Mathematical Modeling and Computer Simulation

Daniel P. Maki Indiana University

Maynard Thompson Indiana University

Contents

30.43					
CH	IAPTER 1				
	sic Principles				
1.0	Overview of the Uses of the Term <i>Model</i> 1				
1.1	The Process of Constructing Mathematical Models 4				
1.2	Types of Mathematical Models and Some Practical Aspects of Model Building 7				
,	Deterministic versus Stochastic Models 8				
	Implementing a Model 9				
1.3	A Classic Example 10				
	Ptolemy 10				
	Copernicus and Kepler 11				
	Newton 12				
1.4	Axiom Systems and Models 13				
•	Axioms 14				
	Axiom Systems 15				
	Models and Formal Model Building 16				
1.5	Simulation Models 20				
1.6	Practical Aspects of Model Building 20				
	Intuitive Evaluations 21				
	Statistics for the Model-Building Process 21				

	·
NO CHINGS IN THE WAY	IAPTER 2
Мо	del Building: Selected Case Studies
2.0	Introduction 25
2.1	Mendelian Genetics 25
	Some Observations 26
	A Real Model 27
	A Mathematical Model 28
2.2	Models for Growth Processes 36
	Choices for Growth Models 37
	Discrete Logistic Model 42
2.3	Social Choice 50
2.4	Moving Mobile Homes 63
	The Situation 63
	A Real Model 64
	A Mathematical Model 65
2.5	A Stratified Population Model 70
2.6	Simulation Models in Athletics, Marketing, and Population Studies 78
2.7	Waiting in Line Again! 86
	The Setting 86
	Assumptions Used in the Model 87

88

93

97

89

Comments on the Exponential Distribution

Remarks about Other Distributions 90

Estimating Parameters and Testing Hypotheses

Testing Hypotheses and Comparing Models

Comments on Queues with Exponential Arrivals and Service

Predictions 89

Maximum Likelihood

Minimum Discrepancy 95

2.8

25

CHAP	TER	3	, , ;	e e e e e e e e e e e e e e e e e e e	(y 1) (d. 12)

Markov	Chains	and	Related	Stocha	estic	Mod	els
IVIAIRUV	Guains	anu	neialeu	JUULIIC	เอเเษ	IVIŲU	CID

106

- 3.0 Introduction 106
- 3.1 The Setting and Some Examples 106
 Animal Ranges 106
 The Effects of Group Structure on Small-Group
 Decision Making 110
- 3.2 Basic Properties of Markov Chains 115
 The Markov Assumption 116
 State Vectors 118
 Multistep Transitions and the Sequence of State Vectors 119
- 3.3 Classification of Markov Chains and the Long-Range Behavior of Regular Markov Chains 125
- 3.4 Absorbing Chains and Applications to Ergodic Chains 135
 Applications of Absorbing Chains to Ergodic Chains 141
 Chapter Appendix: Mathematical Details 148

CHAPTER 4

Simulation Models

153

- 4.0 Introduction 153
- 4.1 The Simulation Process 153
- 4.2 Generating Values of Discrete Random Variables 164
 Random Numbers Distributed as a Discrete
 Random Variable 166
 A Simulation 169
- 4.3 Discrete Event Simulation 171
 Simulating Markov Chains 178
- 4.4 Generating Values of Continuous Random Variables 185Summary of the Method 188

4.5 Applications and Validation of Simulation Modeling 195
 Estimating Customer Flow in a Retail Store 195
 Meeting Demands in a Fitness Center 198
 Modeling the Spread of a Communicable Disease 201
 Verification and Validation of Simulation Models and Interpretation of Output 207

	(A)	
CHAPTER	5	
01000		

Linear Programming Models

212

5.0 Introduction 212

5.4

- 5.1 Formulation of Linear Programming Problems 213
 A Diet Problem 213
 A Resource Allocation Problem 215
 A Transportation Problem 217
- 5.2 Linear Programming Problems and Duality 223
 Complementary Slackness 228
 General Linear Programming Problems 229
- 5.3 Duality, Sensitivity, and Uncertainty 234 Changes in **A**, **b**, and **c** 237
- Assignment Problem 245
 The Problem 246
 A Real Model 246
 Comments on the Model and Its History 247

An Example of Integer Programming: A Job

5.5 Network and Flows 252
 Definitions and Notation 253
 Maximal Flows and Minimal Cuts 256
 Integer Transportation Problems 258
 The Assignment Problem Revisited 260

APPENDIX

Addendum for Students and Teachers on Projects and Presentations

266

- A.0 Introduction 266
- A.1 The Role of Projects and the Types Useful in Learning Model Building 266
- A.2 Examples of Projects 268

Locating a Community College Campus (Weekend Project, 72 hours) 269

Construction of an Earthen Dam (Weekend Project, 72 hours) 271

Allocating Teachers (90-minute, In-Class Project) 272

A Pipeline Flow Problem (75-minute, In-Class Project) 273

An Irrigation Problem (90-minute, In-Class Project) 273

An Evacuation Plan for an Elementary School (75-minute, In-Class Project) 275

A Vaccination Problem (Long-Term, Several Weeks) 275

A Credit Union Scheduling Problem (Long-Term, Several Weeks) 276

- A.3 Reports and Presentations 276
- A.4 Evaluating Project Reports 277
- A.5 Sources of Projects 278

Client-Driven Projects 278

Self-Initiated or Instructor-Initiated Projects 279

The Mathematical Contest in Modeling 280

Index 281