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Abstract
Generalizing the first-order shear deformation plate theory (FOPT) proposed by Ambartsumyan (Theory of anisotropic 
plates, Nauka, Moscow, 1967 (in Russian)) to the heterogeneous laminated nanocomposite plates and the nonlinear vibration 
problem is analytically solved taking into account an elastic medium in this study for the first time. The Pasternak-type elastic 
foundation model (PT-EF) is used as the elastic medium model. After creating the mathematical models of laminated rectan-
gular plates with CNT originating layers on the PT-EF, the large amplitude stress–strain relationships and motion equations 
are derived in the form of nonlinear partial differential equations (PDEs) within FOPT. Then, by applying Galerkin's method 
to the derived equations, it is reduced to a nonlinear ordinary differential equation (NL-ODE) containing the second- and 
third-order nonlinear terms of the deflection function for laminated rectangular plates composed of nanocomposite layers. 
The NL-ODE is solved by the semi-inverse method, and the nonlinear frequency–amplitude relationship for the laminated 
plates consisting of CNT originating layers resting on the PT-EF is established within FOPT for the first time. From these 
relations, similar relations can be obtained particularly for the unconstrained laminated and monolayer CNT patterns plates. 
After comparing the accuracy of the obtained formulas with the reliable results in the literature, comprehensive numerical 
analyses are performed.
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1 Introduction

Since their discovery in Japan in 1991, carbon nanotubes 
(CNTs) have always attracted the attention of researchers 
because of their extraordinary chemical, optical, electrical 
and mechanical properties like other carbon nanomaterials 
[1]. The fact that CNTs are an effective tool in improving the 
strength properties of composite (polymer, metal, ceramic 
and etc.) materials has been the subject of many studies and 
such studies continue today [2–8]. These studies present the 
thermo-mechanical properties, fabrication, functionalization 
and perspectives of composites reinforced with CNTs, as 
well as the outstanding challenges in applications in recent 
years. Due to their extraordinary properties, nanocomposites 
have been used frequently in various engineering fields such 
as spacecraft, machinery, automotive and civil engineering 
in the last decade, first as single-layer and then as laminated 
structural elements. Because of the laminated structural 
elements especially laminated plates, which are used as 
main carrier elements in various industries, are exposed to 
dynamic loadings in most cases, the investigation of their 
vibration behavior has always been the focus of attention. 
If the vibration behavior of single-layer structural elements 
was initially discussed in linear formulation and within the 
framework of classical theory (CT), in recent years the lin-
ear behavior of laminated plates containing heterogeneous 
nanocomposite layers has begun to be discussed within the 
framework of advanced theories [9–19]. The vibration of 
heterogeneous anisotropic nanocomposite plates should be 
addressed in nonlinear formulation when the deflections are 
comparable to the total thickness and sometimes reach sev-
eral thicknesses [20–29].

Laminated composite plates with CNT reinforced lay-
ers, intended to be used for various purposes, are in con-
tact with various types of foundations. Since soils have a 
very complex structure, it is very difficult to model the soil-
structure interaction problem mathematically. For safe and 
economical design, it is necessary to accurately determine 
the mechanical behavior of the plates in contact with the 
ground. Since it is difficult to sample for tests that produce 
results consistent with soil behavior, simplifying assump-
tions are needed, which determine the types of foundation 
models. In general, the plate–foundation interaction is ideal-
ized as the plates resting on the elastic foundations. Various 
foundation models such as Winkler, Hetenyi, Timoshenko, 
Pasternak and Filonenko-Borodich are used in the litera-
ture, and one of the most realistic ones is the Pasternak-
type foundation model (PT-EF) [30–32]. Considering the 
effect of elastic foundations, the number of studies on lin-
ear and nonlinear behavior of layered CNT plates is very 

limited. Among them, Zhang and Liew [33] performed the 
large deflection analysis of functionally graded (FG) CNT-
reinforced composite skew plates resting on the Pasternak 
foundation using an element-free Ritz method. Banic et al. 
[34] investigated the effect of the Winkler–Pasternak foun-
dation on the vibration behavior of plates and shells rein-
forced with agglomerated carbon nanotubes. Gao et al. [35] 
studied nonlinear free vibration of FG graphene platelets 
reinforced porous nanocomposite plates resting on elastic 
foundation within classical shell theory using three displace-
ment functions. Shen and Wang [36] and Shen et al. [37] 
studied the linear and nonlinear vibrations of compressed 
and thermally post-buckled CNT reinforced composite sin-
gle-layer and sandwich plates resting on elastic foundations. 
Yang et al. [38] examined the nonlinear bending behavior 
with negative Poisson's ratio of temperature-dependent FG-
CNT-reinforced laminated beams resting on the Pasternak 
foundation. Avey et al. [39] carried out free vibration of thin-
walled composite shell structures reinforced with smooth 
and linear carbon nanotubes: taking into account the effect 
of elastic foundation and nonlinearity. Alazwari et al. [40] 
studied hygrothermal buckling analysis of smart graphene/
piezoelectric nanocomposite circular plates on an elastic 
substrate via DQM. Wu et al. [41] presented free vibration 
analysis of functionally graded graphene nanocomposite 
beams partially in contact with fluid. Jin et al. [42] presented 
a new electro-mechanical finite formulation for function-
ally graded graphene-reinforced composite laminated thick 
plates with piezoelectric actuator. The problems addressed in 
above studies are generally solved using numerical methods.

Each of the factors listed above alone can seriously affect 
the vibration behavior of laminated structural members. 
However, taking into account their combined effects further 
increases the difficulty of solving and analyzing the vibration 
problem of laminated nanocomposite structural members. 
Therefore, the development of an efficient and reliable ana-
lytical solution method for the nonlinear vibration of lami-
nated plates made of CNT originating layers resting on elas-
tic foundations (EFs) in the framework of FOPTs is a very 
current problem. The aim of this work is to study the nonlin-
ear free vibration of laminated plates originating from CNTs 
in the presence of EFs, and to develop a methodology to 
establish the dependence of the nonlinear frequency from the 
amplitude. One of the most important and original aspects of 
this research is the first-order shear deformation plate theory 
proposed by Ambartsumyan [43], generalized to heteroge-
neous laminated nanocomposite plates and solved analyti-
cally by a semi-inverse method. Another important aspect is 
the nonlinearity of the correlations between frequency and 
amplitude, as well as the originality of all analyzes.
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2  Basic relationships

2.1  Statement of the problem

Consider the moderately thick laminated nanocomposite 
rectangular plate which consists of perfectly bounded N 
layers originating from CNTs is simply supported at four 
edges and rests on the PT-EF, as shown in Fig. 1a, b. The 
length, width and total thickness of the CNT originating 
laminated plate are a , b and h , respectively. Let the x, y and 
z be a set of coordinates with x, y axes located in the mid-
dle plane of the plate and z axis pointing downwards. The 
origin of the coordinate system Oxyz is located at the corner 
of the laminated plate on the mid-plane. The displacement 
components of the mid-plane along the x, y and z axes are 
designated by u, v and w , respectively, F1 and F2 are the mid-
plane rotations of the normals about y and x axes, respec-
tively. The linear elastic foundation is presented by a two-
parameter foundation model or PT-EF, and is modeled as 
P0 = k1w − k2∇w , where P0 is the force per unit area, k1 
is the Winkler foundation stiffness and k2 is the shear layer 
stiffness of the foundation, and ∇ is the Laplace operator 

according to the variables x and y [30–32]. Let F(x, y, t) 
be the stress function for the stress resultants defined by 
N11 = hF,yy , N12 = −hF,xy , N22 = hF,xx where the comma 
is partial differentiation with respect to the corresponding 
coordinates.

2.2  Mechanical properties of laminated 
nanocomposite plates

The extended mixing rule is used by introducing the CNT 
efficiency and the effective properties of nanocomposite lay-
ers can be expressed as [9, 11, 20, 24]: 
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3  Basic equations

The basic relations for the layer kth reinforced with CNTs in the 
framework of FOPT can be expressed as follows [24]:
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Fig.1  a Configuration of laminated rectangular plate with CNT pat-
terns resting on the PT-EF, b cross-section of laminated plate, c CNT 
originating layers
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The stresses �(k)

13
 and �(k)

23
 in the lamina kth are also expressed 

by the F1 and F2 as follows [24, 43]:

Here f (k)
j
(j = 1, 2) are the transverse shear stress shape 

functions in the layer kth.
Based on the von Kármán-type kinematic nonlinearity, the 

strains of any point not on the mid-plane of laminated CNT 
plates are defined by

where e0
11
, e0

22
, �0

12
 are the strain components in the mid-plane 

of laminated plates [43–48]:
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resting on the two parametric elastic foundation using 
Hamilton principle are expressed as [24, 43, 46]:

where t is the time, � and �i(i= 1, 2, 3) are defined by:

By using basic relations (1–8) and additionally consid-
ering relations between Airy stress function and in-plane 
force components, then substituting resulting expressions 
into (9) and (10), the set of equations of nonlinear motion 
for laminated plates consisting of carbon nanotube origi-
nating layers resting on elastic foundations based on the 
FOPT are derived as follows:

(9)
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(12)

L11(F) + L12(w) + L13(F1) + L14(F2) = 0

L21(F) + L22(w) + L23(F1) + L24(F2) = 0

L31(F) + L32(w) + L33(F1) + L34(F2) + L35(F,w) = 0

L41(F) + L42(w) + L43(F1) + L44(F2) + L45(w,w) = 0
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where

in which Aij, Ij and Bij are described in Appendix A.

4  Solution method

Assuming that all edges of the laminated plate consisting 
of CNT originating layers are simply supported with no 
in-plane displacement, that is, movement in the x and y 
directions is inhibited; these boundary conditions can be 
mathematically expressed as [43–48]:

The functions w , F1 and F2 of the laminated plate consist-
ing of CNT originating layers are sought as follows [24, 47]:
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By substituting the functions given in (14) in the fourth 
equation of the system of the non-homogeneous PDEs sys-
tem (12), F is found from the particular solution of the PDE 
as follows:
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By substituting the functions (15) and (16) into the first 
three equations of the system of PDEs (12), and then apply-
ing the Galerkin method, the following set of nonlinear ordi-
nary differential equations (NL-ODE) is obtained:

where qij(i = 1, 2, 3, j = 1, 2, ..., 4) are given in Appendix B.
Due to the smallness of the inertia terms with the upper 

index t, ignoring these terms in set of Eqs. (19), and elimi-
nating the functions F1 and F2 , the following NL-ODE with 
quadratic and cubic nonlinearities for laminated nanocom-
posite plates resting on the PT-EF is obtained:
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in which

When we apply the semi-inverse method to Eq. (20), the 
following integral is generated [49]:

Here T = 2�∕Ω
STwp

NL
 is the nonlinear vibration period 

in which ΩSTwp
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 denotes the nonlinear vibration frequency 

(NLF) of shear deformable laminated plate consisting of 
CNT originating layers resting on the PT-EF.

To satisfy the initial conditions w1(0) = f , w1,t(0) = 0 , 
w1(t) is expressed by:

Considering the expression (24) in Eq. (23), the following 
equation is easily obtained:
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becomes as follows:

The non-dimensional ΩSTwp

1NL
 for the shear deformable lam-

inated plates consisting of CNT originating layers resting on 
the PT-EF is used as:

(21)Ω
STwp

L
=

√
q31 + k1 + k2(m

2

1
+ m2

2
)

�

(22)

q31 =q33
q11q23 − q21q13

q22q13 − q12q23

− q34

(
q21

q23

+
q22

q23

q11q23 − q21q13

q22q13 − q23q12

)

,

q
NL

31
= q

NL

31
−

q33

(
q
NL

11
q23 − q13q

NL

21

)

q12q23 − q13q22

−
q34q

NL

21

q23

+
q34q22

q23

q
NL

11
q23 − q13q

NL

21

q12q23 − q13q22

(23)
Λ(w1) =

T∕4

∫

0

{

−0.5
[
w1,t(t)

]2
+

[

0.5

(
Ω

STwp

L

)2

w2

1
(t) + Γ1w

3

1
(t)∕3 + 0.25Γ2w

4

1
(t)

]}

dt

(24)w1(t) = f cos
(
Ω

STwp

NL
t
)
, f = wmax

(25)
Λ(f ,Ω

STwp

NL
) = −0.125�Ω

STwp

NL
f 2 +

[
Ω

STwp

NL

]−1[

0.125�

(
Ω

STwp

L

)2

f 2 + (2∕9)Γ1f
3 + (3∕64)Γ2�f

4

]

(26)Ω
STwp

NL
=

√(
Ω

STwp

L

)2

+ (8∕3�)Γ1f + 0.75Γ2f
2

The f  dependence of ΩSTwp

NL
∕ΩST

L
 ratio for laminated plates 

consisting of CNT originating layers resting on the PT-EF is 
obtained as follows:

(27)Ω
STwp

1NL
= Ω

STwp

NL
h

√√√
√ �

(k)
m

E
(k)
m

where ΩST
L

 denotes the linear vibration frequency of shear 
deformable laminated plate consisting of CNT originating 
layers without EFs.

When the effect of shear stresses is neglected from the 
formulas (21) and (26–28), the formulas are obtained for 
laminated plates consisting of CNT originating layers resting 
on PT-EF within the framework of CT.

Similarly, if we neglect the effect of PT-EF from the for-
mulas (21) and (26–28), we arrive at the formulas for uncon-
strained laminated plates.

5  Numerical examples and discussion

5.1  Material properties and arrangement 
of nanocomposite layers

In this subsection, the laminated plate consisting of CNT 
reinforced layers consists of polymethyl methacrylate 
(PMMA) and the reinforcement element consists of 

(28)
Ω

STwp

NL
∕ΩST

L

=

√(
Ω

STwp

L
∕ΩST

L

)2

+ (8∕3�)Γ1f∕
(
ΩST

L

)2
+ 0.75Γ2f

2∕
(
ΩST

L

)2

Table 1  Efficiency parameters 
corresponding to the V∗(k)

cn

V
∗(k)
cn �

(k)

1
�
(k)

2
�
(k)

3

0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109
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Fig. 2  a (0°)-monolayer, b (0°/90°/0°), c (90°/0°/90°), d (0°/90°/90°/0°) and e (90°/0°/0°/90°)-array plates

Fig. 3  CNT reinforced monolayer plate with a U-, b Ʌ- and c X-pat-
terns

Fig. 4  Three-layered plate of CNT-reinforced layers with a U-, b Ʌ- 
and c X-patterns
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the CNT. The material properties of PMMA and CNTs 
are assumed to be, respectively, as follows [20, 21]: 
Y (k)
m

= 2.5 × 10
9Pa, �(k)

m
= 0.34, �(k)

m
= 1.15 × 103 kg∕m3 and 

Y
(k)

11cn
= 5.6466 TPa, Y

(k)

22cn
= 7.08 TPa, G(k)

12cn
= 1.9445 TPa,

�
(k)

12cn
= 0.175 . The efficiency parameters and total volume 

fraction of CNTs in the lamina kth are given in Table 1.

The shear stresses of layers are defined as, 
f
(k)

1
(z) = f

(k)

2
(z) = z − 4z3∕3h2[43, 44]. The layer arrays 

(0°), (0°/90°/0°), (90°/0°/90°), (0°/90°/90°/0°) and 
(90°/0°/0°/90°) that we will use in the analysis are shown 
in Fig. 2. The single-, three- and four-layer nanocomposite 
plates with U-, Ʌ-, and X-shaped patterns used in the analy-
sis are shown in Figs. 3, 4 and 5.

5.2  Validation

The convergence of the proposed method is examined 
through three different free vibration analysis samples of 
single-layer and laminated plates and compared with other 
methods. In two comparisons, the nanocomposite material 
properties are used as follows [9, 50]:

Y
(k)
m

= 2.1GPa,V∗(k)
cn

= 0.11, �
(k)

1
= 0.142, �

(k)

2
= �

(k)

3
= 0.934,

V
∗(k)
cn

= 0.14, �
(k)

1
= 0.15, �

(k)

2
= �

(k)

3
= 0.941, V∗(k)

cn
= 0.17,

�
(k)

1
= 0.150, �

(k)

2
= �

(k)

3
= 1.381.

Other material properties are the same as in the previous 
sub-title.

The first comparison is conducted for the square single-
layer monolayer (k = 1) nanocomposite plate. The nanocom-
posite plate characteristics are: a∕b = 1, b∕h = 50 . The 
values of linear dimensionless frequency parameter (L-DFP) 
of unconstrained composite plates with different CNT pat-
terns are compared with the results obtained by higher-order 
shear deformation theory (HSDT) and finite element method 
(FEM) in the study of ref. [50]. The L-DFP is calculated 

using the formula ΩST
1L

= ΩST
L

(
b2

h

)√
�
(1)
m

E
(1)
m

 , where ΩST
L

 is the 

L-FP for the unconstrained single-layer nanocomposite 
plates, and is obtained from expression (19), when k = 1 and 
ground coefficients k1 = k2 = 0 . Table 2 shows that the ΩST

1L
 

for U and X-patterns of CNTs are in good agreement.
The second example, the comparison is made for square 

cross-ply laminated (k = 5) nanocomposite plate with 
(0◦∕90◦∕0◦∕90◦∕0◦) array whose geometrical properties and 

Fig. 5  Four-layered plate of CNT-reinforced layers with a U-, b Ʌ- 
and c X-patterns

Table 2  Comparison of ΩST

1L
 for 

single-layer composite plates 
with CNT patterns

Ref. [50] Present study Ref. [50] Present study

HSDT FEM HSDT FEM

ΩST
1L

 for V∗(1)
cn

= 0.11

(m, n) U X
(1,1) 19.197 19.223 19.160 22.954 22.984 22.963
(1,2) 23.375 23.408 23.286 26.741 26.784 26.693
(1,3) 34.626 34.669 34.085 37.528 37.591 37.029
(m, n) ΩST

1L
 for V∗(1)

cn
= 0.14)

(1,1) 21.363 21.354 21.322 25.555 25.555 25.612
(1,2) 25.293 25.295 25.205 29.175 29.192 29.174
(1,3) 36.250 36.267 35.716 39.791 39.833 39.335
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wave numbers are as follows: a∕b = 1, b∕h = 10,
(m, n) = (1, 1) (see, Table 3). The magnitudes of L-DFP for 
unconstrained cross-ply laminated composite plates with U- 
and X- patterns are compared with the results obtained by the 
kp-Ritz method in the study of Lei et al. [9]. The L-DFP is 

calculated using the formula ΩST
1L

= ΩST
L

(
b2

h

)√
�
(k)
m

E
(k)
m

 , when 

k = 5 and k1 = k2 = 0 . From Table 3, it can be seen that the 
fundamental linear dimensionless frequency parameter values 
for cross-ply laminated (k = 5) nanocomposite plate are in good 
agreement.

In the third example, the comparison is made with linear 
and nonlinear dimensionless vibration frequencies of uncon-
strained single-layer homogeneous orthotropic elastic plates 
presented in the book of Ambartsumyan [43]. The linear and 
nonlinear dimensionless frequency values in the second and 
fourth columns of the Table 4, respectively, are obtained using 
the formulas presented in Ref. [43]. The boron/epoxy material 
properties and plate characteristics used for comparison are as 
follows [44]:

It shows that the dimensionless linear frequencies 
values coincide with the results in Ref. [43], while the 

E11 = 209 × 10
9(Pa), E22 = 20.9 × 10

9(Pa),

G12 = G13 = 6.9 × 10
9(Pa), G23 = 4.14 × 10

9(Pa),

�12 = 0.3, �t = 1950 kg∕m3
; a∕b = 1, b = 10h

Table 3  Comparison of ΩST

1L
 for cross-ply laminated nanocomposite 

plates reinforced with U- and X-patterned CNT in the layers

ΩST

1L
 , (m, n) = (1,1)

Lei et al. [9] Present study Lei et al. [9] Present study

kp-Ritz kp-Ritz
U X
V∗(k)
cn

= 0.11

14.277 14.200 14.383 14.987
V∗(k)
cn

= 0.14

15.270 14.464 15.397 16.020
V∗(k)
cn

= 0.17

17.709 17.262 17.882 18.121

Table 4  Comparison of dimensionless linear and nonlinear frequency 
values for unconstrained single-layer homogeneous orthotropic plates

Ref [43] Present study

f ΩST

1L
ΩST

1NL
ΩST

1L
ΩST

1NL

0.25 0.9063 0.9105 0.9063 0.9106
0.50 0.9230 0.9235
0.75 0.9434 0.9445
1.00 0.9713 0.9731
1.25 1.0060 1.0087

Table 5  Distribution of dimensionless nonlinear free vibration frequency of laminated plates reinforced with CNTs depending on the coefficients 
k1 and k2

Ω1NL

k1

(N∕m3)

k2

(N∕m)

(0°) (0◦∕90◦∕0◦) (90◦∕0◦∕90◦)

ST CT ST CT ST CT ST CT ST CT ST CT

U Ʌ U Ʌ U Ʌ
0 0 0.180 0.224 0.175 0.202 0.184 0.227 0.180 0.207 0.191 0.245 0.186 0.218
1.5 × 109 0.196 0.237 0.191 0.216 0.199 0.240 0.195 0.221 0.206 0.257 0.201 0.231
2 × 109 0.201 0.241 0.196 0.220 0.204 0.244 0.200 0.225 0.211 0.260 0.206 0.235
2.5 × 109 0.206 0.245 0.201 0.225 0.209 0.248 0.205 0.229 0.215 0.264 0.211 0.239
1.5 × 109 0.8 × 106 0.211 0.249 0.207 0.230 0.214 0.252 0.211 0.234 0.220 0.268 0.216 0.244
2 × 109 0.216 0.253 0.211 0.234 0.219 0.256 0.215 0.238 0.225 0.272 0.220 0.248
2.5 × 109 0.220 0.257 0.216 0.238 0.223 0.260 0.220 0.242 0.229 0.276 0.225 0.252
1.5 × 109 1.0 × 106 0.215 0.252 0.210 0.233 0.218 0.256 0.214 0.238 0.224 0.271 0.219 0.247
2 × 109 0.219 0.256 0.215 0.237 0.222 0.259 0.219 0.242 0.228 0.275 0.224 0.251
2.5 × 109 0.224 0.260 0.219 0.241 0.227 0.263 0.223 0.246 0.232 0.278 0.228 0.255
1.5 × 109 1.2 × 106 0.218 0.255 0.214 0.236 0.221 0.259 0.218 0.241 0.227 0.274 0.223 0.250
2 × 109 0.223 0.259 0.219 0.240 0.226 0.262 0.222 0.245 0.231 0.278 0.227 0.254
2.5 × 109 0.227 0.263 0.223 0.244 0.230 0.266 0.227 0.249 0.236 0.281 0.231 0.258
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nonlinear frequency values are in very good agreement 
(see, Table 4).

5.3  Nonlinear analysis

The variation of the values of the NL-DFP of (0°), 
(0◦∕90◦∕0◦) and (90◦∕0◦∕90◦)-ar ray nanocompos-
ite plates with U- and Ʌ-patterns versus the k1 and k2 
are presented in Table 5. The following data are used: 
h∕a = 0.10, a∕b = 1, f = 1,V∗(k)

cn
= 0.12 (k = 1, 3)  .  I t 

should be emphasized that in this subsection wave modes 

are (m, n) = (1, 1) . As can be seen from Table 5, the mag-
nitudes of NL-DFP increase versus the increase of the 
elastic foundation coefficients k1 and k2 . The influences 
of shear deformations on NL-DFPs decrease with the 
increase of the elastic foundation coefficients k1 and k2 . 
For example, at k2 = 0 , depending on the increase k1 from 
0 to 2.5 × 109 (N∕m3) , the influence of shear deformations 
on the frequency of the plate consisting of (0°)-aligned 
and U-origin layers decreases from 19.7% to 16%, while 
at k1 = 1.5 × 109N∕m3 and that effect decreases from 
17.4% to 14.6% depending on the increase of k2 from 0 to 
1.2 × 106(N∕m) . The largest shear deformations effect on 

Table 6  Distribution of the 
nonlinearity effect on the 
frequency of laminated plates 
made of U- and X- originating 
layers versus the f  for 
different V∗(k)

cn
 in grounded and 

ungrounded cases

Ω1NL∕Ω1L without elastic foundation 
(
k1, k2

)
= (0, 0)

(0°) (0◦∕90◦∕90◦∕0◦) (90◦∕0◦∕0◦∕90◦)

U X U X U X

V
∗(k)
cn

f ST CT ST CT ST CT ST CT ST CT ST CT

0.12 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.024 1.011 1.020 1.007 1.027 1.012 1.021 1.008 1.025 1.010 1.022 1.007
0.6 1.202 1.095 1.165 1.065 1.223 1.103 1.174 1.068 1.208 1.088 1.180 1.063
1 1.496 1.246 1.411 1.172 1.541 1.266 1.432 1.180 1.510 1.230 1.446 1.166
1.4 1.850 1.444 1.715 1.317 1.923 1.478 1.749 1.329 1.873 1.416 1.771 1.306

0.17 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.023 1.011 1.017 1.007 1.025 1.012 1.019 1.008 1.023 1.010 1.019 1.007
0.6 1.188 1.095 1.148 1.065 1.207 1.103 1.156 1.068 1.192 1.088 1.160 1.063
1 1.463 1.246 1.372 1.172 1.506 1.266 1.391 1.179 1.474 1.229 1.400 1.166
1.4 1.799 1.443 1.652 1.316 1.867 1.477 1.683 1.328 1.816 1.415 1.698 1.305

0.28 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.028 1.011 1.020 1.007 1.031 1.012 1.022 1.008 1.029 1.010 1.022 1.007
0.6 1.228 1.095 1.170 1.065 1.252 1.104 1.180 1.068 1.237 1.089 1.186 1.063
1 1.553 1.247 1.422 1.172 1.605 1.268 1.445 1.179 1.573 1.230 1.458 1.166
1.4 1.940 1.445 1.734 1.316 2.022 1.480 1.770 1.329 1.972 1.417 1.791 1.305

V∗(k)
cn

f Ω
wp

1NL
∕Ω1L with Pasternak foundation 

(
k1, k2

)
=
(
1 × 109, 1.8 × 106

)

0.12 0 1.384 1.188 1.317 1.130 1.381 1.182 1.316 1.128 1.358 1.157 1.296 1.107
0.2 1.402 1.197 1.332 1.137 1.401 1.193 1.332 1.135 1.376 1.166 1.313 1.113
0.6 1.537 1.269 1.446 1.188 1.550 1.271 1.453 1.189 1.518 1.234 1.440 1.164
1 1.776 1.401 1.651 1.285 1.812 1.415 1.668 1.290 1.767 1.360 1.664 1.259
1.4 2.083 1.580 1.917 1.418 2.146 1.607 1.947 1.428 2.086 1.531 1.953 1.390

0.17 0 1.257 1.132 1.203 1.091 1.254 1.128 1.203 1.089 1.237 1.110 1.188 1.074
0.2 1.275 1.142 1.218 1.097 1.275 1.139 1.218 1.096 1.256 1.119 1.204 1.081
0.6 1.411 1.216 1.329 1.151 1.425 1.221 1.335 1.152 1.397 1.190 1.326 1.133
1 1.650 1.354 1.526 1.250 1.686 1.369 1.543 1.256 1.644 1.320 1.540 1.230
1.4 1.954 1.537 1.782 1.386 2.015 1.567 1.811 1.397 1.956 1.495 1.815 1.363

0.28 0 1.201 1.084 1.149 1.057 1.199 1.081 1.149 1.056 1.188 1.069 1.139 1.046
0.2 1.224 1.094 1.167 1.064 1.225 1.092 1.168 1.063 1.212 1.079 1.158 1.053
0.6 1.396 1.172 1.300 1.119 1.416 1.178 1.309 1.121 1.393 1.152 1.305 1.106
1 1.689 1.315 1.531 1.221 1.736 1.333 1.552 1.227 1.698 1.287 1.557 1.206
1.4 2.051 1.504 1.824 1.359 2.127 1.536 1.859 1.371 2.073 1.466 1.872 1.341
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the nonlinear frequency is obtained in the (90◦∕0◦∕90◦)
-array nanocomposite plate, while the smallest shear 
deformations effect occurs in the (0◦∕90◦∕0◦)-array. For 
example, while the effect of shear deformations is approxi-
mately 2.5% larger in the (90◦∕0◦∕90◦)-array plate than in 
the (0°)-monolayer plate, the effect is approximately 0.7% 
smaller in the (0◦∕90◦∕0◦)-array plate than in the (0°)-plate. 
The effect of shear deformations on the frequency of the 
nanocomposite plate with Ʌ-pattern is smaller than that 
of U-pattern. The difference of shear deformations effect 
between the (0°) and (0◦∕90◦∕0◦)-array plates is 6%, while 
it is approximately 7% for the (90◦∕0◦∕90◦)-array plate.

The influence of the Ʌ-profile on the nonlinear frequency 
of laminated plates decreases with the increase of the k1 
and k2 . For example, the effect of the Ʌ-profile on the fre-
quency of (90◦∕0◦∕90◦)-array plate within FOPT decreases 
from (-7.9%) to (-6.9%), due to the increase of k1 from 0 
to 2.5 × 109 (N∕m3) for k2 = 0 , while the effect change 
of the Ʌ-profile in the (90◦∕0◦∕90◦)-array is smaller than 
1% due to the increase of k2 from 0 to 1.2 × 106(N∕m3) for 
k1 = 1.5 × 109N∕m3 . The largest influence Ʌ-profile on the 
nonlinear frequency is obtained in the (90°/0°/90°)-array 
plates, while the smallest effect occurs in the (0◦∕90◦∕0◦)
-array plates. For example, the Ʌ-pattern effect within CT is 

Fig.6  Variation of the 
ΩST

1NL
∕ΩST

1L
 of (0°) and 

(0°/90°/90°/0°)-array plates 
made of U- and X- originating 
layers versus the f  with and 
without Pasternak foundation

Fig.7  Variation of the 
ΩST

1NL
∕ΩST

1L
 of (0°) and 

(90°/0°/0°/90°)-array plates 
made of U- and X-originating 
layers versus the f  with and 
without Pasternak foundation
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smaller 1.1% in the (0°)-sequence than in the (90◦∕0◦∕90◦) - 
sequence, while in the (0◦∕90◦∕0◦)-sequence gets smaller 
2.2% compared to the (90°/0°/90°)-sequence. The differ-
ence of the Ʌ-profile effect on the NL-DFP between the two 
theories is approximately 7% for the (0°) and (0◦∕90◦∕0◦)
-array plates, while this difference is approximately 8% in 
the (90◦∕0◦∕90◦)-array plate.

The elastic foundation effects on the nonlinear frequen-
cies of laminated nanocomposite plates increase with the 
increase of k1 and k2 . For example, when k2 = 0 , the elastic 
foundation effect on the frequencies of the (0°)-plate con-
sisting of Ʌ-pattern layer increases from 9.3% to 15.1%, 
depending on the increase of k1 from 1.5 × 109 to 2.5 × 109 . 
Likewise, it increases from 12.1% to 25.4% depending on 
the increase of k2 from 0 to 1.2 × 106 for k1 = 2 × 109N∕m3 . 
In addition, the difference of elastic foundation effect 
between the layer arrays increases with the increase of k1 
and k2 . For example, the highest foundation effect differ-
ence between the (0°) and (90◦∕0◦∕90◦)-sequences is 2.5%, 
while it is less than 1% for difference between the (0°) and 
(0◦∕90◦∕0◦)-sequences. The elastic foundation difference 
between the two theories increases with the increase of k1 
and k2 . For example, the elastic foundation effect difference 
between FOPT and CT for (0◦∕90◦∕0◦)-array is 2.9% due to 
the increase of k1 from 1.5 × 109 to 2.5 × 109 when k2 = 0 , 
while this difference is 5.3% for the (0◦∕90◦∕0◦) -array 
U-plate due to the increase of k2 from 0 to 1.2 × 106 when 
k1 = 2.5 × 109N∕m3.

The distribution of the ratio of nonlinear and linear free 
vibration frequencies (NLF/LF) of (0°), (0◦∕90◦∕90◦∕0◦) 
and (90◦∕0◦∕0◦∕90◦)-arrays rectangular plates made of U- 
and X- originating layers resting on the Pasternak elastic 
foundation, depending on the amplitude f  , is presented in 
Table 6, Figs. 6 and 7 for different V∗(k)

cn
 . Other plate and 

soil parameters used are as follows: b = 2a, h = 0.1a and (
k1, k2

)
=
(
1 × 109, 1.8 × 106

)
 . The effect of geometric 

nonlinearity on the free vibration frequencies of laminated 
plates made of U- and X- originating layers in grounded 
and ungrounded conditions increases significantly, depend-
ing on the increase of f  . In addition, the NLF/LF ratio of 
laminated plates varies depending on the increase of V∗(k)

cn
 

for fixed f  . The smallest values of the NLF/LF ratio of 
laminated plates composed of U and X-originating lay-
ers with and without PT-EF are obtained at V∗(k)

cn
= 0.17 , 

while the largest ratio is obtained at V∗(k)
cn

= 0.28 . When the 
(0◦∕90◦∕90◦∕0◦) and (90◦∕0◦∕0◦∕90◦)-arrayed plates are 

compared with (0°)-single-layer nanocomposite plates, the 
NLF/LF ratio is more effective in the laminated plates (see, 
Figs. 6, 7, also). In grounded and ungrounded cases, tak-
ing into account shear deformations reduces the effect of 
geometric nonlinearity on the frequency, and this decrease 
becomes more pronounced as the f  increases. In addition, 
when compared with (0°)-single-layer plate, the change of 
layer arrangement changes the influence of nonlinearity on 
the frequency. For example, the effects of nonlinearity on the 
frequency in X-patterned plates with (0◦∕90◦∕90◦∕0◦) and 
(90◦∕0◦∕0◦∕90◦)-arrays for V∗(k)

cn
 = 0.12 and f  = 1.4 in the 

groundless case are 1.94% and 3.32%, while those effects 
decrease in the case of the Pasternak ground and vary around 
1.53% and 1.88%, respectively, in the framework of FOPT. 
For V∗(k)

cn
 = 0.28 and f  = 1.4, those influences change around 

1.92% and 2.65% in the presence of the Pasternak ground, 
while those effects are 2.15% and 3.31% in the absence of the 
foundation. The presence of the Pasternak soil weakens the 
effect of the layer arrangement on the geometric nonlinear 
frequency. The effect of the X-pattern on the NLF/LF ratio 
is more pronounced in (0◦∕90◦∕90◦∕0◦)-array plates com-
pared to plates with other arrays. For example, the effects 
of X-pattern in comparison with U-pattern on the NLF/LF 
ratio for (0°), (0◦∕90◦∕90◦∕0◦) and (90◦∕0◦∕0◦∕90◦)-array 
plates without elastic foundation are (-10.65%), (-12.42%) 
and (-9.16%), while in plates on PT-EF those are (-11.08%), 
(-12.62%) and (-9.7%), respectively.

6  Conclusions

The nonlinear vibration behaviors of laminated plates com-
posed of CNT originating layers are investigated in the 
framework of FOPT in elastic environments. The Galerkin 
and semi-inverse methods are used to solve the NL-PDEs 
which derived using Donnell-type nonlinear shell theory. 
Three distributions of CNTs across the thickness of the lay-
ers such as uniformly and functionally graded distributions 
are considered. The nonlinear frequency–amplitude rela-
tionship for laminated plates consisting of CNT originat-
ing layers resting on the PT-EF is established within FOPT. 
The accuracy of the above procedure has been verified by 
comparison with the available literature. The elastic ground 
characteristics, when combined with other factors such as 
CNT volume fraction, CNT distribution, layer arrangement 
and number, and geometric parameters, have a significant 
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effect on the nonlinear frequency of laminated plates with 
CNT patterned layers.

Appendix A

Aij(i = 1, 2, 3, j = 1, 2, ..., 8) are defined as:

where
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Appendix B

The parameters qij are defined as:

where

Author contributions Conceptualization, MA, FK and SA; methodol-
ogy, MA, FK and SA; software, MA; validation, MA and FK; formal 
analysis, MA; investigation, MA; resources, MA; data curation, MA; 
writing—original draft preparation, MA; writing—review and editing, 
MA, FK, SA, NF; visualization, MA; supervision, FK, SA.

Funding Open access funding provided by Alma Mater Studiorum - 
Università di Bologna within the CRUI-CARE Agreement. This article 
has no funding support.

Data availability statement This study does not contain any data.

Declarations 

Conflict of interest The authors declare that there is no conflict of in-
terest.

Author statement We confirm that this paper has not been published 
elsewhere.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

(B1)

q11 = D3h
[
(A11 − A31)m

2

1
m2

2
+ A12m

4

1

]
�11 − A13m

4

1
−
(
A14 + A32

)
m2

1
m2

2
,

qNL
11

= hA12

64D1

3ab

m3

1

m2

[
(−1)m + (−1)n − (−1)m+n − 1

]
, qt

11
= −�1m

2

1
,

q12 =
(
A15m

3

2
+ A35m1 + I3

)
m1, qt

12
= �2m1, q13 = (A18 + A38)m

2

1
m2,

q21 =
{
�11hD3

[
A21m

2

2
+ (A22 − A31)m

2

1

]
−
(
A32 + A23

)
m2

1
− A24m

2

2

}
m2

2
,

qNL
21

= A21h
64D2

3a2

m3

2

m1

[
(−1)m + (−1)n − (−1)m+n − 1

]
, qt

21
= −�1m

2

2
,

q22 = (A25 + A35)m1m
2

2
, q23 =

(
A28m

2

2
+ A38m

2

1
+ I4

)
m2, q

t
23

= �3m2,

q31 = k1 + k2(m
2

1
+ m2

2
), qNL

31
=

8hm1m2�11D3

3ab

[
(−1)m + (−1)n − (−1)m+n − 1

]
,

q32 = 2m2

1
m2

2
h
(
D1 + D2

)
, q33 = I3m1, q34 = I4m2.

(B2)

D1 =
m2

2

32m2

1
�3
, D2 =

m2

1

32m2

2
�1
, D3 =

1

�1m
4

2
+ �2m

2

2
m2

1
+ �3m

4

1

References

 1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 
354:56–58

 2. Mohanty F, Swain SK (2017) Carbon nanotube embedded poly-
mer composite: properties and applications. Curr Org Synth 
14(2):249–262

 3. Kumar S, Nehra M, Dilbaghia N, Tankeshwar K, Kim KH (2018) 
Recent advances and remaining challenges for polymeric nano-
composites in healthcare applications. Progress Polymer Sci 
80:1–38

 4. Fantuzzi N, Bacciocchi M, Agnelli J, Benedetti D (2020) Three-
phase homogenization procedure for woven fabric composites 
reinforced by carbon nanotubes in thermal environment. Compos 
Struct 254:112840

 5. Garg A, Chalak HD, Belarbi MO, Zenkour AM, Sahoo R (2021) 
Estimation of carbon nanotubes and their applications as reinforc-
ing composite materials–An engineering review. Compos Struct 
272:114234

 6. Kharlamova MV, Kramberger C (2021) Applications of filled 
single-walled carbon nanotubes: progress, challenges, and per-
spectives. Nanomaterials 11(11):2863

 7. Nurazzi NM, Asyraf MRM et al (2021) Fabrication, functionali-
zation, and application of carbon nanotube-reinforced polymer 
composite: an overview. Polymers 13(7):1047

 8. Soni SK, Thomas B, Swain A, Roy T (2022) Functionally graded 
carbon nanotubes reinforced composite structures: an extensive 
review. Compos Struct 299:116075

 9. Lei ZX, Zhang LW, Liew KM (2015) Free vibration analysis of 
laminated FG-CNT reinforced composite rectangular plates using 
the kp-Ritz method. Compos Struct 127:245–259

 10. Huang B, Guo Y, Wang J, Du J, Qian Z, Ma T, Yi LJ (2017) Bend-
ing and free vibration analyses of antisymmetrically laminated 
carbon nanotube-reinforced functionally graded plates. J Compos 
Mater 51(22):3111–3125

 11. Zhang LW, Selim BA (2017) Vibration analysis of CNT-reinforced 
thick laminated composite plates based on Reddy’s higher-order 
shear deformation theory. Compos Struct 160:689–705

http://creativecommons.org/licenses/by/4.0/


Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:185 

1 3

Page 15 of 16 185

 12. Adhikari B, Singh BN (2020) Buckling characteristics of lami-
nated functionally-graded CNT-reinforced composite plate under 
nonuniform uniaxial and biaxial in-plane edge loads. Int J Struct 
Stab Dyn 20(2):2050022

 13. Bacciocchi M (2020) Buckling analysis of three-phase CNT/poly-
mer/fiber functionally graded orthotropic plates: Influence of the 
non-uniform distribution of the oriented fibers on the critical load. 
Eng Struct 223:111176

 14. Civalek O, Jalaei MH (2020) Buckling of carbon nanotube (CNT)-
reinforced composite skew plates by the discrete singular convolu-
tion method. Acta Mech 231(6):2565–2587

 15. Kim K, Kwak S, Pang C, Choe K (2022) Free vibration analysis 
of combined composite laminated conical-cylindrical shells with 
varying thickness using the Haar wavelet method. Acta Mech 
233(4):1567–1597

 16. Garg A, Chalak HD, Zenkour AM, Belarbi M-O, Sahoo R (2022) 
Bending and free vibration analysis of symmetric and unsymmet-
ric functionally graded CNT reinforced sandwich beams contain-
ing softcore. Thin-Wall Struct 170:108626

 17. Xiao JH, Wang J (2022) Variational analysis of laminated 
nanoplates for various boundary conditions. Acta Mech 
233(11):4711–4728

 18. Saiah B, Bachene M, Guemana M, Chiker Y, Attaf B (2022) On 
the free vibration behavior of nanocomposite laminated plates 
contained piece-wise functionally graded graphene-reinforced 
composite plies. Eng Struct 253:113784

 19. Georgantzinos SK, Antoniou P, Markolefas SI, Giannopoulos G 
(2022) Finite element predictions on vibrations of laminated com-
posite plates incorporating the random orientation, agglomeration, 
and waviness of carbon nanotubes. Acta Mech 233(5):2031–2059

 20. Lei ZX, Zhang LW, Liew KM (2017) Meshless modeling of 
geometrically nonlinear behavior of CNT-reinforced function-
ally graded composite laminated plates. Appl Math Comput 
295:24–46

 21. Shen HS, Huang XH, Yang J (2020) Nonlinear bending of tem-
perature-dependent FG-CNTRC laminated plates with negative 
Poisson’s ratio. Mech Adv Mater Struct 27(13):1141–1153

 22. Mirjavadi SS, Forsat M, Barati MR, Hamouda AMS (2020) Inves-
tigating nonlinear forced vibration behavior of multi-phase nano-
composite annular sector plates using Jacobi elliptic functions. 
Steel Compos Struct 36(1):87–101

 23. Zghal S, Frikha A, Dammak F (2020) Large deflection responses-
based geometrical nonlinearity of nanocomposite structures 
reinforced with carbon nanotubes. Appl Math Mech-Eng Ed 
41(8):1227–1250

 24. Avey M, Fantuzzi N, Sofıyev AH, Kuruoglu N (2021) Nonlinear 
vibration of multilayer shell-type structural elements with dou-
ble curvature consisting of CNT patterned layers within different 
theories. Compos Struct 275:114401

 25. Cui ZM, Cai X, ElhosinyAli H, Muhsen S (2022) Investigating 
nonlinear vibration behavior of sandwich panels with multi-
scale skins based on a numerical method. Struct Eng Mech 
83(3):283–292

 26. Allahkarami F, Tohidi H (2022) Axisymmetric postbuckling of 
functionally graded graphene platelets reinforced composite annu-
lar plate on nonlinear elastic medium in thermal environment. Int 
J Struct Stab Dyn 1–12:2350034

 27. Rafiee M, He XQ, Mareishi S, Liew KM (2015) Nonlinear 
response of piezoelectric nanocomposite plates: large deflection, 
post-buckling and large amplitude vibration. Int J Appl Mech 
7(5):1550074

 28. Wang JF, Shi SQ, Liu YZ, Yang JP, Tam LH (2022) Multiscale 
simulation of temperature- and pressure-dependent nonlin-
ear dynamics of PMMA/CNT composite plates. Nonlin Dyn 
109(3):1517–1550

 29. Zhu X, Zhang H, Lu G, Zhou H (2022) Nonlinear impulsive and 
vibration analysis of nonlocal FG-CNT reinforced sandwich plate 
by considering agglomerations. Eur J Mech A Solids 92:104485

 30. Pasternak PL (1954) Design of foundations on elastic bed: fun-
damentals of a new method based on two moduli of subgrade 
reaction. Gosstroiizdat, Moscow ([in Russian])

 31. Kerr AD (1964) Elastic and visco-elastic foundation models. J 
Appl Mech 31:491–498

 32. Gorbunov-Possadov MI, Malikova TA, Solomin VI (1984) Design 
of structures on elastic foundation. Gosstroiizdat, Moscow ([in 
Russian])

 33. Zhang LW, Liew KM (2015) Large deflection analysis of FG-CNT 
reinforced composite skew plates resting on Pasternak foundations 
using an element-free approach. Compos Struct 132:974–983

 34. Banic D, Bacciocch M, Tornabene F, Ferreira AJM (2017) Influ-
ence of Winkler-Pasternak foundation on the vibrational behavior 
of plates and shells reinforced by agglomerated carbon nanotubes. 
Appl Sci-Basel 7(12):1228

 35. Gao K, Gao W, Chen D, Yang J (2018) Nonlinear free vibration 
of functionally graded graphene platelets reinforced porous nano-
composite plates resting on elastic foundation. Compos Struct 
204:831–846

 36. Shen HS, Wang H (2017) Nonlinear vibration of compressed and 
thermally postbuckled nanotube-reinforced composite plates rest-
ing on elastic foundations. Aerospace Sci Techn 64:63–74

 37. Shen HS, Wang H, Yang DQ (2017) Vibration of thermally post-
buckled sandwich plates with nanotube-reinforced composite face 
sheets resting on elastic foundations. Int J Mech Sci 124:253–262

 38. Yang J, Huang XH, Shen HS (2020) Nonlinear flexural behav-
ior of temperature-dependent FG-CNTRC laminated beams with 
negative Poisson’s ratio resting on the Pasternak foundation. Eng 
Struct 207:110250

 39. Avey M, Tornabene F, Dimitri R, Kuruoglu N (2021) Free vibra-
tion of thin-walled composite shell structures reinforced with uni-
form and linear carbon nanotubes: effect of the elastic foundation 
and nonlinearity. Nanomaterials 11(8):2090

 40. Alazwari MA, Zenkour AM, Sobhy M (2022) Hygrothermal 
buckling of smart graphene/piezoelectric nanocomposite circular 
plates on an elastic substrate via DQM. Mathematics 10(15):2638

 41. Wu HL, Li Y, Li L, Kitiporinchai S, Wang L, Yang J (2022) Free 
vibration analysis of functionally graded graphene nanocomposite 
beams partially in contact with fluid. Compos Struct 291:115609

 42. Jin Q (2022) A new electro-mechanical finite formulation for func-
tionally graded graphene reinforced composite laminated thick 
plates with piezoelectric actuator. Thin Walled Struct 176:109190

 43. Ambartsumyan SA (1967) Theory of anisotropic plates. Nauka, 
Moscow ([in Russian])

 44. Reddy JN (2004) Mechanics of laminated composite plates and 
shells theory and analysis. CRC Press, Boca Raton

 45. Amabili M (2008) Nonlinear vibrations and stability of shells and 
plates. Cambridge University Press, New York

 46. Tornabene F, Fantuzzi N, Bacciocchi M (2017) On the mechan-
ics of laminated doubly-curved shells subjected to point and line 
loads. Int J Eng Sci 109:288–304

 47. Volmir AS (1972) The nonlinear dynamics of plates and shells. 
Nauka, Moscow ([in Russian])

 48. Eslami MR (2018) Buckling and postbuckling of beams, plates 
and shells. Springer, Cham



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:185

1 3

185 Page 16 of 16

 49. He JH (2014) Variational principles for some nonlinear partial 
differential equations with variable coefficients. Chaos, Solitions 
Fractals 19:847–851

 50. Selim BA, Zhang LW, Liew KM (2016) Vibration analysis of 
CNT reinforced functionally graded composite plates in a thermal 

environment based on Reddy’s higher-order shear deformation 
theory. Compos Struct 156:276–290

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Mathematical modeling and solution of nonlinear vibration problem of laminated plates with CNT originating layers interacting with two-parameter elastic foundation
	Abstract
	1 Introduction
	2 Basic relationships
	2.1 Statement of the problem
	2.2 Mechanical properties of laminated nanocomposite plates

	3 Basic equations
	4 Solution method
	5 Numerical examples and discussion
	5.1 Material properties and arrangement of nanocomposite layers
	5.2 Validation
	5.3 Nonlinear analysis

	6 Conclusions
	Appendix A
	Appendix B
	References




