastic
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‘Vibfa;ion is éoupleditofyqrtex‘shedaing prbcess. Nevertheless, when
gcoustic excitations are .important in'certain éaseé, its effecﬁ muét be
1nc1ﬁdédf |

Several other excitation mechanisms also haye>been considefed; those
inéiude,'amohg Othefs, jet switching, st;uctural borne noises, and flow
ﬁﬁlsatfohs. In some‘casés, thése excitations ﬁaﬁ be important. However,
it is believed‘that, in most‘cases;'the fpur mechanisms reviewed are the
most importaﬁt ones.

Based on the brief review, wevobserved that: (1) a single excitation
mechanism, eichér self-excited or forced vibration? is considered inﬁthe
~past; and (2) in most cﬁses, a_single tube is taken as a model for tube
banks without including all the fluid coupling effects. In reality, a
tubelbank may bé subjected to several types of excitatipns simultaneously
and sometimes it 1s difficult to 1deﬁt1fy which ié the dominant excitation;
.consider%ng_only one excitation mechanism is not sufficient. Furthermore,
a tube bank will vibrate as.a group réther than as an isolated tube. With-
out including all the fluid coupling éﬁfeéts, the~vibrational modes of tube
banks cannot be described. Therefore, it is clear that a mathematical
model including hultiple excitation mechanisms and.mulﬁiple tubes is defi-
nitely needed. The objective of this report is intended to satisfy this

need: presenting a mathematical model to account for multiple excitation

mechanisms in tube banks using coupled modes.
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.II, ‘EQUATIONS OF MOTION
A rsw of k tubes subjected to a cros;'fldw ié shown in Fig. 1. " The
a#es ofrzhé tubeé are parallel to the z axis and the centers of ‘the tubes
are on the # axis. - Tube diameter is d and‘thé gap between'two neighboring
tubes’ié'G.' The éubscript iis ﬁsed to denote variableé aséociated with A
tube i. The vari;bies associated witﬁ tube motion in ﬁhé X direction are

. flexural rigidity EiIi’ tube mass per unit length m viscous damping co-
efficienttci, and displacement u, - The equation of motion for tube i in

- the x directidn is

%u, du;  d%u, , _
Pals T Y e M e T fy s 1T L33k,

where fi is the force per unit length acting on the tube including hydro-
A dynamicifbrces and other excitations. Similarly, the equation of motion

in the y direction is .

a'*vi v, ‘a2v
EiJi'—gzr + e T3t + mi —3—7 g > i=1,2,3....k,

* : ‘
where E.J,, e Vo and g, are flexural rigidity, damping coefficient, dis-

ii

placement, and external force per unif length in the y direction.
The external forces acting on a structural element include inertia
force, drag force, 1lift force, fluidelastic force, hydrodynamic damping

and other noises; these are given by .

£,o= £5+ £ H£S 4 £2 4 €]
and 1 i 1 1 . 1
. - d e ‘h o
gi gi 1 + gl + gi +Agi .

~ One of the major problems to calculate the response of a tube bank to a

cross flow is to determine these force components.

The inertia force associated with the tube motion in fluid was studied

previously [16]. f; and g; are as follows:

*
For generality, the moments of inertia in the two dlrectlons are assumed
to be different. For tubes, I is usually equal to Ji

)

(2)

(3)
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Fig. 1. Schematic of a row of tubes subjected to a cross~flow
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c , k ] u,
fy=-M 1 o0 —
' j=1 Y .
and o / . (4)
: - c. ’ k .azvi ..
8. = - }1' Z B.- ’
1 j=1 1 .atz

whéré Mg is the aiéplac§d mass of fluid‘by the tube, and o5 and‘Bij are
added maés coefficients.
- It 1is wéll known that the 1ift force acting on a single'tube'is
| 2 1 ‘

£ =3 v2 act sin w_t, - . (5)

where p is fluid density, V is flow velocity, cz‘is 1lift cdefficien;, and

W is therortex shedding frequency given by 4
| o, =25 | (6)

The Strouhal number.S is equal to 0.2 for a single tube iﬁ>the subcritical

 Reyno1ds number. In the caéé of muitiple tubes, experimental results have

shown tﬂat there are multiplc valuco of € for gapwtofdiameter ratio less

thap one. The StrouhalAnumber obtained by various investigators [2,7,17,

18,19]'fof a row of tubes is shown in Fig. 2. Further investigation is

required to determine the values of S, lift‘coefficient cz, and phase rela-

tion among the tubes. Without such détailed iﬂformation, the 1ift force

acting on the i tube is assumed to be

2 _ 1 L

= = 2
fi 2 \'4 dc1

sin(wst 4‘¢§) . _ ¢))
where ci is the lift éoefficient of the i tube anq wi describes the phase
relation. |

The drag force consists of two parts, skin friction drag and pressure
drag. For a steady flow, drag force depends on the Reynolds number and
the relative roughness of the boundary surfaceT The results for a large
number of single body appear in a number of references (e.g;, Ref. 20).

Unfortunately, such 1s not the case for a system consisting of multiple

structural  elements. .
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The. drag force 1s steady until vortex instability begins.

oscillates either pe;iodiéally or fandomly about a mean value.

force acting on the tube is assumed to be

g = =90 V2 dec,

, d
i 2 [1+ €;sin (zwst + wi)] ,

‘Then 1.t

The drag

.where Cg is drag coefficient of the i tube,_ei is a small number, and.

ﬁi is a phase angle.

. The quasi-steady fluid forces associated with tube displacements were
investigated by Connors [7]}. Due to the motion of the tubes, a momentary
displacement of a tube in a tube bank from its equilibrium position alters

the fluid field. 'As a result, dﬂditional fluid forces are induced. These

-forces may be represented by [21]

L, = ve ( uo.u, o+ N V.) ’
A2 g=1 1332 0 7
and
. k k :
e 1 .2 .
8 =5 P VA (] Viu + F wwv) -
2 j=1 13 S j=1 ij 3

where u,,, u',, vij, and v', are fluidelastic force coefficients. For

ij* "ij 15

example, the fluidelastic force acting on the tube 1 in the x direction

due to a unit displacement of ﬁube j in the y direction is equal to %—pvzv

Theoretically, the displacement.of a tube will induce a force on evefy

tube. However, for practical purposes, the forces acting on those tubes

which are far away from the movihg tube are negligible. Assuming the

fluidelastic forces depend only on the displacements of itself and its two

neighboring tubes and using an argument of symmetry, one will obtain the

folloq}g&ngxpressions for the fluidelastic forces

e 1
£€ =2 5 yv2 - —u
177 VLo -y +2u) +v

and

e_1 '
B8y =3P v2 [p (-vi+l - v + 2yi) +v' (u

i-1 141 ~ 9yp)]

41 " Vi-p) s

(8

9)

13

(10)
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Equations_(iO)"wére-employéd by Blevins [8] to study the stébility of'tube
rows.' | | | o
In a sﬁatlonary fluid, fluid damping can be accounted for u31ng vis-
cous_damping terms as given in Egs. (1) and (2) Once the fluid is
flowing, flqid flowsAwi}l pré&uce additional hydrodynamic damping. :Baséd
“on thé potentiai flqw Eheory; the hy&rodynamic daﬁping assoéiated with a

tube bank subject to cross flows is givén as follows [21]:

h k K
| 5T .—pdv ‘j_§1 c1Ju_J * ‘jzl 1Yy
and Ef— " | ;‘A N '. [P (11)
g; = ~pdV (le oi5¥; * le .TijvJ) ’
wher.e the dot denotes differentiation. with respect to time.
Using Eqs. (1) to (11) gives |
a“ui | T L )
ByIy 5w ci?t—*'miW*'MJZl“ij'“j
—lpvz(lfu"u '+-1f»v-v)
2 4=1 i3] j=1 i3]
| K .,k | )
+ pdV (j£1 oijuj + jgl.rijyj)
Fdoviad ans b o1 .
, _ ' (12)
al*v avi 32vi k
17..11—8-,;+e:i TS +mi—a—7+MJ{ls v
—lé\}z(lfvu+2kuv)
2 j=1 M3 4oy 13
K . k
+pdV (j£1 oj5uy ¥ le ,T'iJ' 5

Vzdcgll + €5 sin(2m t + v,p Y1 + g, .
i=1,2,3,..:k
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Eéuations (125 are the géneral‘équatiéns of motiqﬂ for a tube—row’subjecf
to a cross. flow. Gibrgfipns and'§tability.pf a tube row‘éan be analyzed
using these equations. 3Equations_(12) can élsd'be applied to tube banks if

additional‘inertia coupling terms are included {22].
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- III. ANALYSIS
It is assumed that all tubes are of the same length andAhave the same

type of boundary conditions in the x anq y diredtions, In this case,lthe

_ modal.fﬁqctibns for tubes vibfating in the x and y directions will be the
same; thus, let
u (20 = T a, (£ ¢ _(2) ,
‘ it m—l m-
and | : (13)

v.(z,t) = ] b, (t) ¢ (z) ,
i ey D m
where ¢m(z) is the m-th orthonormal function of the tubes in-vécuoi i.e.,

. - -
Izg ¢m¢ndz 6mn > . - - (Q14)

-t

where % is the length of the tubes. Using Eqs. (12), (13), and (14) yields

o, .
gty ¥ 2060 8 o a X “13 jm
. K ok -
- = + b,
2 ° ng 1i%m jzl V1j Jm)
ok K ]
+ pd V + b
(le 1J Jm : Z iJ Jm)
R L o
= q_¢/ sin (wst +‘Pi) + fim' s | (15)
= - A ..
By Wi Pim ¥ 20y Nim “im blm g Dy jzl Bij bjm
1 ) k k
- =V + . !
=P VE( gl "’13 im jgl Mg b
K k.o
+pd V + '
PV (D SRt D tiyh)

J=

, g 4 ,
=q c; [1+e, sin (0 t+y)]+ 8im (16)
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where w and w

~im im

and y direction fespectively (if 1i = Ji’

q = ;lpvzdf ¢ (2)dz ,

1 L

£ £ ¢, (2)dz ,.

im 2 o 1

1.9

Note that equations (155 and (16) can be applied to all values of m.
each m, there are 2k equations which are coupled.
coupling amongvthe equations for different m.
" tubes having the saﬁe length and same type of boundary conditions.

the tubes have different types of end conditioms, a similar method of

analysis can be developed.

Equations (15) and (16) can-be written in matrix form:

[M]{K}'+ [D]{;}+ [K}{A} + [H]1{B} + [C}{B}
[MI(B )+ [5] B} + [K]{B} + [H]{A} + [C]{A}-

Equations (18) may be written as a single equation

[L]{w} + [R] {w} + [T] W} = {Q}

where

w

21'0 g} ¢m(2)dz ,

[R] =

K C | A , (
[t] = » (Wh=9.¢,{Q} =

im

wiil be equal to

{r}
{P}

are the m-th frequencies in vacuo for tube 1 in the x

However, there is no

This is true for a row of

im)’ and-

an

For

(18)

19)
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L], tR], and [T] are the masé, damping, and stiffhess matrices respec-
tively and {W} and {Q} are the corresponding displacement aﬁd force vectors.
When the fluid is flowing, [R] and [T] are not symmetric. Equation (19)

is further reduced to

[U1{¥} + [VI{¥} = {1} , (20)
where
o L -L ©
[v] = B O v I
' L R o. Td,
' (21)

W o
{‘l’},"’ ’ {r}ﬂ :
W , Q .
Equations (20) are the basic equations which are to be used in the studies

of free(vibration, sfability, and fo;ced vibration.

The damped free vibration mode shapes and mode values are obtained

by épplying solutions

{¥} = {X} exp (A1) (22)
to the homogeneous form of Eq. (20):

[AU + V){E} = {0} . 23)
The adjoint form to Eq. (23) is

| U’ + V'I{T} = {0} (24)
where ' denotes the transpo;t of a matrix. The solutions of Eqs. (23)
and (24) can be achiéved by standard procedufes. Assuﬁing that the modal
matrices obtained from Eqs. (23) and (24) are [X] and [Y] respectively.
Let .
{¥} = [XI{e} . | (25)

Substituting Eq. (25) into (20) and using the biothorgonability condition

yields
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. [Elé+ [F] o= [Y'I{T} , - . T (26)
‘where Eland F are diagonal and_hence Eq. (26)-areruncoupled:and easily

solved.
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IV. RESULTS

. For presentation; stainless steel tubes with the following properties
are conéidered: outside diameter 2f223 cm (0.875 in.), wall thiékness
0.114 cm (07045 in.), and 1enéth 101.6 cm (40 in.). The gap G is 0.911 cm
(0.359 in.). All tubes are assumed to be simply-supported at both endé,'
apd Contaihing godium aﬁd submefged in a sodium flow at 516°C (960°F). In
this case, the natural freqﬁency for a singleltubé in sodium is 36.01 Hz in
both directions. Thg viscbus damping coefficient ci and e is.assumgd.to
be 6.895 Pa-sec (6.001 1b—seq/in.2) for all tubes.

9

Once tube arrangement is known, added mass coefficients, «,, and Bi

, ij i’
can be calculated [16,22]. As lohg as the tube motion is small, the potential
flow theory will give sufficiently accurate results. Since, in most cases,
we are intergsted in small-amplitude oscillations or incipient-instability
motion, thé potential flow theory is applicable. |

| Fluidelaétic coefficients can be obtained as follows: First, measure
the steady fluid forces acting on each tube in the annd y directions;
those force components are designated by %i and gi respectively. Then dis~
place tube j in the x direction with a small displacement uj, measure the

steady force components again; those are designated by f; and g;. Fluid-

elastic coefficients uij and vij can be calculated from these force components:

£ £
Mij ='ii_’z—i' ;
. _ E-pV uj
and _ : (27)
Vij L?'—Tgi .
—z-quJ.

Similarly, uij and vij can be calculated by displacing tube j in the y direc-~
tion.

Hydrodynamic damping can also be obtained experimentally. Unlike fluid-

elastic coefficients, the experimental determination of hydrodynamic damping
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1

‘coeffiéients will'require a dynamic method of analysis aﬁd involve a greét
amOUnﬁ of measurement. |

To the author'é knowiedge, there 1is no- other experimental data aVailable
exceptlthosé measured by Conﬁors [7] oﬁ fluidelastic.forces; It is

recognized“that<Cohnors obtained fluidelastic coefficients frbm an energy'

’

considefation for an idealized mode shape and with relatively'large dis-
placements. His results may not be the same as those calculated-frdm Egs.
(27). However, without qther detailed information on fluidelastic coeffi—
clents and Connors' daté'fépreséntiné the best information available to |
date, his data will be used in the following calculatioﬁs. Therefore,
fluidelastic forces are based on Eq. (10). Connors did not give the data
for u'and‘u; and théy will be aségméd to be zero (in feality, p and ' are
not zero). The values of v and v' are 0.101 and 0.165 respectively. Since
there is no e#perimental aéta for hydrodynamic~damping, it will not be in-

cluded in the following calculations‘(i.e., o} 0).

157 T1y> %150 Tay "
In view of the fact that there is insufficient information on fluid-
elastic and.hydrodynamic damping coefficienté, the example presented in
this section is taken as'a vehicle for illustrating the general qualitatiVe
characteristics of the model rather than the spgcific numerical values.
Once additional information from experimental or aﬁalytical studies becomes
available, new results will be incorporated in the model. The ultimate

test of the model is to compare the analytical predictions with laboratory

or field observations.
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A. Stationary Fluid

In a staﬁionary fleid{ic, C, H and H in Eq. (18) are zero; thus, in-
':plane and out—of—plane motions.are uneoupied and the motibns-ﬁn the two
directions can be studied independentiy.‘ Free vibration for fhis case was
eonsidered previohsly [16].

In a heat exchangef tube bank, in most cases, all tubes are identical.
Cqupled hatural frequencies fer this case can be obtained rather easily.
Assume that all tubes have the mass ﬁer unit length ﬁ (mi = m) and the

=u, = wn). The natural frequencieé of the

frequency in vacuo w (w
q_ y : n ( in in

coupled modes are given by [22]

N v " o
Qn=(mc—) “n | 28
n : .
where onarethe eigenvalues of the added mass coefficient matrix [aij]
or [Bij] (see Egs. 4). Equation (28) shows that tﬁe-natural freﬁueney
of a coupled mode can be calculated based on a single tube provided that
the eigenvalue of the added mass matrix is taken as the effective added
mass.

The effects of spacing and detuning ‘on coupled na;ural frequencies
have been studied; the results are summarized as follews:

1. In many practical ceees, the spacing between the tubes is uniform.
However, if a tuBe is displaced, the natural frequencies of coupled modes
will be shifted. For example, if the central tube in a row of five tubes
is displaced, the coupled natural frequencies will be more widely spread;
that is, in a frequency band, the 1owese natural frequency will be lower
and the highest natural frequency will be higher than those of uniform
spacing. |

2. In a group of tubes, if a tube has a different frequency in vacuo

from others, the natural frequencies of coupled modes are reduced if the

tube has a lower frequency and increased if it is higher.
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B. Natural Frequencies of Coupled Modes‘as Functions of>tﬁe Flow Velocity
» Tﬁe-d§namic begaQiof of a gube Bank subjecte& to -a cross flow can be

studiéd based on Eq.. (23). Ihé natufal frequenc§.of the COubled tube-

: fluid,system is desigpatea by @, then the eigen;aluelx'obﬁained ffom Eq.

(é3)«is equél to iQ. The dynamic‘behavibr éf the system isydetermiﬁe& by

Q: 1) when Q@ is real, tﬁe system performs undamped oscilla;ions;‘Z)'when

Q is complex having a positive imaginary part, the éystem is stable and

performs'damped-oscillations; 3) when @ is cgmplex having a‘negative

imaginary part, the system loses stabilit& by flufter;.and 4) when Q is

4 imaginary, the system ioses Stability by buckling.

AFigure 3- shows the natural frequencies of the lowest_fohr modes for
two tubes subjected to cross flow, where the numbers in the figure indicatg
‘the magnitudé ofAflow‘veloEity in m/sec. At low flow velécities, all modes
are damped. As the fléw velocity increases, the imaginarylpart of Q@ may
increase or decreése while there is a small ihcrease in Re(R). As the
flow velocity is increased to a certain.value, Im(2) becomes zero and the
tubes become unstable by flutter. For example, mode 1 becomes flutter at
V =5.3 m/seg and mode 3 at V = 5.5 ﬁ/sec.

At V=0, the motions- associated Qith the natural modes of a tube
bank are rectilinear. 'Héwever, for Vv #‘0, due to the coupling effect of
the fluidelastic forces, tube motions associated with the natural modes
become orbital; these orbital movements associated with the two tubes are

shown in Fig. 3.
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C. Critical Flow,Velocities_and'Instébiliﬁerodes_
| :TheAériﬁiéél %ldwivéiocifiéé'dépéﬁd oﬁvsystem éafamefersliﬁ a com-’
plicate way and can be calculated from Eq. (23) | A‘closéd»form solution
for two identlcal tubes is obtainable. Assume that the properties of the
_ céﬁs;ituenﬁ ;ubes, both iq in-plane and outéof;plgne direétions, are as
-.followé:' paﬁural freqﬁency wn,_damping ;atio,cn, and masé per unit leﬁgth
m. In,ﬁhis case, Eqs. (23) are reduced to |
Trgg1Gy) = (03,

where

[}

Y11 = Y22 = Y33 = Yyu = @+ o MNP+ 2mp 0 A Fme 2, (29)

S .
Yi2 = Y21 = - Y3 = - vu3 = Mot
Y13 =Yy = VY31 =Yy =0 ,

Tip == Ya3 = =5 v,

Y32 ==Yy =
Using Routh-Hurwitz stability criterion, one éan show .that the critical flow
velocity is}giveh by

v m (Zn; ) 1/2
Fa-« [—*“——1r‘*] s
c

where
m =m+M (@ Fepp) , GO
1/72 . .
R =2mf (“’)/ ,
(]
C
my
cc = m gn ’
c C
= 2V2m

‘.3vo'
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Equatibn (30) is similar to the original stability criterion developed
by Cnnnors'[7]innd reconsidered by Blevins [8].‘°Therg are two differences:
1. ‘The_instability flow velocitieé given by Eq.»(30) are baned on
Athé coupled.modns;'mé, fc} and.;CAare tbe virtual mans,'nntutal fréqueney,.
and damping ratio nf the coupled modes. 6n-the other hand, Connots"
:nriterion is baséd on~tbosé of a.single tube. | |

2. There are.multiple'instability modes given in Eq. (30). Once the
critical flow velocity 1§ calculated, the instability mode'shape can be
determined from (23) or (29). But the instability mode of Connors' inSta;
bility criterion has to be assumed before the critical flow vglocity can
be determined, nnd there is only one instability’flOW yelocity because'
only one instability mode was considered.

Connors' criterion is developed for tube rows subject to air flows.

- The fluid inertia cbupling effect is small, and a single tube consideration
is satisfactory ptnvided that reasonably accurate instability nodes are
taken. However, in a liquid flow, particularly when the tube spacing is
small, fluild inertia coupling will be‘significant, and the stability cri-
terion ébould be based on coupled modes.

‘Table 1 shbws the critical flow velocity Vcr (m/sec) and the associ-
ated»frequency (Hz) at instability for tube rows consisting of 2 to 7 tubes.
For two tubes there are two.modes of instability; however, for tube rows
having more tubes, there are many more moden of instability. In Table 1,
only those critical flow velocities less than 15 m/sec are given. Several
distinnt characteristits are noted:

1. The oscillation frequencies for various instability modes are
relatively close, and the lowest critical flow velocity is not necessarily
associated with the lowest oscillation frequency. For example, the five-

tube row loses stability at V., = 5.49 m/sec with fcr = 35.35 Hz, but the



CRITICAL FLOW VELOCITY Vcr AND THE ASSOCIATED FREQUENCY fc'r

TABLE 1

2 Tubes 3 Tubes 4 Tubes 5 Tubes - 6 Tubes 7. Tubes -
£ v v | f v 0

cr cr cr cY cY Cr‘ cr ¢er cr cr .CY cY

5.32 | 34.64 | 8.22 | 36.60 5.26 | 35.27 5.49 | 35.35 | 5.32 | 35.35 | 4.58 | 35.51
5.50 | 37.12 8.47 | 36.15 5.33 | 36.52 5.64 | 34.42 | 5.46 | 36.22 | 5.00 | 36.25 -

8.94 |37.48 | 10.08 | 36.43 | 7.03 | 36.89 | .7.85 | 36.60
| 11.62 | 35.69 | 11.69 | 37.55 | 8.67 | 35.46
' 11.39 | 36.56

og
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seéohdvéritical flow ve}ocity is-5.64 m/sec with ghe oscillation fréquency
of 34:.42 Hz. | '. | |
2. The lowest two critical flow velocities are relaﬁively close to

each other. Based on_the linear theory, once tﬁévflbw velpgity reaéhes
fﬁe‘critiqgl Valué,'large oscillations occur until fhe s&stem is destroyed.
In.reality, other'noplinear effécts, sﬁch as tubes,impacting with one
another, will limit the oécillation aﬁplitudes. Since the second critical
flow velocity is close td the first one, the instabili;y modes observed-
"in ﬁractical situagions may'éhange as the flow velocity‘is inc;eaSed. This
phenomena has been bbse:ved by Connors [7]. He observed that small changés
"in a tube row can caﬁse‘a variéty of modés without chgnging the critical
flow velocity significantly. |

| 3. The lowest critical flpw velocities vary with the numBer of tubes
in a tuBe arfay. in géneral, a tube row with more tubes is less stable.

However, the critical flow velocity does not always decrease with tube

- number.

Figure 4 shows the lowest two instability modes for tube rows having
2, 3, 4, and 5 tubés and Fig. 5 shows the instability modes for a 7-tube
row. The arrows on the prbital paths indicate the reiative position of
the tﬁbes in the vibration orbits.

. One instability.modé frequently observed in experiments [7,17] is as
follows: A tube vibrates predominantly in the streamwise direction, while
its two neighboring tubes vibrate predominantl& in the transverse direc-
tion with a phase shift of 180°, mére precisely, this mode involved'pfe—.
dominantly an up- and downstream movement of the central tube with transverse
movement of the wing tubes such that the central tube'moves downstream
through a narrow gap and sttfeam through a wide gap. From Figs; 4 and

5, it is seen that many instability modes exhibit this behavior.. For

©
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[43



3551 Hz
458 m/sec

' 36.25 Hz I

- 900 m/sec | |

36.60 Hz Q - : _ |
- 7.85 m/sec . SRR
35.46 Hz | |
8.67 m/sec K 1
36.56 Hz | e
11.39 m/sec X / ” T | \ e R

Fig. 5. Instability modes for 7 tubes

1




34

exaﬁple, cbnsidér'thg second'instability_mddes of 3 and S‘tubeé and the
first instabiiity mode of 7 tuﬁes. The §rbitéllmovemgnts of the three
AAdjaéent.tubes locéted in the middle of the‘row_agrée with_Connors’
. expériméntaijo£sepvations very well; indeed, the centrgl tube moves

downstredm.while the two wing tubes move out of phase to form a smaller

‘gap.
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D. Effects of System Parameters on Critical Flow Velocity

‘ Numeriéal results for critical flqw velocity presented so far ;re for
tube rows consisting of identical tubes. 'In many practicai situations,
the tubes in an array may not bé the same. The effects of system parameter
variatiéns are importént in pract}tél considerations. Tﬁe effects detﬁning
and d#mping have been invesfigated.,

Figure 6 shows the lowest critical flow Qelocity for tube rows of

5 and 6 tubes as a function of the frequency ratiO‘wA/mB{ The natural
frequency in vacuo for the tubes denoted by A is wA'and by B is wg + The
1is kept constaﬁt and w, is varied.

B A

When the tubes are in tune, the critical flow velocity for cases 2,

frequency w

3, and 4 are highef than those with a smali detuning, while for case 1, the
critical flow velocity at wA/wB =1 ﬁorresponds to the minimﬁm. As the
tubes become more oqt;of-tune, the critical flow veloéity increases and the
lowest instabilit& mode may also change. In reality, the tubes are probably
not in tune; therefore, w /w = 1 is unlikely to occur in practical

A""B

situations.

Based on Fig. 6, it can generally be concluded that detuning of the
tubes in an array has beneficial effects from stability point of view.
If fluidelastic instability is encountered in a design, using two different
types of tubes arranged as case 1 in Fig. 6 is a way of solution. In
case 1, the gritical flow velocity increases rapidly wiﬁh the detuning.

fhe results presented in Fig. 6 agree qualitatively with the experi-
mental data obtaine& by Southwofth and Zdravkovich [23]. It can also be
used as a possible explanation of Baird's problem [24]. He reportéd that
two "identical" boilers in the same plant exhibit entirely different
vibration responses; sloppiness in tube installation will render one boiler

non-responsive at design gas flow, while its accurately constructed mate
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‘bulsateslwi;h abandonf-:Baséd on Eié:46, ﬁhe ﬁétur&l'frequencies-of the
sloppily constructed unit will be more out-of-tune; therefore, its
qritical-flow velocity will be highér.. At.;he design fiow;;the accurately
construétea unit may'be subject to'instability, wﬁile the othgr is 1in
‘the stable fanges of flow vélécity. B | o

| Figure 7 shows the critical fiow velocities as functions of viscous -
damping géefficient ratio, in which‘eo is equal to 6.895 Pa-sec
(0.001'lb—sec/in.2). In general, the critical flow'veloéity increases
as the values of the daméing coeffiéient are increésed. However, in §ome”
:cases, the criticél flow velocity ﬁay decreaseAwith the increase ofj
certain damping céefficiéﬁts.. As it can be seen from Fig. 7 for thé case
of three tubes, the c:iiical flow yelocity decreases when ei/eo is in-
creased from i to about 2. The reason is as follows: When the damping
coefficients are varied,‘the instability modes afe also changed and
»increésing the vaiueé’of certain damping coeffic;ents may make cergain
- modes more unétable; i.e;, in.those modes, the fluid energy is more easily

fed into the tube syStem.
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E. Tube Responses as Functions of Flow Velocity:

Two of ;he most impdrcant-excitatipn meéhanisms are vorte# shgdaing
and fluidelastic instability. Tube respoﬁses to those<éxcitations are
presented és.funcfions.of flow velocity foxilldstratg the interactions

1of“those.mechaﬁism$. | |
Consider a réw of‘five tubes, which are simply—suppérted.at.both
ends. Ihe tubes-afe subjected to vortices and fluidelastic fofces. It
is assumed that ci = 0.25, ¢i = 0.0, g = 0.0, and S = 0.2. The steady-
state respdnses of . the tubes based on the coupled natural fréquencies in
the lowest frequency Band are
ui(z,p) = Ei sin (mst +v$i) sin %f

(31)

Qi(z,t) f Bi sin (wst + ﬁi) sin %f
ui(z,t) and vi(z,t) are the displacement components of tube i in the lift
and dfag directions respéctively. Tﬁe values_of 51,451, 53, and 53 are
giveh in Fig. 8.

The response characteristics can be divided into two regions: 1)
vortex induced vibration for V < 5.49 m/sec;‘and 2) fluidelastic insta-
bility for V > 5.49 m/sec. At sméll fiow Qelocities, the tubes respond
predominantly in the 1ift direction. When'the vortex shedding frequency
synchronizes .with the natural frequencies, tube 1 has a relatively large
displacement component in the drag diregtion; ;his is due to the fluid-
elasti; coupling effec;. If there were no fluidelastic coupling, the
tubes‘would have displacements onlyAin the 1ift direction. Therefore, in
the lower flow velocity region, the vortex shedding induces oscillations

"and the fluidelastic forces make the moveﬁent'orbital. In the higher flow
velocity rangés (V > 5.49 m/sec), the tubes are subjected to flutter type

instability. The tube respdnses will become very large until other effects,

such as impacting with other tubes, limit the motion or the tubes may be

2]



40"

no o

VORTEX INDUCED

FLUIDELASTIC

* FLOW VELOCITY, m/sec

=
gt VIBRATION INSTABILITY
w 10} ®
O
W 05
wd
ul |
= | L ‘ N l
0 | 2 3. 4 5 6 7
- FLOW VELOCITY, m/sec
30 —
g 25
= 20
S VORTEX INDUCED FLUIDELASTIC
= ~ VIBRATION INSTABILITY
w 1.5 |
Z
o
(a8
& 1.0
Ll
S
= 05
1 _____1:4_\ 1l J
| 2 3 4 5 6 7

‘Fig. 8. Tube displacements as functions of flow velocity




41 .

. damaged by large displéceﬁents. In the fluidelastic inStability.réﬁge,‘
- the ﬁbtion.is iﬁitiatéd by thé Vartex shedding or §ther flow noises, but
it is the‘flﬁidéléstic forces that pfoduce lafge unstable orbital move-"
ment.

“In #his gxampie; the vortex indﬁéed oscillétions océur at the'lbwer ‘
flow Qeiocity. However, in other cases, the fluideiastic,instability‘may
.occur at the lower flow veiocity‘or both vortex indﬁced Vibration and
fluidelastic instability may occur at the same flow.velocity range. SinceA
the model inciddes‘both mechanisms,'it can beAusea go'identify the dominant

mechanism at a given'flow velocity.
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N YA V. CONCLUSTONS

A matheﬁatical_model for cross—flow-induced vibrafions of tube banks
is presented. .Once the force coefficients have béed'identified, tﬁis |
modei can be used to fiﬁd: (1) na;urallfrequénéies and natural modes of
coupled tube-fluid system, and the effects of thé fluid flow on}#ibrational
characteristics; (2) critical flow.velocities at which lérge tube oécilla-
tioné occur and the instability modes; (3) responseé of tube banks to-1lift
force, drag force, and other flow noises; and (4) responses of tube banks
to other types of excitations. The model is in agreement with the experi-
mental results in stationafy fluid [25]. 1In the flowing fluid, no
experimental data are available for quantitative‘compariSQn. The experimen-
tal results publiéhed in the'literature, such as those by Connors t7],
'Livgsey and Dye [17], and Southworth and Zdravkoviéh [23], are in qﬁaliﬁative
agreement with the analytical predictions.

Based'on the results, several general conclusions can be made:

(a) Large tube oscillations may be associated Qith fluidelastic
instability, vortex shedding, or other mechanisms. Thesé mechanisms
interact with one another; in each flow velocity'fange, there may be a
dominant mechanism. Using a single mechanism to correlate all laboratory
aﬁd field data is'obviously not possible and is conceptually not sound.

(b) A tube bank subject to fluid flows will respond.as an inte-
grated system rather than as a collection of many individual tubes. This
is attributed to fluid coupling effect. All the fluid coupling effects
should be included in the model to obtain the proper description of
orbital path of tube motion.

(c) The natural frequencies of coupled modes increase slightly
with flow velocity, while the damping ratios of some modes decrease.

When the flow velocity reaches a certain value, the damping of a certain
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mode becomes zero and the tubes lose stability by f1uft§r; _Depending on
system parémeters, flutter flow velocity may bg lower or higher than the
"lock-in" flow velocity associated with vértex shedding."

(4) 4Detuﬁing the tubes has a beneficial éffeét on flutter flow

velocity. 1In particglai, ﬁsing two‘different tubes arraﬁged in an alter;
'ﬁa;e sequence drastiéally”increases the flutter'fiow velocity.

(g) The flutter flo& velocity ‘increases with system damping..Howevef,
in certain caseé, flutter flow velocity may deérease slightly, or remain nearly
constant, with increasing damping becausé of change of insfability ﬁodes.

(f) One of the most critical inétability modes is associated with
the mode that involves predominantly an up- and downstream movement of
the central tube with fransvérse movement of the wing tubes such that
the central tube moves downstream through a narrow gap and upstream
through a wide gap.

(g) As the nuﬁber of tubes in a tube bank increases, the flutter
flow velocity, in general, decreases. Therefore, using a_single—tube
approximation may not be conservative.

(h) 1In the flow velocity range in whi;h vortex shedding is dominant,.
although the excitation is in the 1ift direction, the tube willnhave a
relatively large displacement in the flow direction because of fluid-
elastic coupling. On the other hand, in the flow velocity range in which
fluidelastic instability is dominaﬁt, the motion may be initiated by
other excitation méchanisms, but it is the fluidelastic coupling that
p{oduces large-amplitude oscillations.

The model will incorporate new theoreticai and experimental results
of the hydrodynamic forces as new information becomes available.

A method of analysis to find the fluidelastic force and hydrodynamic

damping using the potential flow theory is being developed [21]; the
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' results‘bf this anaiysis and other exﬁgrimeﬁtal data Qill Ee inéorporated
in the mgdel: The model also has been extehded to the case of tﬁbe arrays -
thch Qill be published in the future. | |

In conclusion, there is étgreaf neéd'for.a_psefﬁl:mathematical model
fo; Cross—fiow—ihducéd vibrations‘éf tﬁbe'banks. >Thg‘ﬁgael presented in
;his report has demonstrated that it is cabéble éf predicting the details
of tube-fluid interactions including instabilities aﬁd feébonéés to:
vérious‘types of excitations. With this model, improved design criteria .
can be estéblished to eliminate detrimental flow—induéed vibratiohs.iﬁ

tube banks.
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