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This paper presents a mathematical model that describes the transmission dynamics of schistosomiasis for humans, snails, and the
free living miracidia and cercariae. The model incorporates the treated compartment and a preventive factor due to water sanitation
and hygiene (WASH) for the human subpopulation. A qualitative analysis was performed to examine the invariant regions,
positivity of solutions, and disease equilibrium points together with their stabilities. The basic reproduction number, R0, is
computed and used as a threshold value to determine the existence and stability of the equilibrium points. It is established that,
under a specific condition, the disease-free equilibrium exists and there is a unique endemic equilibrium when R0 > 1. It is
shown that the disease-free equilibrium point is both locally and globally asymptotically stable provided R0 < 1, and the unique
endemic equilibrium point is locally asymptotically stable whenever R0 > 1 using the concept of the Center Manifold Theory. A
numerical simulation carried out showed that at R0 = 1, the model exhibits a forward bifurcation which, thus, validates the
analytic results. Numerical analyses of the control strategies were performed and discussed. Further, a sensitivity analysis of R0

was carried out to determine the contribution of the main parameters towards the die out of the disease. Finally, the effects that
these parameters have on the infected humans were numerically examined, and the results indicated that combined application
of treatment and WASH will be effective in eradicating schistosomiasis.

1. Introduction

Schistosomiasis is a disease that is common in the tropics,
and it is caused by a group of parasitic worms known as
schistosomes. These collections of parasitic worms are, in
some instances, called blood flukes. Several species of schisto-
somes cause illnesses in human beings. The three major ones
are Schistosoma haematobium, Schistosoma mansoni, and
Schistosoma japonicum. These species of schistosomes can
be found in parts of Africa, Asia, and South America, [1].
Schistosoma mansoni and Schistosoma japonicum mainly
cause diseases in the liver and bowels but Schistosoma hae-
matobium mostly affects the urinary and genital areas [2].

The life cycles of schistosomes are very complex and
involve fresh water and (mostly) two hosts: a definite human

host (also cattle in the case of Schistosoma japonicum) and an
intermediate snail host. Schistosomes reproduce both sexu-
ally and asexually [2]. The sexual reproduction takes place
in the definite hosts, and the asexual reproduction takes place
in an intermediate snail host. The life cycle begins in the
human portal system. Schistosome eggs are released to fresh-
water by infected humans through their feces or urine. These
eggs hatch into larvae once the eggs enter freshwater. These
larvae are known as miracidia. The miracidia, within a day,
find and infect the intermediate host, the snails. After a
period of development in the snail, the miracidia further
mature and transform into cercariae through asexual repro-
duction and are released into the water in the presence of
light. The cercariae (with a life expectancy of up to 2 days)
will further swim and penetrate into the skin of a definite
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host (humans and also cattle in the case of Schistosoma Japo-
nicum). The cercariae find their way to the liver through the
lungs and develop into matured adult worms. Thereafter,
they move into the blood vessels and the organs around it.
These worms can live in these organs for many years. The
adult schistosomes can lay up to 300 eggs within a definite
host daily, and these eggs can penetrate into the bladder or
intestines. Some of these eggs get released during urination
or defecation and may find their way back into fresh waters,
and their life cycles will begin afresh. However, other eggs
will be trapped in some of these organs, and their activities
cause damage to the organs. It takes between 4 and 6 weeks
for an exposed person to become infectious [2].

The disease is contracted by humans through contact
with infested freshwater which is inhabited by infected snails;
there is no direct human to human transmission. People with
schistosomiasis can suffer from rash or itchy skin, cough,
fever, blood in urine or stool, muscle ache, stunted growth,
etc. Later in their lives, they can experience malfunctioning
of some major organs like the liver, intestines, lungs, and
bladder due to damage caused by the eggs trapped in their
body. These eggs can be found in the spinal cord and even
the brain in some rare cases. It may result in paralysis,
inflammation of the spinal cord, or seizures. Children who
are reinfected with this disease may experience malnutrition,
anemia, and even difficulty of learning [1].

There is still no commercially available vaccine for schis-
tosomiasis. However, praziquantel is the WHO-approved
medication for the treatment of the disease. It works by kill-
ing the adult worms, hence preventing the production of new
eggs in the human host, but does not prevent reinfection as
treated individuals can easily get reinfected [3]. Improved
sanitation and snail control are also mechanisms used to
put the disease under control. Snail control involves the use
of molluscicides or biological control methods like use of
competitor snails (see [4, 5]); however, their effectiveness
varies and the disease continues to spread.

Mathematical models can be used as guiding tools to
effectively study the spread of diseases, and they have over
the years helped both policymakers and public health officials
in their decision-making processes with respect to key inter-
vention programs. Its role in the study and understanding of
the transmission dynamics as well as the effectiveness of the
various control strategies of many infectious diseases has
been considered to be very effective. Several mathematical
models were designed over the years to study the transmis-
sion dynamics and control of the spread of schistosomiasis
[4–11].

A review of a number of existing mathematical models of
schistosomiasis, their merits, and demerits was carried out by
[12]. [13] suggested ways by which controls could be incor-
porated into mathematical models in order to eradicate or

Table 1: A table showing the description of the model parameters and parameter values.

Parameter Description Value Source

αh Recruitment rate of humans 254 d−1 Estimate

αs Recruitment rate of snails 3000 d−1 [27]

βh Rate of transmission of humans from susceptible to exposed 0.09753 L cer−1 d−1 [28]

βs Rate of transmission of snails from susceptible to exposed 0.615 Lmir−1 d
−1 [7, 29]

ξh Preventive factor due to WASH 0-1 Estimate

μh Natural death rate of humans 0.00004379 d−1 Estimate

μs Natural death rate of snails 0.000569 d−1 [7]

μm Natural death rate of miracidia 0.9 d−1 [7]

μc Natural death rate of cercariae 0.004 d−1 [7]

δh Death rate of humans due to infection 0.000274-0.000913 d−1 Estimate

δs Death rate of snails due to infection 0.0004012 d−1 [7]

σh Rate of transmission of humans from exposure to infection 0.0238-0.0286 d−1 Estimate

σs Rate of transmission of snails from exposure to infection 0.0286-0.0357 d−1 Estimate

γh Transmission rate of humans from infection to treatment 0.03 d−1 [29]

λ1 Rate individuals produce miracidia 6.96mir host−1 d
−1 [9]

λ2 Rate snails produce cercariae 2.6 cer host−1 d−1 [7]

ρ Treatment efficacy 0.8 Assumed

m0 Miracidia saturation constant 1 × 10
8 [7]

c0 Cercariae saturation constant 9 × 107 [7]

ε Limitation of the growth velocity 0.2 [7]
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reduce the prevalence of schistosomiasis in an endemic area.
[14] presented some of the measures adopted for the control
schistosomiasis in the People’s Republic of China. [15] inte-
grated a mathematical model for schistosomiasis to obtain a
set of nonlinear integral equations. The Contraction Map-
ping Principle was then used to establish the existence of a
unique solution of the schistosomiasis model.

The transmission dynamics of schistosomiasis among
humans, cattle, and snails was presented in a mathematical

model by [16]. Sensitivity analysis of the model parameters
on the basic reproduction number showed that cattle-snail
transmission of S. japonicum played an important role in
the endemicity of the disease in Hubei Province. [17] per-
formed stability analysis on a schistosomiasis model, and
the result indicated that the prevalence of schistosomiasis
was affected by the latent period of infection and that effec-
tive public health education campaign on drug treatment of
the disease could help to curtail it.
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Figure 1: A compartmental chart for the mathematical model.
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Figure 2: A forward bifurcation showing an exchange of stability of the equilibrium points at R0 = 1.
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Schistosomiasis is declared by the WHO as one of the
most deadly of the neglected tropical diseases. Despite
numerous intervention programs to curb the spread of
the disease, it still remains endemic in many tropical and
subtropical countries particularly in the poverty-stricken
African countries [1]. Mathematical models have been used
to model the control and spread of many diseases [18, 19].
Hence, there is the need to develop a mathematical model
that will help to explain the spread and control of schisto-
somiasis. To the very best of our knowledge, the proposed
model is the first to include the treated human class in a
schistosomiasis model and has incorporated the exposed
period for both human and snail subpopulations alongside
a parameter for water, sanitation, and hygiene (WASH).
In order to capture the complex nature of the disease

dynamics and proffer effective strategies for its control,
compartments that have to do with the incubation periods
for the hosts that are infected but not releasing pathogen
into the environment alongside the treated humans should
be incorporated. Consequently, a deterministic model that
divides the populations into susceptible humans and snails,
infected humans and snails, exposed humans and snails,
and treated humans, with the dynamics of free living mira-
cidia and cercariae together with their interactions is
proposed.

2. Model Formulation

Here, a deterministic model that describes the transmission
dynamics of schistosomiasis is proposed. We considered
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(c) Evolution of the free living miracidia with time
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(d) Evolution of the free living cercariae with time

Figure 3: Evolution of each subpopulation with time.
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the fact that once a pathogen is introduced within a popula-
tion, it divides the population into fractions called compart-
ments or components. The human subpopulation is divided
into four compartments: susceptible humans ðShÞ, exposed
humans ðEhÞ, infected humans ðIhÞ, and treated humans ð
ThÞ; the snail subpopulation into three compartments: sus-
ceptible snails ðSsÞ, exposed snails ðEsÞ, and infected snails ð
IsÞ; and compartments for the free living miracidia ðNmÞ
and free living cercariae ðNcÞ based on the life cycle of the
parasite.

The susceptible humans comprise those individuals capa-
ble of contracting the disease but have yet to do so. The
exposed humans include those individuals who contract cer-
cariae, undergoing and incubation period and have yet to
begin producing (miracidia) eggs. The infected humans are
those individuals that are symptomatic and have (miracidia)
eggs appearing in their feces. The treated humans include
individuals who have received treatment. Praziquantel works
only by killing the adult worms; thus, only the infected
humans are moved to the treated class, and the treated
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(a) Effects of varying WASH on susceptible humans
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(c) Effects of varying WASH on miracidia
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(d) Effects of varying WASH on cercariae

Figure 4: Effects of WASH on the dynamics of humans and the pathogens.

5Journal of Applied Mathematics



humans are assumed not to be infectious, i.e., they do not
produce eggs for miracidia. The susceptible snails are those
snails that have the possibility of getting exposed to miracidia
but have yet to do so. The exposed snails are those snails that
get infected by miracidia but have yet to shed cercariae. The
infected snails are those snails that contract miracidia, sur-
vived the exposed period, and are shedding cercariae. More-
over, a parameter for prevention through water sanitation

and hygiene (WASH) has been incorporated. Table 1) gives
a description of various parameters used in the model, and
Figure 1) is the schematic diagram for the proposed model.

The model is derived based on these assumptions:

(1) There is no mother-to-child transmission of the dis-
ease among humans, and treated humans have no
immunity
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(a) Effects of varying treatments on the infected humans
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(b) Effects of varying treatments on miracidia
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Figure 5: Effects of varying treatments on infected humans, miracidia, and cercariae.
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(2) The rates of depletion of the parasites by humans or
snails have no effect on the population dynamics of
the parasites

(3) Contact with free living cercariae is the only mean
through which susceptible humans become exposed
to the disease

(4) There are no introduction of infectious (humans or
snails) into the studied population

(5) Treated humans do not produce eggs for the produc-
tion of miracidia

(6) Infected snails do not get treated and, hence, do not
recover

whereωh = ð1 − ξhÞβh/ðc0 + εNcÞ andωs = βs/ðm0 + εNmÞ.
The model is represented by the following system of

ODEs:

dSh
dt

= αh + ρTh −
1 − ξhð ÞβhNcSh

c0 + εNc

− μhSh,

dEh

dt
=

1 − ξhð ÞβhNcSh
c0 + εNc

− σhEh − μhEh,

dIh
dt

= σhEh − γhIh − δhIh − μhIh,

dTh

dt
= γhIh − ρTh − 1 − ρð ÞδhTh − μhTh,

dNm

dt
= λ1Ih − μmNm,

dSs
dt

= αs −
βsNmSs
m0 + εNm

− μsSs,

dEs

dt
=

βsNmSs
m0 + εNm

− σsEs − δsEs − μsEs,

dIs
dt

= σsEs − δsIs − μsIs,

dNc

dt
= λ2Is − μcNc:
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:

ð1Þ

With initial conditions Shð0Þ ≥ 0, Ehð0Þ ≥ 0, Ihð0Þ ≥ 0, Th

ð0Þ ≥ ,Nmð0Þ ≥ 0, Ssð0Þ ≥ 0, Esð0Þ ≥ 0, Isð0Þ ≥ 0, andNcð0Þ
≥ 0:

3. Model Analysis

3.1. Invariant Region and Positivity of Solutions. Since a pop-
ulation model always requires positive solutions, it is relevant
that all solutions be nonnegative. Consider the model as
described by the model system equation (1). The total human
subpopulation at any time, t, is given by

Nh tð Þ = Sh tð Þ + Eh tð Þ + Ih tð Þ + Th tð Þ,

dNh

dt
= αh − μhNh − δh Ih + 1 − ρð ÞThð Þ:

ð2Þ

In the absence of mortality due to infection, we have

dNh

dt
≤ αh − μhNh: ð3Þ

Thus, Nh ≤ αh/μh.
Similarly, the total snail subpopulation is given by

N s tð Þ = Ss tð Þ + Es tð Þ + Is tð Þ,

dN s

dt
= αs − μsN s − δs Es + Isð Þ:

ð4Þ

In the absence of mortality due to infection, we get

dN s

dt
≤ αs − μsNs: ð5Þ

So, N s ≤ αs/μs.
From equation (18) of the state system equation (1), we

have

dNm

dt
= λ1Ih − μmNm,

Nm ≤
αhλ1
μhμm

:

ð6Þ

Table 2: A table showing the sensitivity index of each model
parameter on R0.

Parameter Parameter value Sensitivity index

αh 254 +0.5000

αs 3000 +0.5000

βh 0.09753 +0.5000

βs 0.615 +0.5000

σh 0.0236 +0.00092

σs 0.0286 +0.0164

λ1 6.96 +0.5000

λ2 2.6 +0.5000

γh 0.03 -0.4948

μh 0.00004379 -0.5016

μs 0.000569 -0.8029

μm 0.9 -0.5000

μc 0.004 -0.5000

δh 0.000274 -0.0045

δs 0.0004012 -0.2135
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Figure 6: Continued.
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From equation (25) of the system equation (1), we have

dNc

dt
= λ2Is − μcNc,

Nc ≤
αsλ2
μsμc

:

ð7Þ

Thus, Nh, N s, Nm, and Nc are bounded, and the region

Ω = Sh, Eh, Ih, Th,Nm, Ss, Es, Is,Ncð Þ ∈ℝ9
+ : Nh ≤

αh
μh

,Nm

�

≤
αhλ1
μhμm

,N s ≤
αs
μs

,Nc ≤
αsλ2
μsμc

�

,

ð8Þ
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Figure 6: Effects of varying sensitive parameters on infected humans.
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is positively invariant, and accordingly, the system equation
(1) is epidemiologically meaningful and analytically well
posed in the region Ω.

Theorem 1. Suppose that

Sh 0ð Þ, Eh 0ð Þ, Ih 0ð Þ, Th 0ð Þ,Nm 0ð Þ, Ss 0ð Þ, Es 0ð Þ, Is 0ð Þ,Nc 0ð Þð Þ ∈ℝ9
+ ∪ 0f g,

ð9Þ

is the initial condition for the model system equation (1), then
the set of solutions

Sh tð Þ, Eh tð Þ, Ih tð Þ, Th tð Þ,Nm tð Þ, Ss tð Þ, Es tð Þ, Is tð Þ,Nc tð Þf g, ð10Þ

is nonnegative ∀t ≥ 0.

Proof. Given that the set of initial conditions is nonnegative,
consider the model system equation (1). Then,

dSh tð Þ

dt
= αh + ρTh − ωhNcSh − μhSh,

dSh tð Þ

dt
≥ − ωhNc + μhð ÞSh:

ð11Þ

Separating the variables and integrating, we have

Sh tð Þ ≥ Sh 0ð Þe
Ð

−ωhNcdt−μht ≥ 0, ∀t ≥ 0: ð12Þ

Similarly,

Eh tð Þ ≥ Eh 0ð Þe− σh+μhð Þt
≥ 0, ∀t ≥ 0,

Ih tð Þ ≥ Ih 0ð Þe− γh+δh+μhð Þt
≥ 0, ∀t ≥ 0,

Th tð Þ ≥ Th 0ð Þe− ρ+ 1−ρð Þδ+μhð Þt
≥ 0, ∀t ≥ 0,

Nm tð Þ ≥Nm 0ð Þe−μmt ≥ 0, ∀t ≥ 0,

Ss tð Þ ≥ Ss 0ð Þe
Ð

−ωsNmdt−μst ≥ 0, ∀t ≥ 0,

Es tð Þ ≥ Es 0ð Þe− σs+δs+μsð Þt
≥ 0, ∀t ≥ 0,

Is tð Þ ≥ Is 0ð Þe− δs+μsð Þt
≥ 0, ∀t ≥ 0,

Nc tð Þ ≥Nc 0ð Þe−μct ≥ 0, ∀t ≥ 0:
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<

>

>
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>

>

>

>

>

>

:

ð13Þ

3.2. Equilibrium Points. At the equilibrium point, all states
are considered to have a constant solution. So, it is obtained
by setting dS∗h /dt = dE∗

h /dt = dI∗h /dt = dT∗

h /dt = dN∗

m/dt = d
S∗s /dt = dI∗s /dt = dN∗

c /dt = 0: It is given by

E = S∗h , E
∗

h , I
∗

h , T
∗

h ,N
∗

m, S
∗

s , E
∗

s , I
∗

s ,N
∗

cð Þ: ð14Þ

Due to the complexity of the model system 1, all other
state variables at the steady state are expressed in terms of
the steady state of Ih which is denoted as I∗h . Accordingly,

S∗h =
αh ρ + 1 − ρð Þδh + μhð Þ + γhρI

∗

h½ � c0μc δs + μsð Þ σs + δs + μsð Þ βs + εμsð Þλ1I
∗

h +m0μsμmð Þ + αsβsσsλ1λ2εI
∗

h½ �

ρ + 1 − ρð Þδh + μhð Þ 1 − ξhð Þβh + εμhð Þαsβsσsλ1λ2I
∗

h + c0μhμc δs + μsð Þ σs + δs + μsð Þ βs + εμsð Þλ1I
∗

h +m0μsμmð Þ½ �
,

E∗

h =
γh + δh + μhð ÞI∗h

σh
,

T∗

h =
γhI

∗

h

ρ + 1 − ρð Þδh + μh
,

N∗

m =
λ1I

∗

h

μm
,

S∗s =
αs m0μm + ελ1I

∗

hð Þ

βs + εμsð Þλ1I
∗

h +m0μsμm
,

E∗

s =
αsβsλ1I

∗

h

σs + δs + μsð Þ βs + εμsð Þλ1I
∗

h +m0μsμm½ �
,

I∗s =
αsβsσsλ1I

∗

h

δs + μsð Þ σs + δs + μsð Þ βs + εμsð Þλ1I
∗

h +m0μsμm½ �
,

N∗

c =
αsβsσsλ1λ2I

∗

h

μc δs + μsð Þ σs + δs + μsð Þ βs + εμsð Þλ1I
∗

h +m0μsμm½ �
,
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>
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:

ð15Þ
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and a combination of the above equation (15) and the second
equation of the model system 1, the following relation was
obtained for I∗h :

I∗h I∗h −
A R2

0 − 1
� �

B + C

� �

= 0, ð16Þ

where

3.2.1. Disease-Free Equilibrium Point. At the disease-free
equilibrium, there are no infections or recovery, and thus,
no miracidia or cercariae is produced. Accordingly, at this
point, I∗h in the system equation (16) must be zero. Hence,
the point is obtained as

E
0 = S0h =

αh
μh

, E0
h = 0, I0h = 0, T0

h = 0,N0
m = 0, S0s =

αs
μs

, E0
s = 0, I0h = 0,N0

c = 0

� �

,

ð18Þ

where I∗h = 0.

3.2.2. Endemic Equilibrium Point. At the endemic equilib-
rium point, all disease states in equation (14) are considered
to be positive, and consequently, I∗h must be greater than zero
for all the other states to be positive. Therefore, the unique
positive endemic equilibrium point exists only when I∗h in
the system equation (16) is positive, which is also in this case
the same as R0 > 1. And thus, it is the point

E
∗ = S∗∗h ,E∗∗

h ,I∗∗h ,T∗∗

h ,N∗∗

m ,S∗∗s ,E∗∗

s ,I∗∗s ,N∗∗

cð Þ, ð19Þ

where

S∗∗h = S∗h ,E
∗∗

h = E∗

h ,I
∗∗

h =
A R2

0 − 1
� �

B + C
,T∗∗

h = T∗

h ,N
∗∗

m =N∗

m,S
∗∗

s

= S∗s ,E
∗∗

s = E∗

s ,I
∗∗

s = I∗s ,N
∗∗

c =N∗

c ,

ð20Þ

whenever R0 > 0.

3.3. Stability Analysis

3.3.1. Basic Reproduction Number, R0. The basic reproduc-
tion number is defined as the average number of secondary
infections caused by the emergence of an infectious individ-
ual into a completely susceptible population [20]. It is
denoted by R0. We considered the next generation matrix
approach according to Chavez et al. [21] (for details, see
Appendix A). The next generation matrix is denoted by G
and is obtained as

A =m0c0μhμsμmμc σh + δhð Þ γh + δh + μhð Þ δs + μsð Þ σs + δs + μsð Þ ρ + 1 − ρð Þδh + μhð Þ,

B = 1 − ξhð Þβhαsβsσsλ1λ2 sigmahγh 1 − ρð Þδh + μhð Þ + ρ + 1 − rhoð Þδh + μhð Þ σh δs + μsð Þ + μh γh + δh + μhð Þð Þ½ �,

C = λ1μh σh + μhð Þ γh + δh + μhð Þ ρ + 1 − ρð Þδh + μhð Þ αsβsσhσsλ2ε + c0μc δs + μsð Þ betas + εμsð Þ σs + δs + μsð Þ½ �:

8

>

>

<

>

>

:

ð17Þ

G =

0 0 0 0
λ2σs 1 − ξhð Þβhαh

c0μhμc δs + μsð Þ σs + δs + μsð Þ

λ2 1 − ξhð Þβhαh
c0μhμc δs + μsð Þ

1 − ξhð Þβhαh
c0μhμc

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

λ1σhβsαs
m0μsμm σh + μhð Þ γh + δh + μhð Þ

λ1βsαs
m0μsμm γh + δh + μhð Þ

0
βsαs

m0μsμm
0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

ð21Þ
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Accordingly, the basic reproduction number, R0, which is
the dominant eigenvalue of G, is obtained as

R0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αh 1 − ξhð Þβhσhαsβsσsλ1λ2
c0m0μhμsμmμc σh + μhð Þ γh + δh + μhð Þ δs + μsð Þ σs + δs + μsð Þ

s

:

ð22Þ

For simplicity, since R0 denotes the possible number of
uninfected a particular infected individual (in this case either
human or snail) can infect, we can rewrite R0 as

R0 = RHS
0 · RSH

0 , ð23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αhð1 − ξhÞβhσhλ1/m0μhμmðσh + μhÞðγh + δh + μhÞ
p

repre-

sents the number of snails an infected human is capable of

infecting through the production of miracidia and RSH
0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αsβsσsλ2/c0μsμcðδs + μsÞðσs + δs + μsÞ
p

denotes the number

of humans an infected snail is capable of infecting through
the production of cercariae.

3.3.2. Stability of Disease-Free Equilibrium Point

Theorem 2. The disease-free equilibrium point, E0, is locally
asymptotically stable provided R0 < 1 and unstable otherwise.

Proof. To verify the validity of the above proposition, see
Theorem 2 in Van den Driessche and Watmough [22].

The method according to Chavez et al. [21] is used to
determine the global stability of the disease-free equilibrium
point within Ω ∈ℝ

9
+. Hence, we denote the system equation

(1) by

dX

dt
= F X, Yð Þ,

dY

dt
=G X, Yð Þ,G X, 0ð Þ = 0,

8

>

>

<

>

>

:

ð24Þ

where X = ðSh, SsÞ comprises of the uninfected subpopula-
tions and Y = ðEh, Ih, Th,Nm, Es, Is,NcÞ comprises of the

infected and infectious subpopulations. E0 is guaranteed to
be globally asymptotically stable (GAS) if R0 < 1 and the fol-
lowing two conditions (C1) and (C2) hold:

(C1): For dX/dt = FðX, 0Þ, X∗ =E
0 is GAS

(C2): GðX, YÞ = AY −G∗ðX, YÞ,G∗ðX, YÞ ≥ 0 for ðX, YÞ
∈Ω

where A =DYGðX
∗, 0Þ andΩ ∈ℝ

9
+ is the invariant region

of the model.

Theorem 3. The disease-free equilibrium point, E0 = ðαh/μh
, 0, 0, 0, 0, αs/μs, 0, 0, 0Þ ∈Ω, is GAS for the system equation
(1) provided that R0 < 1 and conditions (C1) and (C2) both
hold.

Proof. From the system of equation (1), we have

F X, 0ð Þ =
αh − μhSh

αs − μsSs

 !

: ð25Þ

First, suppose that the time, t⟶∞, we need to show

that X⟶E
0.

But we know that for FðX, 0Þ,

dSh
dt

= αh − μhSh,

dSh
dt

+ μhSh = αh,

Sh =
αh
μh

:

ð26Þ

Also,

dSs
dt

= αs − μsSs,

dSs
dt

+ μhSs = αs,

Ss =
αs
μs

:

ð27Þ

Thus, all points with respect to this condition converge at

E
0 =

αh
μh

, 0, 0, 0, 0,
αs
μs

, 0, 0, 0

� �

∈Ω: ð28Þ

Now, from the system equation (1), we know that

dY

dt
= G X, Yð Þ, ð29Þ

where

G X, Yð Þ =

ωhShNc − σh + μhð ÞEh

σhEh − γh + δh + μhð ÞIh

γhIh − ρ + 1 − ρð Þδh + μhð ÞTh

λ1Ih − μmNm

ωsSsNm − σs + δs + μsð ÞEs

σsEs − δs + μsð ÞIs

λ2Is − μcNc

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, ð30Þ

and GðX, YÞ = AY − G∗ðX, YÞ, where
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Clearly, G∗ðX, YÞ ≥ 0, ∀ðX, YÞ ∈Ω, since

Nh ≤
αh
μh

,Ns ≤
αs
μs
⇒

αh
c0μh

−
Sh

c0 + εNc

≥ 0,
αs

m0μs
−

Ss
m0 + εNm

≥ 0:

ð32Þ

Moreover, A is an M-matrix, since the nondiagonal
entries are nonnegative [21]. Therefore, the DFE, denoted

E
0, is globally asymptotically stable provided that R0 < 1.

3.3.3. Stability of the Endemic Equilibrium Point.We consider
the concept of Center Manifold Theory as described in Theo-
rem 4.1 by Chavez and Song [23]. The theorem helps to deter-
mine the course of the bifurcation at a critical value of the
parameter [24]. The theorem is reproduced in Appendix B.

Theorem 4. The endemic equilibrium point, based on the
Theorem 4.1 by [23] is locally asymptotically stable for R0 >

1 (but near 1).

Proof. Now, consider the model system equation (1). Using
Theorem 4.1 by Chavez and Song [23], let Sh = x1, Eh = x2,
Ih = x3, Th = x4, Nm = x5, Ss = x6, Es = x7, Is = x8, and Nc =

x9. Further, denote X = ðx1, x2, x3, x4, x5, x6, x7, x8, x9Þ and
F = ð f1, f2, f3, f4, f5, f6, f7, f8, f9Þ. Then, the model system
equation (1) can be expressed in the form dX/dt = F, where

dx1
dt

= αh + ρx4 − ωhx9x1 − μhx1 = f1,

dx2
dt

= ωhx9x1 − σhx2 − μhx2 = f2,

dx3
dt

= σhx2 − γhx3 − δhx3 − μhx3 = f3,

dx4
dt

= γhx3 − ρx4 − 1 − ρð Þδh − μhx4 = f4,

dx5
dt

= λ1x3 − μmx5 = f5,

dx6
dt

= αs − ωsx5x6 − μsx6 = f6,

dx7
dt

= ωsx5x6 − σsx7 − δsx7 − μsx7 = f7,

dx8
dt

= σsx7 − δsx8 − μsx8 = f8,

dx9
dt

= λ2x8 − μcx9 = f9:
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<

>
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>

>

>

>

>
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>

:

ð33Þ

The role of the parameter ϕ in Theorem 4.1 by Chavez
and Song [23] is played by βh with the critical value obtained
from R0 = 1 [7, 24]. Hence, βh = β∗

h , regarded as the bifurca-
tion point, can be obtained by evaluating it at R0 = 1. So

A =

− σh + μhð Þ 0 0 0 0 0
αh 1 − ξhð Þβh

c0μh

σh − γh + δh + μhð Þ 0 0 0 0 0

0 γh − ρ + 1 − ρð Þδh + μhð Þ 0 0 0 0

0 λ1 0 −μm 0 0 0

0 0 0
αsβs

m0μs
− σs + δs + μsð Þ 0 0

0 0 0 0 σs − δs + μsð Þ 0

0 0 0 0 0 λ2 −μcÞ

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

G∗ X, Yð Þ =

αh
c0μh

−
Sh

c0 + εNc

� �

1 − ξhð ÞβhNc

0

0

0

αs
m0μs

−
Ss

m0 + εNm

� �

βsNm

0

0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: ð31Þ
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β∗

h =
c0m0μhμsμmμc σh + μhð Þ γh + δh + μhð Þ δs + μsð Þ σs + δs + μsð Þ

αh 1 − ξhð Þαsβsσhσsλ1λ2
:

ð34Þ

Let the Jacobian of the transformed system equation (33)

at E0 when βh = β∗

h is denoted by A . Then, it can be shown
that 0 is a simple eigenvalue of the matrix A , where

and if the vector w = ðw1,w2,w3,w4,w5,w6,w7,w8,w9Þ
T is

a right eigenvector corresponding to the eigenvalue, 0 of A ,
then the components of w can be obtained as

A =

−μh 0 0 ρ 0 0 0 0 −
αh 1 − ξhð Þβ∗

h

c0μh

0 − σh + μhð Þ 0 0 0 0 0 0
αh 1 − ξhð Þβ∗

h

c0μh

0 σh − γh + δh + μhð Þ 0 0 0 0 0 0

0 0 γh − ρ + 1 − ρð Þδh + μhð Þ 0 0 0 0 0

0 0 λ1 0 −μm 0 0 0 0

0 0 0 0 −
αsβs

m0μs
−μs 0 0 0

0 0 0 0
αsβs

m0μs
0 − σsδs + μsð Þ 0 0

0 0 0 0 0 0 σs − δs + μsð Þ 0

0 0 0 0 0 0 0 λ2 −μc

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
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1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

ð35Þ

w1 = −
αh 1 − ξhð Þβ∗

h σhγh 1 − ρð Þδh + μhð Þ + ρ + 1 − ρð Þδh + μhð Þ σh δh + μhð Þ + μh γh + δh + μhð Þð Þ½ �

c0μ
2
h σh + μhð Þ γh + δh +muhð Þ ρ + 1 − ρð Þδh + μhð Þ

w9,

w2 =
αh 1 − ξhð Þβ∗

h

c0μh σh + μhð Þ
w9,

w3 =
αh 1 − ξhð Þβ∗

hσh

c0μh σh + μhð Þ γh + δh + μhð Þ
w9,

w4 =
αh 1 − ξhð Þβ∗

hσhγh
c0μh σh + μhð Þ ρ + 1 − ρð Þδh + μhð Þ γh + δh + μhð Þ

w9,

w5 =
αh 1 − ξhð Þβ∗

hσhλ1
c0μhμm σh + μhð Þ γh + δh + μhð Þ

w9,

w6 = −
αh 1 − ξhð Þβ∗

hαsβsσhλ1
m0c0μhμ

2
sμm σh + μhð Þ γh + δh + μhð Þ

w9,

w7 =
αh 1 − ξhð Þβ∗

hαsβsσhλ1
m0c0μhμsμm σh + μhð Þ γh + δh + μhð Þ σs + δs + μsð Þ

w9,

w8 =
αh 1 − ξhð Þβ∗

hαsβsσhσsλ1
m0c0μhμsμm σh + μhð Þ γh + δh + μhð Þ deltas + μsð Þ σs + δs + μsð Þ

w9,

w9 =w9 > 0,

ð36Þ
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where β∗

h is defined in equation (34).
Similarly, let v = ðv1, v2, v3, v4, v5, v6, v7, v8, v9Þ be a left

eigenvector corresponding to the zero eigenvalue ofA . Then,
the components of v are

v1 = v4 = v6 = 0,

v2 =
c0μhμc

αh 1 − ξhð Þβ∗

h

v9,

v3 =
c0μhμc σh + μhð Þ

αh 1 − ξhð Þβ∗

h

v9,

v5 =
c0μhμc σh + μhð Þ γh + δh + μhð Þ

αh 1 − ξhð Þβ∗

hλ1
v9,

v7 =
m0c0μhμsμmμc σh + μhð Þ γh + δh + μhð Þ

αh 1 − ξhð Þβ∗

hαsβsλ1
v9,

v8 =
m0c0μhμsμmμc σh + μhð Þ γh + δh + μhð Þ σs + δs + μsð Þ

αh 1 − ξhð Þβ∗

hαsβsσsλ1
v9,v9 = v9 > 0:

ð37Þ

Now, to get the values of a and b as in Theorem 4.1 by
Chavez and Song [23], we have to get the second partial
derivatives in the system equation (33). Clearly, we do not
need the partial derivatives of f1, f4, and f6, since v1 = v4 =
v6 = 0. Thus, the second (nonzero) partial derivatives from
the linearized system equation (33) for a are

∂
2 f2

∂x1∂x9
0, 0ð Þ =

1 − ξhð Þβ∗

h

c0
,

∂
2 f7

∂x5∂x6
0, 0ð Þ =

βs

m0

, ð38Þ

and for b is

∂
2 f2

∂x9∂β
∗

h

0, 0ð Þ =
1 − ξhð Þx01

c0
=
αh 1 − ξhð Þ

c0μh
: ð39Þ

Therefore,

So a < 0.

b = 〠
n

k,i=1

vkwi

∂
2 f k

∂xi∂ϕ
0, 0ð Þ,

b = v2w9

∂
2 f2

∂x9∂β
∗

h

0, 0ð Þ,

b =
μc
β∗

h

v9w9,

ð41Þ

So b = ðμc/β
∗

hÞv9w9:

Clearly, a < 0 and b > 0, and with the help of condition
(iv) in Theorem 4.1 by Chavez and Song [23], it is con-
firmed that the system follows a forward bifurcation at
R0 = 1(see Figure 2), and hence, the endemic equilibrium

is locally asymptotically stable for R0 > 1, but sufficiently
closed to 1.

Generally, also based on the principles of the next gen-
eration matrix according to Van den Driessche and Wat-
mough [22], the disease-free equilibrium point is stable
when R0 < 1 and unstable when R0 > 1. To validate these
analytic results, a numerical simulation was carried out.
Figure 2 shows a graph of R0 against the steady state of
Ih, denoted by I∗h . The figure shows that at R0 = 1, the
model system equation (1) exhibits a forward bifurcation.
Forward bifurcations have been observed in many other
epidemic models [7, 23, 25]. It shows an exchange of sta-
bility between the disease-free equilibrium point and the
disease endemic equilibrium point. To this effect, it can
be concluded that the model system equation (1) has a
disease-free equilibrium point that is globally asymptoti-
cally stable when R0 < 1, and when R0 > 1, it posses an

a = 〠
n

k,i,j=1

vkwiwj

∂
2 f k

∂xi∂x j
0, 0ð Þ,

a = v2w1w9

∂
2 f2

∂x1∂x9
+ v7w5w6

∂
2 f7

∂x5∂x6
,

a = −
1 − ξhð Þβ∗

hμc σhγh 1 − ρð Þδh + μhð Þ + ρ + 1 − ρð Þδh + μhð Þ σh δh + μhð Þ γh + δh + μhð Þð Þ½ �

c0μh σh + μhð Þ γh + δh + μhð Þ ρ + 1 − ρð Þδh + μhð Þ
v9w

2
9

−
αh 1 − ξhð Þβ∗

hσ
2
hλ1μc

c0μhμm σh + μhð Þ γh + δh + μhð Þ ρ + 1 − ρð Þδh + μhð Þ2
v9w

2
9:

ð40Þ
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endemic equilibrium point that is locally asymptotically
stable. This is actually a validation of the results from
the analytic processes which also confirms that the
disease-free equilibrium point is both locally and globally
asymptotically stable when R0 < 1, and when R0 > 1, a
locally asymptotically stable unique endemic equilibrium
point exists.

4. Numerical Results

Table 1 gives the parameter values used in the numerical
simulation of the model equation (1). Many of the param-
eters are obtained from existing literature and are rightly
cited while some are taken from real life data. Other
parameters are estimated based on convenience using what
is generally known about the dynamics of the studied pop-
ulation and the disease. In particular, the model is
designed to study the dynamics of schistosomiasis within
the Gambian population. In 2020, The Gambia has a pop-
ulation of 2,486,945, with a birth rate of 37:272 per 1,000

population and life expectancy of up to 62:57 years. Thus,
αh = 37:272 × 2,486,945/1,000 × 365 ≈ 254 and μh = 1/62:57

× 365 ≈ 0:00004379. The human exposed period for schis-
tosomiasis, i.e., the time period of humans from having
contact with free living cercariae to the period eggs begin
to appear in the human feces ranges from 5 to 6 weeks
[2]. Hence, σh is estimated to lie between 1/6 × 7 ≈

0:0238 and 1/5 × 7 ≈ 0:0286. The incubation period for
snails ranges from 4 weeks to 5 weeks [2]. Thus, σs lies
between 1/5 × 7 ≈ 0:0286 and 1/4 × 7 ≈ 0:0357. The parasite
can live within a definite human host for a period ranging
from 3 years to 10 years [26]. So, δh is varied between
values corresponding to 3 and 10 years. Consequently, δh
lie between 1/10 × 365 ≈ 0:000274 and 1/3 × 365 ≈

0:000913.
Using ode45 in MATLAB, a numerical simulation of the

model equation (1) was carried out with the help of the
parameter values presented in Table 1, and the results illus-
trated graphically show the behavior of the various subpopu-
lations: the human subpopulation (Figure 3(a)), the snail
subpopulation (Figure 3(b)), and the subpopulations of the
free living miracidia (Figure 3(c)) and cercariae
(Figure 3(d)), against time (days).

It can be observed from Figure 3(a) that the suscepti-
ble humans have risen within the first few days but grad-
ually fall afterwards as they continuously come in contact
with free living cercariae and later became stable. We
experienced a steady and then a quick rise in the exposed
and infected human compartments due to the introduc-
tion of the disease, both of which later had a slow rise
as the disease continue to spread. Equally, the treated
human compartment shows a steady rise within the first
few days and, afterwards, gains stability. The susceptible
snail and the exposed snail compartments, from
Figure 3(b), had a little rise within the first few days but
become stable shortly and then fall gradually afterwards
due to more of the susceptible snails getting in contact
with free living miracidia and the exposed snails shedding
cercariae. However, there is a high rise in the number of

infected snails whose population became stable later on.
The infected snails rise above both the susceptible and
exposed snails causing the number of susceptible and
exposed snails to fall gradually as a result of the fact that
infected snails do not recover. Hence, it demonstrates the
dominance of the cercariae shedding snails over all other
snail compartments. The free living miracidia, from
Figure 3(c), also rises within the first few days but reaches
a peak and slowly changed course but continues to rise
slowly as more infected individuals continue to release
eggs for the production of miracidia. The dominance of
the cercariae shedding snails explains why more and more
cercariae are produced as seen in Figure 3(d). The cercar-
iae subpopulation rises very quickly and gain stability after
a number of days, and this can be interpreted to be the
result of the dominance of the infected snails over all
other snail compartments.

4.1. Effects of WASH. Here, we examined the effectiveness
of the application of WASH on the dynamics of the
human subpopulation and the dynamics of the free living
miracidia and cercariae. It can be observed from the sub-
plots in Figure 4 that WASH as a preventive mechanism
in controlling the spread of schistosomiasis is effective if
nearly the entire human subpopulation practices it. The
results indicate that if more and more individuals within
the studied population are encouraged to practice WASH,
it will mitigate the number of people contracting the dis-
ease, thereby lowering the number of infected individuals
and, consequently, reducing the production rate of mira-
cidia. However, it may effectively slow down the rate of
production of cercariae, but it will not stop the number
of cercariae produced from reaching the point of endemic-
ity as infected snails will continue to produce free living
cercariae. Thus, practicing WASH alongside water chlori-
nation (which is considered to be effective in killing cer-
cariae) should be considered.

4.2. Effects of Treatment. Here, we look into how increase in
the number of treated infected humans can affect the number
of infected humans and also the production rates of the path-
ogens. It can be observed from Figure 5(a) that increasing the
rate of treatment of humans will be efficient in reducing the
number of infected humans. Further, treatment can help in
reducing the production rate of miracidia as seen in
Figure 5(b). However, it does not seem to have an impact
in reducing the production rate of cercariae, and thus, by
not combining it with preventive strategies like WASH, indi-
viduals will continue to get infected or reinfected (upon treat-
ment) (see Figure 5(c)). This is an indication that the
effectiveness of treatment is a short-term measure. As a
result, the susceptible and treated individuals should be edu-
cated on WASH procedures to effectively curtail the spread
of the disease.

5. Sensitivity Analysis

Sensitivity indices permit us to estimate the perturbations in
a variable with respect to changes in a parameter. The
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normalized forward sensitivity index of a variable in relation
to a parameter is the proportion of the perturbations in the
variable with respect to changes in the given parameter. Sup-
pose that a variable is partially differentiable with respect to
the parameter, then the sensitivity index can be defined using
partial derivatives.

Definition 5. The normalized forward sensitivity index of
R0, which depends differentiably on a parameter ε, is
defined by

SR0

ε =
∂R0

∂ε
×

ε

R0

: ð42Þ

Table 2 contains all model parameters that are partially
differentiable with respect to R0, their values, and sensitiv-
ity indices.

5.1. Interpretation of the Sensitivity Indices on R0. The sensi-
tivity indices for the model parameters to the basic reproduc-
tion number, R0, are presented in Table 2. The most sensitive
parameters include the recruitment rates of humans and
snails and the production rate of free living miracidia and
cercariae as produced by the infected humans and infected
snails, respectively. In general, the results indicate that the
parameters αh, αs, βh, βs, σh, σs, λ1, and λ2 have positive indi-
ces and, therefore, are each directly proportional to the value
of R0. Thus, increasing the value of any of these parameters
will lead to the disease remaining endemic within the studied
population and vice versa. However, the parameters γh, δh, δs
, μh, μs, μm, and μc have each a negative sensitivity index,
which means that each of them varies inversely as the value
of R0. Therefore, increasing the value of any of these param-
eters with negative index, while holding all other parameters
constant, will reduce the value of R0 and, hence, contribute to
the elimination of the disease and vice versa. For example,
increasing the recruitment rate of either humans or snails
by 10% will lead to a 5% increase on R0, and increasing the
rate of treatment by 10% will result to a reduction of R0 by
4:948%.

5.2. Effects of Parameters on Infected Humans. Figure 6 shows
the contributions of the parameters αh, αs, βh, βs, σh, λ1, and
λ2 on the infected human subpopulation.

Figures 6(a) and 6(b) indicate that reducing the recruit-
ment rates of either humans or (most importantly) snails will
significantly reduce the number of humans getting infected.
The effects of reducing the forces of infection as seen in
Figures 6(c) and 6(d) on the infected humans are an indica-
tion that vaccination or provision of quality water and
improved sanitation system are highly essential in containing
the spread of the disease. Figure 6(e) shows that reducing the
rate exposed individuals become infected will significantly
reduce the number of individuals that become infected even-
tually. This can be done through provision of early diagnostic
materials that will be able to detect the disease in an exposed
individual before the production of eggs and also invention
of drugs that can treat the disease at the very onset of infec-
tion. Figures 6(f) and 6(g) show that reducing the production

rate of either miracidia or cercariae will drastically reduce the
number of infected individuals. Miracidia production can be
reduced by treatment of infected individuals (see Figure 5(b))
or practice of WASH (see Figure 4(c)) or possibly through
the introduction of vaccines for humans. Although miracidia
can be reduced by treatment of infected individuals, the high
possibility of them getting reinfected will make it very diffi-
cult to control it unless the individuals are vaccinated or sen-
sitized on the key preventive mechanisms. Cercariae
production, on the other hand, can be reduced through chlo-
rination of fresh waters or snail control using chemical
molluscicides.

6. Conclusion

A mathematical model that explains the transmission
dynamics of the disease involving humans, snails, and the
dynamics of the free living miracidia and the free living cer-
cariae has been presented. Attention is paid to controls
within the human subpopulation by incorporating the
treated human compartment and preventive mechanism
through water sanitation and hygiene (WASH). The equilib-
rium points were obtained and analyzed for both local and
global stabilities. Considering the basic reproduction num-
ber, R0, as the threshold and given an R0 < 1, it is established
that the disease-free equilibrium point is both locally and
globally asymptotically stable. The existence of a unique
endemic equilibrium point when R0 > 1 was established and
using the Center Manifold Theory, it is confirmed that the
endemic equilibrium is locally asymptotically stable when
R0 > 1 but close to 1. To validate these analytic results, a
numerical simulation was carried out. The results showed
that the model system follows a forward bifurcation at R0 =

1, and hence, the disease-free equilibrium is globally asymp-
totically stable with R0 < 1, and the endemic equilibrium is
locally asymptotically stable when R0 > 1.

The effectiveness of control by WASH and treatment of
infected individuals was analyzed numerically. The results
indicated that a combination of both controls is required
for the proper eradication of the disease. However, WASH
is a more effective control mechanism especially if it is exer-
cised by the entire population.

Using the normalized sensitivity index of R0, we exam-
ined the contribution of the model parameters on the basic
reproduction number, R0. The results demonstrate that the
production rates of the free living miracidia and the free liv-
ing cercariae are very effective contributors to R0 and hence
very essential in the spread and control of the disease. Thus,
control mechanisms that can significantly mitigate the pro-
duction of either pathogen will most definitely reduce the
disease endemicity. It was shown that this could be achieved
through the application of the combined control measures,
i.e., treatment of infected individuals and WASH. Hence,
infected individuals should be treated, and at the same time,
communities should be educated regarding best practices on
schistosomiasis prevention. Adequate provision of clean
water and proper sanitation facilities will curtail the spread
of the disease.
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Appendix

A. Computation of R0

The next generation matrix approach according to Van Den
Driessche and Watmough [22] is used to compute R0. Let X
be the infected or infectious class of the system of differential
equation (1), with X = ðEh, Ih, Th,Nm, Es, Is,NcÞ. Consider
the following:

dEh

dt
= ωhNcSh − σhEh − μhEh,

dIh
dt

= σhEh − γhIh − δhIh − μhIh,

dTh

dt
= γhIh − ρTh − 1 − ρð ÞδhTh − μhTh,

dNm

dt
= λ1Ih − μmNm,

dEs

dt
= ωsNmSs − σsEs − δsEs − μsEs,

dIs
dt

= σsEs − δsIs − μsIs,

dNc

dt
= λ2Is − μcNc:
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Let f be the number of new infections coming into the
population. Then,

f =

ωhNcSh

0
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Also, let v be the number of infectives leaving the system.
Then,

v =

σhEh + μhEh

−σhEh + γhIh + δhIh + μhIh

−γhIh + ρTh + 1 − ρð ÞδhTh + μhTh

−λ1Ih + μmNm

σsEs + δsEs + μsEs

−σsEs + δsIs + μsIs

−λ2Is + μcNc:
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The Jacobian of f at E0 is denoted by F with

F =

0 0 0 0 0 0
1 − ξhð ÞβhS

0
h
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Similarly, the Jacobian of v at E0 is denoted by V with

V =

σh + μh 0 0 0 0 0 0

−σh N 0 0 0 0 0

0 −γh N 0 0 0 0

0 −λ1 0 μm 0 0 0

0 0 0 0 σs + δs + μs 0 0

0 0 0 0 −σs δs + μs 0

0 0 0 0 0 −λ2 μc
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with

V−1
=

1

σh + μh
0 0 0 0 0 0

σh
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Therefore, the next generation matrix is obtained as
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where M = γh + δh + μh, N = ρ + ð1 − ρÞδh + μh, and G = F

V−1
: Accordingly, the spectral radius of the next generation

matrix [20, 22] which is given by ρðGÞ and defined as the
basic reproductive number, R0, is obtained as

R0 = ρ Gð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αh 1 − ξhð Þβhσhαsβsσsλ1λ2
c0m0μhμsμmμc σh + μhð Þ γh + δh + μhð Þ δs + μsð Þ σs + δs + μsð Þ

s

:

ðA:8Þ

B. Theorem on Center Manifold Theory

Here, we reproduce Theorem 4.1 of Chavez and Song [23].

Theorem 6 (see Chavez and Song [23]). Consider the follow-
ing general system of ordinary differential equations with a
parameter ϕ.

dx

dt
= f x, ϕð Þ, f : ℝ

n ×ℝ⟶ℝ, f ∈ℂ2
ℝ

n ×ℝð Þ, ðB:1Þ

where 0 is an equilibrium of the system, that is, f ð0, ϕÞ = 0 for
all ϕ. Assume the following:

A1: A =Dx f ð0, 0Þ = ðð∂f i/∂x jÞð0, 0ÞÞ is the linearization

of the system 24 around the equilibrium 0 with ϕ evaluated
at 0. Zero is a simple eigenvalue of A , and other eigenvalues
have negative real parts;

A2: the matrix A has a right eigenvector w and a left
eigenvector v corresponding to the zero eigenvalue.

Let f k be the kth component of f and

a = 〠
n

k,i,j=1

vkwiwj

∂
2 f k

∂xi∂x j
0, 0ð Þ,

b = 〠
n

k,i=1
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2 f k

∂xi∂ϕ
0, 0ð Þ:
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>
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>

>

>

>

:

ðB:2Þ

The local dynamics of systems 24 around 0 are completely
determined by the signs of a and b:

(i) a > 0, b > 0. When ϕ < 0 with jϕj≪ 1, 0 is locally
asymptotically stable and there exists a positive
unstable equilibrium; when 0 < ϕ≪ 1, 0 is unstable
and there exists a negative and locally asymptotically
stable equilibrium;

(ii) a < 0, b < 0. When ϕ < 0 with jϕj≪ 1, 0 is unstable;
when 0 < ϕ≪ 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium;

(iii) a > 0, b < 0. When ϕ < 0 with jϕj≪ 1, 0 is unstable,
and there exists a locally asymptotically stable nega-
tive equilibrium; when 0 < ϕ≪ 1, 0 is stable, and a
positive unstable equilibrium appears;

(iv) a < 0, b > 0. When ϕ changes from negative to posi-
tive, 0 changes its stability from stable to unstable.
Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.
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