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Abstract

This work presents an overview of the evolution of mathematical modeling applied 

to the context of epidemics and the advances in modeling in epidemiological stud-

ies. In fact, mathematical treatments have contributed substantially in the epidemiol-

ogy area since the formulation of the famous SIR (susceptible-infected-recovered) 

model, in the beginning of the 20th century. We presented the SIR deterministic 

model and we also showed a more realistic application of this model applying a sto-

chastic approach in complex networks. Nowadays, computational tools, such as big 

data and complex networks, in addition to mathematical modeling and statistical 

analysis, have been shown to be essential to understand the developing of the dis-

ease and the scale of the emerging outbreak. These issues are fundamental concerns 

to guide public health policies. Lately, the current pandemic caused by the new cor-

onavirus further enlightened the importance of mathematical modeling associated 

with computational and statistical tools. For this reason, we intend to bring basic 

knowledge of mathematical modeling applied to epidemiology to a broad audience. 

We show the progress of this field of knowledge over the years, as well as the techni-

cal part involving several numerical tools.
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1 Introduction

Studies involving epidemiology were consolidated in the 19th century although the 

mortality from infectious diseases has been investigated mathematically since the 

Eighteenth century [20]. But it was only in 1927, with the formulation of a mathemati-

cal model known as SIR (susceptible-infected-recovered) model [45], by the biochem-

ist Kermack and the physician McKendrick , that the modern mathematical epidemiol-

ogy indeed began.

Afterwards, many increasingly complex models were created to model epidemic 

processes, but most of them are based on the concepts of the SIR model [8, 47]. In gen-

eral, such models are extremely useful for finding out how rapidly the etiological agent, 

for example, a virus, can spread, how many people will be affected, what containment 

measures can be taken, what proportion of a population should be vaccinated, etc.

The study of infectious disease dynamics has become very interdisciplinary, in the 

last decades. The contributions of mathematics, physics, biology, computer science, 

statistics and epidemiology are essential to provide effective responses for the devel-

opment and improvement of public health. In this context, mathematical modeling 

appears with a huge potential to clarify the complexity of the dynamics of infectious 

diseases [30, 40].

Infectious diseases emerge due to environmental, social and demographic factors 

because we are always in contact with microorganisms or animals that host them [58]. 

According to World Health Organization (WHO), research and development efforts 

must prioritize a set of diseases, all of them caused by virus, including ebola virus [16], 

Zika virus [2], Middle East respiratory syndrome coronavirus (MERS) [39] and severe 

acute respiratory syndrome (SARS) [28, 50].

Recently, due to the current pandemic caused by the new coronavirus, the impor-

tance of mathematical modeling have become increasingly remarkable. Jargons of the 

area such as basic reproductive number, infection rate, epidemic threshold, etc., are fre-

quently mentioned in news and in social media posts. In this context, our aim is to pro-

vide basic information of mathematical modeling applied to epidemiology to a broad 

audience and more detailed references for those who would like to learn deeper the 

topic.

This manuscript is divided as follows: in Sect.  2, we presented a historical back-

ground about epidemiology and multicausality. In Sect. 3 we presented the advances 

of mathematical models in the context of epidemiological analysis. In Sect. 4, we pre-

sented the mathematical development of the SIR model, its usefulness for modeling a 

pandemic, its unfolding in other more complex epidemic models and its implementa-

tion using complex networks. Finally, in Sect. 5, we closed this issue presenting some 

perspectives and challenges of the mathematical modeling related to pandemics, public 

health, vaccines and infodemic.
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2  Historical background of epidemiology and multicausality

Researches involving epidemiology were well-established in the Nineteenth cen-

tury with pioneering studies about the London cholera epidemic (1849–1854) 

by the sanitarist medical-doctor John Snow. He became known as the father of 

epidemiology because he was able to determine the source of infection from a 

disease, even without knowing its etiological agent  [63]. Afterward, the scien-

tist Louis Pasteur determined the etiological agent of diseases, which enabled the 

introduction of prevention and treatment measures [72].

Previously, this research area had already had contributions from experts as 

John Graunt, in the Fifteenth century, who quantified the patterns of mortality 

and birth rates  [68]. In the Sixteenth century, Louis Villermé investigated the 

impact of poverty and bad working conditions on the health of the population [43] 

and Pierre Louis used the epidemiological method in clinical investigations [56]. 

Edward Jenner, in 1796, discovered the first smallpox vaccine, almost a hundred 

years before the virus was discovered. Fortunately, this disease was permanently 

eradicated from the planet in 1980 due to mass vaccination [67]. Ignaz Semmel-

weis, in the 19h century, was the first health professional to associate the contam-

ination of hands with transmission disease and he introduced hygiene measures 

to reduce the spread of pathogens, significantly decreasing the number of deaths 

from infection in hospitals [77].

Therefore, infectious diseases are a ubiquitous part of human life. The bubonic 

plague, caused by a bacteria transmitted to human by the rat flea, reached Europe 

in the Fourteenth century leaving 50 million dead. Cholera, known since ancient 

times and transmitted to people through contaminated water and food, had a first 

epidemic outbreak in the early Nineteenth century killing hundreds of thousands 

of people. Tuberculosis is highly contagious because it is transmitted from one 

person to another through the respiratory tract [58, 60]. This disease killed a bil-

lion people between 1850 and 1950 although trace elements of the disease were 

found in skeletons 7000 years ago. In recent years, the infection has resurfaced in 

underdeveloped countries and currently, together with malaria, they are consid-

ered the most important re-emerging infectious diseases in the world [80].

Epidemics of new and old infectious diseases, also known as emerging and 

reemerging diseases, periodically emerge  [57]. They remain among the lead-

ing causes of death and can be associated with human behaviours and environ-

mental perturbation  [25]. There are many infectious diseases that have plagued 

humanity for years such as bubonic plague, cholera, tuberculosis, smallpox, 

Spanish flu, dengue fever, AIDS, etc. Many of them have caused terrible epidem-

ics and/or cause worrying endemics, especially in tropical and underdeveloped 

countries [60].

Remarkably, major epidemics of the Twentieth and Twenty first centuries 

are caused by virus. The World Health Organization (WHO) has indicated that 

vector-borne diseases account for more than 17% of infectious diseases in the 

world, causing more than 700,000 deaths per year. Many of them are transmitted 

by a virus through a vector, such as dengue, yellow fever and Zika  [80]. Such 
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infections affect more the poorest populations of underdeveloped countries, 

being classified as neglected tropical diseases  [80]. The Zika virus, for exam-

ple was identified in 1947 among primates in the Zika forest in Uganda but the 

major outbreak happened in Brazil between 2015 and 2016 and subsequently 

spread to other countries in South America, Central America and the Carib-

bean. Brazil led the discovery of the relationship between the Zika virus and the 

increase cases of microcephaly in newborns [12].

Another viral disease of global importance is Acquired Immunodeficiency 

Syndrome (AIDS), whose outbreak began in the 1980s, that is caused by HIV 

virus and it attacks the immune system. There is no vaccine, but treatment can 

be done with antiretroviral drugs, which also greatly reduces the chance of 

transmission through sexual relations [32]. In Africa, it is estimated that 17% of 

adults have the virus, according to WHO [80]. This continent is also the most 

affected by the ebola virus. This disease can be transmitted through contami-

nated meat (bats are usuallys the primary hosts) or body fluids from infected 

people. As it manifests severe symptoms, it is easy to identify and isolate the 

infected individual. The same does not happen with diseases caused by viruses 

like influenza and coronavirus [16].

Some strains of the influenza virus, for example, were responsible for the 

Spanish flu in 1918  [75], killing millions of people worldwide and for swine 

flu in 2009. Different strains of the coronavirus were responsible for the 2002 

epidemic when SARS-CoV virus caused an outbreak of severe acute respira-

tory syndrome (SARS) [28, 50]. In 2012 MERS-CoV virus caused Middle East 

respiratory syndrome (MERS)  [39] and finally, in 2019 , the pandemic caused 

by the new coronavirus SARS-CoV2, responsible for the corona virus disease 

(COVID-19) [48], infected 25 million people and killed 848,000 people around 

the world until August 2020, according to WHO [80].

In general, the symptoms of these diseases are similar and in the beggin-

ing not much severe. People usually present clinical symptoms as fever, cough 

and difficulty in breathing. The delay in the manifestation of symptoms (about 

a week after contagion) combined with mild symptoms that affect the major-

ity of the population are key ingredients that promote a fast spreading of the 

disease  [49]. In addition to these ingredients, the way as the virus is transmit-

ted from one person to another also facilitates the spread. Transmission occurs 

through physical contact with contaminated people or surfaces, such as shaking 

hands or touching a contaminated surface and then touching the eyes, mouth or 

nose, for example. Sneezing, coughing and saliva droplets from infected people 

also transmit the virus, that is why the use of masks and measures related to 

social distance are so required by health surveillance [80].

In this context, mathematical modeling offers valuable tools for understand-

ing the disease spreading, quantifying the total number of people being infected 

over time and, consequently, investigating the impact of humans mobility, envi-

ronmental changes and also the effectiveness of prevention and control measures 

for developing and evaluating evidence for decision-making in global health [8, 

30].
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3  Advances in mathematical models

The SIR model is one of the most basic models to investigate epidemic process. 

In this scenario, each individual can be in one of three epidemiological states at 

any given time: susceptible, infected and infectious, or removed which can mean 

immunized (recovered) or dead [45]. The model specifies the rates at which indi-

vidual changes their state, as detailed in the netx section.

Originally, epidemic models did not taking into account the heterogeneity 

in contact behavior not even the mobility of the agents involved in the disease 

transmission process. The simplest theory of epidemic spreading assumes that 

the population can be divided into different compartments according to the stage 

of the disease as susceptible, infected or removed, for the SIR model, for exam-

ple. However, individuals are assumed to be identical and have approximately the 

same number of neighbors. From this elementary approach, we are able to write a 

time evolution equation for the number of infected individuals and finally, we can 

obtain relevant informations about the disease spreading. This characterizes the 

homogenenous mean-field theory [7] and the complete analysis of this algebraic 

development is shown in Sect. 4.

Over the past few decades, the increase sophistication of epidemic models, the 

advance in the computational system and the use of complex network tools com-

bine with big data provide opportunities to predict epidemic outbreaks and con-

trol strategies in an accurate and increasingly realistic way [8, 11, 40, 47].

There are many works in the literature that can exemplify the advancement 

in mathematical modeling  [3, 44]. For instance, to model the measles outbreak 

in children, the models considered age groups, spatial and temporal features and 

metapopulation structured  [24, 38, 82]. Metapopulation is a set of populations, 

separated in space, but connected with each other allowing the movement of peo-

ple between them [21].

When it concerns about infectious diseases transmitted by a vector, such as 

malaria, dengue fever, Zika and leishmaniasis, the modeling involves at least two 

host species and environmental conditions should be considered. In this case, 

multilayer networks  [37] have shown to be useful because they are composed 

by two distinc layers, for instance, one representing the human population and 

its mobility, and the other representing the same for the vector—a mosquito, for 

example—that transmits the disease to humans. The disease propagation between 

layers since one infected human can infect a insect which, in turn, can sting a 

healthy human and infects him [37].

Novel emerging infections such as SARS, MERS, and SARS-Cov2 required 

models that take into account contact tracing, quarantine, human mobility pat-

terns, intervetions measures, latency period, comorbidities, age groups and 

impact of vaccines. Besides that, social mixing patterns, the urban demography 

and spatial dynamics also have to be taken into account as they directly impact on 

the transmission of infectious diseases. [46, 51, 53].

To implement and to investigate the spread of infectious diseases we can 

used a set of approaches: deterministic, stochastic, agent-based, or a mixed of 



1030 São Paulo Journal of Mathematical Sciences (2021) 15:1025–1044

1 3

them. These alternative perspectives allowing researchers to gain complemen-

tary insights about infectious diseases and investigate strategies for combating 

them. Most of them are based on compartment models, this means, the popu-

lations of individuals are divided in different compartments, where each com-

partment represents a specific stage of the disease  [30]. In a stochastic frame-

work, the transition probabilities of one compartment to another can be modeled 

by a continuous time Markov process [1, 76]. However, these probabilities can 

be approximated, in the deterministic approach, by a differential form. In this 

case, the set of ordinary differential equations describe how the system evolve 

in time [69, 74]. Besides that, statistical approaches can also be used to model 

epidemic dynamics, mainly when it involves concerns related to the spatio-tem-

poral behavior of the disease  [6, 41, 66]. In general, all of these models try to 

capture the complexity of the real-world such as mobility patterns, social con-

tacts, age stratification and spatial distribution of the population.

The deterministic investigation of epidemic models is already sufficient to 

provide us a basic description of an epidemic, such as the existence of an epi-

demic threshold that separates a phase where the epidemic grows exponentially 

from a disease-free state  [54]. It is due to the existence of this threshold that 

disease control measures can be introduced. On the other hand, stochastic mod-

els, associated with Monte Carlos simulations, are useful to investigate epidemic 

models on networks [4, 36, 62, 64]. In this scenario, each individual of a popula-

tion is represented by a vertex or a node of the network and the transmission of 

the disease occurs through edges connecting them. This framework provides a 

more realistic perspective, since we are able to investigate the epidemic spread-

ing on large and highly heterogeneous systems. In the next section, we describe 

both deterministic and stochastic approaches to explore the SIR model.

4  Epidemic modeling

How to model the evolution of the dynamic disease and how to mitigate its 

growth?  [45] An epidemic outbreak usually starts with just one infected per-

son—called zero individual—that is the first one takes the virus. As mentioned 

previously, we can use the SIR model [45] to investigate this dynamic. The SIR 

model becomes a famous epidemic model because despite its simplicity, it is 

able to predict an essential feature for epidemiology: epidemic threshold. It sep-

arates two distinct states of the epidemic: disease free scenario and a state of 

there are a significant quantity of infected people  [54]. There are many other 

models more complex than the SIR model, but almost all of them are based on 

the SIR rules, that describes very well the dynamic of an epidemic  [62]. We 

firstly investigated this successful model using a deterministic approach and 

after we implemented this model in networks using the stochastic framework.
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4.1  The SIR deterministic model

In this model [45], the population is divided in three compartments: susceptible S, 

infected I or removed R. Susceptible individuals are at risk of getting the disease, if 

they have some contact with an infected one. If it happens, the susceptible individual 

becomes infected and, consequently, he/she is able to disseminate the virus. Gener-

ally, there are two possibilities for infected people, to heal and become immune or, 

unfortunately, to die. Both of cases are equivalent from a mathematical point of view 

because they do not transmit the virus anymore and pass to the removed class.

Besides the SIR model, there are other models that include more compartments 

and that can be useful depending on the type of disease one wants to model. For 

example, in the SEIR model, we consider a latent period, called Exposed (E), in 

which an individual is infected but it still does not transmit the virus. This stage 

corresponds to an intermediate period between susceptible and infected. We can 

also include a differentiation between recovered and dead individuals through the 

inclusion of compartment D (dead). In this case, we have a SEIRD model. Another 

example is the famous SIRS model, in which the individual has only temporary 

immunity, and may become susceptible to the disease again after a certain time [64]. 

Recently, Arenas and collaborators [5] proposed a model to study the spreading of 

the COVID-19 pandemic based on 10 compartments. According to this work, the 

population is divided into: susceptible (S), exposed (E), asymptomatic infectious (A), 

symptomatic infectious (I), to be admitted in ICU (pre hospitalized in ICU,PH), fatal 

prognosis (predeceased,PD), admitted in ICU that will recover (HR) or decease 

(HD), recovered (R), and deceased(D).

Thus we can then conclude that, according to the complexity of the investigated 

disease, many compartments can be incorporated into the model. However, it is 

interesting to note that, despite its simplicity, the SIR model is able to capture essen-

tial features of an ordinary epidemic, such as the fact that social distancing measures 

work very well and that vaccination is really the best strategy to contain its spread-

ing, as we will show below. Therefore, in this work we are going to focus on this 

model. If the reader wants to know more details about the other models, we recom-

mend reading references [30, 64].

In the SIR model, we considered that the size N of population remains constant, 

this means: N = S(t) + I(t) + R(t) , where X(t) represents the population of the com-

partment X in a given time step t. So, S(t)/N is the fraction of the population that can 

be infected. Let’s suppose that each infected individual has, on average, � contacts, 

then �S(t)I(t)∕N daily meetings can result in contagion. However, it is reasonable to 

assume that only a fraction of those meetings � < 1 effectively results in contagion. 

Consequently, the number of new infected people in the next day will be [45]:

But the number of infected people also decreases as long as they become recovered 

or dead. If the mean recovered time is D days, a fraction � = 1∕D of infected will 

become recovered every day. Finally, the number of total infected in the next day can 

given by:

��S(t)∕N = �S(t), defining � =
��

N
as the infection rate.
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where �t is the unit of time that corresponds to an specific time interval, which can 

denote, for example, one day. If N has a large value, we can consider that the vari-

ables are continuous when we make the interval of time smaller and smaller, that is:

In the beginning of a new epidemic, that corresponds to t = 0 in our mathematical 

approach, we can assume a commonly hypothesis that practically all individuals are 

susceptible1 - except the zero individual—it means S(t = 0) ≈ N . This value remains 

pretty constant in the first steps of the contagion. For example we can cite the num-

ber of infected people with the new coronavirus (SARS-CoV-2).The first reported 

case occurs in Wuhan, China on December 31, 2019. After one month, in January 

31, 2020, there were 9826 infected individuals, according to the Situation Report 

11 of WHO [80]. This correspond to a tiny fraction of the global population - more 

than seven billion of people according to the United Nations Organization. Consid-

ering this approximation, we have

which gives,

as a solution of the evolution of the number of infected people in the begin-

ning of the epidemic. We can obtain a valuable information with this expres-

sion. If �S(0) − � > 0 , the number of infected grows exponentially. However, if 

�S(0) − � < 0 , the number of infected people decreases until the complete extinc-

tion of the epidemic. The value �S(0)∕� = 1 is the epidemic threshold, which sepa-

rates two distinct phases of the epidemic. When the initial condition corresponds 

to all susceptible people, as happened in the COVID-19 spreading for example, we 

have a particular case when the value �S(0)∕� = �N∕� is known as the basic repro-

ductive number and it measures the “intensity of the contagion”, this means, the 

quantity of contagion that each infected person can cause. It means that the number 

of infected will increase because �S(t)∕� > 1 . On the other hand, when we look at 

how the number of susceptible people changes over time, we concluded that this 

quantity will always decreases with time because

(1)I(t + �t) = I(t) + [�S(t)I(t) − �I(t)]�t,

(2)
dI(t)

dt
= lim

�t→0

I(t + �t) − I(t)

�t
= �S(t)I(t) − �I(t).

(3)
dI(t)

dt
= (�S(0) − �)I(t),

(4)I(t) = I(0) exp[(�S(0) − �)t],

(5)
dS(t)

dt
= −�S(t)I(t).

1 Here we are considering an approximation to simplify the mathematical calculations. We know that 

there are several biological factors that can, for example, make a fraction of the population naturally 

immune to some new epidemic. However, to attend our aim, this assumption is quite reasonable.
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Therefore, there will be a time when the quantity �S(t)∕� will become smaller than 

one, and consequently, the number of infected will start to decrease. That is, the 

number of infected individuals grows exponentially fast at the beginning of the epi-

demic, reaches a peak and begins to decline as we show in Fig. 1a. This is the natu-

ral behavior of an epidemic. However, waiting for a large part of the population to 

become infected in order to mitigate the epidemic is certainly not the best strategy, 

especially when the disease presents high mortality and lethality rates.

We can remember that � = ��∕N , � = 1∕D and, in the beginning of the epidemic 

S(t) ≈ N , then if

the epidemic starts to reduce. This shows us there are other strategies that can be 

adopted by governments and the entire population to mitigate the epidemic.

Indeed, the most efficient measure that would cause minor impact on society 

is mass vaccination. If that happened at the beginning of the epidemic, few peo-

ple would be infected because the quantity S(t) would already start with a reduced 

value, quickly extinguishing the epidemic (see Fig. 1b). This measure has worked 

for many cases as we mentioned in historical background, but unfortunately this 

strategy is not always possible especially when it comes to new emerging diseases, 

such as SARS-COV-2.

To reduce the contagion we can also reduce � , the number of contact promoting 

measures of social distance, or we can minimize � which implies reducing conta-

gious encounters, that is, wearing masks, not touching infected people, and washing 

hands frequently. When these rates � and � are reduced, the curve of infected people 

changes becoming more flattened and with a lower peak, as we show in Fig. 2. This 

explain why such measures of social distance are very important: the peak reduction, 

that is, the reduction of people that are infected simultaneously, avoids overloading 

(6)
�S(t)

�
= ��D < 1
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Fig. 1  a The evolution of density of infected, susceptible and removed individuals over time. The num-

ber of infected individuals grows exponentially fast at the beginning of the epidemic, reaches a peak and 

begins to decline, showing the natural behavior of an epidemic. b The graph is the same as represented in 

(a) but here is a simple demonstration of the effectiveness of vaccination. A small portion initially immu-

nized (about 10% of individuals at t = 0 ) is already enough to drastically decrease the number of people 

infected over time and it is also decrease the peak of the epidemic (Color figure online)
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health systems. How long a person remains infected is also a relevant factor. The 

faster the individual is cured, the less the transmission.

From these analyzes, we can observe how mathematical modeling can influence 

public health policies. However, when we investigate a pandemic, which affects sev-

eral countries at the same time, the situation is more complex. Countries, states and 

cities have completely different demographic, economic and social configurations; 

therefore, other elements must be considered in the diagnosis of the evolution of 

the disease and in the insertion of control measures. To cover all this complexity, 

stochastic models are more robust as we will see in the simplest example showed 

below.

4.2  The SIR stochastic model running on top of complex networks

In the previous analysis we were not concern about the connection between infected, 

susceptible and recovered individuals. However to cover a more realistic situation 

we can take into account different patterns of connectivity between them. We can 

Fig. 2  We show the difference 

between the infected curve 

over time when the contagion 

is reduced. The peak becomes 

more attenuated and conse-

quently the epidemic lasts 

longer (Color figure online)
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Fig. 3  An illustration of (a) Erdős and Rényi and (b) Barabàsi-Albert networks. Both with N = 20 

nodes. It is possible to observe the difference between the connectivity patterns. While the former has 

nodes with almost the same number of links, the latter has a few of nodes with many edges (Color figure 

online)
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make this assumption considering a network where each individual is represented by 

a vertex or a node and the transmission of the disease occurs through edges connect-

ing them [4, 36, 62].

The simplest scenario can be represent by a random graph as the model proposed 

by Erdős and Rényi (ER) [29], where a network is constructed starting from a set 

of N nodes and all pair of nodes have the same probability of connecting. This gen-

erates a homogeneous graph (see Fig. 3a) in which the vertices have a number of 

neighbors, named k degree, that do not differ much from the average degree ⟨k⟩ . The 

connectivity distribution for this graph can be represent by a Poisson distribution, as 

showed in Fig. 4. Here we compared this homogeneous network with a heterogene-

ous one. This comparison, despite its simplicity, it is useful enough to show how the 

topology of the network, this mean, the pattern of connection can highly impact on 

the epidemic spreading.

As an example of heterogeneous network, we used the most well-known com-

plex network model: Barabàsi-Albert (BA) model  [9]. In this system, new nodes 

are added to the network and they are connected to those nodes already present in 

the network with a probability proportional to their degrees, promoting the emer-

gence of hubs, it means, nodes with a large number of connections ( k ≫ ⟨k⟩ ) as we 

showed in Fig.  3b. These growth and preferential attachment rules provide a net-

work with a power law degree distribution P(k) ∼ k
−� , with � = 3 in the thermody-

namic limit (see Fig. 4). This connectivity distribution, known as heavy-tail distribu-

tion indicates that there is a low probability, but different from zero, to find hubs in 

the network. This is an important feature of heterogeneous networks since hubs can 

spread the disease to a larger number of neighbors, thus contributing to the speed of 

infection. Despite the addition of new nodes, when we investigate epidemic process 

in this network, we consider it a static network since it is grown first and after the 

dynamics run through the substrate.

To investigate the role of connectivity pattern, we can rewrite Eq. (2) using a het-

erogeneous mean-field (HMF) approach, in which dynamical quantities, as the den-

sity of infected individuals, depend only of the vertex degree. Then, we named i
k
(t) 

the density of infected nodes with a given degree k and the dynamical mean-field 

equation describing the system can thus be written as [62]:

Fig. 4  The degree distribution 

of networks generated by Erdős 

and Rényi (blue circles) and 

Barabàsi-Albert (red circles) 

networks. The inset (log-

log scale) shows clearly the 

heavy-tail of the heterogeneous 

distribution compared with the 

homogeneous one (Color figure 

online)
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The first term on the right-side considers the event that a node with k links is healthy, 

s
k
(t) , and gets the infection via a nearest neighbor. The probability of this event is 

proportional to the infection rate � , the number of connections k and the density of 

infected neighbors �
k
(t) . The second term considers nodes becoming healthy at rate 

� . To solve this equation we should consider there is no degree correlations, this 

means the probability that a link between a node with degree k and other node with 

degree k′ can be expressed as P(k��k) = k
�
P(k�)∕⟨k⟩ [10]. So, �

k
(t) can be expressed 

as

The term k� − 1 considers that at least one link of an infected node points to other 

infected node, through which it got infected and this node can not be reinfected 

again, because, once infected, it becomes removed at a rate � and it can not return to 

the susceptible compartment [62]. We can replace s
k
(t) with 1 − r

k
(t) − i

k
(t) , where 

r
k
(t) is the number of recovered nodes with degree k in the time t. Performing the lin-

earization of Eq. (7), we obtain the epidemic threshold, this means, the value of �∕� 

delimiting the transition between the absorbing phase ( i
k
(t → ∞) = r

k
(t → ∞) = 0 ) 

and the active phase ( i
k
(t → ∞) = 0 and r

k
(t → ∞) = finite), and it is given by [10, 

62]:

Other mean-field approaches can be used to calculate the epidemic threshold, as for 

example, the quenched mean-field theory [17], that explicitly takes into account the 

actual connectivity of the network through its adjacency matrix, whose elements 

Aij = 1 if the vertices i and j are connected, and Aij = 0 , otherwise [10]. However, 

for the scope of this work, the previous analysis is quite enough.

We can estimate now the epidemic threshold of the SIR model running on top of 

the Erdős-Rényi and the Barabàsi-Albert networks. For the homogeneous model, we 

obtain a finite threshold, however, for the heterogeneous network, we obtain a van-

ishing one, since scale-free networks, characterized by a power-law degree distribu-

tion with exponent 2 < � ≤ 3 , has ⟨k2⟩ → ∞ when the network goes to an infinite 

size [15]. This simple analysis shows us how the connection structure of individuals 

in a network plays a fundamental role in the spread of the disease, which shows how 

complex the study of an epidemic can become.

To verify this prediction we can simulate the SIR model running on the top of 

both networks. Numerical simulations is an important tool to check the accuracy 

of mean-field approaches. The Gillespie algorithm [34] is the standard algorithm to 

implement continuous-time Markov processes  [4, 36]. In a Markov chain process 

the physical state at a given time t depends only on the state at the previous time. 

(7)
di

k
(t)

dt
= �ks

k
(t)�

k
(t) − �i

k
(t),

(8)�
k
(t) =

�

k�

P(k��k)i�
k
(t) → �(t) =

∑
k�
(k� − 1)P(k�)i�

k
(t)

⟨k⟩

(9)

�
�

�

�

c

≥
⟨k⟩

⟨k2⟩ − ⟨k⟩
.
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We can associated independent spontaneous processes to each dynamical transition, 

infection and cure, for example. However, in each change of state, a list of all pos-

sible spontaneous processes must be updated. For very large networks this task is 

computationally unsustainable. Cota and Ferreira  [23] proposed an optimized ver-

sion of the Gillespie recipe and the SIR dynamics can be simulated according to the 

following steps [33]:

– To keep and constantly to update a list P with the positions of all infected verti-

ces where changes will take place;

– the time step is incremented by �t = 1∕(R + J);

– With probability p = R∕(R + J) an infected vertex i is selected randomly and 

turns it to removed;

– With complementary probability q = J∕(R + J) an infected vertex is selected at 

random and accepted with probability proportional to its degree. In the infection 

attempt, a neighbor of the selected vertex is randomly chosen and if susceptible, 

it is infected. Otherwise nothing happens and simulations run to the next time 

step.

The total rate that an infected vertex becomes removed in the whole network is 

R = �N
i
 , where N

i
 is the number of infected vertices and the total rate that one sus-

ceptible vertex is infected is given by J = �N
e
 , where N

e
 is the number of vertices 

emanating from infected nodes.

0 0.1 0.2 0.3 0.4 0.5

λ

0

0.2
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0.6
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ρ
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λ
c 
 --> 0 λ

c 
 = 0.25

Fig. 5  Density of recovered (or removed) nodes (individuals)—�
r - in function of the infection rate � , 

also known as control parameter. For BA network, a small value of the infection rate is enough to start 

the disease spreading while for ER network, it is necessary a bigger value of � to start the spreading of 

the disease to the entire network. The value of �
c
 is the epidemic threshold for the SIR model running on 

top of these different substrates. Here, we used both networks with N = 10
4 nodes (Color figure online)
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In the Fig.  5 we show the density of removed individuals as a function of the 

parameter control � . In this simulation we fixed � = 1 and named �
c
 the threshold, 

without loss of generality, just to simplify the notation. Note that the density of 

recovered nodes changes from a null value (absorbing state) to a finite value (active 

state) for a specific value of � that is known as �
c
 , the epidemic threshold.2 For BA 

network, this happen for a smaller value of � , near to zero, as expected because 

�
c
= 0 when N → ∞ . While for ER network, it is necessary a bigger value of infec-

tion rate � to start the spreading of the disease to the entire network, confirming 

how the network topology influences the dynamics of the epidemic. For both net-

works, we used N = 10
4 and ⟨k⟩ = 5 . It is well-known that real systems are much 

more similar to BA network than ER one [15]. This elucidates many real-world phe-

nomena such as the fact that only one infected individual, called individual zero, is 

enough to spread an epidemic to the entire world, as happened in the COVID-19 

pandemic [30, 48].

As we mentioned previously, despite the simplicity of this comparison, we hope 

that it has become clear to the reader the relevance of complex networks in epidemic 

modeling and how this issue gets more and more refined and intricate depending 

on the substrate used. However, as we discussed in Sect. 2, more sophisticated net-

work models such as metapopulations [21], multilayer networks [26, 37, 59], models 

that include agent mobility patterns, age stratification social mixing patterns, spatial 

structure, interventions measures [30, 46, 51, 53] are even more realistic and, when 

they are used in combination with big data and statistical tools, they are able to pro-

vide increasingly accurate outcomes.

4.3  Non‑compartmental models

Most of studies to model epidemic spreading are based on compartmental models. 

However, other methodologies, for example, statistical analyses, can also be used. 

Typically, at the beginning of disease spreading, compartmental models are useful to 

predict the development of the epidemic. This is important to help the government 

make decisions related to containment measures and also to prevent the population 

from the risk of contagion [5, 42, 81]. But spatial statistics methods is able to obtain 

more appreciable insights related to the spreading pattern of the disease in space and 

time, taking into account geographic, social and demographic factors. Indeed, there 

are many different types of statistical approaches that can be used to investigate epi-

demic spreading processes. It would be unfeasible to discuss in greater detail all of 

them in this work. However, we would like to mention some important aspects of 

this kind of approach.

2 In fact, any realization of the epidemic dynamics in finite networks reaches the absorbing state sooner 

or later because of dynamic fluctuations inherent to stochastic process, even above the critical point. This 

simulation difficulty was traditionally overcome by quasi stationary methods. For further details, the 

reader can consult the following references: [54, 61]
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For example, there are recent studies using statistical tools to investigate the spa-

tio-temporal spreading of the COVID-19 disease. Wells and collaborators [79] used 

maximum likelihood to predict the impact of travels on the dynamic of this pan-

demic. Azevedo and colleagues [6] analyzed the spatial and temporal dynamics of 

the disease by mapping the infection rates in the municipalities of Portugal through 

maps of the interpolation of this rate over time. Ribeiro et  al.  [66] predicted the 

cumulative cases of COVID-19 in ten Brazilian states. Zhao et  al.  [84] used cor-

relational analysis to quantify the relation between the number of passengers from 

Wuhan with the number of infected people in a set of ten nearby cities.

In other recent study, the authors [78] observed 1212 patients in China and they 

evaluated the incubation period using maximum likelihood estimation. The authors 

of reference [70] also investigated the spatial and temporal associations of the inci-

dence, mortality, and the rate of two different kinds of tests in a specific region from 

Brazil. Pedrosa and collaborators [65] also analysed the COVID-19 cases spatially 

and related to the number of intensive care beds in the region investigated.

Despite extensive efforts to predict and contain an epidemic, we must always 

remember that the spread of a disease involves an exponential growth of infected 

people and this is intrinsically unpredictable. In addition, such events are directly 

related to the individual and collective behavior of the population, which makes it 

even more complex [18].

5  Final remarks: challenges and perspectives

In this paper, we briefly reviewed epidemics from the perspective of historical back-

ground and mathematical modeling. Our aim was to introduce this topic for a broad 

audience, on the purpose of summarizing the evolution of the use of mathematical 

modeling, complex networks and statistical tools in epidemiology. We synthesized 

the primary literature on this topic over the years and we provided a comprehensive 

list of citations for those who desire to go beyond.

We believe that it became clear to the reader the importance of computational 

tools in predicting epidemics, in helping governments to implement safe and effi-

cient public policies and in implementing different vaccination strategies [40]. This 

is essential to think about public health policies and, above all, to make the popula-

tion aware of the importance of control measures such as social isolation, quaran-

tine, wearing masks, constant hand hygiene, etc. Infectious diseases are challenging 

in the scope of public health policies because their prevention and control involve 

national and regional efforts coordinated worldwide [27].

Scientific community has done great efforts to search for specific antiviral ther-

apeutics and vaccines against many virus such as SARS-CoV-2. The main idea, 

explaining in a trivial way, is found a method to inhibit the activity of the main pro-

tease of the virus – in this specific example, the new coronavirus - and consequently 

to block viral replication. In this context, complex networks can also help to answer 

questions related to protein structure and functioning (useful surveys related to this 

topic can be found in the references [13, 31]).
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It is important to emphasize that epidemic models–despite their usefulness to pre-

dict and to better understand dynamical diseases—present limitations of modeling 

related to uncertainties in predictions since, however sophisticated they are, they 

are not able to capture all the complexity of social interactions  [27, 40]. In addi-

tion, there are other challenges such as synthesizing data in real time, underreport-

ing of cases and deaths, new policies to vaccinate the most vulnerable population, 

missing information on the influence of control measures to comprehension human 

responses, etc [35].

Besides the challenges inherent in predicting and controlling any epidemic, lately 

we have a major obstacle related to the large amount of information we receive 

daily, especially from social media. WHO classified this phenomena as an info-

demic [80], this means, the volume of information related to an specific topic, such 

as the COVID-19 pandemic, has grown exponentially fast in a short period of time, 

mainly because social media. This huge quantify of information—not always accu-

rate - negatively affects human health making people confused, and increasing men-

tal health problems like depression and anxiety. It makes hard for people to find 

trusted sources and consequently it impacts in the community engagement and its 

well-being [83].

In conclusion, we emphasized that the progress in the epidemiological modeling 

area has grown incredibly fast and it is not possible to discuss all recent surveys, 

but we mentioned the main advances in this field. The relevance of studying epi-

demic models becomes more evident when faced with alarming situations such 

as the recent pandemic of COVID-19  [30, 48]. Recently, there have been several 

innovative and interesting works on the modeling of SARS-CoV-2 using different 

substrates related to complex networks  [19, 22, 52, 71, 73]. It is also relevant to 

mention that the use of mathematical and computational tools presented here can be 

expanded and applied to other disease spreading such as livestock and vector-borne 

diseases [14, 80]. We are aware that there are many challenges in modeling spread-

ing diseases mainly related to public health and global transmission [55]. However, 

we hope that this survey identifies our current situation and what we still need to 

do to improve our mathematical and computational tools and, consequently, to fight 

better future epidemics.
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