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Abstract Next to clinical and experimental research,

mathematical modeling plays a crucial role in medi-

cine. Biomedical research takes place on many different

levels, from molecules to the whole organism. Due to

the complexity of biological systems, the interactions

between components are often difficult or impossible to

understand without the help of mathematical models.

Mathematical models of cardiac electrophysiology have

made a tremendous progress since the first numerical

ECG simulations in the 1960s. This paper briefly re-

views the development of this field and discusses some

example cases where models have helped us forward,

emphasizing applications that are relevant for the study

of heart failure and cardiac resynchronization therapy.
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Introduction

Mathematical models play a prominent role in all nat-

ural sciences, from particle physics to medicine and
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biology. Their role is complementary to that of observa-

tion. Whereas observations inform us about the behav-

ior of nature itself, models inform us about the behavior

of the theories that we use to express our understand-

ing of nature. The purpose of a model is to translate

a set of hypotheses (the theory) into predictions of

observable events. These predictions can be compared

to observations, and the underlying hypotheses can

be rejected or corroborated. Mathematical models are

required whenever such predictions cannot be made

accurately enough by non-mathematical means. For

all but the simplest cases, “mathematical model” is

nowadays equivalent with “computer model.” This pa-

per overviews the contribution of computer models to

our knowledge of cardiac electrophysiology and their

potential to improve our understanding of heart fail-

ure and cardiac resynchronization therapy (CRT). The

emphasis will be on ventricular and whole-heart mod-

els, and methodological aspects will be discussed only

briefly, where necessary to explain the capabilities and

limitations of models. Extensive reviews of the under-

lying methods have been published elsewhere [14, 58].

In Section “The Development of Computer Heart

Models” of this paper, the development of computer heart

models is outlined. In Section “Applications of Computer

Heart Models”, an overview is given of model appli-

cations, with an emphasis on heart failure and CRT.

The Development of Computer Heart Models

Membrane Models

The electrical activity of the heart originates in the ion

channels, pumps, and exchangers in the membranes of
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myocytes and cells of the specific conduction system.

The cells actively maintain a large difference in con-

centration of sodium, calcium, and potassium between

their cytosol and the interstitium. Ion channels that are

highly selective for one specific type of ion open and

close at different transmembrane potentials, allowing

ions to pass through the membrane along their electro-

chemical gradients. These ionic currents in turn affect

the transmembrane potential, causing some channels to

close and others to open. Hodgkin and Huxley captured

the dynamics of the sodium and potassium currents

of a neuron in mathematical equations and demon-

strated that these give rise to action potentials [39].

Following this pioneering work, which was awarded

with a Nobel prize in 1963, mathematical modeling of

active cell membranes has been highly successful in

testing whether the known mechanisms sufficed to ac-

count for all the experimentally observed phenomena

[73]. Several detailed mathematical models for human

cardiac myocytes have been published, both for atrial

[21, 74] and for ventricular cells [44, 115]. Figure 1

shows schematically the components of a typical human

ventricular membrane model [116].

Membrane models were in the first place developed

in order to test the theoretical understanding of the

mechanisms underlying the action potential. Another

application of such models has been the prediction

of drug effects on cardiac function [88]. Also, exten-

sive studies have been performed to infer under what
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Fig. 1 Ion channels, pumps (double circles), and exchangers
(large circles) in the model of the human ventricular myocyte
published by Ten Tusscher et al. [116]. The large rectangle repre-
sents the cellular membrane; the small rectangle the sarcoplasmic
reticulum (SR) membrane. The model keeps track of sodium,
potassium, and calcium concentrations in the cytosol, as well as
the calcium concentration in the SR

circumstances a cell (model) would contribute to, or

counteract abnormal automaticity [9, 57].

Simulating Action Potential Propagation

A membrane model represents the events in a single

cell or, strictly speaking, in a small patch of membrane.

This mimics the situation of an experimentally isolated

cell or a patch clamp. Inside tissue, myocytes are cou-

pled to each other by gap junctions [22], allowing the

inward current in one cell to depolarize another cell

and causing repolarization to be synchronized between

cells [20]. By coupling membrane models together, it

is possible to take these interactions into account and

to create tissue models in which propagating activation

can be simulated. With such models, it is possible to

study not only the effect of drugs and mutations on

cellular electrophysiology but also on action potential

propagation and arrhythmia [18].

The first models of propagating action potentials,

however, did not use this approach because it would

have been too demanding for the computing equipment

available at the time. Instead, simulations were based

on the concept of cellular automata. Tissue models

consisted of a number of “cells” (which did not neces-

sarily have a one-to-one relationship with the biological

cells) that could each be in one of a number of pre-

defined states related to the excitable, absolute refrac-

tory, and relative refractory states of real myocardium.

Fig. 2 Early heart models were based on Huygens’ wavefront
approach: Given an initial activation wavefront (which may be
a single point or a surface), a sphere is placed on each point of
the wavefront. The envelope of these spheres is the wavefront at
the next time step, and the procedure is repeated
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Action potential propagation corresponded to a change

from an excitable to a refractory state and was based

on predetermined propagation velocities, using an ap-

proximation of Huygens’ wavefront approach [43, 99]

(Fig. 2).

Among the first papers reporting simulations of

propagating action potentials are those by Moe et al.

in 1964 [68], who simulated atrial fibrillation in a two-

dimensional sheet, and Okajima et al. in 1968 [76],

who simulated activation in a three-dimensional model

of the human ventricles. Solomon and Selvester [99]

also simulated ventricular activation, using the early

activation sites of the human ventricles published in

1970 by Durrer et al. [24] and comparing the simulated

activation isochrones with those reported by Durrer.

Computer Models of the ECG

The earliest computer simulations of the ECG were

published in the same period as the first simulations of

propagating activation, but they did not yet make use

of the latter [5, 30, 98]. Gelernter and Swihart in 1964

and Barr et al. in 1966 published methods to compute

the potential distribution on the surface of an inhomo-

geneous torso model that would result from a given

configuration of oriented current sources (“dipoles”)

in the heart [5, 30]. These dipoles were configured by

hand [98], or derived from an assumed action potential

amplitude and measured activation wavefronts [31].

Shortly after the first publications of electrocardio-

graphic body surface maps [107], Gelernter et al. [31]

reported simulated electrocardiographic body surface

maps based on measured activation wavefronts in ca-

nine hearts provided by Scher and coworkers [36, 96].

Subsequently, Selvester et al. [98] presented complete

QRS complexes, also based on measured activation

patterns.

Miller and Geselowitz in 1978 computed the QRS

complex and T wave in the 12-lead ECG [64] based on

activation sequences computed earlier by Solomon and

Selvester [99]. A similar model was used by Gulrajani

and Mailloux to quantify the effect of the lungs and

intracavitary blood masses on the ECG [35].

Integration of simulated propagation and ECG com-

putation was reported in a few studies in the 1970s,

for example those by Salu and Rush [93] and by Niimi

et al. [72]. In the 1980s, several groups reported detailed

models of the heart and torso in which both propaga-

tion and electric potentials were simulated [2, 26, 59].

A new development was the use of fiber orientations

(based on the analysis of Streeter et al. [104]) so

that anisotropic propagation velocities could be used

[59, 60]. ECGs were simulated with detailed, inhomo-

geneous torso models that included the lungs and the

skeletal muscle layer. Another novelty was that these

models assumed complete action potential waveforms

rather than only upstrokes, so that also T waves could

be simulated. However, propagation velocities and ac-

tion potentials were still predetermined, not simulated.

The Bidomain and Monodomain Models

An important breakthrough occurred with the de-

velopment of the bidomain model of cardiac muscle

[64, 97, 114], a conceptual model that allows a descrip-

tion of electrical current flow in the tissue. The actual

structure of myocytes connected to each other by gap

junctions, forming branching and intertwining muscle

fibers embedded in an interstitial fluid and interspersed

with capillaries and other structures, is abstracted by

two continuous domains. These are the intracellular

domain, representing the myocytes and gap junctions,

and the extracellular domain, representing all other

intracellular extracellular

Fig. 3 In a bidomain model of the heart, the myocardium is
abstracted as two continuous media separated by the cell mem-
brane. One medium represents the intracellular domain con-
sisting of cells and gap junctions, and the other represents the
extracellular domain. These media are electrically conducting
to represent the conductance of gap junctions and extracel-
lular fluid, respectively. The conductivity is inhomogeneously
anisotropic to represent the varying fiber directions in the heart.
The two media are then split into small blocks, the sizes of
which are dictated primarily by the properties of the mathe-
matical equations that govern the potential fields. Each block is
connected to the corresponding block in the other domain by a
membrane model, which computes the transmembrane current
flowing from one domain to the other as a function of time and
potential difference
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tissue components. Each domain is characterized by an

electrical conductivity that is greater along than across

the fibers and changes from place to place, to account

for the variable fiber orientation in the heart. The two

domains are electrically coupled only through the cell

membrane, as illustrated in Fig 3.

The idea to treat the cardiac tissue as a continuum

(while acknowledging that it is in reality composed of

discrete cells with membranes) is often attributed to

Otto Schmitt, who gave a qualitative description of

it in 1969 [97]. The mathematical expression of the

bidomain was published independently by Miller and

Geselowitz [64] and by Tung [114] in 1978.

The bidomain theory had three important conse-

quences. First, it gave a firm theoretical ground to

the current dipoles that had been used for decades to

represent the cardiac activity [59]. Second, because the

bidomain distinguishes intracellular and extracellular

current flows, it became possible to simulate the ap-

plication of external stimuli or defibrillation currents

[69]. Third, the bidomain led to a completely new type

of heart model that was built on the membrane mod-

els discussed in Section “Membrane Models”. These

“reaction–diffusion models” will be discussed in Sec-

tion “Reaction–Diffusion Models”.

An important simplification of the bidomain model

results when the electrical resistance is assumed to

reside completely in the intracellular domain (Fig 3).

This assumption prohibits simulation of extracellular

potential fields because the zero resistance in the ex-

tracellular domain implies a uniform potential there.

However, it has a negligible effect on propagating ac-

tivity in a reaction–diffusion model [8, 80], and it allows

for much more efficient simulations. Models that use

this assumption are termed monodomain models.

Reaction–Diffusion Models

In the 1990s, it became feasible to couple enough

membrane models together to form a complete pair

of ventricles, or even a complete heart. This coupling

was achieved through the monodomain or bidomain

model, which approximate the myocardium by one or

two continuous domains, respectively. This is a neces-

sary step to make calculations on the scale of a whole

heart feasible. Even today, dealing with each of the

heart’s two billion myocytes individually is not within

reach. Fortunately, we can be confident that at least

in structurally normal tissue this simplification does

little harm. There exist mathematical models that do

incorporate the microstructure of the heart [45, 102],

but they are presently limited to preparations of at most

a few millimeters length.

Even when a model assumes a continuous

(bi)domain, it is necessary for numerical simulation

to divide the domain into discrete elements. The

steepness of the membrane potential upstroke and

the resulting steep spatial potential gradients dictate

an element size of at most 0.25 to 0.5 mm (depending

on other methodological aspects). Consequently,

published models of the human heart had in the order

of 10 million to 100 million elements [7, 40, 71, 113].

With this type of model, the assumptions of predeter-

mined propagation velocities and predetermined action

potential waveforms could be abandoned. Propagation

and action potentials could be computed simultane-

ously with the membrane ionic currents. Changes could

be made at the level of these currents, and the effects

on propagating activation, electrograms, and the ECG

could be simulated, as illustrated in Fig 4. Similarly,

pacing or defibrillating currents could be injected in the

models, and their effects on the ionic currents could be

studied [111].

With the new possibilities came new challenges. In

order to obtain T waves that have the same sign as

the QRS complex in the same lead, a characteristic

known as T-wave concordance and observed in nearly

all leads of the normal human 12-lead ECG, dispersion

Fig. 4 Principle underlying membrane-based heart models. Two
model cells are depicted schematically, with their ion channels,
pumps, and exchangers. Gap junctions connect the cells. In de-
polarizing cells, a large inward sodium current flows along its
electrochemical gradient (1). This current passes through gap
junctions to neighboring cells. There, part of it serves to charge
the cell membrane (2) represented by a capacitor symbol, and
another part leaks through potassium channels that are still open
(3). The two parts form an outward current in this cell, and the
current loop is closed in the interstitium and outside the heart (4),
where it generates a potential field, schematically indicated here
in red for positive potentials and blue for negative potentials. This
potential field is picked up as an ECG (5)
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of action potential duration is necessary [79]. On aver-

age, late-activated cells should repolarize earlier than

early-activated cells. This requires a strong negative

correlation between activation time and action poten-

tial duration. Previously, this heterogeneity had been

included in the models by directly manipulating the

action potential waveforms in different regions. In

membrane-based models, heterogeneity of action po-

tential duration can only be obtained from heterogene-

ity of ion-channel densities or characteristics. Attempts

to reproduce realistic T waves based on known het-

erogeneities of ion channels have shown that these

have still not been sufficiently characterized to explain

concordant T waves in the human ECG [19, 109, 116].

Because of the large uncertainty in several parameters,

such as the regional expression level of the slow delayed

rectifier current (IKs), it is common practice to assume

a transmural and/or apicobasal gradient in IKs density

to obtain concordant T waves [52].

Eikonal Models

While membrane-based heart models are much more

realistic than the earlier fixed-velocity models, they are

computationally much more expensive. For problems

where only the activation wavefront is of interest and

its velocities along and across the fibers can be as-

sumed constant, an elegant solution is possible by the

use of an “eikonal equation” [15, 49]. Like Huygens’

approach, on which earlier models were based, this type

of equation originates from the theory of optics [48].

Compared to approximations of Huygens’ approach,

an eikonal equation is more difficult to solve, but also

more accurate.

Electromechanical Models

In order to study the effect of modified cardiac ac-

tivation on cardiac pump function, it is necessary to

construct models that incorporate not only the elec-

trophysiology but also the electromechanical coupling,

mechanical contraction, mechanoelectric feedback, and

even the fluid dynamics and hemodynamic feedback

on the electrical and mechanical function of the heart.

Such models are vastly more complicated than models

of electrophysiology alone and contain many more free

parameters. Several groups have presented models that

incorporated at least some of these aspects [1, 50, 54,

55, 106]. Recent reviews were published by Williams

et al. [123], Trayanova et al. [112], and by Kuijpers et al.

(this issue) [56]. This paper will concentrate on purely

electrophysiological models.

Applications of Computer Heart Models

Model Studies of Cardiac Arrhythmia

and Defibrillation

Many modeling studies have addressed the initiation

and termination of arrhythmia. A complete account of

these is outside the scope of this review; only some

examples will be discussed here. Several studies have

addressed the role of specific ionic currents in arrhyth-

mia. For example, Bernus et al. considered the role

of the L-type Ca current in ventricular fibrillation [7].

Detailed membrane models made it possible to study

the effect of genetic mutations affecting specific ion

channels on the function of the cell and on the initiation

and maintenance of arrhythmia in the whole heart

[13, 34, 40, 51, 94, 121]. Several groups studied the

role of the Purkinje system in polymorphic ventricu-

lar tachycardia [6, 10]. On a more fundamental level,

the basic principles of reentry [17] and unidirectional

block [27] have been elucidated with computer mod-

els. Model studies have contributed importantly to our

understanding of virtual electrodes, the phenomenon

that activation of tissue can occur at a distance from

a stimulating electrode rather than directly underneath

it [16, 25, 122]. Not only the initiation but also the

termination of arrhythmia has received attention with

many studies investigating factors in defibrillation suc-

cess [86, 89, 111].

Linking Signal Shapes to Underlying Phenomena

An important role of models is to give insight in the re-

lation between observable signals and underlying quan-

tities that are difficult or impossible to observe. Cardiac

electrograms (measured with electrodes that touch the

myocardium) are much easier to record than the trans-

membrane potentials, which we are actually interested

in. The relation between the two is not straightforward

because the extracellular potentials that the electro-

gram records depend not only on the local transmem-

brane potential but on all transmembrane potentials

in the heart [83]. Still, with a careful analysis, much

information can be derived from these signals. Using

both experiments and mathematical models, Spach and

Barr explained the relation between the rapid down-

stroke in the unipolar electrogram and the onset of

the action potential in nearby tissue [100, 101]. Several

other aspects of the unipolar electrogram, including

complex R waves [38, 108] and the relation between

T-wave parameters and local repolarization [83, 95],

were subsequently clarified with computer models.
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The monophasic action potential (MAP) [28] is an-

other example of a signal that has a nontrivial relation

to the action potential waveform. To make a MAP

recording, the tissue is locally depolarized by applying

pressure. As a result, the local extracellular potential

will contain a large contribution from the intracellu-

lar potentials of the tissue just outside the depolar-

ized area. A reference potential is obtained from an

electrode a few millimeters away into the cavity. The

difference between these potentials yields a signal that

resembles an action potential, a signal that is normally

measured between the intracellular and extracellular

potentials at the same location. The precise mecha-

nism of the depolarization and the degree to which

the cells depolarize are uncertain, but the physics be-

hind the MAP are well understood, and its working

has been illustrated in several computer model studies

[110, 119, 120].

The effect of changes in ion-channel function on

the surface ECG is often difficult to predict. Model-

ing studies of a one-dimensional preparation reflecting

the transmural heterogeneity in the ventricles have

demonstrated several of these effects on endocardial-

to-epicardial pseudo-ECGs that could be compared

to laboratory measurements in wedge preparations

[33]. More recently, it has become feasible to extend

such predictions to the full 12-lead ECG generated by

the in situ heart. As an example, Hoogendijk et al.

have shown that reduced sodium current, as occurs in

Brugada syndrome, by itself cannot explain the

Brugada sign in the ECG; only when it was combined

with muscle damage was right-precordial ST-segment

Fig. 5 Example of a computer model study to link events at
the organ and organism levels to pathologies on the cellular and
tissue levels. The model (blue) was a reaction–diffusion model of
the heart, consisting of millions of membrane models, coupled
to a torso model. On the cellular level, the sodium channel
density was reduced in the entire heart. On the tissue level,
heterogeneous uncoupling was assumed. Model predictions were
obtained on all levels. On the cellular level, the model predicted
reduced inward current and slower action potential upstrokes, as

expected. On the tissue level, conduction slowing and block was
observed at sites where narrow strands of myocardium had to
activate larger volumes. On the organ level, this resulted in areas
of conduction slowing and block in the subepicardium. On the
organism level, ST-segment elevation and T-wave inversion were
predicted that could be modulated by changing the expression
of L-type calcium current (dif ferent colors of traces). Parts of
this figure were reprinted from Hoogendijk et al. [40, 41] with
permission from Elsevier
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elevation reproduced [40, 41]. In these studies, tissue-

level and organ-level results were obtained from exper-

iments in tissue samples and an isolated human heart,

respectively. A large-scale computer model of the heart

and torso was used to evaluate the corresponding ECG

features and to clarify the events at the cellular, tissue,

and organ levels, as illustrated in Fig 5.

Ischemic Heart Disease

Acute myocardial ischemia that affects the full thick-

ness of the ventricular muscle is known to cause

ST-segment elevation in overlying electrocardiographic

leads. This is often accompanied by “reciprocal” ST

depression on the other side of the thorax. Although

this has often been explained as a necessary conse-

quence of the primary ST elevation, several authors

have suggested that “ischemia at a distance,” that is,

a lesser degree of ischemia remote from the primary

zone, would be involved [12, 75]. A simulation study

by Dubé et al. in 1996 showed convincingly that such

a hypothesis is not necessary [23]. Assuming only a

primary ischemic zone, they were able to reproduce

the surface patterns of ST elevation and depression

that could be observed after temporary occlusions of

the coronary arteries during angioplasty. Another ob-

servation from the same study was that the somewhat

counterintuitive shortening of the QRS complex dur-

ing ischemia could well result from slower conduction

in the bundle branches; changes in cancelation then

caused QRS shortening in some leads [23].

In case of subendocardial ischemia, textbooks still

promote the idea that overlying electrocardiographic

leads will show ST depression. Recent studies with

computer models have shown that more requirements

have to be fulfilled before subendocardial ischemia

can lead to measurable ST depression [42, 47, 81].

These studies suggest that primary ST depression (ST

depression in the absence of ST elevation) observed

in patients indicates a global perfusion problem rather

than a local one. This may explain the observation that

the location of primary ST depression cannot identify

the obstructed artery in patients undergoing coronary

angioplasty [70].

Heart Failure, Conduction Disturbances, and CRT

In patients with left ventricular dysfunction and in pa-

tients with a right-ventricular pacemaker, discoordinate

contraction of the left ventricular septum and free wall

reduces the pumping efficiency of the heart [54, 105].

The purpose of CRT is to resynchronize the mechanical

contraction of the ventricular wall. Evidently, a rapid

electrical activation is a prerequisite for synchronous

contraction. An important challenge in CRT is to find

the best pacing locations and atrioventricular and in-

terventricular delays. The solution likely depends on

the individual anatomy and pathophysiology of the pa-

tient’s heart. An important body of work has therefore

been dedicated to the construction of patient-tailored

models in which the importance of pathology, geome-

try, and CRT tuning may be tested. For example, Miri

et al. [65, 87] computed biventricular-paced activation

sequences and ECGs in ten patient-specific heart mod-

els to simulate the process of CRT tuning. They found

that in addition to AV and VV delays, the position of

the LV electrode influenced electrical synchrony and

that the optimal position was patient-dependent.

Retrograde activation of the Purkinje system may

well contribute to the success of individual CRT treat-

ments. It is still uncertain whether activation does re-

enter the Purkinje system in left bundle-branch block

(LBBB) or biventricular pacing. Lorange et al. simu-

lated LBBB with and without the possibility of reen-

try and found that the simulated ECG and epicardial

isochrones in the situation with reentry provided the

best agreement with experimental data [61]. Romero

et al. simulated biventricular pacing and found that,

when retrograde Purkinje activation was permitted,

the endocardial activation sequence was more realistic

[90]. Kerckhoffs et al. [53] argued for the existence

of a rapidly conducting subendocardial layer in addi-

tion to the Purkinje system. They found that, without

retrograde Purkinje activation, assuming a 1.7 times

faster conduction in the subendocardial layer helps to

obtain realistic epicardial activation patterns during LV

pacing.

Although Lorange et al. reported that retrograde

Purkinje activation allowed for more realistic simula-

tion results in case of LBBB, they also found that to

obtain typical patterns of left anterior fascicular block

(LAFB) [91], it was necessary not only to cut off a part

of the LV Purkinje network but also to disable reentry

in the disconnected part [61]. Bacharova et al. recently

reported that the ECG pattern of LAFB can also be

caused by reduced coupling in the myocardium, without

damage to the specific conduction system [4]. Figure 6

shows simulated ECGs and vectorcardiograms in the

case of “true” LBBB (interruption of the left bundle

branch) and without LBBB but with 60% uncoupling in

the LV myocardium, using a reaction–diffusion model

of the human heart and torso [4, 82]. The QRS angles

in the two cases are comparable, but there is a large

difference in amplitude and QRS duration.

Most patients with LBBB ECGs do not have large

amplitudes like those shown in Fig 6. It is presently
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Fig. 6 Simulated ECG and vectorcardiograms with true LBBB (black) and without LBBB but with 60% uncoupling in the LV
myocardium (red)

not clear whether this indicates that these patients do

not actually have a dysfunctioning bundle branch, or

whether they simply have other pathologies that reduce

QRS amplitude, counteracting the lack of electrocar-

diographic cancelation in the LV that allows the QRS

to become so large in the model. Strauss et al. recently

argued that in case of “true” LBBB, the QRS duration

must be well over 140 ms [103]. The model results

suggest that in other cases, LBBB and LBBB-like ECG

patterns may be due to uncoupling in the working

myocardium. Alternatively, remodeling of membrane

ionic currents could contribute to such ECG patterns;

a hypothesis that has not yet been evaluated with a

numerical model.

Hypertrophy and dilatation are common factors

in ventricular dysfunction. To explain the electrocar-

diographic changes seen in patients with left ven-

tricular hypertrophy or dilatation, the Brody effect

[11] has often been quoted. The Brody effect is the

amplification of radial current sources due to the rel-

atively high electrical conductivity of the intracavi-

tary blood. When the cavity size increases, the am-

plitude of the QRS complex—which is mostly due

to radial sources—should also increase. One of the

earliest applications of mathematical modeling to bet-

ter understand the ECG was the 1966 paper by

Gelernter et al. [31] in which they quantified the Brody

effect (apparently unaware of Brody’s publication [11]

10 years earlier) for the case of a thickened ventricular

muscle mass, with or without enlarged cavity. Their

purpose was to investigate the hypothesis that these

geometrical changes could explain the unpublished ob-

servation by A. M. Scher that increasing heart size

in training marines was accompanied by decreasing

QRS amplitude. As we would expect based on Brody’s

more qualitative argument, they found that this was

not the case. More recent numerical studies evaluat-

ing the Brody effect confirmed its existence but cau-

tioned that its effects are not always straightforward

[35, 78, 92].
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Inverse Models

So far, only so-called forward models have been dis-

cussed, that is, models that simulate events based on

hypotheses. Inverse models or “electrocardiographic

imaging” methods, in contrast, take measured signals as

input and attempt to reconstruct the underlying events

[32, 37, 63, 66, 85]. The term “imaging” should be

interpreted with care. On the one hand, the name is

appropriate because, similar to other medical imaging

methods such as computed tomography (CT) and mag-

netic resonance imaging (MRI), electrocardiographic

imaging reconstructs invisible events from measured

signals. On the other hand, it should be remembered

that electrocardiographic imaging is much more uncer-

tain than MRI or CT. Surface signals only provide a

very brief summary of the activity of the heart’s two bil-

lion myocytes. For each set of measured data, there

is an infinite number of (physically) possible source

configurations [62]. Therefore, inverse models rely on

many assumptions in order to arrive at a unique answer.

Commonly made assumptions are that the tissue is ho-

mogeneous and has isotropic conductivity [67]. When in

reality this is not the case, the inverse model may report

an incorrect activation order rather than reporting an

inhomogeneity.

Nevertheless, inverse models can give intriguing re-

sults which, when interpreted judiciously, may point

us to important findings. Such is the case for the ob-

servation that noncontact electrograms in LBBB pa-

tients indicate a U-shaped activation pattern around a

functional line of block [3, 29]. This line of block was

not confirmed by bipolar contact electrograms in the

same patients [3]. This discrepancy was interpreted as

indicating that the subendocardial activation pattern

differs from that in deeper layers. An alternative in-

terpretation is that the lateral wall in these patients,

two thirds of whom had been diagnosed with idiopathic

cardiomyopathy [3], suffered more cellular uncoupling

than the septum. This would lead to an area of slow con-

duction and fractionated low-amplitude electrograms.

One can imagine that the mapping system, unable to

recognize such a heterogeneity in passive tissue proper-

ties and forced to explain the measured signals in terms

of propagating activation wavefronts, would come up

with the reported U shape. When the ventricles were

paced from the region where block had occurred, no

signs of block were found on non-contact mapping [3].

This finding also can be explained in two ways. Either

the block was functional rather than anatomical or the

solution algorithm was better able to recognize activa-

tion in this area when it was not masked by activation

elsewhere.

Interestingly, apparent lines of block in the lateral

wall were also reported in reconstructed epicardial ac-

tivation patterns based on body-surface mapping [46].

Whether this confirms the findings from endocardial

noncontact mapping or suffers from the same prob-

lem (a low-amplitude region interpreted as a region of

block) is presently not clear. Several other interesting

hints about the activation patterns in heart failure pa-

tients and CRT recipients resulted from this study and

others from the same group [46, 117, 118].

Conclusion

Heart failure is a complex disease that involves remod-

eling at the level of the whole organ, the tissue, and

the membrane ionic currents. At each of these levels,

there is an effect on the ECG. Without the help of

numerical models, it would be difficult to attribute ob-

served changes in ECG waveforms to individual causes.

One example has been mentioned above: Reduced

tissue conductivity due to cardiomyopathy can mimic

the ECG pattern of left anterior fascicular block and

at the same time mask the ECG signs of left ven-

tricular hypertrophy by reducing QRS amplitude [4].

So if, after biventricular pacemaker implantation for

CRT, increasing QRS amplitude is observed, one could

wonder whether this is a good sign indicating reversal

of cardiomyopathy or a bad sign indicating ongoing

dilatation. By careful comparisons of simulated and

measured ECGs, we may be able to learn how to distin-

guish the two, or we may find that the ECG, crucial as it

is to diagnose electrophysiological remodeling, simply

cannot provide reliable information about anatomical

remodeling.

In this and other domains of cardiac electrophys-

iology, computer models have a unique role next to

clinical and experimental research. Models translate

between unobservable and observable variables, serve

as a training tool [77, 84], and, in the case of inverse

models, suggest explanations for observed phenomena.

Open Access This article is distributed under the terms of
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