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Abstract

An ant deposits pheromone along the path that it travels
and is more likely to choose a path with a higher con-
centration of pheromone. The sensing and dropping of
pheromone makes it easy to understand the trail form-
ing behavior of ants. The reinforcement tendency of
pheromone following behavior ensures selection of the
shortest path from a set of paths. The reinforcement ten-
dency of pheromone following behavior also ensures a
biased selection of the initially followed paths over a
path, which is shorter but discovered through chance
at a later point in time. Under what conditions and
limits can thisinitial bias be reversed? In this paper,
we answer this question based on a theoretical analysis
of the trail forming behavior of ants. We believe our
results to contribute to the overall area of understand-
ing how to build scalable systems that evolve to solve
complex problems (e.g. point covering or the travel-
ing salesman problem) without the necessity of central
command-and-control.

Introduction
Ants drop pheromone as they travel and can also sense the
concentration of pheromone that may already be present.
Given alternative paths, an ant tends to choose the one with
a higher concentration of pheromone. A path that hap-
pened to be more heavily traveled by the preceding ants
has a higher concentration of pheromone and tends to be
chosen by the succeeding ones (Deneubourghet al. 1990;
Dorigo & Stützle 2004). The sensing of pheromone to
choose the travel direction and the dropping of pheromone
makes it easy to understand the trail forming behavior of
ants.

The reinforcement tendency of pheromone following
behavior suggests that the shortest path amongst a set
of paths would attract more ants to it further increasing
the pheromone concentration (ignoring the evaporation of
pheromone). To make this more explicit, consider the situ-
ation where ants continuously come out of the nest, choose
from one of two paths leading to a food source, collect the
food and return using one of the two available paths. Under
equal priors, half of the ants coming out of the nest would
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choose one path and the other half would choose the other
path. Ants traveling along the shorter path would reach the
food source quicker and will detect a pheromone trail only
on the shorter path for the return journey. That is so because,
ants that randomly chose the longer path would not have
reached the food source and thus, near the food source, there
is no pheromone concentration along the longer path. There-
fore the returning ants will choose the shorter path further
increasing the pheromone concentration along the shorter
path. After a while the ants that took the longer path reach
the food source. For their return, they choose the shorter
path since it has a higher concentration of pheromone. Sim-
ilar actions over time ensure that all the ants end up using
the shorter path.

The selection of the shortest path is remarkable consider-
ing that the optimization is achieved without explicit com-
munication about the merits of one path over another (in-
deed, an ant having chosen one path has no idea of the length
of the other path) or a centralized command-and-control. A
more intriguing question however is: can a shorter path dis-
covered at a later point in time become the popular path?
The challenge to answering that in the affirmative is that
the reinforcement tendency of pheromone following behav-
ior would ensure a biased selection of the initially followed
paths over a path, which is shorter though discovered by
chance at a later point in time. However, the same argu-
ment as above i.e. ants can travel and return on the shorter
path more quickly implies that under certain conditions and
limits (on the amount of pheromone concentration on the
longer paths) it may still be possible to reinforce the shorter
path. Under what conditions and limits on the pheromone
concentration on the longer paths can thisinitial bias be re-
versed? In this paper, we provide a theoretical analysis that
sheds light on when theinitial bias reversalcan happen.

We have arranged the rest of this paper as follows. Our
analysis follows the modeling of the evolutionary process in
terms of urn models. We first provide a short background
on urn models and then utilize these concepts to analyze the
trail forming behavior of ants and provide a rigorous formu-
lation of the conditions under which the initial bias reversal
can happen. Finally, we distinguish our work from other
theoretical works and conclude with some observations and
our future directions.
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Urn Models
In this Section, we provide a brief introduction to urn mod-
els (for more details, see (Johnson & Kotz 1977; Mahmoud
2003)). In an urn, one assumes balls of a certain number of
colors to be present. One draws a ball randomly from the urn
and depending on the color of the ball, adds a certain num-
ber of balls of that color to the urn. This addition in effect
changes the probability of choosing a ball of any specific
color. In effect, the preceding choice (drawing a ball of a
certain color) changes the probabilities of drawing a specific
color in the succeeding draw. This is not unlike how trails
are formed in ant colonies where an ant traveling along a
certain path, deposits pheromone on it and thus changes the
probabilities of a succeeding ant choosing a specific route.
We will make the relationship more explicit shortly. For the
present, we proceed to describe the urn models.

Let us assume that an urn of infinite capacity contains
balls ofk different colors. At each discrete instant, a ball is
randomly picked up from the urn and its color is observed.
If the color is theith color, then along with the ball picked,
aij balls,∀j = 1, . . . , k are also put back into the urn. For
each color picked, it is convenient to represent the number
of balls of each color added to the urn, by a matrix. This
matrix is usually referred to as aReplacement Matrix. For
example in the following replacement matrixA,

A =









a11 a12 · · · a1k

a21 a22 · · · a2k

...
...

.. .
...

ak1 ak2 · · · akk









an entry aij denotes the number of balls of colorj
added to the urn, if the color of the ball picked isi. The
individual entries can be positive, zero or negative1.

Since a ball is picked from the urn at random, each ball
has equal probability of being picked. Therefore the selec-
tion of a ball of a particular color is proportional to the pro-
portion of balls of that color in the urn. Once a ball has
been selected, the number of balls of each color is updated,
therefore the probabilities change according to the previ-
ous choice. This is analogous to ant behavior, where the
probability of choosing a path is proportional to the amount
of pheromone on that path and the probabilities change ac-
cording to the previous choice on account of pheromone de-
posited by the ant.

A classic urn model is thePolya-Eggenberger urn pro-
cess(Mahmoud 2003). For a two color problem, the Polya
replacement matrix is of the form

(

s 0
0 s

)

wheres is the number of balls of the same color added to the
urn. The above replacement scheme is described as the fol-
lowing. Suppose there are white and black balls in the urn.
If a black ball is picked, thens additional black balls are put

1In the case that some of them are negative, there are additional
tenability conditions that must be followed in order to eliminate
impossible moves.

back into the urn. If a white ball is picked, thens additional
white balls are put back into the urn. If there arek(> 2)
colors, then the problem is called aGeneralized Polya urn
problemand the corresponding Replacement matrix isk×k
diagonal matrix with the usual constant row sum property.

In the context of the ant problem, the above2 × 2 ma-
trix corresponds to the situation where there are two paths.
When an ant chooses the first path, pheromone is deposited
on that path, corresponding to an increase in the amount of
pheromone concentration on that path bys. The entries in
the matrix thus capture the amount of pheromone increase
when a specific path (row in the matrix) is chosen. In the ab-
sence of evaporation, the matrix is a diagonal matrix of pos-
itive values corresponding to increase of pheromone when
the corresponding path is chosen.

Even slight difference in the entries can lead to a drastic
difference in performance obtained. For example, while the
evolution process of the Polya urn results in a clear prefer-
ence of one choice, theAdverse Campaign model, given by

(

0 s
s 0

)

results in a balanced preference.
Thus, one can understand why some ant algorithms that

differ only slightly in the update scheme yield very different
performance results. In the next section we derive the ap-
propriate replacement matrix for the biological ant model.

Trail Formation as a Polya Process
Suppose ants come out of the nest and move in one di-
rection till a point where they are offered two alternative
paths (denoted byA and B). At this point they need to
make a decision regarding which path to follow. We as-
sume that in one time instant only one ant makes a deci-
sion. This is a reasonable assumption to make because the
time instance between consecutive decisions can be arbitrar-
ily small (Bonabeau, Dorigo, & Theraulaz 1999). If the
number of ants that make a decision in one time instant is
greater than one, then also this analysis is applicable pro-
vided the number of ants that make a decision in each time
instant is constant. Both of the above possibilities imply that
a constant amount of pheromone is added to a path as the re-
sult of the decision made. We denote this constant amount
of pheromone dropped on account of the decision made by
m. The value ofm is obtained as the product of number
of ants that take a decision in an instant and the amount of
pheromone dropped by each ant. If the ant chooses pathA,
thenm amount of pheromone is added to pathA, and if the
ant chooses pathB thenm amount of pheromone gets added
to pathB.

Once an ant chooses a path it keeps dropping constant
amount of pheromone along the path that it walks on.
The paths are assumed to be independent and once an ant
chooses a path it cannot switch between them. Thus, the
concentration of pheromone along the complete path is the
same as at the decision point. The ants probabilistically
choose paths based on the concentration of pheromone at
the decision points.
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In regards to urn models as described in the previous sec-
tion, for the trail formation process the different paths of-
fered to ants correspond to the differentcolorsavailable in
the urn. The picking probability governed by the pheromone
concentration in ants corresponds to thenumberof balls in
the urn. For ants when a path (color) is picked only the
concentration of pheromone (number of balls) of that path
(color) is updated by an amountm. Therefore the appropri-
ate replacement matrix for a two path problem will be

(

m 0
0 m

)

.

The above matrix corresponds to thePolya-Eggenberger
urn model. Using the above update matrix we derive our
results. We start by supposing that the initial concentration
of pheromone on pathsA andB areCA andCB .

The probability that pathA is chosen is given by

CA

CA + CB

(1)

and that of pathB is given by

CB

CA + CB

. (2)

If the decision making ant chooses pathA, then the con-
centration of pathA is updated toCA + m. The new proba-
bility of choosing pathA becomes

CA + m

CA + CB + m
. (3)

Since each decision is taken independently of others, the
probability that pathA is chosen in the second time instant
also, is given by

CA

CA + CB

×
CA + m

CA + CB + m
. (4)

Similarly at time instantn, the probability that the firstx
ants choose pathA and the successive(n − x) ants choose
pathB is given by,

CA

CA + CB

×
CA + m

CA + CB + m
. . .

CA + (x − 1)m

CA + CB + (x − 1)m
×

CB

CA + CB + xm
×

CB + m

CA + CB + (x + 1)m
. . .

. . . ×
CB + (n − x − 1)m

CA + CB + (n − 1)m
(5)

To get a succinct expression for the above equation, we
first divide the numerator and denominator bym to get,
CA

m
(CA

m
+ 1) . . . (CA

m
+ x − 1)CB

m
(CB

m
+ 1) . . . (CB

m
+ n − x − 1)

(CA+CB

m
)(CA+CB

m
+ 1) . . . (CA+CB

m
+ n − 1)

(6)
The multiplicands in the above equation are incomplete

expansions forΓ(x + CA

m
), Γ(x + CB

m
) and Γ(n + CA+CB

m
),

where Γ stands for the Gamma function. We multiply and

divide the above equation byΓ(CA/m), to get Γ(x+ CA

m
) in

the numerator. Similarly on multiplication withΓ(CB/m)
we get Γ(x + CB

m
), and on multiplication with Γ((CA +

CB)/m), we get Γ(n + CA+CB

m
). Combining all the terms

we can write the above as

Γ(x + CA

m
) . Γ(n − x + CB

m
) . Γ(CA+CB

m
)

Γ(CA

m
) . Γ(CB

m
) . Γ(n + CA+CB

m
)

(7)

Equation 7 gives an expression for the probability that the
first x decisions are in favor of pathA and thesubsequentn−x
in favor of pathB. Next we need to derive the probability
of choosing pathA, x times over all possible sequences of
choosingA.

We first note that the sequence of choosing of paths does
not alter the above equation. Any sequence of decisions that
result in pathA being chosenx times and pathB being cho-
sen(n − x) times will result in the same equation, only the
denominators will be interchanged. Secondly, since there
are

`

n

x

´

different sequences of choosing pathA, x times, we
multiply the above probability by

`

n

x

´

to get the total proba-
bility of pathA being chosenx times out ofn (for all possi-
ble sequences).

P (x,n) =

Γ(x + CA

m
) . Γ(n − x + CB

m
) . Γ(CA+CB

m
) . Γ(n + 1)

Γ(CA

m
) . Γ(CB

m
) . Γ(n + CA+CB

m
) . Γ(x + 1) . Γ(n − x + 1)

(8)

P (x,n) denotes the probability of pathA being chosenx
times out ofn decisions. Ifn andx are large then we can
apply Stirling’s formula

Γ(n) =
p

2π(n − 1) ∗

„

n − 1

e

«n−1

. (9)

On application of Stirling’s formula in the terms containing
x andn, we get,

(x − 1 + CA

m
)x− 1

2
+

CA
m . (n − x − 1 + CB

m
)n−x− 1

2
+

CB
m . nn+ 1

2

(n − 1 + CA+CB

m
)n− 1

2
+

CA+CB
m . xx+ 1

2 . (n − x)n−x+ 1
2

(10)
In practice,CA/m andCB/m are much smaller thann and
x, therefore we can write

xx− 1
2
+

CA
m . (n − x)n−x− 1

2
+

CB
m . nn+ 1

2

nn− 1
2
+

CA+CB
m . xx+ 1

2 . (n − x)n−x+ 1
2

(11)

On simplification this results in,

x
CA
m

−1 . (n − x)
CB
m

−1

n
CA+CB

m
−1

(12)

Furthermore, if we represent the proportionx/n asr, then
the above can be written as

(1/n) ∗ r
CA
m

−1 . (1 − r)
CB
m

−1 (13)

which is the Beta distribution.
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Therefore, the total probability of pathA being chosenx
times out ofn decisions, is given by

P (An = CA + mx,Bn = CB + m(n − x))

=
Γ(CA+CB

m
)

Γ(CA

m
) . Γ(CB

m
)

.
1

n
.

„

x

n

«

CA
m

−1

.

„

1 −
x

n

«

CB
m

−1

(14)

The above probability represents the critical relationship
between the initial pheromone concentrations on the paths
and the final probability of adoption of each path. The bias
on one of the paths (on account of being discovered earlier)
can have a significant impact on which path the trail will
be formed. If initially one of the paths has a large amount
of pheromone on it, then the probability of it being chosen
by a large number of ants (given byx) is also large. This
explains why if a shorter path is discovered later, it has a
low probability of being converged to.

In the next section, we derive the effect ofshortnessof the
path on the convergence probability and see what amount of
bias on the longer path can be reverted on account of short-
ness of the other path.

Incorporation of length of paths in the result
Under the assumption that all ants move with the same
speed, say one unit distance per unit time, for unequal length
paths the ants complete the route on the shorter path earlier
in time before the longer path. Therefore the shorter route
gets updated (maybe several times in some cases) before the
longer one gets updated. This helps in increasing the ini-
tial pheromone on the shorter path and adds some amount of
bias to the shorter path. This bias on the shorter path, helps
it to revert the bias on the longer path.

The value of this bias added to the shorter path on account
of its shortness can be incorporated as follows. Assume that
the length of the shorter path isLA = 1, and of the longer
path isLB = ratio. Then, till the time an ant comes back on
the longer path, the expected update on the shorter path on
account of faster returns on it is,

E[∆(CA)] = P (1, ratio) . m + P (2, ratio) . 2m + . . .

+ P (ratio, ratio) . (ratio) . m (15)

whereP (., .) is given by equation 8. The expected value is
computed by summing the probability that the shorter path
will be chosenx times× the pheromone added on choos-
ing x times. The maximum number of rounds that can be
completed on pathA before an ant comes back on pathB is
given by ratio. After the return of the ant on the longer path,
the expected update on the longer path will be,

E[∆(CB)] = m . P (1, 1). (16)

To incorporate length, we need to add the above updates
to their respective initial pheromone concentrations and then
apply equation 8.

To study the interplay of length and bias, we studied the
probability of shorter path being more popular at timen. We
define a path being more popular at any time, if the proba-
bility that it will have more pheromone than the other, is
greater than a constantc < 1. The probability of proportion
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Figure 1: Each curve indicates the probability of popularity
of the shorter path under different initial bias. Bias is the
initial amount of pheromone on the longer path when the
initial amount of pheromone on the shorter path is 1. The
different curves indicate how this probability gets altered for
different ratios of length. The lowermost curve is for the
case when ratio between the lengths of the longer and shorter
path is 1. The probabilities have been obtained for n = 100.

of pheromone on the shorter path greater than any constant
c can be obtained as

An

An + Bn

=
A0 + mx

A0 + B0 + mn
> c (17)

Manipulating the terms we get

x >
A0(c − 1) + B0c + nc

m
(18)

Therefore,

P

„

An

Bn

> c

«

=
Γ(A0+B0

m
)

Γ(A0
m

) . Γ(B0
m

)
.

1

n

×

n
X

x=⌈
B0c+nc+A0(1−c)

m
⌉

„

x

n

«

A0
m

−1

.

„

1 −
x

n

«

B0
m

−1

(19)

For each ratio of lengths, usingc = 0.5,2 we plotted this
probability for different bias. Bias is the initial amount of
pheromone on the longer path when the initial amount of
pheromone on the shorter path is 1. The probabilities have
been obtained for n = 100. The figure shows the set of
curves, each corresponding to a chosen ratio of lengths. For
example the lower most curve, plots the probability for dif-
ferent initial bias, when theRatio = LB/LA = 1. There-
fore for the case when there is no difference in the initial
pheromone concentration, the probability that either will be

2The value ofc alters the exact probabilities obtained but the
nature of the curves remains the same.
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more popular is 0.5. Similarly, the other curves represent
the change in probability with the bias on the longer path for
different ratios of lengths.

With increasing bias on the longer path, the probability
that the shorter path will be more popular decreases. With
increasing difference in ratios of lengths, this probability in-
creases, i.e. the shorter the optimal path, the more bias it can
revert.

This validates the intuitive notion that the shorter that a
path is, the more initial bias it can revert. Therefore, one
can use the analysis in this section to study the interplay of
length and bias, and infer the amount of bias that can be
reverted for a particular choice of ratio.

Related Work
Most of the work on ant algorithms focuses on application
of foraging in various domains and not on its theory. Though
proofs of convergence to the shortest paths exist (Dorigo &
Blum 2005), they are very specific to a particular algorithm.

Gutjahr gave convergence results for two ACO algo-
rithms called Graph-Based Ant System (2000) and 1-ANT
(2006). Stützle and Dorigo (2002) proved some convergence
properties for Ant Colony System and Max-Min ant sys-
tem. Merkle and Middendorf (2002) propose a determin-
istic model for ACO algorithms and use it to derive the ex-
act result on permutation problems with a specific structure.
Neumann and Witt (Neumann & Witt 2006) give analysis of
the 1-ANT algorithm on a symmetric function called ONE-
MAX. (Doerr et al. 2007) extended the runtime analysis to
some other example functions.

These convergence results are very specific to the algo-
rithm used and cannot be extended for other similar al-
gorithms. In many cases they have been tailored to suit
the objective function on which analysis is given. In this
case the analysis cannot even be extended to other objective
functions. Certainly, no convergence results or mathemati-
cal analysis for the individual random decision making that
leads to the emergence of trail and choosing of the shorter
path exist.

Individual ant’s random decisions are difficult to model
because of their inherent randomness and the dependence
of one ant’s decision on the past random decisions of other
ants. In this paper we modeled the individual random deci-
sion making as the ball picking process in an urn model. The
dependence on past decisions was incorporated as the addi-
tion of balls in the urn because of the previous decisions.

Discussion
Algorithms inspired by the trail formation behavior of ants
have been used to solve complex problems such as the point
covering problem (Huaet al. 2004), the traveling salesman
problem (Gambardella & Dorigo 1995), the multi label clas-
sification problem (Chan & Freitas 2006) to name a few.

The probability of solving a specific problem can be bet-
ter understood using the analysis presented in this paper
and possible algorithmic adjustments can be made to in-
crease the probability of success. For example, all ant algo-
rithms discover new paths (or solutions) with some explo-

ration probability. Usually long paths (or bad optima) are
discovered before shorter ones are discovered. Since many
longer paths will be discovered before the optimal one, they
develop a “bias” that motivates ants to pursue them and not
the shorter path. Therefore there is no guarantee that even if
the shorter path is discovered later, ants will continue purs-
ing it. In the context of biological ants this means that even
if an ant discovers the optimal path to the food source, it is
not necessary that this information will be successfully de-
livered to the rest of the colony and the trail may not form
on the optimal path.

Analogously, in the case of artificial ants that are used to
solve complex problems like scheduling, routing etc., this
means that even if a shorter route is discovered later, it may
be ignored by the agents who may continue using a previ-
ously discovered longer route. Therefore, it is an important
to know how much bias can be tolerated by the system. Not
only does it give the probability of convergence to the short-
est path but is also crucial in setting the exploration proba-
bility. We describe this utility with a specific example. The
Traveling Salesperson Problem (TSP) requires finding the
shortest possible trip through a set of cities (or nodes), vis-
iting each node exactly once before finally returning home.
The TSP can be represented as a complete graphG = (N, A)
with N being the set of ofn = |N | nodes andA the set of
paths connecting the nodes. Each path is assigned a weight
dij which represents the distance between citiesi andj. The
pheromone trailsτij in the TSP refers to the desirability of
visiting city j directly afteri (Dorigo & Stützle 2004). Ant
Colony System (ACS), (Dorigo & Gambardella 1997) one of
the best performing ant algorithms for TSP, constructs tours
by initially placing ants on random nodes. Then an antk,
located at cityi moves to a cityj according to the following
proportion rule,

j =



argmaxlǫNk
i

{τil[η]β}, if q ≤ q0

J, otherwise
(20)

where,η is heuristic information usually set to1/dij , β
is a parameter,q is a random variable uniformly distributed
in [0, 1], q0(0 ≤ q0 ≤ 1) is a parameter andJ is a random
variable.

This implies that with probabilityq0 the ant exploits
the information about the paths that has been collected by
choosing the paths according to their pheromone concentra-
tions and with(1 − q0) it performs a biased exploration of
the paths. The parameterq0 allows modulation of the degree
of the exploration and the choice of whether to concentrate
the search of the system around the best solution so far (ex-
ploitation). To obtain good results, tuning of this parameter
is required (Dorigo & Stützle 2004). There is no mathemat-
ical analysis that guides the choice of this parameter.

The analysis in this paper provides a criterion on how to
chooseq0. For a given exploration probabilityq0, it is pos-
sible to determine how much bias can accumulate on a path
under worst case. For this bias one can use the analysis to
calculate the probability of degree of closeness to the opti-
mal solution.
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Conclusion
Ants are known to self organize and form trails between
their nest and a food source. The reasons behind this be-
havior are known; however, the mathematical model and the
interrelationship between parameters like pheromone incre-
ment at every step, initial pheromone deposits at a path, and
the number of ants that choose a path etc were not known.
Specifically, it was not clear whether the effect of the initial
bias gained on a longer path can be reversed, and emergence
of a trail can occur on a shorter path discovered later.

In this paper we proposed the use of urn models to analyze
the individual random decisions of ants. Since urn models
capture the evolving probabilities after every decision, they
can be used to analyze various ant algorithms. It is easy
to extend this analysis to other ant algorithms, which is not
possible for previously proposed methods of analysis.

When ants select a path with probability linearly propor-
tional to the concentration of pheromone on it and drop con-
stant amount of pheromone on the path chosen, we showed
that at any given time the ratio of choices between paths fol-
low a Beta distribution. In future, we plan to incorporate
evaporation of pheromone on paths and extend the analysis
to multiple paths.
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