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Abstract We present a mathematical model of blood and

interstitial flow in the liver. The liver is treated as a lat-

tice of hexagonal ‘classic’ lobules, which are assumed to

be long enough that end effects may be neglected and a

two-dimensional problem considered. Since sinusoids and

lymphatic vessels are numerous and small compared to the

lobule, we use a homogenized approach, describing the sinu-

soidal and interstitial spaces as porous media. We model

plasma filtration from sinusoids to the interstitium, lymph

uptake by lymphatic ducts, and lymph outflow from the liver

surface. Our results show that the effect of the liver surface

only penetrates a depth of a few lobules’ thickness into the

tissue. Thus, we separately consider a single lobule lying suf-

ficiently far from all external boundaries that we may regard

it as being in an infinite lattice, and also a model of the region

near the liver surface. The model predicts that slightly more

lymph is produced by interstitial fluid flowing through the

liver surface than that taken up by the lymphatic vessels in

the liver and that the non-peritonealized region of the sur-

face of the liver results in the total lymph production (uptake

by lymphatics plus fluid crossing surface) being about 5 %

more than if the entire surface were covered by the Glisson–

peritoneal membrane. Estimates of lymph outflow through

the surface of the liver are in good agreement with experi-

mental data. We also study the effect of non-physiological

values of the controlling parameters, particularly focusing

on the conditions of portal hypertension and ascites. To our
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knowledge, this is the first attempt to model lymph pro-

duction in the liver. The model provides clinically relevant

information about lymph outflow pathways and predicts the

systemic response to pathological variations.
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1 Introduction

The liver is one of the vital organs in the human body, and

it plays a fundamental role in numerous functions, including

protein synthesis, metabolism, bile secretion, and detoxifi-

cation. Diseases of the liver are increasingly prevalent in the

West, and they represent the fifth most common cause of

death in Europe. There are many possible causes of liver

disease, including alcohol, viruses, and drugs.

The liver has a circulatory system specific to its function.

It is supplied by two major blood vessels: the hepatic artery,

which contains fully oxygenated blood, and the hepatic por-

tal vein, which contains partially deoxygenated blood that is

rich in nutrients, since it originates from the intestines. Blood

flows out of the liver through the hepatic veins. Within the

liver, each of the hepatic artery and hepatic portal vein repeat-

edly bifurcates into successively smaller vessels forming two

trees of vessels. On the microscale, the terminal generation

of the trees of the hepatic artery and the hepatic portal vein

lies, together with bile ducts, in structures called portal tracts.

From the portal tracts, blood flows into the sinusoids, a net-

work of small, tortuous, interconnected vessels that carry

blood to the central vein, the terminal generation of the

hepatic venous tree of vessels. Through successive conflu-

ences, blood is carried to the hepatic veins that drain into the

inferior vena cava. There are typically around three to seven
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portal tracts supplying each central vein, and each portal tract

supplies about three central veins (Teutsch et al. 1999).

The sinusoids are lined by a layer of fenestrated endothe-

lium. Fenestrations are small holes of approximately 100 nm

diameter covering 2–3 % of the area (Burt et al. 2006), which

allow plasma to pass from the sinusoids to the space of Disse,

a region surrounding each of the sinusoids that is filled with

interstitial fluid. The flow from the sinusoids to the intersti-

tial space is driven by both mechanical and oncotic pressure

differences between the two spaces. The oncotic pressure

difference arises due to proteins in the plasma, but it is nor-

mally small compared to the mechanical pressure differences

(Laine et al. 1979). The rate of flow from the sinusoids to

the interstitium is given by the hepatic filtration coefficient

multiplied by the total pressure difference (mechanical plus

oncotic) between sinusoids and interstitium. An estimate of

this coefficient for cats was found by Greenway et al. (1969).

On the microscale, the liver can be visualized as being

composed of functional units called lobules (Vollmar and

Menger 2009). The classic model of a lobule is a prism with

a hexagonal cross section, a cylindrical central vein running

along the central axis of the prism, and portal tracts along each

of the six axial edges (see Fig. 1). The boundaries between

lobules are called vascular septa; in some species, such as the

pig, these are quite distinct, while in humans the distinction

between lobules is less clear (Lautt 2010).

Interstitial fluid is removed from the liver via one of two

pathways. The first is through the lymphatic ducts within

the liver. There are lymphatic vessels distributed throughout

the lobule, and these take up interstitial fluid actively at a

regulated rate; however, the dependence of the rate of uptake

upon the interstitial pressure and other parameters is not fully

known. Elk et al. (1988) performed experiments on livers of

anesthetized dogs to determine typical rates of uptake by

the lymphatic vessels. In their experiments, they determined

the effective resistance of the lymphatic vessels, that is, the

increase in interstitial pressure required to produce a unit

increase in volumetric flux taken up by the lymphatics. The

lymphatic vessels have valves to prevent backflow, and they

transport the fluid toward the main lymphatic vessels located

in the portal tracts, from where the fluid flows out of the

liver. The fluid eventually drains into the venous system at

the junction of the left subclavian vein and left jugular vein.

Secondly, interstitial fluid can leave the liver by passing

directly through its surface. Conditions of high intrahepatic

pressure lead to a pressure imbalance across the surface of the

liver, which drives more fluid across it. Different regions of

the surface have different properties: On the lower surface,

a double membrane comprising Glisson’s capsule and the

peritoneal membrane separates the liver from the peritoneal

cavity, while the upper surface of the liver is not peritoneal-

ized, and there is a space between the liver and the diaphragm

in which interstitial fluid can collect. Flow across the liver

surface is of particular interest in this paper, because if the

flow of interstitial fluid into the peritoneal cavity is too large,

fluid can build up in the cavity, leading to a condition called

ascites. Ascites, in turn, causes the peritoneal pressure to rise;

for example, Laine et al. (1979) performed experiments on

anesthetized dogs and found that for every 9.5 ml per kg body

weight added to the peritoneum, there is a 1 mmHg rise in

the pressure there.

In this paper, we investigate the effect of changes in blood

pressure within the liver on the production of lymph by the

liver. Such changes are common in small-for-size liver syn-

drome, which occurs when the functioning liver mass is too

small relative to the patient’s body weight and is a relatively

(a) (b)

Fig. 1 a Sketch of a cross section of a single lobule, showing relevant

geometrical parameters. b Sketch illustrating the arrangement of lob-

ules in the model liver. A section of the outer surface of the model liver

is also shown. The surface is assumed to be flat and the axes of the portal

tracts parallel to the surface. The surface cuts the lobules so that the out-

ermost lobules have area equal to the interior lobules, although they are

pentagonal, rather than hexagonal, as shown. With this arrangement,

the outer surface of the liver is at a distance L lob/4 from the nearest

portal tracts and 3L lob/4 from the nearest central veins
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Mathematical model of blood and interstitial flow 365

frequent complication after partial resection of the liver, after

a liver transplantation when the donor is smaller than the

recipient, or after living-donor liver transplantation, in both

donor and recipient.

There are some previous works on mathematical modeling

of the hemodynamics in the liver. Rani et al. (2006) developed

a computational fluid dynamics model of flow along a termi-

nal portal vein, hepatic artery, and two sinusoids with fenes-

trations. They used a non-Newtonian shear-thinning model

for the blood rheology. Van Der Plaats et al. (2004) and Deb-

baut et al. (2011) used electrical analog models to describe

the generations of vessels, finding the pressure and flow in

each generation. Hoehme et al. (2010) developed a model to

quantify regeneration of the liver after lobular damage.

Since the sinusoids are small, numerous, and intercon-

nected, it is reasonable to describe them as a porous medium,

and a few models have used this technique. Ricken et al.

(2010) developed a poroelastic model of the liver tissue and

combined this with a model of the development of sinu-

soidal orientation to model remodeling of the liver tissue

after injury. Bonfiglio et al. (2010) also considered a porous

medium model of a single classic hexagonal lobule and ana-

lyzed the effects of anisotropic permeability, non-Newtonian

effects, and compliance of the tissue. Debbaut et al. (2012a)

used a cast of a liver, combined with a computational fluid

mechanical simulation, to find the effective permeability of

the sinusoids in different directions through the tissue, while

Debbaut et al. (2012b) employed these data to develop a

three-dimensional lobular model, which they used to inves-

tigate the role of the vascular septa.

In this paper, we develop a mathematical model of blood

and interstitial fluid flow in a lobular model of the liver, in

order to estimate the rate of uptake of lymph and the flux of

fluid across the surface of the liver. Following Bonfiglio et al.

(2010) and Debbaut et al. (2012b), we treat the liver as com-

posed of lobules that are prisms all of equal length, and with

no variations in the third dimension. We use a porous medium

description of the tissue of the lobules, to describe both the

flow in the sinusoids and that in the interstitium. We assume

that each spatial point in the model represents a multitude of

both sinusoidal vessels and interstitial space, as illustrated in

Fig. 2. We prescribe the blood pressure at the portal tracts

and central veins, and we assume that blood vessels do not

cross the vascular septa from one lobule to its neighbor.

2 Mathematical model

2.1 Geometry

In the classic lobule model by Kiernan (1833), each lobule is

described as a regular hexagonal prism with portal tracts at

each vertex and a central vein along the axis. Since then, this

morphological description has been generally accepted as a

Fig. 2 Illustration of modeling assumption concerning the arrange-

ment of cells in the liver at the microscale: ‘H’—hepatocyte (typical

diameter 15µm); ‘S’—sinusoid (typical diameter 10µm, Burt et al.

2006); and ‘I’—interstitial space (typical width of space of Disse

approximately 500 nm, Straub et al. 2007)

good idealized representation of the liver lobular structure,

and it is reported in many anatomy textbooks. In this paper,

we adopt this model and model the entire liver as a lattice

of identical hexagonal lobules, each of which has a circular

central vein of diameter DCV along its axis and a number

of circular portal tracts of diameter DPT at each vertex, as

shown in Fig. 1.

We assume that the axial dimension of the lobules is long

compared to their width and that the axial pressure gradient

is sufficiently small, so that we may treat the flow as two-

dimensional in the cross-sectional plane.

The Glissonian–peritoneal membrane is treated as a cov-

ering of the lateral faces of the outermost lobules (and not the

end faces of the lobules, because end effects are neglected),

and similarly to the bare part of the liver surface. We denote

the total volume of the liver by Vliv and its total surface area

by Aliv (estimated in Appendix 6.1) and define χ as the pro-

portion of the surface area covered by the bare area (the rest

being covered by the Glisson–peritoneal membrane). We also

assume that the axes of the lobules are parallel to the surface

and furthermore assume that the surface cuts the lobules in

such a way that the areas of the outermost lobules (now pen-

tagonal prisms) are the same as those of the interior hexagonal

lobules, as shown in Fig. 1b.

2.2 Governing equations

Within each lobule, the sinusoids and lymphatic vessels are

numerous, and they are small compared to the lobule size.
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This motivates using a homogenized model for the flow in

the sinusoids and in the interstitial space, similar to those

considered by Bonfiglio et al. (2010); Debbaut et al. (2012b)

and Ricken et al. (2010). We work in terms of the spatially

averaged flux per unit area u instead of the particle velocities

v; the spatially averaged flux is the Darcy velocity. In partic-

ular, we introduce uS and uI as the volume-averaged flux per

unit area in the sinusoids and in the interstitium, respectively,

defined as

uS =
1

Ω

∫∫∫

ΩS

vdΩ, uI =
1

Ω

∫∫∫

ΩI

vdΩ. (1)

In the above expressions, Ω is an elementary volume,

which is significantly larger than the microscale (see Fig. 2)

but much smaller than the characteristic scale of a lobule.

Moreover, ΩS is the blood volume contained within Ω and

ΩI the volume of interstitial space in Ω , so that φS = ΩS/Ω

and φI = ΩI /Ω are the corresponding porosities, with φS +
φI ≤ 1. We model the flow using Darcy’s law for flow in a

porous medium. Thus,

uS = −
kS

µS

∇ pS, uI = −
kI

µI

∇ pI , (2)

where pS and pI are the mechanical pressures of the blood

and interstitial fluid, respectively, kS and kI are the perme-

abilities of the sinusoids and interstitial space, respectively,

µS is the viscosity of blood, and µI is the viscosity of inter-

stitial fluid. The value of kI is estimated in Appendix 6.2.

Following Laine et al. (1979), we assume that fluid passes

from the sinusoids to the interstitium through the fenes-

trations in the walls of the endothelial cells at a rate pro-

portional to the pressure difference between the blood and

interstitial fluid. The effective pressure difference equals

the mechanical pressure difference plus the oncotic pres-

sure difference, but Laine et al. (1979) argue that both the

osmotic reflection coefficient and the typical oncotic pres-

sure differences are small, meaning that the flux of plasma

from sinusoids to interstitium per unit volume of liver tissue

only depends on the mechanical pressure difference and is

given by

qw = C f (pS − pI ) , (3)

where C f is the hepatic filtration coefficient, equal to the

volume flux from the microcirculatory system to the intersti-

tium per unit pressure drop per unit volume of tissue, found

experimentally by Greenway et al. (1969) (see also Appen-

dix 6.3).

Within the interstitium, following Elk et al. (1988), we

assume that lymph uptake follows a linear relationship

ql = Cl max(pI − p0, 0), (4)

where Cl is the conductance of the lymphatic vessels and p0

is the pressure within the flowing lymph; negative uptake is

not possible, due to the presence of valves. See also the papers

by Stewart and Laine (2001) and by Quick et al. (2008), and

Appendix 6.4.

Applying conservation of mass in both the sinusoids and

interstitium, we have

∇ · uS + qw = 0, ∇ · uI − qw + ql = 0. (5)

We can rewrite the system of Eqs. (2)–(5) in terms of the

pressures alone as

−
kS

µS

∇2 pS + C f (pS − pI ) = 0, (6)

−
kI

µI

∇2 pI − C f (pS − pI ) + Cl max(pI − p0, 0) = 0.

(7)

2.3 Boundary conditions

We assume that blood does not flow across boundaries

between neighboring lobules, due to the presence of the vas-

cular septa, while interstitial fluid flows freely between them,

the former condition corresponding to no flux and the latter

to continuity of pressure and flux at the boundaries.

At the boundaries of the portal tracts and central veins,

and for both the sinusoidal space and the interstitial space, we

could choose to prescribe either the pressure or the flux there.

In this paper, since there are more relevant data available on

the blood pressure, we prescribe the sinusoidal pressures,

which are pS,PT at the portal tracts and pS,CV at the central

veins. In Sect. 3.3, we argue that reasonable choices of the

boundary conditions on the interstitial flow and pressure at

the portal tracts and central veins do not significantly affect

the results, and in this paper, we assume that there is no flux

of interstitial fluid into these vessels.

At the outer surface of the liver, we assume that no blood

crosses the surface, corresponding to a no-flux condition, and

for the interstitial fluid, we assume that the conductivity of

the surface for the interstitial flow equals M , and thus,

uI · n = M (pI − pext) , (8)

where pext is the pressure external to the liver. The liver

surface has two distinct regions with different properties:

– the ‘bare area’ at the upper surface, which has perme-

ability M = MB A and external pressure pext = pDS ,

and

– the lower surface, which is covered by the Glissonian–

peritoneal membrane, with permeability M = MG P and

external pressure pext = pPC .
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2.4 Parameter values

A list of the relevant physiological parameters and their typ-

ical values is given in Table 1, along with references. These

values will be used to produce the results presented in this

paper, except where stated otherwise.

2.5 Numerical computation

We developed a code to simulate the mathematical model

using the commercial software COMSOL Multiphysics,

which uses a finite element algorithm. The results were vali-

dated by successively refining the mesh and checking for con-

vergence, and also comparing against previous data, where

possible. In Appendix 5, we also present the analytical solu-

tion of a similar problem, in which portal tracts and cen-

trilobular veins are treated as point sources and point sinks,

respectively, and their strength is prescribed, rather than the

value of the pressure.

The graphical results presented in this paper were plotted

using either COMSOL Multiphysics or Matlab.

3 Results and discussion

3.1 Single lobule

We first consider the solution for a single lobule in an

unbounded lattice of lobules, representing a lobule well into

the interior of the liver. Due to the symmetrical setting of the

lobule, we apply no-flux boundary conditions on the intersti-

tial flow at each of its straight edges.

With the parameter values listed in Table 1, the sinusoidal

and interstitial pressures are shown in Fig. 3. As expected,

the sinusoidal pressure peaks near the portal tracts and is

minimized near the central vein. The sinusoidal pressure in

the absence of interstitial flow (C f = 0), which was studied

by Bonfiglio et al. (2010), only differs by about 0.008 % from

that obtained in this study (using the same parameter values).

Table 1 Typical values of physiological parameters taken from the literature

Symbol Description Typical value Ref

L lob Typical distance between neighboring

portal tracts

500 µm Estimated from Burt et al. (2006) and

Lautt (2010)

DPT Diameter of portal tract 50 µm Bonfiglio et al. (2010)

DCV Diameter of central vein 75 µm Bonfiglio et al. (2010)

Vliv Volume of tissue in liver 1,474 cm3 Wynne et al. (1989) (based on 24-year-olds)

Aliv Surface area of liver 1,190 cm2 See Appendix 6.1

χ Proportion of the surface of the liver, that is,

bare area

0.2 Estimated from Gray’s Anatomy of

the Human Body (1918)

kS Permeability of sinusoidal space 1.56 × 10−14 m2 Debbaut et al. (2012a)

kI Permeability of interstitial space 0.002 kS = 3.12 × 10−17 m2 See Appendix 6.2

µS Effective dynamic viscosity of sinusoidal blood 1.33µI = 0.0024 Pa s Derived from Eq. (30) in Secomb and

Pries (2007), using sinusoidal diameter

10 µm (Burt et al. 2006)

µI Dynamic viscosity of interstitial plasma 0.0018 Pa s Wells and Merrill (1961)

C f Hepatic filtration coefficient 5.3 × 10−5/(mmHg s) See Appendix 6.3

Cl Lymphatic conductance 5.9 × 10−7/(mmHg s) See Appendix 6.4

p0 Pressure in the flowing lymph Use 0

pS,PT Sinusoidal pressure at the portal tracts 4.4 mmHg Bonfiglio et al. (2010)

pS,CV Sinusoidal pressure at the central veins 1.5 mmHg Bonfiglio et al. (2010)

MB A Permeability of upper surface of liver Use ∞
MG P Permeability of Glissonian–peritoneal membrane 5.7 × 10−3ml/h/cmH2O/cm2

= 2.15 × 10−8 m s−1mmHg−1
Negrini et al. (1990)

pDS Pressure in diaphragmatic space Use 0

pPC Pressure in peritoneal cavity Use 0

Qblood Flux of blood through the liver 1,717 ml/min = 2.9 × 10−5 m3/s Wynne et al. (1989) (based on 24-year-olds)

γ Fraction of blood entering the liver

that is taken up by the lymphatics

under normal conditions

1.0 × 10−4 See Appendix 6.5

The rows corresponding to N and L liv have been deleted
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Fig. 3 a Sinusoidal and b interstitial pressures in the model hexagonal

lobule (values in mmHg). Contours are spaced by 0.2 mmHg in (a) and

by 0.05 mmHg in (b). Cuts 1 (black) and 2 (white) are shown in (a).

Axes in units of µm

The interstitial pressure follows a similar qualitative pattern,

but its range is only about 20 % of that of pS . The ranges can

be seen in Fig. 4, which shows the pressure on two cut lines

through the lobule. The pressure is minimized at the central

vein and rises steeply away from this point, which is also

where the fastest Darcy velocities are obtained.

Figure 5 shows the magnitudes of the Darcy velocities

in the sinusoids and interstitium. In the models by Bon-

figlio et al. (2010) and Debbaut et al. (2012b), it was found

that the magnitude is maximized near the vessels and mini-

mized at points midway between portal tracts, which is also

found in this model. On the other hand, interstitial velocity is

minimized near the vessels, due to the boundary conditions

imposed there.

The total volume flux of blood into the liver can be esti-

mated using the following formula:

Qblood =
Vliv

3
√

3L2
lob/2

∫

−n · uS dl, (9)

where n is the outward-pointing unit normal vector, and

the integral is taken around the edge of the lobule. We find

this to be approximately 0.66 l/min, which is around 39 %

of the measured physiological value, 1.717 l/min (Wynne

et al. 1989). Using the higher value of the permeability,

3.3 × 10−13 m2, estimated by Bonfiglio et al. (2010) (and

a proportionately higher value of kI , given by Eq. 37), we

find Qblood ≈ 14.0 l/min, about eight times the physiological

value, which is almost exactly in proportion to the increase

in kS .

It is also of interest to find the rate of fluid taken up by the

lymphatics, which equals the average flux per unit volume,

ql , integrated over the volume of the liver:

QL =
Vliv

3
√

3L2
lob/2

∫

Cross-sectional area

ql d A

=
Vliv

3
√

3L2
lob/2

∫

Cross-sectional area

Cl max(pI − p0, 0)d A.

(10)

This gives approximately 0.17 ml/min, corresponding to

about 0.026 % of the total blood volume flux, which is

slightly higher than the experimentally derived proportion,

γ ≈ 0.01%, estimated in Appendix 6.5.

The principle of mass conservation implies that there is

a relationship between the spatial averages of the pressures,

owing to the fact that the flux of blood into the sinusoids

minus the flux out equals the net volume flow rate from sinu-

soids to interstitium equals the rate of uptake of lymph. As

long as pI > p0 everywhere (which is expected to be the

case in normal physiological conditions), we have

pI =
C f pS + Cl p0

C f + Cl

,

where a bar indicates the spatial average. This equation can

also be derived by integrating Eq. (7) over the domain.
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Fig. 4 Sinusoidal and

interstitial pressures on the cuts

shown in Fig. 3

3.2 Multiple lobules

Simulations on a lattice consisting of as many lobules as was

possible to resolve indicate that the fluid pressure distribu-

tion in the lobules that are away from the outer boundary of

the model is very close to the pressures in the single lobule

simulation that was described in Sect. 3.1. Thus, the effects

of the outer surface of the liver seem to be confined to those

lobules that are very close to, or bordering, the surface. This

suggests that the arrangement of the interior lobules does not

significantly influence the rate of interstitial fluid crossing

the liver surface; instead, it depends only on the arrangement

of the lobules near the outer surface. Thus, in order to esti-

mate the flux across the surface, there is no need to consider

a model incorporating the details of the whole liver, and only

a model of the near-surface region is required. Therefore, in

this section, we consider a simulation of the flow and pres-

sure in a few lobules in a region that borders on the outer

surface (see Fig. 6).

The interstitial pressure in the few outermost lobules at

the Glissonian–peritoneal membrane is shown in Fig. 7a.

As expected, the interstitial pressure in the innermost lob-

ules in this model is similar to that of the single lobule pre-

sented in Sect. 3.1, while the pressure distributions in the

two outermost lobules are visibly different, which is due to

the boundary conditions imposed at the outer boundary. The

range of interstitial pressures in the outermost lobule is about

six times that of an internal lobule. Figure 7b shows the inter-

stitial pressure in the outermost lobules near to the bare area.

In this case, the effect of the liver surface penetrates through

a larger number of lobules than it does near the Glissonian–

peritoneal cavity, so a larger number of lobules are needed to

resolve the solution. As in Fig. 7a, the pressure distributions

in the innermost lobules in Fig. 7b are similar to that in the

single lobule solution in Sect. 3.1. The range of interstitial

fluid pressure in the outermost lobule at the bare area is about

nine times that of the inner lobules.

The fluid loss through the surface of the liver equals the

average flux per unit area through the surface multiplied

by the surface area. Thus, the flux through the Glissonian–

peritoneal membrane equals

QG P =
AG P

Ledge

∫

edge

uI · n dl
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Fig. 5 a Sinusoidal and b interstitial flows in the model (values in m/s).

The shading and contours show the magnitude of the Darcy veloc-

ity (darker regions indicate faster flow), and arrows indicate direc-

tion and magnitude of the flow. The contours in (a) are in intervals

of 2 × 10−9 m/s, and those in (b) are in intervals of 5 × 10−10 m/s

= (1 − χ)
Aliv

Ledge

∫

edge

MG P (pI − pPC ) dl

≈ 0.14 ml/min, (11)

where AG P = (1 − χ)Aliv is the area covered by the

Glissonian–peritoneal membrane, the integral is taken along

the lower edge of the bottom lobule in Fig. 7a, and the numer-

Fig. 6 Sketch of the model of the outermost layers of lobules used in

numerical simulations to find the behavior in the region near the surface

of the liver. Different numbers of lobules were used for different sim-

ulations (see, e.g., Fig. 7). Filled circles represent the centers of portal

tracts, and crosses represent those of central veins. The thick line at the

bottom represents the outer surface of the liver, on which the boundary

condition (8) is used. The other solid lines represent the boundaries of

the lobules, and the dashed lines represent lines of symmetry. No-flux

conditions are imposed at all the outer edges of the model due to sym-

metry (except for the bottom edge), and the boundary conditions on the

interior boundaries are described in Sect. 2.3

ical value is derived using the parameter values in Table 1.

Similarly, the flux through the bare area is given by

Q B A =
AB A

Ledge

∫

edge

uI · n dl

= −χ
kI Aliv

µI Ledge

∫

edge

n · ∇ pI dl

≈ 0.051 ml/min, (12)

where AB A = χ Aliv is the bare area, and the integral is taken

along the bottom edge in Fig. 7b. The proportion of the space

covered by the bare area, χ , is not well known: However,

the results presented here are qualitatively independent of

its value. The total flux crossing the surface is Qsurface =
QG P + Q B A ≈ 0.19 ml/min under normal physiological

conditions, which is about 0.028 % of the flux Qblood listed

in Table 1, and about 1.1 times QL . This implies that the bare

area leads to an increase in the total flux crossing the liver

surface by around 10 % compared to the flux that would be

obtained if the entire surface were peritonealized.

123



Mathematical model of blood and interstitial flow 371

Fig. 7 Interstitial pressure in the model near a boundary of the liver

(values in mmHg). a M = 2.15 × 10−8 m/s/mmHg, representative

of lobules near the Glissonian–peritoneal membrane, and b M = ∞,

representative of lobules near the bare area. The contours are spaced by

a 0.05 mmHg, b 0.1 mmHg

The total rate of lymph production by the liver equals

Qliver−lymph = QL + Qsurface ≈ 0.36 ml/min, which corre-

sponds to 0.51 liters per day of fluid production; this is of

the same order of magnitude as the measured physiological

values.

3.3 Effect of abnormal physiology and variation

in the model parameter values

In this section we consider the effect of changing certain

model parameters on the rates of lymph and peritoneal fluid

production; we investigate the parameters whose values are

uncertain and also parameters that are known to vary in med-

ical conditions of interest.

One of the parameters to which the sensitivity of the model

is of most interest is the sinusoidal pressure at the portal tracts,

because this is known to increase during portal hypertension

in small-for-size liver syndrome. As can be seen in Fig. 8, the

flows increase linearly with increasing pressure, and the rate

is about 0.032 ml/min per mmHg pressure rise for lymphatic

uptake and about 0.035 ml/min per mmHg for fluid crossing

the liver surface.

In Fig. 9 we show the effect of changing the distance

between neighboring portal tracts L lob on lymph uptake in

the liver and production of peritoneal fluid by the liver (a)

and on blood flux (b). The first figure shows that the effect of

the lobule size on lymph flow is fairly small over a very wide

range of values of L lob (much wider than physiologically

realistic). The effect becomes strong only for unrealistically

small values of the size of the lobule. This is because, in this

case, the lymph has to flow around the vessels that for small

values of L lob occupy a large percentage of the whole cross

section of the lobule. On the other hand, as expected, blood

flux is extremely sensitive to the lobule size, as shown in

Fig. 10b.

Since histological images show wide variation in vessel

diameters, in Fig. 10a we plot the effect of vessel diameter

on the flux. Increasing the size of the portal tracts increases

both the uptake of lymph and the production of fluid by the

liver. This is because in this case there is less resistance near
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Fig. 8 Effect of change in pS,PT on the rates of lymph uptake in the

liver and production of peritoneal fluid by the liver. Asterisks mark the

physiological values
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Fig. 9 Effect of change of lobule side length on the rates of lymph

uptake in the liver and production of peritoneal fluid by the liver (a) and

blood flux (b)

the portal tracts, meaning the sinusoidal pressure is higher

in regions close to them. In turn, this means the interstitial

pressure has a higher average value, and thus, both the uptake

of lymph (directly related to interstitial pressure via Eq. (4))

and the flux across the surface of the liver (given by (8)) are

increased. Increasing the size of the central vein decreases

both of these fluxes because there is less resistance, meaning

the sinusoidal pressure is lower near it, and thus, the average

interstitial pressure is smaller too, leading to both a lower

rate of lymphatic uptake and also less fluid crossing the liver

surface. Increasing the diameters of both portal tracts and

central veins in proportion to one another has relatively little

effect on these fluxes because the sinusoidal pressure distrib-

ution stays approximately unchanged, and thus, the intersti-

tial pressure is largely unaffected. The flux of blood, shown

in Fig. 10b, increases monotonically if the size of any ves-

sel increases, since the vessel’s surface area increases, which

decreases the resistance to blood flow. The size of the cen-

tral vein has a greater effect on the flux than the portal tracts,

because there are more portal tracts, so they collectively offer

less resistance.
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Fig. 10 Effect of change of vessel diameter on the rates of a lymph

uptake and flow across the surface of the liver and b flux of blood through

the liver. In (a) only, solid symbols—QL ; open symbols—Qsurface. In

both (a) and (b), circles denote the effect of changing DPT only, squares

denote the effect of changing DCV only, and diamonds denote the effect

of changing both DPT and DCV simultaneously

During ascites, the peritoneal pressure increases. In Fig. 11

we investigate the effect of different values of pext. For sim-

plicity, we used pPC = pDS and denote them both by pext.

In this case, the lymph uptake, QL , does not change signif-

icantly, whereas the outflow from the liver surface, Qsurface,

decreases significantly and, according to the model, might

even be reversed. Although the mathematical boundary con-

dition (8) does not prevent flow from the abdomen to the liver,

we are not aware of any evidence of its possible occurrence.

We also investigated the effect of changing the value of

the flowing lymph pressure, p0, as values for this parameter

were not found in the literature, which is shown in Fig. 12.

Increasing p0 has only a small effect on the outflow from

the liver surface, whereas it strongly affects the uptake from

lymphatic vessels, which decreases approximately linearly

with p0 as p0 increases. For sufficiently large p0, it van-

ishes, because pI < p0 everywhere, so no fluid is taken up

by the lymphatics. We also note that the effects of pext on

Qsurface and of p0 on QL are analogous to one another; how-
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cavity, pPC , and in the diaphragmatic space, pDS (pPC = pDS is

assumed, and these pressures are collectively denoted by pext), on the

rates of uptake by the lymphatics and flow through the surface of the

liver
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Fig. 12 Effect of flowing lymph pressure p0 on the rates of uptake by

the lymphatics and flow through the surface of the liver

ever, there is a qualitative difference for high values of these

external pressures, which occurs because, for high p0, the

valves in the lymphangions prevent backflow, and there is no

corresponding mechanics for high pext.

The permeability of the interstitial space, kI , could not

reliably be determined from experimental data, and it is esti-

mated in Appendix 6.2. In Fig. 13 we show how the lymph

production depends on kI . The flux through the surface

increases as kI increases, and tends to zero for vanishingly

small values of the permeability, while QL is unaffected by

the value of kI . The increase in Qsurface is due to a reduction

in the resistance of the outflow pathway through the liver

surface for higher values of kI .

Since there could be interstitial flow within the portal tracts

and central veins, the authors also considered a modified

model. In this model, within the portal tracts and central

veins, the interstitial flow satisfies
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Fig. 13 Effect of the value of the permeability of the interstitial space,

kI , on the rates of lymph production. For larger values of kI , a larger

number of lobules are needed in the model to resolve the simulation;

for example, for kI four times the default value, we used a model with

10 lobules

∇ · uI + ql =0 ⇒ −
kI

µI

∇2 pI +Cl max(pI − p0, 0)=0,

(13)

along with continuity of pressure and flux conditions on the

interface between the vessel and the interior of the lobule.

Implementing these conditions leads to an increase in the

predicted lymph production of just under 1 %, while the pro-

portionate change in the predicted overall blood flow was

much smaller.

We also investigated the possible effect of alternative geo-

metrical arrangements of the lobules. To do this, we con-

sidered a cuboid liver model consisting of lobules with a

square cross section. We scaled the lobules so that their cross-

sectional areas and the proportion of this area taken up by

both portal tracts and central veins were preserved. We also

ensured that the surface area and volume of the liver were pre-

served. With this model, we found that the predicted blood

flow was reduced by about 24 %, while both the rate of lymph

uptake and the total flux of fluid across the liver surface were

about 12 % smaller than those in the case of the hexagonal lat-

tice. The reduction in blood flow is to be expected; since the

hexagonal arrangement has six portal tracts supplying each

central vein, that arrangement has less resistance to flow than

the square one.

Finally, we note that the results presented are based on the

geometrical assumption that the lobules are orientated face-

on to the surface of the liver, as opposed to end-on. To our

knowledge, there is no indication about which case is more

realistic. However, since our model suggests that variations

in interstitial pressure are small, it is likely that such changes

would have a relatively small effect on the predicted rate of

lymph production.
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4 Concluding remarks

We have developed a new model of the microcirculation in

the liver, which incorporates production and flow of lymph

through the two major pathways: uptake by the lymphatic

vessels and flow out of the liver through the surface into the

peritoneal cavity or diaphragmatic space. We were able to

estimate nearly all of the parameters from experimentally

derived measurements, and we showed that the expected

effect of geometrical variations in the lobules is relatively

small. Even though the model is idealized, it provides use-

ful information about lymph outflow and response to patho-

logical states. The results of the model are consistent with

physiological measurements.

The model is based on numerous simplifying assumptions

on the geometry and mechanics. The most major geometrical

assumptions are as follows:

– Cylindrical vessels (portal tracts and central veins) that

are parallel to one another.

– Vessels arranged in a regular hexagonal lattice.

– With regard to the surface of the model liver, the vessels

run parallel to it, the outermost lobules have the same

cross-sectional area (see Fig. 1).

The main assumptions on the mechanics are as follows:

– Both sinusoids and interstitium can be modelled as a

porous material obeying Darcy’s law.

– The flow is two-dimensional.

– Flux from sinusoids to interstitium is proportional to pres-

sure difference (no oncotic effects).

– Lymph uptake has a linear relationship to pressure.

– Flux across liver surface is proportional to pressure dif-

ference.

The major weaknesses of the model are as follows:

– No account of effects of irregular geometry, especially

near the surface.

– Various pressures are required as inputs to the model

(pressures in portal tracts and central veins, base lym-

phatic pressure, and pressures in peritoneal cavity and

diaphragmatic space). In practice, these pressures vary in

response to blood flow conditions, and ideally, the model

should be extended so that these are an output.

– Model cannot account for other orientations of lobules

relative to the surface.

Many processes take place during liver disease, some of

which are not fully understood. Gordon (2012) describes the

current understanding of the main processes leading to the

development of ascites. These commonly include fibrosis of

the liver and active vasodilation, which are not accounted for

in the model described in this paper. There is scope to extend

our model to include some of these effects, and this should

be undertaken in a future work.

Under normal physiological conditions, spatial variations

in the interstitial pressure are much smaller than those in the

sinusoidal pressure, while approximately 1.1 times as much

fluid leaves the liver through the surface as that leaving via

the lymphatic ducts.

If the portal pressure were increased, such as would occur

in small-for-size liver syndrome, the model predicts signifi-

cant increases both in the uptake by the lymphatic ducts and

in the rate of fluid leaving through the surface of the liver. In

order to develop this model into a predictive model for the

severity of ascites, a model of the portal venous tree must

be added so that pressures in the portal tracts can be related

to those in the portal vein, and a model of the peritoneal

cavity must be added so that the equilibrium pressure for a

given flow rate of lymph from the liver can be found. The

extended model would, for example, enable us to predict the

consequences of different applied drainage rates.
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5 Appendix A: Analytical model

Here we consider a simplified model of a lobule in the inte-

rior of the liver that we can solve analytically, which is based

on the analytical model by Bonfiglio et al. (2010). As in that

paper, we consider a regular lattice of lobules with portal

tracts at the vertices and central veins along the axis and

assume symmetry, but for simplicity, we treat these vessels

as points in the plane. We denote by xPT,i the location of the

i th portal tract, and by xCV, j the location of the j th central

vein. In the case of point vessels, we cannot prescribe the

sinusoidal and interstitial pressures there, so instead we pre-

scribe the fluxes per unit length of the vessels. We assume

that the flux of interstitial fluid from each of the portal tracts

and central veins into the interstitium is zero, since these ves-

sels have zero size in the model. The total length of all the

lobules is the volume of the liver divided by the area of a lob-

ule, Vliv/(3
√

3L2
lob/2), and thus, the total length of the portal

tracts is twice this value. The volumetric flux of blood per

unit length of portal tract from the portal tract into the sinu-

soids is assumed to be homogeneous throughout the model

and equal to

qS,PT =
Qblood

2Vliv/(3
√

3L2
lob/2)

≈ 6.3 × 10−9 m2/s, (14)
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where we used the flux found in the numerical calculations

in the main part of the paper, rather than the physiological

flux, for the purposes of comparison. We also assume that

the volumetric fluxes from the sinusoids into the central vein

per unit length are homogeneous and define these as

qS,CV = 2 (1 − γ ) qS,PT , (15)

where γ is the fraction of blood that is taken up by the lym-

phatic vessels, which is estimated in Appendix 6.5. Across

the boundaries of the lobules, there is no flux in the sinusoids

and free flow in the interstitial space.

The principle of superposition allows us to write the solu-

tions of the governing Eqs. (6) and (7) as

pS =
∑

Portal tracts,i

pS,PT,i +
∑

Central veins, j

pS,CV, j , (16)

pI =
∑

Portal tracts,i

pI,PT,i +
∑

Central veins, j

pI,CV, j , (17)

where pS,PT,i and pI,PT,i are the pressures in the sinusoids

and the interstitium, respectively, in the case with a single

portal tract (with the same boundary conditions) at xPT,i and

no central veins, and pS,CV, j and pI,CV, j are the correspond-

ing pressures in the case with a single central vein at xCV, j .

Solving (6) for pI , substituting into (7), and rearranging,

we obtain a single governing equation for pS :
(

∇2 − λ2
1

) (

∇2 − λ2
2

)

(pS − p0) = 0, (18)

where

λ1,2 =

√

√

√

√

α ±

√

α2 −
ClC f µSµI

kSkI

, (19)

α =
1

2

(

C f

(

µS

kS

+
µI

kI

)

+
ClµI

kI

)

. (20)

Assuming that the pressures pS,PT,i and pI,PT,i are

axisymmetric about the portal tract at xPT,i ,

pS,PT,i = C1 K0

(

λ1rPT,i

)

+ C2 K0

(

λ2rPT,i

)

, (21)

where rPT,i is the distance from xPT,i , K0 is a modified

Bessel function of the second kind, C1 and C2 are constants

to be determined by applying boundary conditions, and we

have used the fact that the pressures must decay far from

the vessel to eliminate the modified Bessel functions I0 that

would also appear in the general solution. Hence,

pI,PT,i = pS,PT,i −
kS

C f µS

∇2 pS,PT,i

= C1

(

1 −
kSλ2

1

C f µS

)

K0

(

λ1rPT,i

)

+ C2

(

1 −
kSλ2

2

C f µS

)

K0

(

λ2rPT,i

)

. (22)

Similarly

pS,CV, j = C3 K0

(

λ1rCV, j

)

+ C3 K0

(

λ2rCV, j

)

, (23)

pI,CV, j = pS,CV, j −
kS

C f µS

∇2 pS,CV, j

= C3

(

1 −
kSλ

2
1

C f µS

)

K0

(

λ1rCV, j

)

+ C4

(

1 −
kSλ

2
2

C f µS

)

K0

(

λ2rCV, j

)

, (24)

where rCV, j is the distance from the j th central vein and C3

and C4 are constants to be determined.

The volumetric flux per unit length out of the i th portal

tract into the sinusoids equals

qS,PT = lim
ǫ→0

∮

rPT,i =ǫ

n · u dl

= lim
ǫ→0

2πǫ

(

−
kS

µS

)

(

λ1C1 K ′
0 (λ1ǫ)

+ λ2C2 K ′
0 (λ2ǫ)

)

=
2πkS

µS

(C1 + C2) , (25)

where we used the fact that limz→0(zK ′
0(z)) = −1, and,

similarly, the flux per unit length from sinusoids to central

vein is

qS,CV = −
2πkS

µS

(C3 + C4) , (26)

where the minus sign comes from the direction of the flux.

The corresponding fluxes per unit length from the portal

tracts into the interstitium and from the interstitium into the

central vein both equal to zero, and hence,

0 =
2πkI

µI

((

1−
kSλ2

1

C f µS

)

C1+

(

1 −
kSλ

2
2

C f µS

)

C2

)

, (27)

0 =
2πkI

µI

((

1−
kSλ2

1

C f µS

)

C3+

(

1 −
kSλ

2
2

C f µS

)

C4

)

. (28)

Solving these for the constants yields

C1 =
µS(C f µS/kS − λ2

2)

2πkS(λ
2
1 − λ2

2)
qS,PT , (29)

C2 = −
µS(C f µS/kS − λ2

1)

2πkS(λ2
1 − λ2

2)
qS,PT , (30)

C3 = −
µS(C f µS/kS − λ2

2)

2πkS(λ2
1 − λ2

2)
qS,CV , (31)

C4 =
µS(C f µS/kS − λ2

1)

2πkS(λ
2
1 − λ2

2)
qS,CV . (32)
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Substituting these expressions into (21)–(24), and then

into (16) and (17), we obtain expressions for the pressures:

pS =
µS(C f µS/kS − λ2

2)

2πkS(λ
2
1 − λ2

2)

×

⎛

⎝qS,PT

∑

Portal tracts,i

K0

(

λ1rPT,i

)

− qS,CV

∑

Central veins, j

K0

(

λ1rCV, j

)

⎞

⎠

+
µS(C f µS/kS − λ2

1)

2πkS(λ
2
1 − λ2

2)

×

⎛

⎝−qS,PT

∑

Portal tracts,i

K0

(

λ2rPT,i

)

+ qS,CV

∑

Central veins, j

K0

(

λ2rCV, j

)

⎞

⎠ , (33)

pI =
(C f µS/kS − λ2

1)(C f µS/kS − λ2
2)

2πC f (λ
2
1 − λ2

2)

×

⎛

⎝qS,PT

∑

Portal tracts,i

(

K0

(

λ1rPT,i

)

− K0

(

λ2rPT,i

))

+qS,CV

∑

Central veins, j

(

−K0

(

λ1rCV, j

)

+ K0

(

λ2rCV, j

)))

. (34)

We note that, by symmetry, these solutions automatically

satisfy the conditions on the boundaries between lobules. The

solution is calculated using Matlab and is shown in Fig. 14.

The analytical solution has the advantage with respect to

the numerical one presented in the main part of the paper that

it allows us to resolve better the details of the pressure near

portal tracts and central veins, which is where changes are

more significant.

6 Appendix B: Estimation of model parameters

from experiments

6.1 Surface area of the liver

Negrini et al. (1990) measured the surface area of five rabbit

livers and found them to be 240 ± 13cm2. We use the data

from Boxenbaum (1980) to scale this up to the human: Typ-

ical body masses for rabbit and human are 2.88 and 62.8 kg,

while liver masses as a fraction of body mass are 4.78 and

2.42 %, respectively. Estimating that areas scale as the two-

thirds of the power of volumes gives a surface area of
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Fig. 14 Analytic solution showing contours of a pS , b pI in mmHg;

the contours are spaced by a 0.2 mmHg, b 0.05 mmHg. c Pressures on

Cuts 1 and 2 (shown in Fig. 3). The plots were produced with a lattice

of about 3×106 lobules, and this figure may be compared directly with

those shown in Figs. 3 and 4
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Aliv =
(

0.0242 × 62.8

0.0478 × 2.88

)2/3

240 = 1190 cm2. (35)

6.2 Interstitial permeability

We were unable to find experimental data on the value of the

model parameter kI , so here we develop a model to estimate

its value. Interstitial fluid is contained in the space of Disse

and also in the gaps between cells of the liver. The space of

Disse surrounds the sinusoids and contains the vast majority

of the interstitial fluid and also, due to its relatively large

width, offers much less resistance to fluid flow than the gaps

between cells. Thus, we assume that the permeability of the

interstitial space as a whole is dominated by the permeability

of the network of vessels comprising the space of Disse.

We use a simplified model of the geometry of the space of

Disse and the Kozeny–Carman relationship to estimate the

permeability. This relationship states that the permeability

equals φ3/(cS2), where φ is porosity, S is the specific surface,

defined as wet surface area per unit total volume, and c is the

Kozeny constant.

We treat the sinusoids as cylinders of diameter Dsin =
10 µm (Burt et al. 2006) surrounded by an annular region

of width DSD = 0.5 µm (estimated from a diagram in Burt

et al. (2006)) representing the space of Disse. Assuming that

the Kozeny constants of the sinusoids and interstitium are

equal gives the relationship:

kI =
(

SS

SI

)2 (

φI

φS

)3

kS, (36)

where φS and φI are the porosities of the sinusoids and inter-

stitium, respectively, and SS and SI are the corresponding

specific surfaces. The ratio of porosities is estimated as the

ratio of cross-sectional areas, that is,

φI

φS

≈
(π Dsin DSD)

(π D2
sin/4)

=
4DSD

Dsin
.

The wet surface area of the space of Disse is approximately

twice that of the sinusoid, meaning that SI /SS ≈ 2. Hence,

kI ≈
1

4

(

4DSD

Dsin

)3

kS =
16D3

SD

D3
sin

kS = 0.002kS . (37)

6.3 Hepatic filtration

Greenway et al. (1969) performed experiments on the liv-

ers of anesthetized cats in which they controlled the hepatic

venous pressure and measured arterial and portal pressure,

liver volume, and blood flow through the liver in order to

determine the filtration coefficient, which is the volumetric

flow from the sinusoids to the interstitium per unit mechan-

ical pressure difference between the sinusoids and the inter-

stitium and per unit liver mass. They found that the flow rate

was F = 0.30 ± 0.03 ml/min per mmHg pressure differ-

ence between sinusoids and interstitium per 100 g of liver

tissue. In our model, we define the hepatic filtration coeffi-

cient, C f , as the volumetric rate of blood flow from sinusoids

to interstitium per unit pressure drop between sinusoids and

interstitium per unit volume of tissue. This is given by

C f = ρt F = 1060 ×
(

0.30 ×
1

106 × 60
× 10

)

= 5.3 × 10−5/(mmHg s), (38)

where ρt = 1,060 kg/m3 is the density of liver tissue (Kotilu-

oto and Auterinen 2004).

6.4 Conductance of the lymphatic ducts

Elk et al. (1988) performed experiments on anesthetized

dogs weighing 20–30 kg to determine the flow rate into

the lymphatic vessels as a function of interstitial pres-

sure. They found that the volumetric flux of lymph leav-

ing the liver equaled max(pI − p0, 0)/Rl , where Rl =
0.056 cmH2O min/µl = 0.056 × (10/13.6) × (60 × 109) =
2.5 × 109 mmHg s/m3 is the resistance of the ducts. Boxen-

baum (1980) gives the typical mass of the dog liver as 2.91 %

of body weight, and, taking the typical mass of the dogs in

the experiment as 25 kg, this gives the volume flux per unit

volume of liver tissue as Cl max(pI − p0, 0), where

Cl =
1

Rl

ρt

0.0291 × 25
=

1

2.5 × 109

1060

0.0291 × 25

= 5.9 × 10−7/(mmHg s), (39)

where ρt = 1,060 kg/m3 is the density of liver tissue (Kotilu-

oto and Auterinen 2004).

6.5 Fraction of blood that is taken up by the lymphatic

vessels

Laine et al. (1979) measured the typical outflow of lymph

via the lymphatic vessels (not the surface) from the livers of

anesthetized dogs, finding it to be 3.5 ± 1.19 ml/h. We scale

this up to the typical flow rate for humans by multiplying by

the ratio of liver mass of humans to that of dogs. The weight

of the animals was recorded as at least 17 kg (here we take

it as 17 kg), 62.8 kg is used as a typical human body mass,

and the liver masses are 2.91 and 2.42 % of the body masses

for dogs and humans, respectively (Boxenbaum 1980). Thus,

the flux of lymph uptake from a human liver is estimated as

QL = 3.5 ×
62.8 × 0.0242

17 × 0.0291
= 10.75 ml/h

= 3.0 × 10−9 m3/s. (40)
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The flux of blood through the liver is 1,717 ml/min (Wynne

et al. 1989 see also Table 1), and thus, we estimate that under

normal physiological conditions,

γ =
QL

Qblood
= 1.0 × 10−4. (41)
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