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This paper presents a case-based planning and beliefs, desires, intentions (CBP–BDI) planning model
which incorporates a novel artificial neural network. The CBP–BDI model, which is integrated within an
agent, is the core of a multi-agent system that allows managing the security in industrial environments.
The BDI model integrates within a CBP engine of reasoning that incorporates artificial neural network-
based techniques, and in this way it is possible to adapt past experiences to generate new plans. The
proposed model uses self-organized maps to calculate optimum routes for the security guards. Besides,
some technologies of ambient intelligence such as radio-frequency identification and Wi-Fi are used to
develop the intelligent environment that has been tested and analysed in this paper.

Keywords: multi-agent systems; case-based reasoning; cased-based planning; beliefs, desires, intentions;
ambient inteligent; self-organized maps; RFID
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1. Introduction

During the last decades, there has been an important evolution in the management of business

using artificial intelligence (AI) techniques. However, there are some aspects that still need to be

improved, especially in techniques and technology for monitoring the workers activities. Remote

monitoring is becoming increasingly common in industrial scenarios, where recent studies reveal

that at least 3% of working shifts time is spent because of lack of time control system.

Multi-agent systems (MAS) [3,9] have been recently explored as supervision systems, with

the flexibility to be implemented in a wide diversity of devices and scenarios including industrial

environments. This has prompted the use of ubiquitous computing, which constitutes the most

optimistic approach to solve the challenge to create strategies that allow the anticipation and

prevention of problems on automated environments [17]. In these environments the use of wireless

technologies, such as general packet radio service (GPRS), universal mobile telecommunications

system (UMTS), Radio-frequency identification (RFID) [15], Bluetooth, etc., make it possible to

find better ways to provide mobile services and also give the agents the ability to communicate

using portable devices (e.g. personal digital assistants (PDA’s) and cellular phones) [12].
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1720 J.F. De Paz et al.

In the field of AI mathematical models are frequently used for determining the environment and

actions to carry out depending on the objectives of the system. This paper presents an MAS which

incorporates a special type of intelligent agent characterized for an internal structure that integrates

a mathematical model based on a symbolic computational model derived from the CBP–BDI [5,6]

(case-based planning) [5,14,16] (beliefs, desires, intentions) [10] model. Moreover, the phases of

the CBP system incorporate a sub-symbolic model, based on artificial neural networks (ANN),

for resolving the problems at a low level of detail.

In Section 2, the CBP–BDI model proposed in this work is explained in detail. Then, in Section 3,

a case study is presented, describing the main technologies used to schedule and surveillance

routes for the security guards on industrial environments and finally in Sections 4 and 5 results

and conclusions are exposed.

2. CBP–BDI model for generating routes

The problem of generating routes in industrial environments is a highly dynamic problem that

requires intelligent systems with great capacity for learning and adaptation. The case-based reason-

ing (CBR) systems are based on a model where past experiences are used to solve new problems.

In this sense, they are very appropriate to be used in changing environments, since they are able

to adapt themselves to changes in the environment using memories.

CBR is a type of reasoning based on the use of past experiences [2] to resolve new problems.

CBR systems solve new problems by adapting solutions that have been used to solve similar

problems in the past, and learn from each new experience. The primary concept when working

with CBRs is the concept of case. A case can be defined as a past experience, and is composed

of three elements: a problem description, which describes the initial problem; a solution, which

provides the sequence of actions carried out in order to solve the problem; and the final state, which

describes the state achieved once the solution was applied. A CBR manages past experiences to

solve new problems. The way cases are managed is known as the CBR cycle, and consists of four

phases: retrieve, reuse, revise and retain.

CBP is a variation of CBR which consists of the idea of planning as remembering [5]. In CBP,

the solution proposed to solve a given problem is a plan, so this solution is generated taking

into account the plans applied to solve similar problems in the past. The problems and their

corresponding plans are stored in a memory of plans.

The BDI model proposed in this work integrates within a CBP engine of reasoning that incor-

porates ANN-based techniques, and, in this way, it is possible to integrate both the symbolic and

sub-symbolic models. BDI-based agent are supposed to be able to decide in each moment what

action to execute according to their objectives. The terminology used for a BDI agent model [6,10]

is the following.

(1) The environment or world M and the changes that are produced, it can be defined as a set of

variables that influence a problem faced by the agent

M = {τ1, τ2, . . . τn} with s < ∞. (1)

(2) The beliefs are vectors of some (or all) of the attributes of the world taking a set of concrete

values

B =

{
bi

bi

= {τ i
1, τ

i
2, . . . , τ

i
n}, n ≤ s∀i ∈ N

}

i∈N

⊆ M. (2)
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(3) A state of the world ej ∈ E is represented for the agent by a set of beliefs that are true at a

specific moment in time t . Let E = {ej }j∈N set of status of the world if we fix the value of t

then

et
j = {b

j t

1 , b
j t

2 , . . . , bj t
r }r∈N ⊆ ∀j, t. (3)

(4) The desires are the applications between a state of the current world and another that it is

trying to reach

d : E −→ E

e0 −→ e∗. (4)

(5) Intentions are the way that the agent’s knowledge is used in order to reach its objectives. A

desire is attainable if the application i, defined through n beliefs exists

i :

n
︷ ︸︸ ︷

BxBx . . . xB xE −→ E

(b1, b2, . . . , bn, e0) −→ e∗. (5)

(6) We define an agent action as the mechanism that provokes changes in the world making it

change the state

aj : E −→ E

ei −→ aj (ei) = ej . (6)

(7) Agent plan is the name we give to a sequence of actions that, from a current state e0, defines

the path of states through which the agent passes in order to reach the other world state

pn : E −→ E

e0 −→ pn(e0) = en (7)

pn(e0) = en = an(en−1) = · · · = (an ◦ · · · ◦ a1)(e0) pn = an ◦ · · · ◦ a1.

Below, the attributes that characterise the plans for a CBP–BDI agent in the case base are

presented, which allow us to relate BDI model with the interest parameters within a CBP. Based

on the theory of action, the set of objectives for a plan and the resources available are selected

as a variable upon which the constraint satisfaction problems impose the restrictions. A plan p is

expressed as p = 〈E, O, O ′, R, R′〉, where: E is the environment, but it also represents the type

of problem faced by the agent, characterized by E = {e0, e
∗}, where e0 represents the starting

point for the agent when it begins a plan, and e∗ is the state or states that it is trying to attain. O

indicates the objectives of the agent and O ′ are the results achieved by the plan. R are the total

resources and R′ are the resources consumed by the agent.

If a problem E = {e0, e1} has been defined, a plan p to solve the problem can be characterized

by the relationships between the objectives reached and the resources consumed between both

states. The general functioning process is derived by following the typical phases of a case-based

system [1,4].

(1) Retrieval: given a state of the perceived world e0 and the desire that the agent encounters

in a state e0 
= e∗, the system searches in the case base for plans that have resolved similar

problems in the past.

(2) Reuse: from the previous phase, a set of possible solutions for the agent {p1, . . . , pn} is

obtained. In this phase, in accordance with the planning model G, the system uses the possible
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1722 J.F. De Paz et al.

solutions to propose a solution p∗ (8). To carry out this phase, different AI techniques can be

used, but we will focus on the sub-symbolic models. In the case study we will focus on the

ANNs.

G(e0, p1, . . . , pn) = p∗ (8)

(3) Learning/retain: the plan proposed may achieve its objective or fail. The information on the

quality of the final plan is represented as wf(p
∗) and is proportional (i) to the initial value of

wi(p
∗), and (ii) to the ‘rate of use’ α(N), where N is the number of times that the plan has

been used in the past.

wf(p
∗) = wi(p

∗)α(N) (9)

Next, a case study is presented, describing the main technologies used to schedule and monitor

security guards surveillance routes on industrial environments.

3. Case study

An MAS has been developed to provide control over the activities performed by the staff responsi-

ble for overseeing the industrial environments. The agents in the system calculate the surveillance

routes for the security guards depending on the working shifts, the distance to be covered in

the facilities and the security guards available. Considering this latter feature, the system has the

ability to re-plan the routes automatically. It is possible to track the workers activities (routes

completion) over the internet. RFID is a key technology in this development.

The MAS is defined by the five different kinds of agents:

(1) Guard agent. It is associated to each PDA. Manages the portable RFID readers to get the

RFID tags information on every control point. Communicates with controller agents to check

the accomplishment of the assigned routes, to obtain new routes, and also to send the RFID

tags information via Wi-Fi.

(2) Manager agent. Controls the rest of agents in the system. Manages the connection and discon-

nection of guard agents to determine the available security guards available. The information

is sent to the planner agent to generate new surveillance routes.

(3) Planner agent. Generates automatically the surveillance routes which are sent to the manager

agent to distribute them among the security guards.

(4) Controller agent. Monitors the security guards activities by means of the control points

checked.

(5) Advisor agent. Administers the communication with the supervisors (person). Receives from

the manager agent the incidences, and decides if is sent to the supervisor. Incidences can be

sent via Wi-Fi, SMS or GPRS.

The agents of the system react to the events in the environment. The most important agent in the

system is the planner agent, which incorporates the CBP–BDI model. In order to adapt the CBP–

BDI model to the problem of security in industrial spaces, the environment (1) has been defined

through the variables: security guards available, coordinates for every control point, arrival time,

initial time, final time and service time. The current state (3) is obtained through the number of

available security guards, their corresponding control points at that moment and the time. The

desires (4) are represented as the surveillance route that allows to cover all the control points in

the minor time bearing in mind the time restrictions. The intentions (5) are given for the neural

networks that establish the sequence of states through which the system pass in order to reach

the final state in which the surveillance routes have been successfully completed. Equations (10)

and (11) show the structure for a plan (7).
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The planning is carried out through a neural network based on the Kohonen network [13]. Each

of the phases of the CBP–BDI planner are explained in detail in the following sub-sections.

3.1 Retrieve

In this phase the most similar plans resolved in the past including all the control points indicated in

the new problem are recovered. The information of the plan is given for the following records (10)

and (11).
〈

T =

{
(xi, ai)

xi

= (xi1, xi2), i = 1, . . . , n

}

, g

〉

(10)

Being xi the control point i that it will be visited, (xi1, xi2) the coordinates of point i and g the

number of security guards, ai arrival time. The routes ri recovered follow the equation.

R = {ri} i = 1, . . . , g ri ⊆ T , ri ∩ rj = φ ∀i 
= j j = 1, . . . , g (11)

3.2 Reuse

In this phase, those retrieved routes, represented as R, are adapted to the temporal restrictions

stated in the problem description. The problem description of the problem is given by the control

points to visit and the initial and final time to arrive to reach them (22). If R = {}, or the user

establishes that he wishes to make a new distribution of the routes, or the time restrictions are

incompatible with the experiences previously stored, the system will create a new allocation

for the control points among routes. If #R < g, then only one new distribution is generated

for those control points not associated with any of the routes, and this is done for the g − #R

pending routes. For surveillance routes calculation, the system takes into account the time and the

minimum distance to be covered. So it is necessary a proper control points grouping and order

on each group. The planning mechanism uses Kohonen self organizing maps (SOM) [11] neural

networks with the k-means learning algorithm to calculate the optimal routes and assign them

to the available security guards. The inputs of the SOM are xi = (xi1, xi2) i = 1, . . . , N , the i

control point coordinates and N the number of control points in the route, Wkj is the weight of

the neuron k of the output layer that connects with the neuron j in the input layer. Once the input

and output are established, the k-means algorithm is carried out to create a new allocation of the

control point:

(1) Establish the number k of initial groups. Initiate the weights in the output layer with the k

initial patterns. Wij = xij .

(2) Establish for each of the patterns the nearest neuron of the output layer and associate the pattern

with it. The distance used is euclidean. Qk represents the set of input patterns associated with

the neuron of the output layer k.

Qk =

{
xi

d(Wk, Xi)
≤ d(Wr, Xi)∀k 
= r

}

d(Wr, Xi) = ‖Wr − Xi‖ (12)

(3) Calculate the new centroids of the neurons of the hidden layer as the average of the input

associated patterns.

Wkj =
1

#Qk

∑

xsj with xs ∈ Qk (13)

(4) Repeat from step 2 until the modification of the centroids will be minor than α.

∑

�Wk =
∑

‖Wk(t) − Wk(t − 1)‖ < α (14)
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Once the distribution of the points among routes ri has been made, the CBP–BDI starts spreading

the control points among the available security guards. Then, the optimal route for each one is

calculated using a modified SOM neural network. There exits another methods which allow

calculating optimal routes, among them we can enumerate: genetic algorithms (GA), integer

linear programming, Lin Kernighan Heuristic [8]. However, it is difficult to take into account

time restriction in these heuristics, only the GAs are easily adaptable to this situation.

The network has two layers: IN and OUT. The IN layer has two neurons, corresponding the

physical control points coordinates. The OUT layer has the same number of control points on each

route [7]. Be xi ≡ (xi1, xi2) i = 1, . . . , N the i control point coordinates and ni ≡ (ni1, ni2) i =

1, . . . , N the i neuron coordinates on ℜ2, being N the number of control points in the route. The

weight actualization formula is defined by the following equation:

wki(t + 1) = wki(t) + η(t)g(k, h, t)(xi(t) − wki(t)) (15)

where wki is the weight that connects the IN layer i neuron with the OUT layer k neuron, t

represents the interaction, η(t) the learning rate; and finally, g(k, h, t) the neighbourhood function,

which depends on three parameters: the winner neuron, the current neuron and the interaction. A

decreasing neighbourhood function is considered with the number of interactions and the winner

neuron distance.

g(k, h, t) = Exp

[

−
|k − h|

N/2

√

(nk1 − nh1)2 + (nk2 − nh2)2

Maxi,j∈(1,...,N)i 
=j {fij }
− λ

|k − h|t

βN

]

(16)

α and β and are determined empirically. The value of α is set to 1 by default, and the values

of β are set between 5 and 50, t is the current interaction. Its value is obtained by means of βN ,

N is the number of control points, fij is the distance between two points i and j and Max{fij }

represents the maximum distance that joins those two points.

To train the neural network, the control points groups are passed to the IN layer, so the neurons

weights are similar to the control points coordinates. To determine the optimal route, the i neuron

is associated with the i + 1 neuron, from i = 1, . . . , N , covering all the neurons vector. The

learning rate depends on the number of interactions, as can be seen on the following equation:

η(t) = Exp

[

−

(
t

BN

)1/4
]

. (17)

The neurons activation function is the identity. Initially considering a high neighbourhood

radius, the weights modifications affect the nearest neurons. Reducing the neighbourhood radius,

the number of neurons affected decrease, until just the winner neuron is affected.

The initial number of interactions is T1 = βN in the first stage. When t = βN , the weights

of the possible couple of neurons are changed from the neurons ring obtained. If the distance is

optimized, the number of interactions is reduced to continue the learning. In the Z phase, the total

number of interactions is:

Tz = Tz−1 −
Tz−1

Z
. (18)

The objective of these phases is to avoid the crossings. Figure 1 shows the routes calculated for

one and two security guards.

To allow resolving optimization problems according to the temporal restrictions imposed by

the supervisor, it is necessary to modify the previously explained SOM networks. The restrictions

that must be considered are: service time employed for a security guard in checking a control

point, initial time (if security guard arrives before this time he will wait for this time) and final
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Figure 1. Planned routes for one (a) and two (b) security guards.

time limit arrival hour. The coordinates have been scaled so that the space journey through time

unit is also a unit. This is because it is necessary that the units are comparable to the input layer

of the ANN. The information available to the input layer will be: coordinates, initial time, final

time and service time.

The modification of the values corresponding to the weights of the links between neurons

will be made in the same manner as with the previously explained network (15), defining a new

neighbourhood function. Moreover, a new distance function will be defined. It will be called

temporal distance and it replaces the previously used Euclidean distance in the neighbourhood

function. The new function is:

dtij ≡ dt (xi, xt ) = Max{fij + ti, bj } (19)

where ti accumulated time to arrive to control point i plus the service time, bj initial time, fij

distance between neurons i and j andnij coordinate j of the neuron i.Therefore the neighbourhood

function will be:

g(k, h, t) = Exp

[
(

−
|k − h|

N/2

)
dfkh

Maxi,j {d
∗
ij }

− λ
|k − h|t

βN

]

(20a)

dfkh =

{√

(nk1 − nh1)2 + (nk2 − nh2)2 if ck − dt0k < d∗
kh

0 eoc
(20b)

where d∗
ij ≡ fij + sj with sj being the service time for the control point ij , ck being the closing

time of the neuron k. fij is de distance between i and j .
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The use of the new distance dfkh allows the neurons to be swapped with their neighbours if the

temporal restrictions have not been overcome; nevertheless, this method does not guarantee that

the system can achieve a valid solution.

3.3 Revise and retain

The revise phase is carried out by the security guard, who provides a report. If the security guard

provides a positive assessment, then the complete plan is stored. This plan contains the sequence

of states together with the values of believes for each of them. That is, the sequence of control

points and their corresponding times. The quality of the route comes determined by the number

of replannings.

wf(p) = wi(p) · ln(t) ·
(N − n)

N
(21)

where t is the number of times that the plan has been used, n the number of replannings and N

the number of control points.

The information stored in the memory of plans follows the expression (10) and (11). If the

problem includes time restrictions, this information is added to the rest of the plan information.

In this way, the plan will contain the follow information:

〈

T =

{
(xi, ai, si, ei, ti)

xi = (xi1, xi2)
i = 1, . . . , n

}

, g

〉

(22)

where xi position (x, y) of every control point, ai arrival time, si initial time, ei final time and ti
service time.

4. Results

The system presented in this paper has been implemented and tested over experimental and

controlled scenarios. Simulations have been done to calculate surveillance routes and monitor the

accomplishment of each one. In a first step, the operation of the sub-symbolic model applied in

the reuse phase of CBP–BDI was checked. The model was implemented through sub-symbolic

ANNs. In Table 1 and Figure 2(a), (b) are represented the plans scheduled by the neural network

RPTW (Routing Problems with Time Windows) once the division of the checkpoints had been

previously done. In Table 1, it is shown the description of an example of surveillance route for

a security guard. Table 1 shows (O) the order of the points in the route, (CP) identification of

the control point to visit, the location of the control point (coordinates), the distance between the

current and the following control point, the accumulated time from the initial control point, (IT)

the initial time represents the lower time required to check the control point, that is the control

point cannot be checked before this time, (FT) the final time represents the maximum time allowed

for the arrival and finally (ST) the service time. The default upper limit is determined as the half

of the working shift, 14,400 (4*3600). To simplify the results, it has been established that the

speed at which the guards move is 1 m/s, so that there is an equivalence between distance and

time. Thus, the results can be interpreted in an easiest way.

The final distance obtained is 2795.6938 with temporal restrictions and 1908.1222 without

restrictions. It should be borne in mind that in the example shown in Table 1, there is a restriction

for the start time of 2500, so that in neither case could end before that time.

Figure 2(a) shows the graphical representation of the route covered by the security guard

previously studied in Table 1. Figure 2(a), (b) shows the route followed by the security guard when
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Table 1. Route followed by a security guard under nine time restrictions.

O CP Position Distance Arrival IT FT ST

0 0 (140.0, 250.0) 22.36068 0.0 0.0 100.0 5.0

1 23 (130.0, 230.0) 151.20847 27.36068 1.0 500.0 5.0

2 18 (38.0, 110.0) 111.8034 183.56915 1.0 2000.0 5.0

3 7 (148.0, 90.0) 314.42966 300.37256 120.0 500.0 5.0

4 8 (427.0, 235.0) 106.06602 619.80225 1.0 700.0 5.0

5 10 (442.0, 130.0) 316.58963 730.8683 1.0 1500.0 5.0

6 14 (140.0, 225.0) 95.33625 1052.4579 100.0 1200.0 5.0

7 11 (148.0, 320.0) 114.14027 1152.7942 1.0 14400.0 5.0

8 24 (126.0, 432.0) 82.0975 1271.9344 1.0 14400.0 5.0

9 2 (130.0, 350.0) 173.10402 1359.032 1.0 14400.0 5.0

10 20 (136.0, 177.0) 38.600517 1537.136 1.0 14400.0 5.0

11 3 (147.0, 140.0) 125.57468 1580.7365 1600.0 2300.0 5.0

12 17 (135.0, 15.0) 97.128784 1730.5747 1.0 14400.0 5.0

13 21 (232.0, 20.0) 7.81025 1832.7035 1.0 2500.0 5.0

14 16 (238.0, 25.0) 85.09406 1845.5138 1.0 14400.0 5.0

15 13 (242.0, 110.0) 120.9504 1935.6079 1.0 14400.0 5.0

16 15 (344.0, 45.0) 70.028564 2061.5583 1.0 14400.0 5.0

17 12 (342.0, 115.0) 95.12623 2136.587 1.0 14400.0 5.0

18 9 (435.0, 135.0) 18.681541 2236.7131 1.0 14400.0 5.0

19 6 (453.0, 130.0) 120.20815 2260.3948 1.0 14400.0 5.0

20 19 (538.0, 215.0) 206.32256 2385.603 1.0 14400.0 5.0

21 5 (350.0, 130.0) 16.763054 2596.9255 2500.0 3000.0 5.0

22 22 (334.0, 125.0) 109.38464 2618.6885 1.0 14400.0 5.0

23 1 (228.0, 152.0) 85.86617 2733.0732 1.0 14400.0 5.0

24 4 (250.0, 235.0) 111.01801 2823.9395 1.0 14400.0 5.0

2795.6938 2939.9575

Figure 2. Distance calculated for one security guard with nine and four time restrictions.
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Figure 3. Average number of estimated security guards. Percentage of replanning. Route in the PDA.

the system takes into account four temporal restrictions and the final distance is 2173.7756. In

this case, it is possible to observe that the number of crossings notably increases compared to the

example shown in Figure 2(b). This effect is due to the temporal restrictions imposed to the guard.

In Figure 3(b) it is possible to see how the percentage of variation for the routes related to

the increase of the weeks. Figure 3(a) shows the average number of estimated security guards

needed to cover an entire area, which consisted on a mesh from 20 to 100 control points, with

an increment of five control points. The results are clear, for example, for 80 control points, the

users estimated four security guards, but the system recommended only three. Figure 3(c) shows

the PDA with the route that must follow the security guard.

5. Conclusions

The usage of a CBP–BDI agent allows the system to increase its performance since the ANN

facilitates automatic route’s calculation. Moreover, the CBP–BDI allows reducing the amount of

preplanning in the system. The system provides optimized calculations, so the time and distance
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are reduced. A complete working day shift can be fixed according the system results, for example,

if the route calculated is too long or the time exceeds eight working hours, a new guard must be

incorporated.

It is possible to determine the number of security guards needed to cover an entire area and the

loops in the routes, so the human resources are optimized. In addition, the mathematical AI model

provides the supervisors with relevant information to monitor the workers activities, detecting

incidences in the surveillance routes automatically and in real-time.

In this work, we have presented a novel CBP–BDI mathematical model, based on combining

different AI techniques: MAS, CBR systems and neural networks. The CBP–BDI model has

been successfully applied to a concrete scenario in the construction sector, for planning and

monitoring surveillance routes. The promising results obtained as well as the characteristics of

the CBP–BDI model, such as high learning and adaptation capabilities, let us conclude that the

model can be very appropriated to be applied to similar environments, as shopping malls, health

care scenarios, tourism, etc. The CBP–BDI model presented within this work is specially suitable

to satisfy the needs of the emerging ambient intelligence (AmI). AmI is a new field with an

important growth in the last years, and has the aim of developing intelligent environments where

people are surrounded by technologies automatically adaptable to their personal needs. The basic

concepts of the AmI are the ubiquitous computation, ubiquitous communication and intelligent

interfaces. We think that the CBP–BDI model can provide efficient solutions for ubiquitous

computation and can facilitate the construction of intelligent environments. That is our next

challenge.
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