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Abstract

Background: One of the main factors affecting propagation of electrical waves and

contraction in ventricles of the heart is anisotropy of cardiac tissue. Anisotropy is

determined by orientation of myocardial fibres. Determining fibre orientation field and

shape of the heart is important for anatomically accurate modelling of electrical and

mechanical function of the heart. The aim of this paper is to introduce a theoretical

rule-based model for anatomy and fibre orientation of the left ventricle (LV) of the heart

and to compare it with experimental data. We suggest explicit analytical formulae that

allow us to obtain the left ventricle form and its fibre direction field. The ventricle band

concept of cardiac architecture given by Torrent-Guasp is chosen as the model

postulate.

Methods: In our approach, anisotropy of the heart is derived from some general

principles. The LV is considered as a set of identical spiral surfaces, each of which can be

produced from the other by rotation around one vertical axis. Each spiral surface is

filled with non-intersecting curves which represent myocardial fibres.

For model verification, we use experimental data on fibre orientation in human and

canine hearts.

Results: LV shape and anisotropy are represented by explicit analytical expressions in

a curvilinear 3-D coordinate system. The derived fibre orientation field shows good

qualitative agreement with experimental data. The model reveals the most thorough

quantitative simulation of fibre angles at the LV middle zone.

Conclusions: Our analysis shows that the band concept can generate realistic

anisotropy of the LV. Our model shows good qualitative agreement between the

simulated fibre orientation field and the experimental data on LV anisotropy, and the

model can be used for various numerical simulations to study the effects of anisotropy

on cardiac excitation and mechanical function.
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Mathematical modelling of the cardiac form and structure
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Background

Modernmodels of complex physiological systems, such as the heart, integrate description

from the molecular to the whole organ level and allow researchers to study mechanisms

of both mechanical and electrical cardiac activity in normal and pathological hearts.

Over the last several years, a number of models describing electrical and/or mechanical

function of the whole heart or its chambers have been proposed [1-12]. The most recent

of them consider detailed description of cardiac anatomy and fibre orientation fields as

crucial factors for correct representation of the physiological features that are central to

heart function.

All approaches to representing cardiac anatomy and anisotropy can be subdivided

roughly into two large groups: the individual map approaches, in which fibre orientation

is directly measured in the heart using various experimental techniques; and theoretical

approaches, in which fibre orientation is generated by algorithms.

In this article, we suggest a theoretical model for anatomy and fibre orientation of the

LV. The model is based on the ventricle band concept of cardiac architecture given by

Torrent-Guasp [13]. In 1972, Torrent-Guasp proposed an anatomic concept in which both

right and left heart ventricles were considered segments of a single myofibre band twisted

and wrapped into a double helical coil [13]. Since that time, this concept has been a sub-

ject of intense discussion. Many cardiac anatomists [14,15] consider the Torrent-Guasp

hypothesis a gross simplification, and a number of imaging scientists propose a more

complex organization of the LV micro-architecture [16]. Another group of researchers

has a favorable view on the ventricle band concept [17-19]. For example, an article signed

by more than 20 prominent scientists [20] concludes that ‘models such as that of Torrent-

Guasp et al., which proposes conduction along fibre orientation in a single muscular

band and defies conventional concepts of activation, should be investigated’. In spite of

that interest, the Torrent-Guasp model was never formalized and compared to data on

measured cardiac anatomy. Note that in our view, features of the model, such as the pos-

sibility of representing realistic fibre orientations by a single warped band, can be proved

or disproved only by means of mathematical modelling. Regardless of the outcome, such

a formulation will be useful.

In this article, we follow Torrent-Guasp’s approach to build cardiac anatomical

models of increasing complexity that also use later measurements by Streeter [21].

We show that this description allows one to represent such properties of heart

anisotropy as fibre rotation and its dependence on the latitude, spiralling of fibres

at the apex and fibre’s maximal angle of torsion about the LV axis. We also per-

form quantitative comparisons with data from Streeter [21] and Hunter [22], show-

ing good correspondence of the measured fibre orientation fields with that given by

our model.

In our model, both the anatomy and fibre orientation field are precisely formulated

mathematically. This allows a researcher to apply analytical methods to investigate cardiac

electrophysiology and mechanics. In addition, any variations in the shape of the LV and

the anisotropy pattern can be reproduced easily by this approach.

The construction of the LVmodel

The description of the model consists of several steps, starting with simple shapes and

approaching the final LV model. Initial steps follow the representation of Pettigrew’s idea
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(one can see a copy of his figure in Streeter’s work [21] (see Figure three)).We thenmodify

its description and obtain the LV model.

A semicircle with chords on it

Pettigrew began his construction from a semicircle with a set of curves on it [23], as one

can see in Streeter’s paper ([21], Figure three a). We describe the figure analytically as

follows.

Consider a semicircle with radius K given in the polar coordinate system (P,�):

0 ≤ P ≤ K , 0 ≤ � ≤ π . (1)

Following Pettigrew [23], let us construct a sequence of horizontal chords (Figure 1):

Y = const, 0 < Y < K , (2)

�0 := arcsin
Y

K
≤ � ≤ π − arcsin

Y

K
=: �1, (3)

P(�) =
Y

sin�
. (4)

Here, �0 and �1 are polar angles of the right and the left ends of a chord.

A global idea of the model is to wrap this semicircle onto a surface (e.g. conical). The

curves will give fibre orientation on that surface, and then rotation of such a surface will

give a 3-D structure of the heart. The first surface that we will construct is a simple cone.

We use a semicircle and a cone because the possibility to wrap a sector of circle to a sim-

ple cone is a proven mathematical fact and the LV form closely resembles a cone. We

consider the semicircle as the part of the Torrent-Guasp “unique myocardial band” which

corresponds to the LV. After this wrapping, we will convert the cone to a more com-

plex surface by a non-linear transformation which will allow us to obtain a more feasible

LV model.

Figure 1 Horizontal chords on the semicircle. The example chords are numbered so that they can be

identified after transformations that will be shown below.
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Wrapping the semicircle to a cone

In ([21] Figure three (b-c)), one can see a wrapping of the semicircle to a surface. We

propose the following analytical description of the procedure.

Let us imagine that the semicircle is made of paper. We can wrap this semicircle to a

right circular cone (maybe partial or with an overlap) so that the cone vertex corresponds

to the semicircle centre (Figure 2). Let us denote an angle along the cone arc as cone twist

angle φmax. We get a cone that becomes closed, if φmax = 2 π . We are going to consider

only the case where φmax > π . The cone is specified in a cylindrical coordinate system

(ρ, φ, z) as follows.

First note that curves described by

� = const

do not bend during wrapping. Therefore, these curves � = const are the generatrices of

the cone. The parametric equations of the cone are

ρ(P,�) = P ·
π

φmax
, (5)

φ(P,�) = � ·
φmax

π
, (6)

z(P,�) = P

√

1 −

(

π

φmax

)2

. (7)

An explicit equation for the object is

z(ρ, φ) = ρ

√

(

φmax

π

)2

− 1. (8)

Let us note that the semicircumference, limiting the given semicircle, transforms to the

cone planar arc, and the centre of the circle becomes the cone’s apex.

In order to model not only muscular layers, but also myofibres, one has to look for the

position of the transformed chords after the wrapping.

Let us find the chord Y = const images on the conical surface, by substituting (4) into

(5), (6), (7):

ρ(�) =
Y

sin�
·

π

φmax
, (9)

φ(�) = � ·
φmax

π
, (10)

z(�) =
Y

sin�
·

√

(

φmax

π

)2

− 1. (11)

Figure 2 Wrapping of the semicircle to a conic surface.
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The results can be seen in Figure 3. It is not difficult to see that rotation of such a simple

conical surface around the vertical axis does not give a good representation of the heart

anatomy, as it will produce only a conical surface, i.e. a body of zero thickness. To improve

that, we will generalize the procedure by introducing dependency of the generatrices on

the rotation angle.

Construction of spiral surfaces

In Figure 2, the cone’s generatrix was z = kρ, where k was a constant (see (8)), so that

it did not depend on the angle φ. Let us consider the more general situation when z =

Zφ(ρ). Such a generatrix will generate a spiral surface, which will finally give us a proper

representation of the heart’s geometry.

Let us consider a few examples.

We can first assume that generatrix changes its slope as shown in Figure 4. It can be

formally represented as

Zφ(ρ) =
H

r + γ (R − r)
· ρ, (12)

whereH ,R, r are positive constants, and

γ =
φ

φmax
, (13)

with 0 ≤ γ ≤ 1. The domain of Zφ is taken

D(Zφ) = [0, r + γ (R − r)] ,

such that the codomain is

E(Zφ) = [ 0,H] .

The conical shape produced by such generatrices is shown in Figure 4, on the right. We

will call it a pseudoconical surface.

Figure 3 A conical surface with wrapping angle of 2π and a series of chord images. Bottom view (a);

viewing from the top at an oblique angle from two different directions (b and c). Colour represents height,

and the chord images are drawn in black. The numbering and line styles of the chord images and of the

chords here and in Figure 1 are the same.
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Figure 4 On the left: The construction of the generatrices for a spiral surface, corresponding to the

conical LV with a dot vertex. The graph of the functionZφ(ρ) (see (12)) connects the points A and B for

φ = 0 and φ = φmax by the line segments. On the right: The resulting pseudoconus.

If we rotate a pseudoconical surface around the vertical axis, we get a conical body that

has some resemblance to the LV (it has an LV cavity), but its thickness at the apex will be

zero. To improve, we modify the generatrices as follows.

Let us move the end A (see Figure 4) down by a value hγ , i.e. proportional to the angle

φ = γφmax (h is a positive constant), as shown in Figure 5:

Zφ(ρ) =
H − h + hγ

r + γ (R − r)
· ρ + h − hγ , (14)

D(Zφ) = [0, r + γ (R − r)] , E(Zφ) = [h − hγ ,H] .

As a result, the thickness of the LV at the apex will become h > 0, which improves

our representation. However, a real LV surface is not conical, so we have to use curves as

generatrices instead of straight line segments.

Let us connect the same points A and B, as in the previous example, but by an arc

(Figure 6):

Zφ(ρ) = (H − h + hγ ) · Fφ

(

ρ

r + γ (R − r)

)

+ h − hγ , (15)

Figure 5 The construction of the generating lines for a spiral surface corresponding to the conical LV

with a thick vertex. The graph of the functionZφ(ρ) (see (14)) connects the points A and B for φ = 0 and

φ = φmax by the line segments.
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Figure 6 The construction of the generatrices for the salient spiral surface used in modelling the

convex LV with a thick vertex. The graph of the functionZφ(ρ) (see (15)) connects the points A and B for

φ = 0 and φ = φmax by the arcs of curves.

where the function Fφ represents a curved generatrix.

D(Fφ) = E(Fφ) = [ 0, 1] ;

D(Zφ) = [0, r + γ (R − r)] , E(Zφ) = [h − hγ ,H] .

The following properties are imposed on the function Fφ(ρ)

1. D(Fφ(ρ)) = E(Fφ(ρ)) = [ 0, 1]

2. Fφ(ρ) is continuous and differentiable on [ 0, 1]

3. Fφ(ρ) increases monotonically on [ 0, 1].

We refer to the functions with these properties as generating functions (GF). In the first

example Fφ(t) = t, Zφ(ρ) = Fφ

(

ρ
r+γ (R−r)

)

· H ; in the second example Fφ(t) = t, and

Z is represented throughF in the same way as in the third example (see (15)). Now let us

choose a proper GF to construct a more realistic LV.

Amodel of the LV

To represent the shape of the epicardial LV surface, Streeter ([21], pp. 91–92) used the

following functions:

ρepi(ψ) = Rb (ǫ cosψ + (1 − ǫ)(1 − sinψ)) ; (16)

zepi(ψ) = Zb(1 − sinψ). (17)

If ǫ = 0, the curve AB is a line segment, and if ǫ = 1, it is a quarter of an ellipse. For

intermediate ǫ values, we get intermediate curves. Let us use the following equation of

the endocardium in analogy with Streeter’s description:

ρendo(ψ) = (Rb − L) (ǫ cosψ + (1 − ǫ)(1 − sinψ)) ; (18)

zendo(ψ) = (Zb − h)(1 − sinψ) + h, (19)

where “latitude” ψ takes values 0° ≤ ψ ≤ 90° (Figure 7). Parameters determining the

shape are: an outer radius Rb near the equator; a thickness L near the equator; a height

Zb; a thickness h at the apex.

The form of any intermediate layer between epi- and endocardium is described by the

equations (see also Additional file 1):

ρmid(ψ , γ ) = (Rb − (1 − γ )L)(ǫ cosψ + (1 − ǫ)(1 − sinψ)),
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Figure 7 A shape of function representing the endocardial (the solid red line, see (16), (17)) and

epicardial (the dashed blue line, see (18), (19)) surfaces.

zmid(ψ , γ ) = (Zb − (1 − γ )h)(1 − sinψ) + (1 − γ )h.

Elimination of ψ delivers an explicit equation for the surface:

zepi(ρ) = ZbFǫsp(ρ/Rb); (20)

zendo(ρ) = (Zb − h)Fǫsp(ρ/(Rb − L)) + h, (21)

Fǫsp(t) =
ǫ2 + t(1 − ǫ) − ǫ

√

2t(1 − ǫ) + ǫ2 − t2

(1 − ǫ)2 + ǫ2
, (22)

where Fǫsp : [ 0, 1]→[ 0, 1] is the GF of the epicardium, the endocardium and every

intermediate layer of the LV wall; ρepi/Rb ∈ [ 0, 1] , ρendo/(Rb − L) ∈ [ 0, 1].

As a result, we get the following definition of the ǫ-spiral surface (ESS, see Additional

files 2 and 3):

zǫsp(ρ, φ) = (Zb − (1 − γ )h)Fǫsp

(

ρ

Rb − (1 − γ )L

)

+ (1 − γ )h. (23)

The spiral surface’s border with an angle φ = 0 is located at the endocardial side, and

the border with an angle φ = φmax lies at the epicardial side. The LV model is made as a

body of revolution of an ESS. See Figure 8 for an example of a single and multiple nested

ESS. We form the LV by using shifted layers (or the rotated spiral surfaces, which is the
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same) because a thick muscular layer cannot be wrapped to a body of revolution with

overlapping, but without any shift of its sheets.

Our description reproduces the form of epicardium from Streeter’s work (see Figure

forty in [21]), but for endocardium, Streeter uses more complex equations with an addi-

tional parameter that he called the ‘angle of taper’. However, we found that even without

this parameter our function reasonably reproduces the form of the endocardium, and,

thus, we decided to use equation (23) without further modifications.

To represent fibre orientation and to compare it with anatomical data, Streeter [21] used

the following angles: true fibre angle, α; the helix angle, α1; and the longitudinal angle, α2

(see Figure 9 for their definitions). We follow the same approach in this work.

Together with (22), (23) forms the basis for the LVmodel. Finally, we need to set proper

fibre angles at the epicardial and endocardial surfaces.

In the model given by (22) and (23), angle α depends on point position in the LV wall

and changes from 90° on the endocardium to approximately 0° in the middle of the wall

and then to 90° on the epicardium. In real hearts, the rotation of fibre is less, and its values

at the endocardium and epicardium are about 60° and 70° ([21], Figure thirty-three). To

account for that, we use only part of the interval 0 ≤ γ0 ≤ γ ≤ γ1 ≤ 1. For example, if

γ0 = 0.1 ≤ γ ≤ 0.75 = γ1, then the extreme angle values in the equatorial area are 55° at

the endocardium and 75° at the epicardium (see Figure 10 and Results for more details).

As a change in the range of γ changes the anatomy of the heart, we need to rescale it to

the normal heart using:

Rb = Re
b +

Leγ0

γ1 − γ0
,

L =
Le

γ1 − γ0
,

Zb = Ze
b +

heγ0

γ1 − γ0
,

h =
he

γ1 − γ0
,

φmax =
φe
max

γ1 − γ0
.

Figure 8 A spiral surface (on the left, the lines have equations ρ = const and φ = const), a schematic

representation of the LV obtained (six spiral surfaces rotated by angles 0°, 60°, 120°, 180°, 240° and

300° around the vertical axis (on the right, compare with ([21], Figure three D))). If we consider

infinitely many such surfaces, we obtain the whole LV model.
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Figure 9 On the left, definition of the local coordinate system. Oxyz is the global Cartesian coordinate

system. The blue axis is normal u to the epicardium; the red axis, latitude v; the dark green axis, longitude w.

The colourful surface is the epicardium; the colour depends on altitude z. The curve inside is a fibre as a chord

image, the curve does not lie on the epicardium. The normal axis intersects the curve at a point. On the right,

definition of the true fibre angle, α; the helix angle, α1 ; and the longitudinal angle, α2 . The thick, dashed line

is a tangent to a myofibre segment constructed at the origin of the coordinates. The dashed-and-dotted lines

are projections of the myofibre tangent.

After choosing of γ0 and γ1, we completely specify parameters of our model and can use

it for generation of anisotropy.

Comparison of the theoretical model with experimental data

In this section, we indicate the parameter values used in our study and compare

theoretically obtained results with experimental data from [21] and [22].

Verification of themodel: comparison with Streeter’s data

We used the following parameter values reported in ([21], Table two): external radius of

LV at the equator Re
b = 33 mm, thickness of LV wall at the equator Le = 10 mm, height

of under-equatorial LV part Ze
b

= 60 mm, thickness of LV wall at the apex he = 7 mm,

ǫe = 0.9; and we set angle of spiral surface torsion φe
max = 3π according to ([21], Figure

three c).

See Figure 11 and 3 additional movie files for the spiral surfaces we made using these

parameter values.

We used the parameters of the subepicardial and subendocardial boundaries γ0 = 0.1,

and γ1 = 0.75, which gives α = 55° at the endocardium and θ = 75° at the epicardium

that fits with ([21], Figure forty-four) taking into account the experimental measurement

error and data variability.

We compared three angular characteristics of our myofibres field with experimental

data from [21]. The comparison was made in two areas of the LV: the equatorial (58 mm≤

z ≤60 mm) and the bottom (18 mm≤ z ≤21 mm) parts of the LV. In both regions,
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Figure 10 The true fibre angle, α, (in degrees) in the equatorial and bottom areas of the LV. The solid

red lines correspond to the data from our model, the dashed and dotted blue ones correspond to the

experimental data from [21]. The horizontal axis from endo- (value 0) to epicardium (value 1). The trabecular

LV zone is not taken into account.

angles were compared along a line orthogonal to the epicardium, which is common in

anatomical studies.

The results of comparison are shown in Figures 10, 12 and 13.

LV top zone

Note that in the LV top zone, the true fibre angle α varies non-monotonically, as in

Streeter’s data [21]. In particular, α on the endocardium was close to 55◦, on the epi-

cardium it was close to 75◦ and decreased to 5◦ approximately at the middle of the LV

wall, between 35% and 40% of the wall depth (Figure 10, on the left). We see some dif-

ferences in the slope of curves in our model and in measured data; however, a qualitative

correspondence is observed.

Figure 12, on the left, shows similar results for the helix angle. We see that going

from endocardium to epicardium, the helix angle α1 decreased monotonically from+55◦

to−75◦ and was equal to 0◦ approximately at the middle of the LV wall, between 35% and

40% of the wall depth. We also see a good agreement of our model with the experimental

results from [21].

As we see in Figure 13, on the left, the longitudinal angle, α2, going from endocardium

to the middle of the LV wall, decreased from 0◦ to −90◦. At the middle of the LV wall,

Figure 11 ESS used in the model of convex LV with a thick equator and γ restricted to

[γ0, γ1] = [0.1, 0.75] and chord images (black lines). The first row: four side and one top views. The

bottom figure: area of the apex (0 ≤ z ≤ h), top view.
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Figure 12 The helix angle, α1. The axes are the same as in Figure 10.

between 35% and 40% of the wall depth, the experimental and modelled angle abruptly

changed from −90 to +90◦, which is an artefact. We found the jump at 43%, while it

was 38% in Streeter’s data. At the exterior half of the LV wall, the α2 angle decreased at

a decelerating rate to 0◦. Here too, we observe good qualitative correspondence of our

model with experimental data, although some quantitative differences in the slopes of the

dependencies are present.

LVmiddle zone

The true fibre angle α also reaches a minimum in the mid-wall region, both in our model

and in Streeter’s data. On the endocardium, it was close to 35◦, on the epicardium, it was

close to 50◦ and decreased to 5◦ approximately at the middle of the LV wall, at 0.4 of the

wall depth (Figure 10, on the right).

Figure 12, on the right, displays similar results for the helix angle. We see that going

from endocardium to epicardium, the helix angle, α1, decreased monotonically from

Figure 13 The longitudinal angle, α2. The axes are the same as in Figure 10.
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+25◦ to −50◦ and was equal to 0◦ approximately at the middle of the LV wall, at 0.4 of

the wall depth. We also see a good agreement of our model with the experimental results

from [21].

In Figure 13, on the right, the longitudinal angle, α2, decreased from −5◦ to −90◦

between endocardium and mid-wall. At the middle of the LV wall, between 0.35 and

0.4 of the wall depth, the angle again abruptly changed to +90◦. On the exterior half

of the LV wall, the α2 angle decreased at a decelerating rate to 0◦. A good qualitative

correspondence with anatomical data is found in the outer two-thirds of the LV wall.

Our model also successfully reproduces the distribution of fibre directions in the thick,

radially placed layer of the LV wall, as shown in Figure 14. Streeter studied the pattern

and named it ‘Japanese fan’ ([21], Figure forty-two c).

Overall we can claim that our model adequately reproduces the direction of myocardial

fibres in the human LV.

Comparison with Auckland canine dataset

We also compared our model to the data used in [22]. The comparison was conducted in

the following way. We aligned our LV model with the Auckland model along the vertical

axis and found that reasonable fit of our anatomy to the Auckland heart model occurs for:

Re
b = 45 mm, Ze

b = 80 mm, he = 12 mm, Le = 15 mm, ǫe = 0.85, φe
max = 3π , γ0 = 0.15,

γ1 = 0.9. Subsequently we constructed five meridional half-planes so that they divided

the LV free wall region and the dihedral angle to four equal dihedral angles. We examined

only points lying near the five half-planes. We used the same comparison procedure that

we described in Section “Verification of the model: comparison with Streeter’s data”. The

fibre orientation was compared at three different “latitudes” (close to apex, in the middle

and close to base) along lines orthogonal to the heart surface. We computed the x values

(they show the position of a point in the ventricular wall) and the two angles, α and α1,

Figure 14 Fibre slope angle variation depending on fibre’s position in the thickness of the wall in the

LVmodel. Endo- and epicardial wall surfaces are highlighted. Colour of the border surfaces from the equator

to the vertex matches rainbow colours.
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and plotted their values from the experimental dataset and from the theoretical model.

The results obtained are shown in Figure 15.

We see that the plots of the α angle have characteristic V-shaped forms, both in the

model and in four of five meridional sections at all three “latitudes”. The model angle is

within the limits of the section angles in almost all the positions, except the external one-

third of the wall on the left graph. The plots of the α1 angle show the same pattern: they

descend from some positive values to some negative ones, speed of the decrease is higher

in the endo- and epicardial area and slightly less in the mid-myocardium.

Note that we show only one line for our model. This is because our model is rotation-

ally symmetric, and all five lines for different rotation angles are the same. The model is

an idealization and it represents only some averaged characteristics of LV and neglects

possible individual aspects of the LV form.

Our simulation programme is available on request.

Discussion

In this section, we discuss limitations of our model, experimental methods and models

that can be used to verify it, its possible applications and ways of improving it.

Limitations

Our model adequately reproduces fibre angles at the LV middle zone, but agreement for

the LV top and apex zones is mainly qualitative.

Figure 15 The true fibre angle, α, (the first row) and the helix angle, α1, (the second row) in the canine

LV free wall. The solid, red lines correspond to the data from our model, and the dots correspond to the

Auckland canine anatomy data from [22]. The left graphs show the upper area of the LV (ψ = 30° at the

epicardium); the centre graphs, the middle area (ψ = 45°); and the right graphs, the bottom area (ψ = 60°).

The abscissa axis reflects the position of a point in the thick layer of the LV wall, 0 corresponds to the

endocardium (the trabecular LV zone is not taken into account), 1 corresponds to the epicardium. The colour

of the points corresponds to the five different longitudes (φ) at the LV free wall.
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Inaccurate reproduction of fibre direction in the basal and apical zones can be

caused by different reasons, one of which can be the idealized axisymmetrical LV

form in the model. Real ventricles have essential deflections from the axis symme-

try; they are somewhat individual, that is specific for every LV. In this work, we

tried to construct an axisymmetrical model that could maximally suit the middle

(by height) LV area. The apex and base of a real LV could considerably move away

from the axis. We are currently working on extensions of the model which will adapt

the idealized model to individual peculiarities of real ventricles. We hope to achieve

more accurate imitation of the transmural run of the fibres at the apical and basal

zones.

Experimental methods that can be used to verify our model

Currently, there are several experimental methods that can be used to measure fibre

orientation in the heart. One of them is the diffusion tensor imaging (DTI) technique.

In this approach, a researcher finds the diffusion matrix of water molecules in the

heart. The main directions of diffusion are determined by the structure of the tissue

[24-27], and by calculating the eigenvectors of the matrix corresponding to the largest

eigenvalue, the fibre direction can be found. Diffusion tensor magnetic resonance imag-

ing (DT-MRI) measurements can be done with spatial resolutions up to 200 μm [28].

Another advanced technique is the micro computerized tomography (Micro-CT) imag-

ing. Micro-CT measurements can be done with spatial resolutions up to 36–70 μm

[29], and both these methods produce high-quality data that can be used in computer

models.

Direct measurement of anisotropy also can be conducted via tedious histological stud-

ies of fibre direction in 3-D [21,22]. In this method, the researcher makes a series of

parallel sections of the heart. In each section, angles of fibre slope are measured, which

gives a full picture of the fibre directions in the heart. Recently, Smaill et al. developed a

combined high-resolution serial imaging microscopy technique [30]. In thismethod, after

heart fixation, they perform cross-section and make successive, high-resolution images

of the heart. Then, using computer processing, the data are collected to form an overall

3-D dataset.

In [31], the myofibres in the foetal human heart are investigated using quantitative

polarized light microscopy. The hearts are embedded in a transparent resin, polymerized

and then sectioned. Afterward, the elevation and azimuth angles are measured by means

of polarized light (see [31] for details).

Comparison with other models

Experimental data on the fibre orientation obtained as described above may be in

different ways used for construction of anatomical computational models:

• either as a discrete dataset in finite element models [32-34];

• or for the verification of rule-based models, i.e. the models formed on the base of

some constitutive rule [35-38].

One of the most recent rule-based methods is a Laplace–Dirichlet algorithm [37],

which takes a noisy DTI-derived fibre orientation field as input data and yields, firstly,
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the transmural and apicobasal directions for the entire myocardium and, secondly, a

smooth and continuous fibre orientation field. Another approach was used by Peskin,

who derived fibre orientation field from the principles of mechanical equilibrium [39].

One more anatomic model based on a principle of the mechanical activity of the heart

was a model by Chadwick, who considered a cylindrical LV and specified the helix angle

linearly depending on point position in the LV wall [40]. Beyar et al. shaped LV into a

spheroid and also used linear dependence of the helix angle on the distance between any

point in the ventricle wall and the endocardium [2]. An interesting example of the theo-

retical approach was developed by Arts et al. in 1992 [41]. They constructed a model of an

ellipsoidal LV, complicated the law of helix angle change to a piecewise quadratic one and

quantified orientation of themuscle fibres via the helix fibre angle distribution, which was

found upon application of the mechanical adaptative principle suggested by Arts et al.

in 1982 [42].

In this work we present our rule-based model focused on the LVmorphology including

simulation of the ventricle shape and fibre orientation in its wall. The developed formal-

ism is substantially associated with both ventricle band concept of cardiac architecture

given by Torrent-Guasp [13] and anatomic observations presented by Streeter in his clas-

sical work [21]. In our approach to the modelling of the LV architecture, anisotropy

of the heart was derived from some general principles. In our model, the LV is con-

sidered a set of identical spiral surfaces combined with each other by rotation about

the vertical axis. Every spiral surface is defined analytically and represents a mapping

of a half disc. The first step of the transformation is the mapping of the semicir-

cle to a conical surface. In the second step, the conical surface is transformed to a

curved spiral surface, representing the quasi-elliptical shape of the LV boundary surface.

Finally, every spiral surface is filled with myocardial fibres, represented by the trans-

formed images of the chords that were parallel to the diameter in the initial semicircle

(see Figure 1).

Our model is not the only wrapping-based myocardium model. Sinha et al. pro-

posed in [43] a model of one myocardial layer which had a rectangular form and

was wrapped around a (truncated) cone. They used this very simple model to

study termination of re-entrant waves rotating around obstacles in cases of isotropy

and anisotropy but without any linkage to the real fibre pattern in the heart

ventricles.

We used experimental data from the above cited work by Streeter [21], as well as from

othermore recent works [22] for themodel verification. In particular, themodel proved to

reproduce adequately both the looping arrangement of the muscle fibres and the specific

3-D pattern of the relative positions of the fibres in the transmural direction through the

ventricle wall.

These accurate reproductions allow us to consider the model a touchstone in validating

the ventricle band concept of cardiac architecture originated by Torrent-Guasp, because

the model, based on this concept, yields an adequate fibre field as a consequence of the

postulates.

It seems reasonable to compare our model with another rule-based model that assigns

fibre orientation locally, particularly with the very interesting and promising model by

Bayer et al., mentioned earlier in this section [37]. For this comparison, only the repro-

duced fibre orientation in various parts of the LV of the two models can be used. The



Pravdin et al. BioMedical Engineering OnLine 2013, 12:54 Page 17 of 21

http://www.biomedical-engineering-online.com/content/12/1/54

Bayer model is based on DT-MRI data of anisotropy in two ventricles of a canine heart.

The average angle divergence between the model and the DT-MRI fibre directions is 23°;

that is there is not a complete quantitative matching of the real experimental and repro-

duced data, but there is reasonable concordance. Specifically, Bayer’s model quantitatively

reproduces fibre anisotropy in the basal and apical LV zones better than our model (see

[37], Figure three). In the section describing the limitations of our model, we point to this

quantitative inaccuracy in our model and propose some ways to eliminate it. At the same

time, our model better reproduces the experimental data in the middle LV zone; namely,

we obtain the specific s-like plot of the angle α1 in the transmural direction (see Figure 15,

the bottom right panel). In Bayer’s model, this dependency is linear by definition. More-

over, if we follow the cited paper by Bayer et al. ([37], Eq. (1), (2)), all plots for angle α1

presented in Figure 12 reveal independence of the angle from both the latitude and the

longitude of the intramural position within the wall. Bayer and co-authors suggest that

their model can be easily improved to take the non-linearity of angle α1 into account. But,

it also is necessary to make the anisotropy latitudinally and longitudinally independent,

and it is not easy to do so. Our model reproduces such a dependence (see Figures 10, 12,

13, 14 and 15), which is proper for real hearts, and does it quite fairly for the middle zone

of the LV.

One more simplification of Bayer’s model concerns transmural rotation of the fibres’

directions, named ‘Japanese fan’ by Streeter ([21], Figure forty-two c). In that model,

the rotation is defined in one plane only, that is, around only one axis, settled transmu-

rally. This plane lies tangentially to the surface determined by the condition d = const,

where d is a term specified in the cited paper by Bayer et al. [37] and presents there

the occurrence depth of particular locus within the wall; for example, d = 0 on the

endocardium and d = 1 on the epicardium. Moreover, if we assess results obtained

in Bayer’s model by means of the angle α3 defined by Streeter [21] and determine

transmural direction of the fibre orientation, it will prove to be constantly 0, which is

a substantial simplification. This feature does not allow mapping the 3-D pattern of

the relative positions of the fibres in the transmural direction through the ventricular

wall.

In contrast, in our model the 3-D pattern is taken into consideration (see Figures 10, 12,

13, 14 and 15, and note that in themiddle LV zone these angles are reproduced quite well).

Thus, we believe that both models have their own virtues and their own limitations, and

further development of the models would be useful to overcome the limitations.

Development and uses of our model

We suggest that analytical representation of the geometry presented here can be used

for development of new numerical methods to study electrical and mechanical activity

of the heart. As our model provides analytical mapping of a rectangle in (γ ,ψ , φ) space

into the curvilinear heart shape, one can formulate a rectangular numerical scheme in

(γ ,ψ , φ) space (where representation of boundary conditions is simplest) and account for

anisotropy by explicit analytical formulae. Themodel can also be used to generate various

anisotropic properties of the heart and modulations of the LV shape (viamodel parameter

variations) and to study their effects on electrical and mechanical heart functions.

Of course, our model is an idealization; it represents some averaged characteristics

of the LV and neglects possible individual aspects of the LV form. Model adaptation
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to individual characteristics is the subject of a particular line of research. We are

developing methods to further modifying the LV model to customize it to individual

hearts.

Conclusions

We have constructed one of the simplest analytical descriptions of cardiac anatomy based

on the Torrent-Guasp’s ventricular band concept. The model can be used for verification

of the band concept as well as for various numerical simulations to study the effects of

anisotropy on cardiac excitation and mechanical function. Our model shows good quali-

tative agreement between the simulated fibre orientation field and the experimental data

on LV anisotropy.

Appendix

Mapping a point on the semicircle to the spiral surface

In this section, we give all needed formulae to map a point on the semicircle to the cone

and then to the spiral surface. The following input parameters are used

• external radius of LV at the equator, Rb;

• thickness of LV wall at the equator, L;

• height of LV, Zb;

• thickness of LV wall at the apex, h;

• conicity-ellipticity parameter, ǫ;

• angle of spiral surface torsion, φmax.

Let us consider a point (P,�) on a semicircle with a radius K. In order to get outer

radius Rb of the LV on the equator, we need to use

K =
φmax

π
· Rb.

The image of the point on the ESS has the following coordinates (see also (23)):

ρ(P,�) = P ·
π

φmax
·

(

1 −
�

π
·
L

Rb

)

,

φ(P,�) = φmax ·
�

π
.

The mapping (x, y, z) −→ (γ ,ψ , φ) is given by

ρ =

√

x2 + y2,

γ : zǫsp(ρ, γ ) = z,

γ ′ = 1 − γ ,

ψ = arcsin

(

Zs − z

Zb − γ ′h

)

,

φ = atan2(y, x).
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The fibre direction �v = (vx, vy, vz) at a point (γ ,ψ , φ):

ρ = ρmid(ψ , γ ′),

ρpl =
ρφmax

π(1 − Lγ ′/Rb)
,

φpl = πγ ′,

t =
ρ

Rb − γ ′L
,

Y = ρpl sinφpl (see Figure 1),

dρ

dφpl
= −

ρpl

Rbφmax
·

(

L +
πRb − φplL

tanφpl

)

,

dφ

dφpl
= φmax/π ,

F = Fǫsp(t) (see (22)),

F
′ = F

′
ǫsp(t) =

1 − ǫ − ǫ(1 − ǫ − t)/
√

ǫ2 + 2t(1 − ǫ) − t2

(ǫ − 1)2 + ǫ2
,

dz

dρ
=

Zb − γ ′h

Rb − γ ′L
· F ′,

dz

dφ
=

1

φmax
·

(

h(1 − F) +
F ′ρL(Zb − γ ′h)

(Rb − γ ′L)2

)

,

vx =
dρ

dφpl
cosφ − ρ sinφ

dφ

dφpl
,

vy = −

(

dρ

dφpl
sinφ + ρ cosφ

dφ

dφpl

)

,

vz =
dz

dρ
·
dρ

dφpl
+

dz

dφ
·
dφ

dφpl
.

Additional files

Additional file 1: Rotating plane curve in space. On the left, changing curve on plane; on the right, the same

curve moves and rotates in space.

Additional file 2: Traced rotating plane curve in space. The same movement of the same curve, but with its trace,

which is a spiral surface. Colour is linked with height z, red codes 0, purple codes 60 mm.

Additional file 3: Lower part of the spiral surface. It is the lower part (0 ≤ z ≤ 15 mm) of the forming spiral

surface from Additional file 2. Here we see the apical zone clearer. Colour is linked with height z, red codes 0, purple

codes 15 mm.
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