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The intrinsic, or mitochondrial, pathway of caspase activation is essential for apoptosis induction by various stimuli
including cytotoxic stress. It depends on the cellular context, whether cytochrome c released from mitochondria
induces caspase activation gradually or in an all-or-none fashion, and whether caspase activation irreversibly commits
cells to apoptosis. By analyzing a quantitative kinetic model, we show that inhibition of caspase-3 (Casp3) and Casp9
by inhibitors of apoptosis (IAPs) results in an implicit positive feedback, since cleaved Casp3 augments its own
activation by sequestering IAPs away from Casp9. We demonstrate that this positive feedback brings about bistability
(i.e., all-or-none behaviour), and that it cooperates with Casp3-mediated feedback cleavage of Casp9 to generate
irreversibility in caspase activation. Our calculations also unravel how cell-specific protein expression brings about the
observed qualitative differences in caspase activation (gradual versus all-or-none and reversible versus irreversible).
Finally, known regulators of the pathway are shown to efficiently shift the apoptotic threshold stimulus, suggesting
that the bistable caspase cascade computes multiple inputs into an all-or-none caspase output. As cellular inhibitory
proteins (e.g., IAPs) frequently inhibit consecutive intermediates in cellular signaling cascades (e.g., Casp3 and Casp9),
the feedback mechanism described in this paper is likely to be a widespread principle on how cells achieve
ultrasensitivity, bistability, and irreversibility.
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Introduction

Apoptosis, an evolutionary conserved form of cell suicide,

allows multicellular organisms to eliminate damaged or

excess cells in order to maintain tissue homeostasis. Dysre-

gulation of apoptosis is associated with various pathological

conditions, including cancer and neurodegenerative disor-

ders. Aspartate-specific cysteine proteases, also known as

caspases, are the central executioners of apoptosis. In most

cases, apoptotic stimuli activate initiator caspases, whose

substrates, the effector caspases, ultimatively cause cellular

demise by cleaving various cellular substrates [1].

Figure 1A schematically depicts the so-called extrinsic and

intrinsic apoptotic pathways that elicit apoptosis by cleaving

and thereby activating caspase-3 (Casp3), the major cellular

effector caspase. The extrinsic pathway is initiated by ligand-

binding to death receptors (e.g., CD95), which then oligo-

merize and recruit various proteins, including pro-Casp8,

into the so-called death-inducing signaling complex. For-

mation of the death-inducing signaling complex leads to

autoprocessing of pro-Casp8 into active (initiator) Casp8,

which then cleaves (effector) Casp3. Cytotoxic stress or death-

receptor–stimulated Casp8 engage the intrinsic, or mitochon-

drial, apoptosis pathway by inducing the translocation of

proapoptotic Bcl-2 family members such as Bax and Bid to

mitochondria. This event, which is negatively regulated by

antiapoptotic Bcl-2 family members (e.g., Bcl-2), results in the

release of proapoptotic proteins (cytochrome c [cyto c] and

Smac) from mitochondria into the cytosol. Cytosolic cyto c

then elicits the oligomerization of Apaf-1 into an active high-

molecular-weight complex, the apoptosome, which recruits

and stimulates (initiator) Casp9, and thereby allows activation

of effector caspases such as Casp3. Smac and inhibitors of

apoptosis (IAPs) such as X-linked IAP (XIAP) establish an

additional layer of regulation in the intrinsic pathway: XIAP

inhibits the catalytic activities of Casp9 and Casp3 through

reversible binding, and cytosolic Smac relieves this inhibition

by sequestering XIAP away from caspases [2].

Experimental studies revealed that the qualitative behav-

iour of caspase activation in the intrinsic pathway depends on

the cellular context. Cyto c added to cytosolic extracts

activates Casp3 in an all-or-none fashion in some cells [3–

7], while gradual activation was observed in other systems [8–

10]. As cyto-c release from mitochondria can be a reversible

event [11], which does not affect mitochondrial function [12–
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14], it has been suggested that downstream caspase activation
irreversibly commits cells to apoptosis [15,16]. Accordingly,
cyto c–induced Casp3 activation remained elevated even after
a strong decline in cytosolic cyto c [17] or after apo–cyto c, an
inhibitor of apoptosome formation, was added [18]. Further-
more, the time course of caspase activation via the intrinsic
pathway equals that for irreversible commitment to apoptosis
[15,16], and caspase-inhibition allows for long-term cellular
recovery and/or proliferation after removal of apoptotic
stimuli [15,16,19–22]. Finally, Fas-treated Jurkat T cells, which
enter apoptosis by the intrinsic pathway, escaped commit-
ment to death as judged by maintenance of clonogenic
potential if Casp3 was inhibited [23]. On the contrary, Casp3
activation was found to be a reversible event in glycocheno-
deoxycholate-treated hepatocytes [24].

These qualitative differences in caspase activation suggest
that the intrinsic pathway is bistable in some cells, but
monostable in others. While simple monostable systems
respond in a gradual and reversible manner, complex bistable
systems exhibit true all-or-none responses and in some cases
irreversibility. Bistability is thought to require a positive
circuit, which may be established either by positive feedback
or by double-negative feedback. Once a threshold stimulus is
exceeded, such positive circuits allow bistable systems to
switch from low activation levels (off state) to high activation
levels (on state) in an all-or-none fashion. Bistable systems
display hysteresis, meaning that different stimulus-response
curves are obtained depending upon whether the system
began in its off or its on state. In some cases, the on state is
maintained indefinitely after the stimulus is removed, so that
the system shows irreversible activation [25]. Experimental
studies confirmed that bistability indeed occurs in natural
and artificial biological networks [25–29].

Recent mathematical modeling demonstrated that bistability
can arise from ‘‘hidden,’’ or implicit, feedback loops that are
usually not explicitly drawn in biochemical reaction schemes
[30,31]. Similarily, we present a model showing that inhibition of
Casp3 and Casp9 by IAPs results in an implicit positive feedback
and in bistability. As cellular inhibitory proteins (e.g., IAPs)
frequently inhibit consecutive intermediates in cellular signaling
cascades (e.g., Casp3 and Casp9), the mechanism described in this
paper is likely to be a widespread principle on how cells achieve
ultrasensitivity, bistability, and irreversibility (Protocol S5).

Results

Model Derivation

Based on the published literature, we derived a core model

of the intrinsic apoptosis pathway, which includes general

Figure 1. Mathematical Model of the Intrinsic Apoptosis Pathway

(A) Schematic representation of intrinsic and extrinsic apoptosis pathways.
Dotted lines indicate positive (green) or negative (red) regulation, and the
solid lines refer to release of Smac and cyto c from mitochondria. The
regulatory interactions considered in the model are highlighted in gray. The
numbers 1–4 refer to additional feedbacks described in the Discussion.
(B) Kinetic scheme of the model. The reactions depicted in gray, which
are involved in Casp3-mediated feedback cleavage of Casp9, were
eliminated in the Casp9-mutant model in order to dissect the role of
XIAP-mediated feedback.
A*, activated Apaf-1; C3, Casp3; C9, Casp9.
DOI: 10.1371/journal.pcbi.0020120.g001
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Synopsis

Multicellular organisms eliminate damaged or excess cells by
programmed cell death, also known as apoptosis. By modelling the
signaling pathways involved in the initiation of apoptosis, the authors
provide insight into how cells prevent spontaneous apoptosis, but
yet efficiently enter cell death, once proapoptotic signals exceed a
threshold. The simulations also explain how cells accurately translate
a complex set of pro- and anti-apoptotic signals into a life-or-death
decision. Once apoptosis has been initiated, cellular demise must
irreversibly proceed even if the initial trigger is removed, as partial
cellular disintegration might lead to tissue inflammation or cellular
deregulation. The authors explain how such irreversible commitment
arises in the initiation pathways of apoptosis and provide exper-
imentally testable predictions. Finally, the simulations reveal an
unanticipated role for the inhibitor of apoptosis family of proteins, as
these proteins are predicted to be involved in the amplification of
death signals and not only in their suppression.

Bistability in Caspase Activation



regulatory mechanisms, while cell-type–specific events were
not taken into account. The gray-shaded area in Figure 1A
indicates the regulatory interactions considered in the model:
active Apaf-1, which was taken as the input in most
simulations, recruits and thereby stimulates (initiator) Casp9.
Casp9 then in turn activates the output species, (effector)
Casp3, by proteolytic processing. In addition, Casp3-medi-
ated cleavage of Casp9 results in positive feedback amplifi-
cation. Finally, both Casp3 and Casp9 are subject to
stoichiometric inhibition by IAPs. For simplicity, we consid-
ered only the most potent caspase inhibitor among the IAP
family of proteins, XIAP. The corresponding kinetic scheme
is depicted in Figure 1B.

Cyto c released from mitochondria is known to elicit
heptamerization of Apaf-1 into active apoptosomes. As
detailed kinetic measurements of apoptosome formation
are currently lacking, apoptotic stimulation was modeled by
altering the total concentration of activated Apaf-1 molecules
assembled in apoptosomes (A*tot ¼ A* þ A*C9 þ A*C9X þ

A*C9*þA*C9*X). Each active Apaf-1 monomer assembled in
apoptosomes was shown to reversibly bind to a single Casp9
molecule [32], and Casp9 is then autoproteolytically pro-
cessed at amino acid Asp-315 [33]. Importantly, Casp9
autoproteolysis does not affect either enzymatic activity of
Casp9 [34] or its recruitment to apoptosomes [35,36]. Because
of these data, we did not distinguish between autoproteolyti-
cally processed and unprocessed Casp9 in the model.

The enzymatic activity of Casp9 is thought to be deter-
mined mainly by apoptosome recruitment, as apoptosome-
bound Casp9 was shown to be much more active than free
Casp9 [37,38]. Therefore, we assumed in the model that
reversible association of Casp9 (C9) and Apaf-1 (A*) (reaction
1) yields a highly active Apaf1–Casp9 complex (A*C9), which
cleaves pro-Casp3 (C3) much more efficiently (reaction 3)
than free Casp9 (reaction 2; see Table 1). The latter reaction
was nevertheless taken into account, since free Casp9 was
shown to have significant basal activity towards pro-Casp3
[32].
Processing of pro-Casp3 into mature Casp3 by upstream

initiator caspases such as Casp9 was reported to occur by a
sequential two-step mechanism: Pro-Casp3, which has negli-
gible enzymatic activity [39], is initially processed by Casp9
into active p12-p20-Casp3, and this intermediate is subse-
quently autocatalytically cleaved into active p12-p17-Casp3
[40]. As shown in Figure 1B, we modeled Casp3 activation by a
single-step mechanism (C3 ! C3*). This seems justified, as
the p12-p20-Casp3 intermediate and mature p12-p17-Casp3
exhibit similar catalytic activities [41], and as they are both
subject to inhibition by XIAP (see below).
Casp3 is known to cleave its own activator, Casp9, at amino

acid Asp-330 in vitro [34,42], and in cytosolic extracts treated
with cyto c [5,33]. As Casp9 processing by Casp3 was shown to
significantly enhance Casp9 activity [34], feedback cleavage by
Casp3 results in autoamplification of the apoptotic signal.

Table 1. Kinetic Parameters

Number Reaction kþ k� k�/ kþ

1 C9 þ A* $ A*C9 2 3 10�3 nM�1s�1 0.1 s�1 50 nM [32]

2 C3 þ C9 ! C3* þ C9 5 3 10�6 nM�1s�1 [32] — —

3 C3 þ A*C9 ! C3* þ A*C9 3.5 3 10�4 nM�1s�1 (70 times number 2 [37]) — —

4 C9 þ C3* ! C9* þ C3* 2 3 10�4 nM�1s�1 [107] — —

5 A*C9 þ C3* ! A*C9* þ C3* 2 3 10�4 nM�1s�1 (same as number 4) — —

6 C3 þ C9* ! C3* þ C9* 5 3 10�5 nM�1s�1 (10 times number 2 [34]) — —

7 C3 þ A*C9* ! C3* þ A*C9* 3.5 3 10�3 nM�1s�1 (10 times number 3 [34]) [109] — —

8 C9* þ A* $ A*C9* 2 3 10�3 nM�1s�1 (same as number 1) 0.1 s�1 (same as number 1) 50 nM

9 C9 þ X $ C9X 10�3 nM�1s�1 10�3 s�1 1 nM [2,34]

10 A*C9 þ X $ A*C9X 10�3 nM�1s�1 (same as number 9) 10�3 s�1 (same as number 9) 1 nM

11 C9* þ X $ C9*X 10�3 nM�1s�1 (same as number 9) 10�3 s�1 (same as number 9) 1 nM

12 A*C9* þ X $ A*C9*X 10�3 nM�1s�1 (same as number 9) 10�3 s�1 (same as number 9) 1 nM

13 C9X þ A* $ A*C9X 2 3 10�3 nM�1s�1 (same as number 1) 0.1 s�1 (same as number 1) 50 nM

14 C9*X þ A* $ A*C9*X 2 3 10�3 nM�1s�1 (same as number 1) 0.1 s�1 (same as number 1) 50 nM

15 C3* þ X $ C3*X 3 3 10�3 nM�1s�1 [45] 10�3 s�1 [45] 0.3 nM [45,46,106,108]

16 A*$ 10�3 s�1 0.02 nM s�1 (adjusted) 20 nM [51]

17 C9$ 10�3 s�1 (same as number 16) 0.02 nM s�1 (adjusted) 20 nM [51]

18 X$ 10�3 s�1 (same as number 16) 0.04 nM s�1 (adjusted) 40 nM [35,50,52]

19 C9X ! 10�3 s�1 (same as number 16) — —

20 A*C9X ! 10�3 s�1 (same as number 16) — —

21 A*C9 ! 10�3 s�1 (same as number 16) — —

22 C3$ 10�3 s�1 (same as number 16) 0.2 nM s�1 (adjusted) 200 nM [52,53]

23 C3* ! 10�3 s�1 (same as number 16) — —

24 C3*X ! 10�3 s�1 (same as number 16) — —

25 C9*X ! 10�3 s�1 (same as number 16) — —

26 C9* ! 10�3 s�1 (same as number 16) — —

27 A*C9* ! 10�3 s�1 (same as number 16) — —

28 A*C9*X ! 10�3 s�1 (same as number 16) — —

The reactions numbered according to Figure 1B (Number) are listed, and the corresponding reactants and products are indicated (Reaction). The kþ column contains the rate constants of
the reactions from left to right, and the k� column contains those for the opposite direction. The ratio of kþ/k� equals the dissociation constant for reversible bimolecular reactions, while
it refers to the steady-state protein concentration for synthesis and degradation reactions (numbers 16–18 and number 22). Similar reactions were assumed to proceed with same kinetics
as indicated below the parameter values.
—, no values.
DOI: 10.1371/journal.pcbi.0020120.t001
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The physiological relevance of this positive feedback loop was
confirmed in several studies, which showed that inhibition of
Casp3-mediated cleavage of Casp9 prevented full activation
of both Casp3 and Casp9 in response to cyto c [34,43,44].

Casp3-mediated feedback processing of Casp9 was mod-
eled by assuming that active Casp3 (C3*) cleaves both free
and Apaf1-associated Casp9 (reactions 4 and 5), thereby
generating the Asp330-cleaved Casp9 species, C9* and
A*C9*. These feedback-cleaved Casp9 species in turn cleave
pro-Casp3 more efficiently (reactions 6 and 7; see Table 1)
when compared with their precursors, C9 and A*C9*, thus
establishing a feedback amplification loop. Feedback-pro-
cessed Casp9 (cleaved at Asp330) was shown to be associated
with apoptosomes [34,36], much like its precursors that are
not cleaved at Asp330 (see above). Therefore, we assumed in
the model that the kinetics of Casp9-binding to Apaf-1
(reactions 1 and 8) are unaffected by Casp3-mediated
feedback cleavage (see Table 1).

IAPs such as XIAP act as stoichiometric inhibitors of Casp3
and Casp9 [2], and accordingly caspase inhibition can be
described by simple reversible binding [45,46]. Experimental
evidence suggests that XIAP can bind to and inhibit Casp9,
even if the latter is associated with apoptosomes [34].
Accordingly, we assumed in the model that active Apaf-1
(A*) and XIAP (X) bind to Casp9 in a noncompetitive manner
so that Apaf1-bound Casp9 intermediates (A*C9 and A*C9*)
recruit XIAP with the same kinetics as free Casp9 (C9 and
C9*). In addition, we modeled XIAP binding to Casp9 such
that it is not affected by either Casp9 autocleavage (at Asp-
315) or Casp3-mediated feedback cleavage (at Asp-330). As
contradictory experimental results were obtained on how
Casp9 cleavage modulates inhibition by XIAP, the impact of
the latter assumption will be stressed in the Discussion.

Because of the assumptions made in the previous para-
graph, there is reversible recruitment of XIAP to all Casp9
species in the model (reactions 9–12), and also free exchange
of Apaf1 between the resulting Casp9–XIAP complexes
(reactions 13–14). All Casp9–XIAP complexes were assumed
to be catalytically inactive, which is in accordance with
experimental studies [47,48]. Furthermore, Casp3-mediated
feedback processing of XIAP-bound Casp9 was neglected in
the model, as the Casp9–XIAP binding interface is nearby the
corresponding cleavage site (Asp-330) [48].

It is well established that XIAP binds both to partially
processed Casp3 (p12-p20) and to mature Casp3 (p12-p17),
but not to its inactive precursor pro-Casp3 [46,49]. In
accordance with experimental data [45,46], reversible associ-
ation between Casp3 and XIAP (reaction 15) was modeled to
result in a catalytically inactive complex (C3*X). Due to the
enzymatic inactivity of pro-Casp3 (C3) [39] and of the Casp3–
XIAP complex (C3*X), free active Casp3 (C3*) was taken as
the response in our simulations.

Finally, we included protein synthesis and degradation in
the model (reactions 16–28). More specifically, the unmodi-
fied proteins A*, C9, X, and C3 are produced with a constant
rate, and all molecular species in Figure 1B are subject to
first-order degradation. While the total cellular concentra-
tions of Apaf-1, Casp9, Casp3, and XIAP (i.e., the ratio of
protein synthesis and degradation rates) were measured
[35,50–53], the kinetics of synthesis and degradation were
not known. For simplicity, we assumed the same degradation
rate for all molecular species in the model, and adjusted the

synthesis rates in order to obtain previously measured
protein concentrations (Table 1). This implies that the total
concentrations of Apaf-1, Casp9, Casp3, and XIAP remained
constant throughout our simulations.
From the model described above (Figure 1B), which will be

referred to as the ‘‘wild-type model’’ in the following,
molecular balances could be derived for each considered
molecular species resulting in a system of 13 ordinary
differential equations (Protocol S1). In general, protein–
protein association (reactions 1, 4–6, 7, and 10–13 in Figure
1B) was modeled as a reversible second-order process, and
caspase-mediated cleavage (reactions 2, 3, 8, 9, 14, and 15 in
Figure 1B) was modeled as an irreversible second-order
process. As many similar reactions (e.g., 1 and 13 in Figure 1B)
were assumed to proceed with the same kinetics (see Table 1),
the model comprises 16 kinetic parameters. The unknown
kinetic parameters were set to reasonable values (Table 1) in
order to reproduce the previously reported time courses of
caspase activation (see ‘‘Time Course of Casp3 Activation’’).
Besides the wild-type model, we also analyzed two modified

models in order to get insights into the mechanisms that are
responsible for bistability in caspase activation. 1) In the
‘‘Casp9-mutant model,’’ which comprises only the black
reactions in Figure 1B, we eliminated Casp3-mediated feed-
back cleavage of Casp9 (reactions 8 and 9 in Figure 1B) from
the wild-type model. 2) Based on available experimental data
(see Discussion), we assumed competitive (i.e., mutually
exclusive) binding of Casp3 and Casp9 to XIAP in the wild-
type model. By contrast, Casp3 and Casp9 were allowed to
bind XIAP simultaneously in the ‘‘noncompetitive model’’;
that is, the wild-type model was extended by four ternary
Casp9-XIAP-Casp3 complexes (Protocol S1).

Time Course of Casp3 Activation
Experiments in cytosolic extracts revealed that exoge-

nously added cyto c induces maximal Casp3 cleavage within
;15 min in some cells [36], while completion takes longer (up
to;60 min) in other systems [5,6,33,54]. More specifically, the
Casp3 cleavage seems to be fast upon strong stimulation, but
slower if stimulation is weak [6,53,55].
We were interested whether the model was able reproduce

these observations if previously measured protein concen-
trations of Apaf-1 (20 nM), Casp9 (20 nM), Casp3 (200 nM),
and XIAP (40 nM) were assumed [35,50–53]. Exogenous
addition of cyto c was simulated by a step-like increase in
the total amount of active Apaf-1 monomers, A*tot, as cyto c–
induced apoptosome formation was reported to be a very
rapid process [36,38]. Such a step-input is also expected to
reflect input characteristics within living cells reasonably well,
since cyto c release from mitochondria was shown to
complete within 5 min [56,57].
The results shown in Figure 2A reveal that the simulated

time courses of caspase activation agree well with those
measured experimentally, and that simulated response time is
indeed inversely related to the stimulus strength (Figure 2A).
Full activation of all cellular Apaf-1 molecules (A*tot¼ 20 nM)
elicits fast Casp3 activation, while a critical slowing down is
observed near the threshold (A*tot ; 3 nM; see Figure 2B), as
expected for a bistable system [28,50]. Notably, the slope of
the time courses shown in Figure 2A is only marginally
affected by the onset time of caspase activation (i.e., by the
stimulus level). This is in accordance with experimental
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results obtained in cyto c–treated cytosolic extracts [5,36,54]
and in single living cells [58], which showed that, once
initiated, Casp3 activation is rapidly completed within less
than 15 min.

Bistability in Caspase Activation
Experimental evidence suggests that cyto c–induced cas-

pase activation can be bistable and irreversible (see Intro-
duction). The simulated steady-state Casp3 activity (C3*) was

indeed bistable and irreversible (Figure 2B, black line). The
system exhibits three steady states, two stable (solid black
lines) and one unstable (dashed black line), for A*tot between
0 and ;3 nM, and shows hysteretic behaviour: starting from
the resting state (point 1), the system retains low Casp3
activity even for increasing stimuli, A*tot, until a threshold
(point 2) is reached, whereby Casp3 activity switches to the
higher steady state (point 3) in an all-or-none fashion. The
system remains at this higher steady state even if the stimulus
is removed (point 4), so that caspase activation is irreversible,
and thus represents the point of no return for apoptosis.
We next addressed the mechanism of bistability, and

hypothesized that Casp3-mediated feedback cleavage of
Casp9 was responsible, since bistability is thought to require
a positive circuit [25]. Therefore, reactions 8 and 9 in Figure
1B were blocked to simulate a mutant Casp9 (D330A), which
is refractory to cleavage by Casp3 (‘‘Casp9-mutant model’’).
Unexpectedly, bistability was retained (Figure 2B, gray line),
which suggests that a hidden positive feedback loop operates
in the Casp9-mutant model.

XIAP Establishes an Implicit Positive Feedback in Caspase
Activation
More detailed simulations revealed that XIAP establishes

an implicit positive feedback in the Casp9-mutant model, and
Figure 3 schematically depicts how this mechanism contrib-
utes to irreversibility in the wild-type model: Upon weak
stimulation (point 1 in Figure 2B) the vast majority of Apaf1-
associated, highly active Casp9 molecules is inhibited by
excess XIAP, so that cleavage of pro-Casp3 is negligible (top
left in Figure 3). As the stimulus strength is increased above
the threshold (point 2 in Figure 2B), active Apaf-1 also
recruits some free Casp9 that is not subject to inhibition by
XIAP, so that Casp3 activation is initiated (top right in Figure
3). Active Casp3 then further promotes its own activation by
sequestering XIAP away from Apaf-1-associated Casp9
(‘‘redistribution’’), so that finally the vast majority of XIAP
is bound to Casp3 (bottom right in Figure 3). This XIAP
redistribution results a positive feedback loop, which,
together with Casp3-mediated Casp9 feedback cleavage,
suddenly switches the system from low to high Casp3 activity
(transition from point 2 to point 3 in Figure 2B). Caspase
activity is maintained even if the stimulus is removed, as
Casp3, once activated, retains XIAP, and thereby prevents full
Casp9 deactivation (bottom left in Figure 3). Additional
simulations, which corroborate our conclusions regarding
XIAP-mediated feedback can be found in Protocol S2.
In order to determine how the protein concentrations in

the caspase cascade affect bistability, we analyzed the
stimulus–response curves (similar to those in Figure 2) for
varying total Casp3 and Casp9 concentrations. Five types of
qualitative behaviour in caspase activation could be distin-
guished in the physiological range of stimulus concentrations
(A*tot ¼ 0–200 nM): 1) the system is essentially devoid of any
Casp3 activation (monostable–no activation [MN], Figure 4A);
2) Casp3 activation occurs in a gradual manner (monostable–
gradual activation [MG], Figure 4B); 3) the caspase cascade is
bistable-reversible (BR, Figure 4C); 4) Casp3 activation is
bistable-irreversible (BI, Figure 4D); and 5) constitutive Casp3
activity is observed (monostable–basal activation [MB], Figure
4E). The corresponding bifurcation diagram (Figure 4F)
reveals that bistability in the Casp9 mutant model can only

Figure 2. Dynamic and Steady-State Behaviour of the Caspase Cascade

(A) Time course of Casp3 activation (wild-type model) upon a step-like
increase in the amount of active Apaf-1 (A*tot) at t¼ 0 from zero to the
concentration indicated.
(B) Steady-state stimulus-response curves of the wild-type model (black
line) and of the Casp9-mutant model (gray line), where Casp3-mediated
feedback cleavage of Casp9 does not occur. Stable and unstable steady
states are indicated by solid and dashed lines, respectively.
DOI: 10.1371/journal.pcbi.0020120.g002
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be observed if the total Casp9 concentration is lower than

that of XIAP (40 nM), which ensures that the system is in the

off-state as long as Casp3 is inactive. In addition, Casp3 must

be significantly more abundant than XIAP to sequester it

away from Casp9 (i.e., to establish positive feedback).

Determinants for Bistability and Irreversibility
We next sought to determine the relative contribution of

XIAP-mediated feedback and that of Casp3-mediated feed-

back cleavage (of Casp9) to bistability and irreversibility in

caspase activation. To this end, we compared the bifurcation

plot of the wild-type model (Figure 4G) with those of mutant

models, where we selectively blocked either XIAP-mediated

feedback (Figure 4H; ‘‘noncompetitive model’’) or Casp3-

mediated feedback cleavage (Figure 4F, ‘‘Casp9-mutant

model’’). XIAP-mediated feedback is abolished in the non-

competitive model (Protocol S1), since XIAP was assumed to

be capable of simultaneous binding to Casp3 and Casp9 in

these simulations. As schematically depicted above Figure 4H,

this corresponds to a caspase cascade, which is controlled by

the XIAP fragments BIR1-BIR2 (specific for Casp3) and BIR3-

RING (specific for Casp9) rather than by full-length XIAP.
Figure 4F and 4H demonstrate that each feedback mechanism
alone can bring about bistability for experimentally meas-
ured caspase expression levels (interception of dashed lines in
Figure 4F–4H). By contrast, irreversibility is restricted to a
narrow range of caspase concentrations in both mutant
models, and is never observed in the vicinity of experimen-
tally measured caspase expression levels. Importantly, the
wild-type model exhibits robust irreversibility in the physio-
logical range of caspase expression levels, which suggests that
irreversibility in caspase activation requires coordinated
action of both XIAP- and cleavage-mediated feedbacks.
The computational results shown in Figure 4G also explain

why various cell types show qualitatively different patterns of
caspase activation and unravel the underlying mechanisms:
Casp3 activation is efficiently inhibited in cells, where the
total XIAP concentration exceeds those of Casp3 and Casp9
(MN; Figure 4A). Gradual Casp3 activation is predicted to
occur in cells, where Casp9 expression is high compared with
XIAP and Casp3 expression (MG, Figure 4B). In this situation
XIAP is effectively sequestered by excess Casp9, and the
remaining free Casp9 molecules efficiently cleave Casp3 as if
XIAP was not present. In case that both caspases are
expressed at intermediate levels, the feedback loops discussed
above cooperate to reversibly switch on the system in an all-
or-none fashion (BR, Figure 4D). Even higher caspase
expression levels relieve the cascade from XIAP-mediated
inhibition so that Casp3 can be highly active even in the
absence of stimulation. Such constitutive activation either
arises spontaneously (MB, Figure 4C) or requires previous
suprathreshold Casp3 activation (BI, Figure 4E).
The preceding conclusions could be confirmed by analyz-

ing the qualitative behaviour of caspase activation as a
function of the competition ratio a, and of XIAP expression
(Figure 5). The competition ratio a equals the fold-change in
XIAP’s affinity for Casp9 brought about by Casp3 binding to
XIAP (and vice versa), and thereby quantifies the degree of
competitive caspase binding to XIAP (Protocol S1). Figure 5
demonstrates that the range of bistability is significantly
broadened even if the Casp3-binding to XIAP reduces XIAP’s
affinity for Casp9 (and vice versa) less than 5-fold (a . 0.2). By
contrast, reliable irreversibility requires significant competi-
tion of caspases for XIAP, at least with the default protein
concentrations (Table 1) we assumed here. As shown in Figure
5, high XIAP levels completely abolish caspase activation
(MN), bistability is observed for intermediate XIAP concen-
trations (BR, BI), and low XIAP levels fail to prevent caspase
activation even in the absence of external stimulation (MB).
Our conclusions regarding the qualitative behaviour of

caspase activation are supported by experimental data. 1)
Overexpression of XIAP abolishes apoptosis and Casp3
activation in response to microinjection of cyto c (type MN)
[59]. 2) overexpression of Casp3 [60,61] or Casp9 [33,62,63]
results in caspase activation and/or apoptosis (type MB). In
contrast, Casp3 overexpression failed to elicit its own
activation in another study [64], and the model suggests that
this may be due to low Casp9 expression (see Figure 4G). 3)
High levels of IAP antagonists such as Smac were shown to
activate the Casp9 ! Casp3 pathway [65,66] and to elicit
spontaneous apoptosis [67], even in cell types that are devoid
of basal cyto c release or Casp8 activation (type MB). The
inability of others to reproduce Casp3 activation by XIAP

Figure 3. Schematic Representation of XIAP-Mediated Feedback

At resting state (top left) Casp9 is efficiently inhibited by XIAP, so that
Casp3 is inactive. Upon stronger stimulation (top right) some Casp9
escapes XIAP-mediated inhibition and activates Casp3, which then
sequesters XIAP away from Casp9 (redistribution). This XIAP redistrib-
ution finally results in strong activation of both Casp9 and Casp3
(bottom right), and retains the system in an active state even if the
stimulus is reduced (bottom left). The numbers on the top of each
scheme correspond to those indicated next to the stimulus-response in
Figure 2B (black line).
DOI: 10.1371/journal.pcbi.0020120.g003
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depletion or Smac addition [68] is probably due to the fact
that the threshold BI ! MB (Figure 5) was not exceeded in
these studies (e.g., due to the expression of Smac-resistant
IAP proteins such as NAIP [69]). 4) Gradual Casp3 activation
(type MG) was observed in cyto c–treated cytosolic extracts
[8–10], and also in flow cytometric analyses of living cells
[70,71]. 5) The existence of bistable states (types BI and BR) is
supported by all-or-none Casp3 activation in response to cyto
c, and by the fact that Casp3 activation can irreversibly
commit cells to death (see Introduction), although definitive
proof for these types of behaviour is lacking (see Discussion).

The Mitochondrial Pathway Acts as an Efficient Binary
Integrator

In the previous section, we demonstrated that excess of
XIAP over Casp3 and Casp9 abolishes cyto c–induced caspase
activation even if high concentrations (200 nM) of the
stimulus, active Apaf-1, were assumed (type MN). However,
various experimental studies in cells, where Casp3 activation
was inhibited downstream of cyto c release, have shown that
caspase activation can be rescued by relatively moderate
Apaf-1 overexpression (see [72] and references therein). This
suggests that Casp3 activation does not occur if the
concentration of the bottleneck, active Apaf-1, is below the
threshold stimulus concentration, where the bistable system
switches from the lower to the upper steady state (point 2 in
Figure 2B). In support for such a threshold model, it was

recently shown that a minor (;2-fold) decrease in Apaf-1
expression dramatically decreases caspase activation in
response to cyto c microinjection [72]. These studies also
suggest that the apoptotic threshold can be regulated down-
stream of Apaf-1, as Smac, an inhibitor of XIAP action,
rescued cyto c–induced caspase activation in Apaf1-knock-
down cells [72]. Therefore, we were interested how the
threshold of the bistable cascade is affected by transcriptional
and post-transcriptional regulation of Casp3, Casp9, and/or
XIAP.
The corresponding results are shown in Figure 6: starting

from the default model (point of intersection), the predicted
threshold stimuli, A*tot,T, of the bistable system were plotted
as a function of Casp3 (gray dotted line), Casp9 (gray solid
line), and XIAP (black solid line) expressions. In addition, we
also considered simultaneous alterations of Casp3 and Casp9
to the same relative extent (black solid line) in order to
understand how the apoptotic threshold is affected by nitric
oxide, a covalent inhibitor of Casp3 and Casp9 active sites [1].
These simulations demonstrate that decreasing levels of
Casp3 moderately increase the threshold, A*tot,T, while
alterations in Casp9 shift the threshold more efficiently.
Regulation of XIAP levels is predicted to allow even more
effective control over the apoptotic threshold, and similar
arguments also hold for nitric oxide–mediated inhibition of
both Casp3 and Casp9 [1].
Our results regarding XIAP as an efficient modulator of an

Figure 4. Determinants for Bistability and Irreversibility I

The dose-response curves of the Casp9-mutant model (F), those of the wild-type model (G), and those obtained for noncompetitive caspase binding to
XIAP (H) were analyzed for varying Casp3 and Casp9 expression levels. Five types of qualitative behaviour, which are schematically depicted in (A–E),
could be distinguished in the physiological range of Apaf-1 expression levels (0–200 nM). The light and dark gray areas in (F–H) correspond to the
bistable regions of the model (BR, BI), and the abbreviations MN, MG, and MB indicate the qualitative behaviour outside the bistable region.
Experimentally measured caspase concentrations (see Table 1) are highlighted by dashed lines in (F–H).
DOI: 10.1371/journal.pcbi.0020120.g004
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all-or-none threshold are in accordance with experimental
studies, as a 2-fold drop in XIAP expression was sufficient to
allow cyto c–induced Casp3 activation [73,74]. Moreover,
increasing amounts of Smac, a high-affinity inhibitor of XIAP
(Figure 1B), elicited all-or-none Casp3 activation in cyto c–
treated HeLa cell cytosols [68]. Finally, the threshold cyto c
concentration that is required to achieve switch-like Casp3
activation was shown to be cell-type dependent, and low
thresholds correlated with low IAP expression levels [7]. Our
simulations are also corroborated by the fact that PKB/Akt-
mediated inhibitory phosphorylation of Casp9 completely
abolished cyto c–induced Casp3 activation, even though
Casp9 enzymatic activity was only partially suppressed [63].
In addition, Casp3 overexpression sensitizes cells to apoptosis
in response to cytotoxic stress [64], which is also in
accordance with the simulations shown in Figure 6.

Thus, we can conclude that bistable behaviour in the
mitochondrial caspase cascade serves to compute multiple
regulatory inputs into a binary decision whether caspase
activation occurs or not (‘‘binary integrator’’). Further
calculations, where relative changes in protein expression
were related to relative changes in the threshold stimulus,
A*tot, suggest that the following order of input potency holds
in general: Regulation of active Apaf-1 , Casp3 regulation ,

Casp9 regulation , XIAP regulation ’ simultaneous regu-
lation of Casp3 and Casp9. The simulations also predict that
the apoptotic threshold is essentially constant if all compo-
nents (i.e., Casp3, Casp9 and XIAP) are simultaneously

changed to the same relative extent (Figure 6; black dash-
dotted line). Hence, the life-or-death decision appears to be
remarkably insensitive towards random fluctuations in gene
expression, which are thought to result in correlated changes
in cellular protein levels [75]. In addition, these simulations
suggest that general inhibitors of protein synthesis or
degradation, which are known to be inducers of apoptosis
[56,64], do not affect the threshold of the Casp9 ! Casp3
cascade.

Discussion

In the present paper we showed that inhibition of Casp3
and Casp9 by IAPs results in an implicit positive feedback,
since cleaved Casp3 augments its own activation by seques-
tering IAPs away from Casp9 (Figure 3). In addition, we
demonstrated that XIAP-mediated feedback cooperates with
Casp9 cleavage by Casp3 to bring about bistable and
irreversible Casp3 activation in the range of experimentally
measured kinetic parameters and protein concentrations
(Figures 2, 4, and 5).

Model Assumptions
XIAP-mediated feedback can only be observed if Casp3 and

Casp9 compete for binding to XIAP at least to some extent
(Figures 3 and 5). Such competition is supported by the fact
that Casp3 and Casp9 cannot be co-immunoprecipitated in
cells [35]. Casp3 (and not only Casp9) is recruited to the
apoptosome at least in some cells [35], and it is conceivable
that this occurs by means of a sequential Apaf1-Casp9-XIAP-
Casp3 complex. Even if such a complex exists, it seems to be
rather instable, as Casp3 can be eluted from the apoptosome
(i.e., from Apaf-1) by low ionic strength [39], while much
higher ionic strength is required to elute Casp9 [32]. Recent
co-immunoprecipitation experiments revealed the existence
of a ternary Casp9-XIAP-Casp3 complex in vitro [76].
However, only minor amounts of Casp3 were found in the
complex even if XIAP was incubated with excess Casp3 and
Casp9. Taken together, these data suggest that Casp3 and
Casp9 significantly compete for binding to XIAP.
Co-immunoprecipitation studies with Casp3, Casp9, and

XIAP might underestimate the degree of competition of
caspases for a single XIAP molecule (i.e., XIAP-mediated
feedback), as IAP family members are often homodimers. In
case that each XIAP molecule in a dimer independently
couples to caspases, a ternary Casp9–XIAP–Casp3 complex
will be seen, even if Casp3 and Casp9 compete for a single

XIAP molecule. Therefore, we propose to directly test for
XIAP-mediated feedback in vitro. As further outlined in
Protocol S3, a Casp9 mutant (D330A), which is refractory to
Casp3-mediated feedback cleavage, should be incubated with
active apoptosomes and XIAP either in the presence or in the
absence of pro-Casp3. Coincubation with XIAP alone is
expected to result in low Casp9 activity [34], but excess pro-
Casp3 should reverse this inhibition by sequestering XIAP
away from Casp9.
We have also assumed in the model that XIAP inhibits all

forms of Casp9 (i.e., that the affinity between Casp9 and XIAP
is not affected by either Casp9 autocleavage [at Asp-315] or
Casp3-mediated feedback cleavage of Casp9 [at Asp-330]).
While it is clear that autoprocessed Casp9 (cleaved at Asp-315
only) is efficiently inhibited by XIAP [34,47,49,51,77], some

Figure 5. Determinants for Bistability and Irreversibility II

The qualitative behaviour of caspase activation according to Figure 4A–
4E is shown as a function of the XIAP level, and of the competition ratio
a. The competition ratio a (Protocol S1) equals the fold-change in XIAP’s
affinity for Casp9 brought about by Casp3 binding to XIAP (and vice
versa), and thereby quantifies the degree of competitive caspase binding
to XIAP as indicated on the top.
DOI: 10.1371/journal.pcbi.0020120.g005
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authors reported that XIAP also binds to and inhibits

uncleaved pro-Casp9 [34,47,78], at least partially [77,79], but

others could not reproduce these results [49,51]. As explained

in the context of Figure 3, bistability requires that XIAP binds

to and inhibits Apaf1-activated Casp9 upon weak stimulation,

so that low Casp3 activity can be maintained. Importantly,

such XIAP-mediated control over Casp9 activity will be

ensured even if XIAP does not associate with uncleaved pro-

Casp9, since pro-Casp9 recruitment to the apoptosome was

shown to result in its fast and complete autoprocessing (at

Asp-315) [38,39]. Casp3-mediated feedback cleavage (at Asp-

330) was reported to relieve Casp9 from inhibition by XIAP

[51], and might thereby establish an additional positive

feedback, which would further broaden the ranges of

bistability and irreversibility. As other experimental studies

do not support the existence of this additional feedback

[34,49], we have made the conservative assumption that XIAP

inhibits feedback-cleaved Casp9, too.

In our core model of the intrinsic pathway we considered

only Casp3 and XIAP, but not functionally redundant

molecules. For example, Casp7, which is activated by Casp9

[5], also mediates XIAP-mediated feedback, since it efficiently

binds to IAPs [46]. Likewise, molecules such as c-IAP1, c-IAP2,

and NAIP are functionally redundant to XIAP, as they inhibit

both Casp3 and Casp9 [2,69]. In case such functionally

redundant proteins are expressed, the protein concentra-

tions varied in our simulations (e.g., C3tot in Figure 3F–3H)

represent combinations (e.g., sums) of functionally redundant

protein concentrations (e.g., C3tot and C7tot), so that the
results given in the paper continue to hold.

Input Signals
We used the concentration of active Apaf-1 assembled into

apoptosomes as the varying input signal in our simulations,
rather than the amount of cyto c released from mitochondria.
This seems justified, as available experimental evidence
suggests that apoptosome formation increases gradually with
increasing cyto c concentration [10,37], and that signal
amplification occurs in the caspase cascade considered in this
paper [10]. Ourmodel explains how cells reject erroneous cyto
c release from single mitochondria, and also predicts that
reversible cyto c release can elicit irreversible caspase
activation. It should be noted that cyto c release upon
apoptotic stimulation was reported to be all or none under
many [56,57] but not all [80,81] circumstances. Importantly,
dose-response curves using active Apaf-1 as the input (e.g.,
Figure 2B) are physiologically relevant even if cyto c release is
all or none, as they help to explain why caspase activation is
completely abolished for limiting Apaf-1 expression (see [72]
and references therein). More generally, the model provides
insights into how the intrinsic pathway integrates multiple
regulatory inputs including including cyto c release, cyto c
sequestration [39], transcriptional regulation of Apaf-1 [72],
Apaf-1 sequestration [39], transcriptional regulation of IAPs
[2], Smac-mediated IAP sequestration [2], Casp9 phosphor-
ylation [63], and caspase S-nitrosylation [1]. As shown in
Figure 6, the caspase cascade acts as a binary integrator in the
range of bistability (BI and BR in Figures 4 and 5). In contrast,
gradual integration will be seen if the system resides in the
monostable–gradual activation range, and this is particularly
relevant for apoptotic stimuli that directly regulate caspase
cascade members (e.g., Apaf-1) in addition to releasing cyto c
(‘‘feedforward regulation’’). For example, p53 is known to
induce Apaf-1 expression [82], and thereby can elicit gradual
Casp3 activation even if cyto c release is all or none.
Alternatively, gradual Casp3 activation, which was seen in
flow cytometric analyses of living cells [70,71], may be due to
cell-to-cell variability in the intrinsic pathway. Such cellular
heterogeneity seems to be significant, as cyto c injection alone
or in combination with Smac does not elicit Casp3 activation
[83] or cell death [59,84] in all cells of a population. Our model
provides a reasonable basis for further studies that focus on
cell-to-cell variability in the intrinsic pathway.
In the Results section, we referred to experimental studies

where Smac, a competitive, high-affinity inhibitor of IAP
binding to caspases [85], was either added to cytosolic extracts
or microinjected into living cells. In living cells, Smac is
eventually released simultaneously with cyto c frommitochon-
dria [2] (see Figure 1A). Importantly, such physiological release
of Smac simply corresponds to decreasing XIAP levels in our
model, asmost experimentswith caspase inhibitors have shown
that Smac release does not require caspase-mediated feedback
[57,86–88]. Thus, the results shown in Figure 6 explain why
simultaneous release of cyto c and Smac is required to elicit
Casp3 activation in many cell types (e.g., [83]), and predict that
these two stimuli are integrated in an all-or-none manner.

Upstream, Downstream, and Feedback Signaling
In accordance with previous experimental studies (see

Introduction), we showed that, depending on the protein

Figure 6. Binary Integration of Multiple Inputs

The threshold stimulus, A*tot,T, where the bistable system switches from
the lower to the higher steady state (point 2 in Figure 2B), is plotted as a
function of Casp3 (gray dotted line), Casp9 (gray solid line), or XIAP
(black dashed line) expression. In addition, the impact of simultaneous
alterations of Casp3 and Casp9 (black solid line) or of Casp3, Casp9, and
XIAP (black dash-dotted line) to the same relative extent is shown. The
intersection of the graphs corresponds to the default protein concen-
trations (see Table 1). The terms ‘‘linear,’’ ‘‘quadratic,’’ and ‘‘quartic’’
indicate the relationship between protein expression and the apoptotic
threshold, A*tot,T.
DOI: 10.1371/journal.pcbi.0020120.g006
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expression levels in the intrinsic pathway, caspase activation
irreversibly commits cells to apoptosis (BI regions in Figures 4
and 5). However, some cells die by a delayed and morpholog-
ically distinct form of cell death, so-called caspase-independ-
ent cell death, even if caspases are inhibited [89]. Because
caspase-independent cell death is thought to be initiated at
the level of mitochondria, our simulations do not unravel the
determinants for commitment to death in these cells, but only
those for commitment to the fastest death pathway (i.e.,
apoptosis). As the precise kinetics of cell death may, for
example, be important in development [89], our results are
likely to be relevant even in cells subject to caspase-
independent cell death. The physiological importance of the
caspase cascade considered in our model is further supported
by the fact that Apaf-1, Casp9, and Casp3 knockout mice show
morphological defects and die early in development [89]. In
addition, caspase inhibition (e.g., due to IAP overexpression)
allowed for long-term cellular survival and mitochondrial
recovery in response to cytotoxic stress [19–23] and/or after
cyto c was released [11,13,15].

Other positive feedbacks than those included in the model
have been described in the literature. For example, Casp3 was
shown to induce processing of Casp6, which in turn cleaves
Casp8, an activator of Casp3 [5] (feedback 1 in Figure 1A). In
our opinion, this feedback is unlikely to account for bistable
Casp3 activation via the intrinsic pathway, since Casp3
activation in response to cyto c is unaffected when the
delayed Casp6 ! Casp8 pathway is abrogated [5]. This
conclusion is likely to hold in general, as Casp8 cleavage
alone is not sufficient to stimulate its catalytic activity, but
recruitment to the death-inducing signaling complex (i.e.,
ligand-binding to death receptors) is required [62].

It has been suggested that active Casp3 amplifies cyto c
release from mitochondria by directly cleaving upstream
regulators such as Bid and Bcl-2 (feedbacks 2 and 3 in Figure
1A), or by cleaving modulators of these Bcl2-family members
such as Mekk1 [1]. However, the relevance of this feedback for
the intrinsic pathway remains unclear, as experiments with
caspase inhibitors revealed that cyto c release is caspase-
independent in most cell types (e.g., [4,11,49,56,57,77]).
Furthermore, the concept of Casp3-induced cyto c release
is inconsistent with the fact that Casp3 activation fails in
various cell types even though large amounts of cyto c were
released from mitochondria (see [72] and references therein).

XIAP was shown to be cleaved by Casp3 and/or Casp8 in
response to apoptotic stimulation, and such XIAP processing
may result in autoamplification of Casp3 activity (feedback 4
in Figure 1A) [90,91]. In line with a predominant role of
Casp8, cleavage of XIAP seems to be especially pronounced
when cells are subjected to death-receptor stimulation
[90,91]. By contrast, moderate [91], minor [35,36], or even
no XIAP processing [92,93] was seen in response to apoptotic
stimuli that initiate apoptosis via the intrinsic pathway. In
addition, Casp3 may also establish a positive feedback loop by
cleaving inhibitors of XIAP auto-ubiquinitation and protea-
somal degradation such as PKB/Akt (feedback 4 in Figure 1A)
[94,95]. Accordingly, the total XIAP abundance was shown to
decrease during apoptosis (e.g., [95]), but this seems to be a
cell-type–specific phenomenon, as the total amount of full-
length XIAP remains essentially unchanged [91–93] or even
increases [96] in other models of apoptosis.

Because of these data and due to the fact that most

molecular species of the caspase cascade were shown to be
continuously synthesized during apoptosis [96,97], we as-
sumed constant total protein concentrations in our model. In
order to get insight into how Casp3-mediated XIAP degra-
dation affects the behaviour of our model, we also imple-
mented an extended model, which takes such regulation into
account (Protocol S4). Importantly, Casp3-mediated feedback
cleavage of XIAP did not result in physiologically relevant
bistability in a system devoid of other feedback amplification
loops (Protocol S4). In addition, the qualitative conclusions
drawn from Figures 2, 4, and 5 were still valid when XIAP-
mediated feedback was included in the wild-type model
(Figure 1B). However, these calculations also indicated that
Casp3-mediated XIAP degradation may cooperate with the
feedback loops discussed above, as it lowered the apoptotic
threshold, A*tot,T, and significantly broadened the range of
XIAP concentrations, where caspase activation is irreversible
(BI in Figure 5).
Active Casp3 cleaves a variety of cellular substrates, and

thereby initiates the execution phase of apoptosis [1].
Experimental evidence suggests that Casp3 activates multiple
execution pathways in parallel and not in a sequential,
cascade-like manner, since mutational inactivation of Casp3
cleavage sites abrogates specific features of apoptosis depend-
ing on the target mutated [1]. Some Casp3 substrates (e.g.,
PARP) are cleaved almost simultaneously with Casp3, while
the processing of others (e.g., Topo I) is delayed by several
hours [98,99]. Taken together, these data suggest that
transient activation of the branchpoint molecule, Casp3,
elicits a partial apoptotic program, which might lead to
potentially harmful cellular deregulation or tissue inflamma-
tion. Active Casp3 is known to be a rather unstable protein
[100], which suggests that irreversible behaviour of the
caspase cascade is required to maintain Casp3 activation if
upstream stimuli are removed. Experimental evidence indeed
suggests that such transient stimulation occurs in living cells.
1) Cyto c release from mitochondria is thought to be a

reversible as long as mitochondrial membrane potential is
maintained. Because the mitochondrial membrane potential
can remain unchanged long after caspases have been
activated [3,4], cytosolic cyto c (i.e., the stimulus) will decline
as soon as the apoptotic trigger is removed.
2) Experiments with antibodies towards the caspase-

activating form of cyto c, holo–cyto c, revealed that holo–
cyto c is rapidly degraded after its release into the cytosol
[17].
The irreversibility mechanisms described in this paper

ensure that apoptosis will fully proceed even after a decline in
cyto c, and render apoptotic execution program insensitive
towards survival signaling once apoptosis has been initiated.
Such insensitivity is then further enhanced by delayed Casp3-
mediated cleavage and thereby inactivation of various
antiapoptotic signalling proteins [94].

Proposed Experimental Verification of Bistability
Our predictions regarding all-or-none and binary integra-

tion of multiple inputs behaviour in caspase activation
(Figures 2–5) can be addressed experimentally by analyzing
Casp3 activation in cytosolic extracts or on a single-cell level.
In cytosolic extracts, depletion and readdition experiments
with various Apaf-1, Casp3, Casp9, and/or XIAP concentra-
tions should result in all-or-none caspase activation in the BR

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e1201070

Bistability in Caspase Activation



and BI ranges in Figure 4F, but the amount of fluorescent
Casp3 substrates must be chosen carefully if enzymatic
activity is used as a readout. Alternatively, such multivariate
analyses can be performed by microinjecting these proteins
together with cyto c and/or Smac into living cells. Caspase
activation can then be determined using antibodies against
active Casp3 either in flow cytometric measurements or in
immunofluorescence microscopy. Bistability should be con-
firmed by adding cyto c in combination with appropriate
antagonists such as anti–cyto c antibodies, apo–cyto c, or
diarylureas, which are known to inhibit apoptosome activity
[18,101]. In the range of bistability, simultaneous addition of
suprathreshold cyto c levels and sufficient amounts of
antagonist should yield low Casp3 activity, while strong
caspase activation should be observed if the antagonist is
added after cyto c. Subsequent addition of a Casp9 inhibitor
would break the feedback loops discussed in the paper, and is
therefore expected to reverse Casp3 activation. The bist-
ability measurements described above can be done on a
population level (i.e., by Western blotting) if caspase
activation is irreversible, but require single-cell tracking
methods (e.g., real-time Casp3 assays or flow-cytometric cell
sorting) in the bistable-reversible range.

Concluding Remarks
In conclusion, we have presented a theoretical framework

for quantitative experimental analyses of the intrinsic
apoptosis pathway. Previous mathematical models differ
from the present study in 1) the choice of apoptotic pathways,
2) the network properties focused on, and 3) the cell types
analyzed. Bentele et al. [102] and Eissing et al. [50]
concentrated on the extrinsic apoptosis pathway (see Figure
1A), and analyzed how switch-like behaviour arises due to
stoichiometric inhibition [102] or due to positive feedback
[50]. Fussenegger et al. [103] have implemented a large-scale
model of both intrinsic and extrinsic pathways, and analyzed
time course behaviour rather than bistability and apoptotic
thresholds. Bagci et al. [104] focused on how Casp3-mediated
feedback cleavage of Bcl2-family members (feedbacks 2 and 3
in Figure 1A) contributes to bistability in the intrinsic
apoptosis pathway. As discussed above, these feedbacks
appear to be restricted to particular cell types, where they
might cooperate with those discussed here. Finally, Stucki and
Simon [105] concentrated on the regulation of Casp3
degradation. The mechanisms proposed in the present paper
may be combined with those discussed by Bagci et al. [104]
and by Stucki and Simon [105] in order to implement more
realistic models of the intrinsic apoptosis pathway.

As summarized in Protocol S5, cellular inhibitory proteins
such as stoichiometric inhibitors, phosphatases, and GTPase-
activating proteins frequently inhibit consecutive intermedi-
ates in cellular signaling cascades. In general, positive
feedback and bistability can arise in this ‘‘shared inhibitor
motif’’ if: 1) the signalling intermediates compete for binding
to the inhibitor at least to some extent; 2) only the active form

of the downstream intermediate (e.g., Casp3), but not its
inactive precursor (pro-Casp3), binds to the inhibitor; and 3)
the downstream intermediate (e.g., Casp3) is more abundant
than the inhibitor (e.g., XIAP), which in turn needs to exceed
the upstream intermediate (e.g., Casp9). As available exper-
imental data are in accordance with these requirements, the
feedback mechanism described in this paper is likely to be a
widespread principle on how cells achieve ultrasensitivity,
bistability, and irreversibility (Protocol S5).

Materials and Methods

All numerical simulations were done using the MatCont Toolbox
within the MATLAB (The Mathworks, Natick, Massachusetts, United
States) computing environment. SBML codes of the wild-type and
noncompetitive models are available in Protocols S6 and S7).
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Found at DOI: 10.1371/journal.pcbi.0020120.sd006 (20 KB XML).

Protocol S7. SBML File for the Noncompetitive Model

Found at DOI: 10.1371/journal.pcbi.0020120.sd007 (30 KB XML).
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We thank Reinhold Schäfer and Christian Kaltschmidt for useful
discussions.

Author contributions. SL and HH conceived and designed the
experiments. SL and NB performed the experiments. SL, NB, and HH
wrote the paper.

Funding. This work was supported by the Deutsche Forschungsge-
meinschaft (SFB 618).

Competing interests. The authors have declared that no competing
interests exist.

References

1. Chang HY, Yang X (2000) Proteases for cell suicide: Functions and

regulation of caspases. Microbiol Mol Biol Rev 64: 821–846.

2. Salvesen GS, Duckett CS (2002) IAP proteins: Blocking the road to death’s

door. Nat Rev Mol Cell Biol 3: 401–410.

3. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, et al. (1997) Prevention of

apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked.

Science 275: 1129–1132.

4. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of

cytochrome c from mitochondria: A primary site for Bcl-2 regulation of

apoptosis. Science 275: 1132–1136.

5. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, et al. (1999) Ordering

the cytochrome c–initiated caspase cascade: Hierarchical activation of

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e1201071

Bistability in Caspase Activation



caspases-2,�3,�6,�7,�8, and�10 in a caspase-9-dependent manner. J Cell
Biol 144: 281–292.

6. Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, et al. (2000)
Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72
trimethylation. J Biol Chem 275: 16127–16133.

7. Murphy BM, O’Neill AJ, Adrain C, Watson RW, Martin SJ (2003) The
apoptosome pathway to caspase activation in primary human neutrophils
exhibits dramatically reduced requirements for cytochrome C. J Exp Med
197: 625–632.

8. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of
apoptotic program in cell-free extracts: Requirement for dATP and
cytochrome c. Cell 86: 147–157.

9. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM (2001) Physiological
concentrations of Kþ inhibit cytochrome c-dependent formation of the
apoptosome. J Biol Chem 276: 41985–41990.

10. Nguyen JT,Wells JA (2003) Direct activation of the apoptosis machinery as a
mechanism to target cancer cells. Proc Natl Acad Sci U S A 100: 7533–7538.

11. Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, et al. (1999) The
release of cytochrome c from mitochondria during apoptosis of NGF-
deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883–889.

12. Von Ahsen O, Waterhouse NJ, Kuwana T, Newmeyer DD, Green DR (2000)
The ‘‘harmless’’ release of cytochrome c. Cell Death Differ 7: 1192–1199.

13. Oliver L, LeCabellec MT, Pradal G, Meflah K, Kroemer G, et al. (2005)
Constitutive presence of cytochrome c in the cytosol of a chemoresistant
leukemic cell line. Apoptosis 10: 277–287.

14. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, et
al. (2001) Cytochrome c maintains mitochondrial transmembrane poten-
tial and ATP generation after outer mitochondrial membrane permeabi-
lization during the apoptotic process. J Cell Biol 153: 319–328.

15. Deshmukh M, Kuida K, Johnson EM Jr (2000) Caspase inhibition extends
the commitment to neuronal death beyond cytochrome c release to the
point of mitochondrial depolarization. J Cell Biol 150: 131–143.

16. Chang LK, Putcha GV, Deshmukh M, Johnson EM Jr (2002) Mitochondrial
involvement in the point of no return in neuronal apoptosis. Biochimie
84: 223–231.

17. Chandra D, Liu JW, Tang DG (2002) Early mitochondrial activation and
cytochrome c up-regulation during apoptosis. J Biol Chem 277: 50842–
50854.

18. Martin AG, Fearnhead HO (2002) Apocytochrome c blocks caspase-9
activation and Bax-induced apoptosis. J Biol Chem 277: 50834–50841.

19. Perrelet D, Ferri A, Liston P, Muzzin P, Korneluk RG, et al. (2002) IAPs are
essential for GDNF-mediated neuroprotective effects in injured motor
neurons in vivo. Nat Cell Biol 4: 175–179.

20. Xu D, Bureau Y, McIntyre DC, Nicholson DW, Liston P, et al. (1999)
Attenuation of ischemia-induced cellular and behavioral deficits by X
chromosome-linked inhibitor of apoptosis protein overexpression in the
rat hippocampus. J Neurosci 19: 5026–5033.

21. Kugler S, Straten G, Kreppel F, Isenmann S, Liston P, et al. (2000) The X-
linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized
CNS neurons in vivo. Cell Death Differ 7: 815–824.

22. Eberhardt O, Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, et al.
(2000) Protection by synergistic effects of adenovirus-mediated X-
chromosome-linked inhibitor of apoptosis and glial cell line-derived
neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine model of Parkinson’s disease. J Neurosci 20: 9126–
9134.

23. Longthorne VL, Williams GT (1997) Caspase activity is required for
commitment to Fas-mediated apoptosis. EMBO J 16: 3805–3812.

24. Wang K, Brems JJ, Gamelli RL, Ding J (2005) Reversibility of caspase
activation and its role during glycochenodeoxycholate-induced hepato-
cyte apoptosis. J Biol Chem 280: 23490–23495.

25. Ferrell JE, Jr. (2002) Self-perpetuating states in signal transduction:
Positive feedback, double-negative feedback and bistability. Curr Opin
Cell Biol 14: 140–148.

26. Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a
mathematical model of the yeast cell cycle. Mol Biol Cell 13: 52–70.

27. Pomerening JR, Sontag ED, Ferrell JE, Jr. (2003) Building a cell cycle
oscillator: Hysteresis and bistability in the activation of Cdc2. Nat Cell Biol
5: 346–351.

28. Sha W, Moore J, Chen K, Lassaletta AD, Yi CS, et al. (2003) Hysteresis
drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad
Sci U S A 100: 975–980.

29. Xiong W, Ferrell JE, Jr (2003) A positive-feedback-based bistable ‘‘memory
module’’ that governs a cell fate decision. Nature 426: 460–465.

30. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and
bistability arising from multisite phosphorylation in protein kinase
cascades. J Cell Biol 164: 353–359.

31. Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from
receptor and kinase traffic. PLoS Comput Biol 1: 137–154.

32. Shiozaki EN, Chai J, Shi Y (2002) Oligomerization and activation of
caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci U S A 99: 4197–
4202.

33. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998)
Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol
Cell 1: 949–957.

34. Zou H, Yang R, Hao J, Wang J, Sun C, et al. (2003) Regulation of the Apaf-
1/caspase-9 apoptosome by caspase-3 and XIAP. J Biol Chem 278: 8091–
8098.

35. Bratton SB, Walker G, Srinivasula SM, Sun XM, Butterworth M, et al.
(2001) Recruitment, activation and retention of caspases-9 and �3 by
Apaf-1 apoptosome and associated XIAP complexes. EMBO J 20: 998–
1009.

36. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ (2004) Analysis of the
composition, assembly kinetics and activity of native Apaf-1 apoptosomes.
EMBO J 23: 2134–2145.

37. Chao Y, Shiozaki EN, Srinivasula SM, Rigotti DJ, Fairman R, et al. (2005)
Engineering a dimeric caspase-9: A re-evaluation of the induced proximity
model for caspase activation. PLoS Biol 3: e183.

38. Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active
holoenzyme. Genes Dev 13: 3179–3184.

39. Cain K, Bratton SB, Cohen GM (2002) The Apaf-1 apoptosome: A large
caspase-activating complex. Biochimie 84: 203–214.

40. Han Z, Hendrickson EA, Bremner TA, Wyche JH (1997) A sequential two-
step mechanism for the production of the mature p17:p12 form of
caspase-3 in vitro. J Biol Chem 272: 13432–13436.

41. Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, et al. (1998)
Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:
27084–27090.

42. Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong
RC, et al. (1996) The Ced-3/interleukin 1beta converting enzyme-like
homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates
for the apoptotic mediator CPP32. J Biol Chem 271: 27099–27106.

43. Fujita E, Egashira J, Urase K, Kuida K, Momoi T (2001) Caspase-9
processing by caspase-3 via a feedback amplification loop in vivo. Cell
Death Differ 8: 335–344.

44. Blanc C, Deveraux QL, Krajewski S, Janicke RU, Porter AG, et al. (2000)
Caspase-3 is essential for procaspase-9 processing and cisplatin-induced
apoptosis of MCF-7 breast cancer cells. Cancer Res 60: 4386–4390.

45. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, et al. (2001)
Structural basis for the inhibition of caspase-3 by XIAP. Cell 104: 791–800.

46. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a
direct inhibitor of cell-death proteases. Nature 388: 300–304.

47. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, et al. (1998)
IAPs block apoptotic events induced by caspase-8 and cytochrome c by
direct inhibition of distinct caspases. EMBO J 17: 2215–2223.

48. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, et al. (2003) Mechanism of
XIAP-mediated inhibition of caspase-9. Mol Cell 11: 519–527.

49. Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL (2001) DIABLO
promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J
Cell Biol 152: 483–490.

50. Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, et al. (2004)
Bistability analyses of a caspase activation model for receptor-induced
apoptosis. J Biol Chem 279: 36892–36897.

51. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, et al. (2001) A
conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO
regulates caspase activity and apoptosis. Nature 410: 112–116.

52. Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM (2002)
Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing
mitochondrial release of Smac/DIABLO and subsequent inactivation of
X-linked inhibitor-of-apoptosis protein. J Biol Chem 277: 11345–11351.

53. Cosulich SC, Savory PJ, Clarke PR (1999) Bcl-2 regulates amplification of
caspase activation by cytochrome c. Curr Biol 9: 147–150.

54. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, et al. (2000)
Hsp27 negatively regulates cell death by interacting with cytochrome c.
Nat Cell Biol 2: 645–652.

55. Chau BN, Cheng EH, Kerr DA, Hardwick JM (2000) Aven, a novel inhibitor
of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell 6: 31–40.

56. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The
coordinate release of cytochrome c during apoptosis is rapid, complete
and kinetically invariant. Nat Cell Biol 2: 156–162.

57. Rehm M, Dussmann H, Prehn JH (2003) Real-time single cell analysis of
Smac/DIABLO release during apoptosis. J Cell Biol 162: 1031–1043.

58. Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, et al. (2002)
Single-cell fluorescence resonance energy transfer analysis demonstrates
that caspase activation during apoptosis is a rapid process. Role of
caspase-3. J Biol Chem 277: 24506–24514.

59. Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB, et al. (1998)
Human IAP-like protein regulates programmed cell death downstream of
Bcl-xL and cytochrome c. Mol Cell Biol 18: 608–615.

60. Pollett JB, Zhu YX, Gandhi S, Bali M, Masih-Khan E, et al. (2003) RU486-
inducible retrovirus-mediated caspase-3 overexpression is cytotoxic to
bcl-xL-expressing myeloma cells in vitro and in vivo. Mol Ther 8: 230–237.

61. Yang X, Chang HY, Baltimore D (1998) Autoproteolytic activation of pro-
caspases by oligomerization. Mol Cell 1: 319–325.

62. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, et al. (2003) A
unified model for apical caspase activation. Mol Cell 11: 529–541.

63. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, et al. (1998)
Regulation of cell death protease caspase-9 by phosphorylation. Science
282: 1318–1321.

64. Tenev T, Marani M, McNeish I, Lemoine NR (2001) Pro-caspase-3

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e1201072

Bistability in Caspase Activation



overexpression sensitises ovarian cancer cells to proteasome inhibitors.
Cell Death Differ 8: 256–264.

65. McNeish IA, Bell S, McKay T, Tenev T, Marani M, et al. (2003) Expression
of Smac/DIABLO in ovarian carcinoma cells induces apoptosis via a
caspase-9-mediated pathway. Exp Cell Res 286: 186–198.

66. Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, et al. (2001)
Apaf-1/cytochrome c-independent and Smac-dependent induction of
apoptosis in multiple myeloma (MM) cells. J Biol Chem 276: 24453–24456.

67. Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, et al. (2004)
Discovery of potent antagonists of the antiapoptotic protein XIAP for the
treatment of cancer. J Med Chem 47: 4417–4426.

68. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, et al. (2004) A
small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated
cell death. Science 305: 1471–1474.

69. Davoodi J, Lin L, Kelly J, Liston P, MacKenzie AE (2004) Neuronal
apoptosis-inhibitory protein does not interact with Smac and requires
ATP to bind caspase-9. J Biol Chem 279: 40622–40628.

70. Pozarowski P, Huang X, Halicka DH, Lee B, Johnson G, et al. (2003)
Interactions of fluorochrome-labeled caspase inhibitors with apoptotic
cells: A caution in data interpretation. Cytometry A 55: 50–60.

71. Belloc F, Belaud-Rotureau MA, Lavignolle V, Bascans E, Braz-Pereira E, et
al. (2000) Flow cytometry detection of caspase 3 activation in preapoptotic
leukemic cells. Cytometry 40: 151–160.

72. Wright KM, Linhoff MW, Potts PR, Deshmukh M (2004) Decreased
apoptosome activity with neuronal differentiation sets the threshold for
strict IAP regulation of apoptosis. J Cell Biol 167: 303–313.

73. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical
function of endogenous XIAP in regulating caspase activation during
sympathetic neuronal apoptosis. J Cell Biol 163: 789–799.

74. Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, et al. (2003)
Antisense oligonucleotides targeting XIAP induce apoptosis and enhance
chemotherapeutic activity against human lung cancer cells in vitro and in
vivo. Clin Cancer Res 9: 2826–2836.

75. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene
expression in a single cell. Science 297: 1183–1186.

76. Bratton SB, Lewis J, Butterworth M, Duckett CS, Cohen GM (2002) XIAP
inhibition of caspase-3 preserves its association with the Apaf-1
apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death
Differ 9: 881–892.

77. Datta R, Oki E, Endo K, Biedermann V, Ren J, et al. (2000) XIAP regulates
DNA damage-induced apoptosis downstream of caspase-9 cleavage. J Biol
Chem 275: 31733–31738.

78. Kim JE, Tannenbaum SR (2004) Insulin regulates cleavage of procaspase-9
via binding of X chromosome-linked inhibitor of apoptosis protein in HT-
29 cells. Cancer Res 64: 9070–9075.

79. Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z, et al.
(2000) Molecular determinants of the caspase-promoting activity of Smac/
DIABLO and its role in the death receptor pathway. J Biol Chem 275:
36152–36157.

80. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, et al. (2006)
Mechanisms of cytochrome c release from mitochondria. Cell Death Differ
13: 1423–1433.

81. Clayton R, Clark JB, Sharpe M (2005) Cytochrome c release from rat brain
mitochondria is proportional to the mitochondrial functional deficit:
Implications for apoptosis and neurodegenerative disease. J Neurochem
92: 840–849.

82. Fortin A, Cregan SP, MacLaurin JG, Kushwaha N, Hickman ES, et al. (2001)
APAF1 is a key transcriptional target for p53 in the regulation of neuronal
cell death. J Cell Biol 155: 207–216.

83. Carson JP, Behnam M, Sutton JN, Du C, Wang X, et al. (2002) Smac is
required for cytochrome c-induced apoptosis in prostate cancer LNCaP
cells. Cancer Res 62: 18–23.

84. Schafer ZT, Parrish AB, Wright KM, Margolis SS, Marks JR, et al. (2006)
Enhanced sensitivity to cytochrome c-induced apoptosis mediated by
PHAPI in breast cancer cells. Cancer Res 66: 2210–2218.

85. Huang Y, Rich RL, Myszka DG, Wu H (2003) Requirement of both the
second and third BIR domains for the relief of X-linked inhibitor of
apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol
Chem 278: 49517–49522.

86. Uren RT, Dewson G, Bonzon C, Lithgow T, Newmeyer DD, et al. (2005)
Mitochondrial release of pro-apoptotic proteins: Electrostatic interac-

tions can hold cytochrome c but not Smac/DIABLO to mitochondrial
membranes. J Biol Chem 280: 2266–2274.

87. Lim ML, Chen B, Beart PM, Nagley P (2006) Relative timing of
redistribution of cytochrome c and Smac/DIABLO from mitochondria
during apoptosis assessed by double immunocytochemistry on mamma-
lian cells. Exp Cell Res 312: 1174–1184.

88. Zhou LL, Zhou LY, Luo KQ, Chang DC (2005) Smac/DIABLO and
cytochrome c are released from mitochondria through a similar
mechanism during UV-induced apoptosis. Apoptosis 10: 289–299.

89. Chipuk JE, Green DR (2005) Do inducers of apoptosis trigger caspase-
independent cell death? Nat Rev Mol Cell Biol 6: 268–275.

90. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, et al. (1999)
Cleavage of human inhibitor of apoptosis protein XIAP results in
fragments with distinct specificities for caspases. EMBO J 18: 5242–5251.

91. Johnson DE, Gastman BR, Wieckowski E, Wang GQ, Amoscato A, et al.
(2000) Inhibitor of apoptosis protein hILP undergoes caspase-mediated
cleavage during T lymphocyte apoptosis. Cancer Res 60: 1818–1823.

92. Wagenknecht B, Glaser T, Naumann U, Kugler S, Isenmann S, et al. (1999)
Expression and biological activity of X-linked inhibitor of apoptosis
(XIAP) in human malignant glioma. Cell Death Differ 6: 370–376.

93. Herrera B, Fernandez M, Benito M, Fabregat I (2002) cIAP-1, but not
XIAP, is cleaved by caspases during the apoptosis induced by TGF-beta in
fetal rat hepatocytes. FEBS Lett 520: 93–96.

94. Widmann C, Gibson S, Johnson GL (1998) Caspase-dependent cleavage of
signaling proteins during apoptosis. A turn-off mechanism for anti-
apoptotic signals. J Biol Chem 273: 7141–7147.

95. Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, et al. (2004) Akt
phosphorylation and stabilization of X-linked inhibitor of apoptosis
protein (XIAP). J Biol Chem 279: 5405–5412.

96. Holcik M, Sonenberg N (2005) Translational control in stress and
apoptosis. Nat Rev Mol Cell Biol 6: 318–327.

97. Bowen C, Voeller HJ, Kikly K, Gelmann EP (1999) Synthesis of
procaspases-3 and �7 during apoptosis in prostate cancer cells. Cell
Death Differ 6: 394–401.

98. Casiano CA, Martin SJ, Green DR, Tan EM (1996) Selective cleavage of
nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis.
J Exp Med 184: 765–770.

99. Ellerby HM, Martin SJ, Ellerby LM, Naiem SS, Rabizadeh S, et al. (1997)
Establishment of a cell-free system of neuronal apoptosis: comparison of
premitochondrial, mitochondrial, and postmitochondrial phases. J Neuro-
sci 17: 6165–6178.

100. Tawa P, Hell K, Giroux A, Grimm E, Han Y, et al. (2004) Catalytic activity
of caspase-3 is required for its degradation: Stabilization of the active
complex by synthetic inhibitors. Cell Death Differ 11: 439–447.

101. Lademann U, Cain K, Gyrd-Hansen M, Brown D, Peters D, et al. (2003)
Diarylurea compounds inhibit caspase activation by preventing the
formation of the active 700-kilodalton apoptosome complex. Mol Cell
Biol 23: 7829–7837.

102. Bentele M, Lavrik I, Ulrich M, Stosser S, Heermann DW, et al. (2004)
Mathematical modeling reveals threshold mechanism in CD95-induced
apoptosis. J Cell Biol 166: 839–851.

103. Fussenegger M, Bailey JE, Varner J (2000) A mathematical model of
caspase function in apoptosis. Nat Biotechnol 18: 768–774.

104. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006)
Bistability in apoptosis: Roles of bax, bcl-2, and mitochondrial perme-
ability transition pores. Biophys J 90: 1546–1559.

105. Stucki JW, Simon HU (2005) Mathematical modeling of the regulation of
caspase-3 activation and degradation. J Theor Biol 234: 123–131.

106. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R (2001) X-linked
inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and�7 in distinct
modes. J Biol Chem 276: 27058–27063.

107. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, et al. (1997)
Substrate specificities of caspase family proteases. J Biol Chem 272: 9677–
9682.

108. Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, et al. (2005) XIAP
inhibits caspase-3 and�7 using two binding sites: Evolutionarily conserved
mechanism of IAPs. EMBO J 24: 645–655.

109. Yin Q, Park HH, Chung JY, Lin SC, Lo YC, et al. (2006) Caspase-9
holoenzyme is a specific and optimal procaspase-3 processing machine.
Mol Cell 22: 259–268.

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e1201073

Bistability in Caspase Activation


