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Abstract

The Poisson’s ratio, a property which quantifies the changes in thickness when a material is stretched and

compressed, can be determined as the negative of the transverse strain over the applied strain. In the scientific

literature, there are various ways how strain may be defined and the actual definition used could result in a

different Poisson’s ratio being computed. This paper will look in more detail at this by comparing the more

commonly used forms of strain and the Poisson’s ratio that is computable from them. More specifically, an attempt

is made to assess through examples on the usefulness of the various formulations to properly describe what can

actually be observed, thus providing a clearer picture of which form of Poisson’s ratio should be used in analytical

modelling.
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Introduction

The link between mathematics and science is an ancient

one which continues to predominate in research today.

This can be attributed to the fact that mathematics gives

research an angle which cannot exist with qualitative

research alone, that of the removal of uncertainty in the

statements and theories given. Furthermore, with the inclu-

sion of mathematics, statements can be communicated in a

factual manner which could not be done otherwise. More-

over, mathematics manages to communicate findings in a

more elegant manner, which is not always the case when it

is given in other ways. The elegance of mathematics is what

has, in many cases, pushed forward the understanding

of many subjects in science, as well as other disciplines

(Russell, 1919). Famous examples, as well as everyday

examples, of this can be seen practically everywhere. To

name a few: high-grade commercial coffee machines are

manufactured with a high level of attention and calibrated

in order to produce the exact same dose of coffee at the

same temperature and pressure output every time in order

to completely eliminate variation from one cup of coffee to

the next (Fischer & Eugster, 1994; Pandolfi, 1988); restor-

ation of famous monuments and structures also depends

greatly on mathematical models in order to get every detail

correct; acoustics, such as the manufacturing of great mu-

sical halls such as the Elbphilharmonie in Hamburg (Mack,

2018), as well as manufacturing of everyday speakers for a

desktop computer both involve calculations which must be

made to maximise the desired effect (Juszkiewicz & Ewen,

2002), albeit one requires more perfection than the other;

and the deploying of rockets and shuttles to space in order

to take satellites, people and other technologies into space

which require intensive mathematical calculation to a great

degree of accuracy for any mission to be a success (Wilson,

1964).

This is no less important in the field of thermo-

mechanical metamaterials, the field of study relating to:

‘engineered materials having previously unachievable

[anomalous] thermal and/or mechanical properties that

are defined by their microstructural architecture rather
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than their composition’ (Zheng et al., 2014). Here,

analytical modelling is used in order to break down

mechanisms relating to structure down to mathematical

relationships. This way, the effect of each structural vari-

able can be looked at individually, and this information

can be used to fine tune them to the required values for

applications or to apply these models to other materials

in order to better understand the mechanism underlying

their behaviour. The above being said, a better under-

standing of these materials through this type of model-

ling allows for improvement in the designing of future

applications and materials, and therefore, the overall

bettering of contemporary technology in the endless

search to do so.

Thermo-mechanical anomalous properties include a

variety of such properties, one of which merits a particu-

lar mention is that of auxetic behaviour (Alderson et al.,

2005; Alderson, Alderson, Ravirala, Simkins, & Davies,

2012; Alderson & Evans, 1992; Allen et al., 2016; Allen

et al., 2017; Attard & Grima, 2012; Azzopardi, Brincat,

Grima, & Gatt, 2015; Babaee et al., 2013; Baughman &

Galvão, 1993; Bertoldi, Reis, Willshaw, & Mullin, 2010;

Brańka, Heyes, Makowiak, Pieprzyk, & Wojciechowski,

2012; Brańka, Heyes, & Wojciechowski, 2009; Brańka,

Heyes, & Wojciechowski, 2011; Dudek et al., 2017;

Dudek et al., 2018; Evans, 1991; Greaves, Greer, Lakes,

& Rouxel, 2011; Grima, Farrugia, Gatt, & Attard, 2008;

Grima, Gatt, Alderson, & Evans, 2006; Grima, Grech,

Grima-Cornish, Gatt, & Attard, 2018; Grima, Jackson,

Alderson, & Evans, 2000; Ha, Plesha, & Lakes, 2016;

Harkati, Daoudi, Bezazi, Haddad, & Scarpa, 2017;

Hewage, Alderson, Alderson, & Scarpa, 2016; Hoover &

Hoover, 2005; Ishibashi & Iwata, 2000; Kadic, Tiemo,

Schittny, & Wegener, 2013; Kolken & Zadpoor, 2017;

Lakes, 1987; Lim, 2013; Lim, 2015; Liu & Hu, 2010;

Mizzi et al., 2018; Pasternak & Dyskin, 2019; Poźniak,

Wojciechowski, Grima, & Mizzi, 2016; Qin, Sun, Liu, Li,

& Liu, 2017; Qu, Kadic, Naber, & Wegener, 2017; Ryder

& Tan, 2016; Sigmund, 1995; Strek, Maruszewski,

Narojczyk, & Wojciechowski, 2008; Strek, Michalski,

& Jopek, 2019; Taylor et al., 2014; Tretiakov &

Wojciechowski, 2014; Verma, Shofner, & Griffin,

2014; Verma, Shofner, Lin, Wagner, & Griffin, 2015;

Wojciechowski, 1987; Wojciechowski, 1989; Wojcie-

chowski, 2003a; Wojciechowski, Tretiakov, & Kowalik,

2003; Zhang, Hu, Liu, & Xu, 2013). Auxetic behaviour, or

auxeticity, is the property which describes a material be-

coming fatter when stretched and thinner when com-

pressed (Evans, Nkansah, Hutcherson, & Rogers, 1991).

This anomalous property manifests when the material or

structure has what is known as a negative Poisson’s ratio as

described in more detail below. Since the coining of the

term by Evans et al. (1991), numerous materials have been

found or been designed to manifest this property, including

foams, nanolayers, crystals and constructible

macrostructures.

It has long been recognised that one of the best

methods to study auxetics and related systems is via the

formulation of mathematical models. A typical approach

involves the representation of the salient geometric fea-

tures of a material through a structural model and to

then analyse the deformation mechanism afforded by

this model structure. The success of this approach lies

partly in the fact that auxeticity requires the right syner-

gism between ‘geometry’ and ‘deformation mechanism’

(Alderson & Evans, 1995; Grima, Alderson, & Evans,

2005), but also due to the fact that, as stated above, a

mathematical model can depict a system in an unequivo-

cal manner which removes shadows of uncertainty.

This being said, there is an issue which is so far grossly

unresolved: how to compute the Poisson’s ratio in a

meaningful and practical manner which can adequately

be used for the derivation of mathematical models as

well as to report experimental data. Such Poisson’s ratio

should be able to clearly describe the behaviour of the

system, without overlooking or over-emphasising some

critical aspects of the system. This in turn poses a ques-

tion how strain should be reported, a problem that is

particularly pertinent in the field of auxetics when, dur-

ing uniaxial loading, there is a ‘non-standard’ response

to loads. Circumstances which offer such a challenge in-

clude, for example, situations when during stretching,

the sample would initially be visibly getting thinner and

then, past a certain amount of stretching, the sample

starts to get ‘fatter’. This problem is amply discussed by

Smith, Wootton, and Evans (1999) where recommenda-

tions were made on how experimental data should be

analysed and reported so as to bring to light the auxetic

properties of the test sample. The present work will look

at the other side of this issue, that is, how it is best to

perform and report mathematical models in a mean-

ingful and elegant manner which is easy to correlate

to experimental work and at the same time does not

output Poisson’s ratios which look highly fascinating

(e.g. gigantic auxeticity) but are mere artefacts of the

reporting protocol used. This will be performed in a

manner which explains, step-by-step, how analytical

modelling of simple systems can be performed by

looking at two of the more well-known models for

mechanical metamaterials, namely the hexagonal

honeycomb (Abd El-Sayed, Jones, & Burgess, 1979;

Evans, Alderson, & Christian, 1995; Gibson, Ashby,

Schajer, & Robertson, 1982; Masters & Evans, 1996)

deforming through changes in angle (i.e. idealised

hinging model as considered by (Evans et al., 1995;

Masters & Evans, 1996) and the rotating rectangles

model (Type I, (Grima, Alderson, & Evans, 2004;

Grima, Alderson, & Evans, 2005)).
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Methods

Methods used for calculation of discrete strains and

Poisson’s ratios

The Poisson’s ratio of a sample is a property which

measures the extent of change in lateral dimensions in

some particular cross-section, for a given direction of

uniaxial stretching in the same cross-section. The

accepted convention for the reporting of the Poisson’s

ratio requires the identification of these directions. In

fact, for a 3D sample of measurements X, Y and Z in the

x-, y- and z-directions, respectively, the Poisson’s ratio in

the Ox1-Ox2 plane for uniaxial stretching in the Ox2
direction is defined as, ν21, where ν21 can be determined

as follows:

ν21 ¼ −

Resultant strain in lateral Ox1 direction

Applied axial strain in Ox2 direction
¼ −

ε1

ε2

where ε2 represents the applied uniaxial strain being

applied in the Ox2 direction whilst ε1 represents the

strain in the perpendicular Ox1 direction, i.e. a direction

which is orthogonal to that where the uniaxial stain is

being applied and which must lie in the plane where the

Poisson’s ratio is measured. The order of suffixes for the

Poisson’s ratio is important, where the first suffix by

convention refers to the direction of stretching (i.e. cor-

responds to the strain in the denominator). The negative

sign ensures that the vast majority of materials which

tend to get thinner (−ve ε1) when stretched (+ve ε2)

would have a positive Poisson’s ratio. The Poisson’s ratio

is one of the fundamental mechanical properties and can

range from − 1 ≤ ν ≤ + 0.5 for three-dimensional iso-

tropic materials (Lempriere, 1968), − 1 ≤ ν ≤ + 1 for two

dimensional materials (Wojciechowski, 2003b) and can

take any value for anisotropic materials (Wojciechowski,

2003b).

The problem that arises is that, whilst there is uniform-

ity in how the Poisson’s ratio is determined from strains,

there are various accepted conventions on how strains can

be reported, which unfortunately would result in very dis-

tinct forms of the Poisson’s ratio. To illustrate this, one

may refer to an arbitrary linear system of original length

Linit = L[0] which is being stretched and re-measured n

successive times such that the new lengths are L[1], L[2],

L[3], …, L[n] till reaching a final length Lfin = L[n]. These

length measurements are given by (see Fig. 1 for definition

of terms, noting that δL[i] refers to the change in L with

respect to the previous length and ΔL[i] refers to the total

change in L with respect to Linit):

L 0½ � ¼ Linit
L 1½ � ¼ L 0½ � þ δL 1½ � ¼ Linit þ δL 1½ � ¼ Linit þ ΔL 1½ �
L 2½ � ¼ L 1½ � þ δL 2½ � ¼ Linit þ δL 1½ � þ δL 2½ � ¼ Linit þ ΔL 2½ �
L 3½ � ¼ L 2½ � þ δL 3½ � ¼ Linit þ δL 1½ � þ δL 2½ � þ δL 3½ � ¼ Linit þ ΔL 3½ �
…

L k½ � ¼ L k − 1½ � þ δL k½ � ¼ Linit þ
X

k

i¼1

δL k½ � ¼ Linit þ ΔL k½ �

…

L n½ � ¼ L n − 1½ � þ δL n½ � ¼ Linit þ
X

n

i¼1

δL n½ � ¼ Linit þ ΔL n½ � ¼ Lfin

Obviously, this type of experiment could also have

been carried out in compression. From these successive

Fig. 1 A hypothetical linear system being stretched from a length of 100 to 150mm where the strains are being computed at four irregular

intervals along the deformation
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measurements, which could have easily been recorded in

an experimental procedure, as noted by Smith et al.

(1999), one may compute strain in a number of ways

including the following:

(a) The ‘engineering strain’, also commonly referred to

as the Cauchy strain or the nominal strain, the

strain which is most widely used by the engineering

and experimental community which is reported as

the ratio of the ‘extension over the original’ length,

defined at point k as follows:

eeng k½ � ¼
ΔL k½ �

Linit

This strain is also sometimes expressed as a percent-

age. The Poisson’s ratio computed using such strain is

normally referred to as the ‘engineering Poisson’s ratio’.

(b) The ‘instantaneous strain’, also sometimes referred

to as the ‘incremental strain’ where for any two

successive length measurements, the strain at point

k is defined as follows:

δε k½ � ¼
L k½ � − L k − 1½ �

L k − 1½ �
¼

δL k½ �

L k − 1½ �

which strain, in the limit of infinitesimal δL, will be-

come equivalent to the strain normally used in the deriv-

ation of analytical models, commonly referred to as the

‘infinitesimally small strain’ defined as follows:

dε ¼
dL

L
¼ lim

δL k½ �→0

δL k½ �

L k − 1½ �

� �

The Poisson’s ratio computed using such strain is

sometimes referred to as the ‘Instantaneous Poisson’s ra-

tio’ or the ‘Poisson’s Function’.

(c) The ‘true strain’, also commonly referred to as the

Hencky strain, or, logarithmic strain, defined at

point k as follows:

etrue k½ � ¼

Z

L k½ �

L 0½ �

dε ¼

Z

L k½ �

L 0½ �

dL

L

¼ ln Lð Þ½ �
L k½ �
L 0½ � ¼ ln L k½ �ð Þ − ln L 0½ �ð Þ ¼ ln

L k½ �

L 0½ �

� �

¼ ln
L 0½ � þ ΔL k½ �

L 0½ �

� �

¼ ln 1þ
ΔL k½ �

L 0½ �

� �

¼ ln 1þ eengð Þ

The Poisson’s ratio computed using such strain is

sometimes referred to as the ‘true Poisson’s ratio’.

Methods used for calculation of the Poisson’s ratio

properties of periodic systems

This section presents a step-by-step guide for evaluating

the Poisson’s ratios of periodic 2D systems, exemplified

through the hinging honeycomb system using the differ-

ent methods stated above in a manner which can be

easily reproduced and extended using the other models.

This will be followed by the reporting of the equivalent

expressions for strains and Poisson’s ratios derived with

the same procedures. These expressions for the Poisson’s

ratio based on the different methods to compute strain

may hence be compared so as to assess their relative

ability to describe the behaviour upon uniaxial loading

well, in particular the Poisson’s ratio. This process will

then be repeated for the type I rotating rectangles sys-

tem, so as to further illustrate the methodology and the

concepts presented.

Hexagonal honeycombs

Over the years, there have been various studies on the

re-entrant and non-re-entrant honeycomb system so as

to study their mechanical behaviour, where deformation

is typically assumed to be trough flexure of the ligaments

(Abd El-Sayed et al., 1979; Evans et al., 1995; Gibson

et al., 1982; Masters & Evans, 1996) or changes in angles

between the ligaments, i.e. as an idealised hinging model

(Evans et al., 1995; Masters & Evans, 1996). The honey-

comb model structure, like many others studied for

similar purposes, can be described as a finite system

containing a finite number of honeycomb cells, or, as an

infinity of cells where a ‘representative repeat unit’ is

tessellated to form a space-filling model. The latter

representation is normally being the preferred version,

for various reasons ranging from mathematical elegance

in the model to their ability to represent nano- or

mirco-scale honeycombs where the number of cells

present in a real sample is so large that it can be treated

like an infinitely large system. The methodology applied

in the formulation and derivations of such models typic-

ally involves the following:

(a) Definition of the ‘research problem’ and

identification of what needs to be studied;

(b) Definition of the geometry of the system in a

manner where every independent length and angle

is uniquely identified, including the identification of

a suitable periodically repeating unit (the ‘unit cell’);

(c) Formulation of the assumption related to the

deformation mechanism and identification of the

geometric parameters which will be treated as the

variables and those that will be assumed to be

constant (depending on the deformation

mechanism);
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(d) Expression of the unit cell parameters in terms of

geometric parameters and variables;

(e) Calculation of strains from the unit cell parameters

and formulation of expressions for the Poisson’s

ratio (and other relevant properties).

Definition of the research problem Any model for a

given system, irrespective of how simple the system may

look, is never likely to be fully comprehensive given the

various aspects that one could study. In this particular

case, it needs to be stated a priori that the aim of this

study is to represent the deformations and properties of

the system depicted in Fig. 2 in a mathematical manner,

i.e. describe what happens as the system is being pulled

or compressed either in the direction along the length of

the vertical ligaments, or in the orthogonal direction, as

depicted, and where deformations only occur through

in-plane changes in angle. Whilst this statement may

look trivial, it excludes the need to over define the

system and can be used as a guide to appropriately select

between different possible methods of definition or

simplification, as indicated in more detail below. For

example, by stating that only the mechanical aspects

related to uniaxial loading are being studied, one may

automatically preclude, for example, the need to consider

any possible thermal, electrical and magnetic effects on

the system.

Definition of the geometry The system under study is

described graphically in Fig. 2 and may be described as a

two-dimensionally periodic structure, where in simple

terms, a periodic structure is defined as a system made

from sub-structural units which are tessellated in one-

dimension, two-dimensions or three-dimensions in a

space filling manner. Examples of one-dimensional peri-

odic structures include railway tracks (or, in mathematics,

the trigonometric functions) whilst crystals are probably

the best well-known examples of systems exhibiting three-

dimensional periodicity. Examples of two-dimensional

periodic systems, apart from the honeycombs studied

here, include some of the well-known patterned/Islamic

tiling designs.

To adequately describe the geometry of this periodic

system, one should first attempt to identify the appropri-

ate ‘unit cell’ which may be used to generate the full

system through tessellation (i.e. via translation only). As

Fig. 2 The system being modelled which in general could have non-equal lengths and non-equal angles, but in this case, it shall be assumed

that the system will have l1 = l2 = l and l3 = h (kept constant), and θ1 = θ2 = θ (a variable). For the purpose of this study, the system will only be

uniaxially loaded in the vertical Ox2 direction and the ligaments will not be allowed to stretch, flex or move out of plane, i.e. θ is the only

variable. Note that the parameters are defined in (a) whilst (b) shows various representations with the possible unit cells identified where (b-i)

shows a re-entrant system, (b-ii) shows a non-re-entrant conventional honeycomb and (b-iii) shows a sheared system (or an irregular non-

symmetric honeycomb). All of these conformations can be represented by the unit cells. Note that the convention being used to label θ is not

the same as that used in previous work by (Abd El-Sayed et al., 1979; Evans et al., 1995; Gibson et al., 1982; Masters & Evans, 1996)
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illustrated in Fig. 2b, the smallest unit cell which may be

used to describe these hexagonal honeycombs is the one

highlighted in red which contains just three ligaments.

This smallest unit cell is in the shape of a parallelogram

for sheared systems, which becomes rhombic when the

angles between the ligaments are made equal (a result of

the added symmetry). Whilst, in theory, this smallest

unit cell can be used to derive the mathematical models

of the system, in practice, it is much more convenient to

choose a larger rectangular-shaped unit cell which has

the advantage that for non-sheared systems, such as the

ones modelled here, the unit cell angles are 90o and one

of its unit cell vectors is parallel to the ligaments of

length h. As a result, when modelled with this rectangu-

lar unit cell, the structure may easily and elegantly be

aligned with the Cartesian axis, as shown in Fig. 2.

Having identified these unit cells, the next step is to

identify the essential geometric parameters that are

needed to describe the whole system. As noted above,

availability of the parallelogram-shaped unit cells dic-

tates that the whole system, in general, can be generated

through tessellation of just three ligaments of length l1,

l2 and l3 joined together at their end and two angles θ1
and θ2 (the third angle is 360o − (θ1 + θ2), due to the con-

struing of planar Euclidean geometry). Here, it should be

noted that, for this particular case, the system studied

(the original undeformed system) is further assumed to

have lengths l1 = l2 = l and l3 = h, and angles θ1 = θ2 =

θ. However, at this stage, without looking at the permit-

ted deformation mechanism/s, one cannot assume that

the condition of equality will remain valid throughout

the deformation.

Definition of the deformation mechanism Having de-

scribed the general case and the geometric parameters

which are needed to describe the system, one should

attempt to reduce the number of variables by looking at

the ‘deformation mechanism’ and formulating the appro-

priate assumptions to be used. In this particular case, as

noted above, it is being assumed that deformations

occur only through changes in the angles between the

ligaments, i.e. an idealised hinging model. This precludes

any changes in length and it may thus be assumed that

the lengths l1 = l2 = l and l3 = h remain constant

throughout the deformation process. This means that

the lengths l and h are not to be treated as variables but

as simple geometric parameters which are used to define

the shape and size of the structure, but which remain

constant in the deformation (idealised hinging model).

It is also assumed that this particular derivation will

only look at uniaxial loading in the vertical Ox2 direc-

tion, or, the horizontal Ox1 direction. In general, the two

angles θ1 and θ2 are independent of each other, and if

the system had to be subjected to shear loading or off-

axis loading, which is not the case in this work, θ1 ≠ θ2.

However, if what is being considered is a particular

scenario where two ligaments are (and remain) of equal

length l, the honeycombs angles are initially at an equal

magnitude θ1 = θ2. Additionally, if the system is only be-

ing subjected to uniaxial on-axis loading for the rect-

angular unit cell (i.e. loading in the Ox1 or Ox2
direction), the angles θ1 and θ2 remain equal to each

other due to symmetry. Hence, it may be further as-

sumed that θ1 = θ2 = θ, which is the only variable of this

system. In other words, given that as noted above, the

scope of this modelling exercise is to study uniaxial load-

ing in the Ox1 or Ox2 directions where the ligament

lengths do not change, for the purpose of this work, it is

sufficient to define the geometry in terms of three pa-

rameters: the lengths l and h, and the angle θ, of which

only θ is a variable.

Here, it must be emphasised that this condition, which

provides the simplification that for uniaxial on-axis load-

ing θ1 = θ2 = θ, only holds for on-axis loading and there

is no actual physical constrain to force these angles to

remain equal. In fact, had the system sheared, these

angles will no longer remain of equal value. This is in

sharp contrast with other ‘rotating squares’ (Grima &

Evans, 2000), ‘rotating rectangles’ (Grima et al., 2004;

Grima, Gatt, Alderson, & Evans, 2005; Grima, Manicaro,

& Attard, 2011) or other unimode systems typically

studied by Milton (2013), since this condition only

applies if loading is on-axis. However, this honeycomb

system can be transformed to a more constrained system

by letting h = 0, which would transform the ‘hinging

honeycomb’ to a ‘wine-rack’ model.

Expression of cell parameters and alignment in space

Having identified the unit cell/s that could be used for

defining the system, and the geometric parameters/vari-

ables needed to fully describe the system to be modelled,

the alignment of the system in the global space needs to

be defined, and the unit cell parameters measured in

terms of these geometric parameters/variables.

As amply described in standard crystallography text-

books, in general, any periodic 3D systems (such as crys-

tals) can be described in terms of a unit cell in the shape

of a parallelepiped which, in turn, can be described in

terms of three vectors which correspond to the sides of

the unit cell. By convention, these three vectors are

denoted by a, b and c which have a length a, b and c,

respectively. The angles between these cell vectors (the

unit cell angles) are denoted as α (the angle between b

and c), β (the angle between a and c) and γ (the angle

between a and b). Whilst in general, this unit cell (and

hence the crystal) can be aligned in the 3D global space

in an arbitrary manner, as per convention proposed by

the Institute of Radio Engineers (IRE) [Mason, 1950],
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the crystal is typically aligned in space with the c cell

vector always parallel to the Ox3-direction (i.e. its

components in the Ox1 and Ox2 direction are 0); the b

cell vector always lying in the Ox2-Ox3 plane (i.e. its

component in the Ox1 direction is 0) and the remaining

a vector left free in space. With this alignment, the cell

vectors are of the following forms:

a ¼ ðX11;X12;X13Þ

b ¼ ð0;X22;X23Þ

c ¼ ð0; 0;X33Þ

i.e. the system will always have its unit cell projections

in the Ox1, Ox2 and Ox3 directions as X11, X22 and X33.

This offers significant simplification in calculating

strains.

For the simpler 2D system, a similar type of alignment

is normally used, where the unit cell is aligned in the

plane with one of its sides aligned parallel with the Ox2
axis and the other side left free. Thus, for a parallelo-

grammical unit cell, referring to Fig. 3, the cell vectors

would be of the form a = (X11, X12) and b = (0, X22) with

the special case of a rectangular unit cell having a =

(X11, 0) and b = (0, X22), where X11 and X22 are the

projections of the unit cell in the Ox1 and Ox2 on-axis

directions, respectively.

In the particular case of the honeycomb, as discussed

above, it is possible and convenient to formulate the

model in terms of a rectangular unit cell, where, refer-

ring to Fig. 2, the shape and size of the representative

unit cell of this hexagonal honeycomb may be described

quantitatively by the unit cell projections in the Ox1 and

Ox2 directions as follows:

X11 ¼ 2l sinθ

X22 ¼ 2 h − l cosθð Þ

Note that with θ as defined here, angles of 0o < θ < 90o

would correspond to re-entrant honeycombs, angles

90o < θ < 180o would correspond to conventional non re-

entrant honeycombs and θ = 90o would correspond to

the special case of a honeycomb having T-shaped

junctions.

Strains and Poisson’s ratios Given the expressions for

Xii as a continuous function of a single variable, the

angle θ, one may derive expressions for strains which

can be considered as being the continuous equivalent of

the discrete strains presented above. Throughout this

derivation, recognising that the formulation of the

engineering strain and true strain require and are

dependent upon the identification of a starting ‘original’

conformation of the system, it shall be assumed that un-

less otherwise stated, the deformation will be performed

on a honeycomb which is characterised by angle θ0 be-

tween the ligaments such that the original undeformed

conformation is represented by a unit cell of dimensions

X11(θ0) × X22(θ0).

With this in mind, for Xii = Xii(θ), the engineering,

infinitesimal and true strains in the Oxi directions can

be defined, respectively as follows:

e
eng
i θð Þ ¼

X ii θð Þ − X ii θ0ð Þ

X ii θ0ð Þ
¼

X ii θð Þ

X ii θ0ð Þ
− 1

dεi θð Þ ¼
dX ii

X ii

¼
1

X ii

dX ii

dθ
dθ

etruei θð Þ ¼

Z

X ii θð Þ

X ii θoð Þ

1

X ii

dX ii ¼ ln X iið Þ½ �
X ii θð Þ
X ii θoð Þ

¼ ln X ii θð Þð Þ − ln X ii θ0ð Þð Þ ¼ ln
X ii θð Þ

X ii θoð Þ

� �

where the respective Poisson’s ratios, as a function of

θ, are hence given as follows:

ν
eng
ij θð Þ ¼ −

e
eng
j θð Þ

e
eng
i θð Þ

¼ −

X jj θð Þ − X jj θ0ð Þ

X ii θð Þ − X ii θ0ð Þ

� �

X ii θ0ð Þ

X jj θ0ð Þ

ν
f 0n
ij θð Þ ¼ −

dε j θð Þ

dεi θð Þ
¼ −

X ii

X jj

dX jj

dθ

� �

dX ii

dθ

� �

− 1
Fig. 3 Alignment of a 2D unit cell in the Cartesian space based on

the convention adopted by the Institute of Radio Engineers (IRE) as

specified in Mason (1950)
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νtrueij θð Þ ¼ −

etruej θð Þ

etruei θð Þ

¼ − ln
X jj θð Þ

X jj θoð Þ

� �

= ln
X ii θð Þ

X ii θoð Þ

� �

¼ −

ln X jj θð Þ
� �

− ln X jj θ0ð Þ
� �

ln X ii θð Þð Þ − ln X ii θ0ð Þð Þ

where the expressions can be plotted against the geo-

metric variable, or, probably more practically for real

applications, against the applied engineering strain or

the applied true strain so as to obtain the strain-dependent

Poisson’s ratio. The latter plots would need to be obtained

in a parametric manner.

The type I rotating rectangles model

The same approach was applied to the type I rotating

rectangles model. In this case, it may be shown that,

although the smallest unit cell is one which contains just

two rectangles, it is much more convenient to model the

structure through the rectangular unit cell shown and

defined in Fig. 4. The unit cell projections in the Ox1
and Ox2 directions are given as follows:

X11 ¼ 2 a cos
θ

2

� �

þ b sin
θ

2

� �� �

X22 ¼ 2 a sin
θ

2

� �

þ b cos
θ

2

� �� �

where in this case, if the rectangles are assumed to be

perfectly rigid and simply rotate relative to each other in

the plane of the structure, the system fulfils all the require-

ment to be a unimode mechanism where, for a given a

and b, the structural properties are fully defined through

the angle θ (the only variable during deformation).

Results and discussion

Comparison of the different methods for computing

strain and Poisson’s ratios

Without loss of generality, the different methods for

computing strains are illustrated for the system shown

in Fig. 1 for n = 5 where a wire-like system is stretched

from an initial length of Linit = L[0] = 100 mm to a final

length Lfin = L[5] = 150 mm, in successive increments of

δl[k] = 10mm, 12 mm, 8 mm, 10mm and 10mm. The

calculated strains using the different methods are given

in Table 1. These very simple calculations highlight

three important characteristics, which might sound triv-

ial, but are worth stating:

(i) The engineering strain, particularly when expressed

as a percentage, is useful to provide a very visual

representation of the deformation in a cumulative

manner: indeed, it is easy to visualise that the final

length is 50% longer than the starting length, a

feature which no other strain measurement can

provide;

(ii) The ‘instantaneous strain’ and the ‘true strain’ can

highlight the fact that the 10 mm increases in

length are not all equivalent: as the system is

stretched longer, successive 10 mm increases will

contribute to a smaller relative extension when

compared to earlier ones when the length was

shorter;

(iii)Only the engineering or true strains provide a

cumulative measure, one which could be used, for

example, to plot stress-strain curves, this being an

obvious consequence of the manner how the

‘instantaneous strain’ is calculated.

Nevertheless, the distinction between the three differ-

ent methods of computing the strain becomes more

Fig. 4 The type I rotating rectangles system represented through a rectangular unit cell and its alignment in space
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evident when used to compute the Poisson’s ratio. Once

again, without loss of generality, these different methods

for computing strains and Poisson’s ratios are illustrated

in Fig. 5a for a system based on nine measurements (see

Table 2), these being labelled A-I. Here, the system is

being stretched in the vertical Ox2 direction so its height

changes from X22 = 30mm to X22 = 62mm. As this is

happening, the width X11 of the system in the Ox1 direc-

tion is initially decreasing as the system gets thinner

(from A to C), then its width X11 remains constant (from

C to D), and then X11 increases (from D to H) in such a

manner that system F has the same width as the original

system A, with systems G and H having a width which is

larger than system A. The width X11 of the system then

decreases again (from H to I) in such a manner that

system I has a smaller width X11 than system H, which

width is still larger when compared to that of the

original system A.

The strains and Poisson’s ratios computed through the

different methods are reported in Table 2 and plotted in

Fig. 5c against the vertical height Y and the engineering

strain. From these results, taking system A as the initial

system, it is evident that the reported Poisson’s ratio is

very much dependent on the manner how the strains are

computed. Of the three methods, it is only the instant-

aneous Poisson’s ratio that could capture the observation

that there was no change in width upon stretching from

X22 = 38 to X22 = 42mm (C to D), something which

would correspond to zero Poisson’s ratio. Similarly, the

very evident auxeticity which is demonstrated as the

system is stretched from X22 = 42mm is not captured by

the engineering Poisson’s ratio and the true Poisson’s

ratio, since between X22 = 42 mm and X22 = 50mm (D

to F), the width of the system would be smaller or equal

to that of the original sample. All three methods of cal-

culating Poisson’s ratio report auxeticity when stretched

beyond X22 = 50 mm till X22 = 58mm, as expected, but

only the instantaneous Poisson’s ratio could capture the

non-auxetic characteristics on stretching from X22 = 58

mm till X22 = 62 mm (H to I). From this perspective,

one could easily conclude that the Poisson’s ratio

computed from the instantaneous strains is superior to

the other methods. However, whilst from a purely scien-

tific perspective, one cannot contradict the fact that the

system is auxetic as it is stretched from X22 = 42mm

onwards, it should be equally recognised that from a

practical perspective, the evident auxeticity in the region

between X22 = 42 to X22 = 50 mm could well be useless.

In fact, from a practical perspective it is only the widen-

ing compared to the initial system which is of important

result since in a number of practical situations, it is only

‘before’ and ‘after’ states which matter, and not the path

taken during the deformation. An example of this would

be in devices such as rivets where, for proper affixation,

the width would need to be larger than the original.

Such information can be more easily obtained from the

engineering Poisson’s ratio or the true Poisson’s ratio,

since the system where the width would have once again

reached that of the original sample (system F, X22 = 50

mm) would have an engineering or true Poisson’s ratio

of zero, beyond which auxeticity is reported. Unfortu-

nately, this important information, at least from a prac-

tical perspective, is not easy to extrapolate from the data

relating to the instantaneous Poisson’s ratio as there is

nothing remarkable about the instantaneous Poisson’s

ratio of system F. It should also be noted that although

the system was not behaving in an auxetic manner as it

was stretched from X22 = 58 to X22 = 62 mm (H to I), its

width is still larger than that of the original sample,

something which is not identifiable from the instantan-

eous Poisson’s ratio.

However, it is equally true that knowledge of

Poisson’s ratio during the deformation path could be

important in other practical applications. For example,

had the application been a cable passing through a

hole, where the sample is pulled from an initial length

to a final length, and in the process change the thick-

ness to an appropriate final thickness, knowledge of

the dimensional changes as the sample is stretched

would have been of paramount importance, for in-

stance, so as to ensure that the thickness achievable

through the deformation process would always be

smaller than the hole the cable is passing through.

Similarly, in applications where the sample needs to be

“seen” getting fatter as it is stretched, then the only

usable portion of the deformation would be that where

the instantaneous Poisson’s ratios give a negative

Poisson’s ratio (or positive if the sample needs to be

‘seen’ getting thinner).

At this point, it should be noted that the engineering

and true Poisson’s ratios are particularly sensitive to the

choice of the initial system. In fact, very different results

would have been obtained if, for example, system D is

chosen as the initial structure. In this case, since system

C corresponds to a conformation which represents the

Table 1 The linear dimensions of the system in Fig. 1 and the

calculated engineering strain, the engineering strain as a

percentage, the instantaneous strain and the true strain

k L[k] δL[k] ΔL[k] eeng e (%) δε etrue

0 100 0 0 0.000 0 0.000 0.000

1 110 10 10 0.100 10 0.100 0.095

2 122 12 22 0.220 22 0.109 0.199

3 130 8 30 0.300 30 0.066 0.262

4 140 10 40 0.400 40 0.077 0.336

5 150 10 50 0.500 50 0.071 0.405

Grima-Cornish et al. International Journal of Mechanical and Materials Engineering            (2021) 16:4 Page 9 of 22



main ‘turning point’ in the behaviour, there is much less

disagreement between the different formulations of the

Poisson’s ratio. Nevertheless, it must be emphasised that

for real samples, the initial conformation cannot be arbi-

trarily chosen.

Obviously, it must be emphasised that the qualitative

aspect of this information could also have been extracted

from looking at the original data related to the

dimensions, i.e. ‘X11’ vs ‘X22’, plotted in Fig. 5b. In such

plots, one would need to look at the gradients to assess

the sign of the instantaneous Poisson’s ratio and the

relative positions between two points to assess the sign

of the engineering/true Poisson’s ratios. More specific-

ally, for the ‘instantaneous Poisson’s ratio’, a positive gra-

dient in the ‘dimensions’ plot would indicate auxeticity,

a zero gradient would indicate a zero Poisson’s ratio

Fig. 5 a A hypothetical 2D system being stretched from a length of 30 to 62mm in the vertical direction; b plot of the width vs the length, c, d

plots of the Poisson’s ratios vs. length or engineering strain, with the initial system being A for c and D for d
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whilst a negative gradient would indicate positive Pois-

son’s ratio. Similarly, the sign of the engineering/true

Poisson’s ratio can be worked out from the gradient of

the line joining two datapoints, one of which should be

the original system.

The Poisson’s ratio properties of hexagonal honeycombs

Applying the method presented above, for the honey-

comb system for loading in the vertical Ox2 or horizon-

tal Ox1 direction, one obtains the following:

(1) Engineering strains and engineering Poisson’s ratio:

e
eng
1 θð Þ ¼

sin θð Þ − sin θ0ð Þ

sin θ0ð Þ

e
eng
2 θð Þ ¼ −

l cos θð Þ − l cos θ0ð Þ

h − l cos θ0ð Þ

¼ −

cos θð Þ − cos θ0ð Þ

h=l − cos θ0ð Þ

ν
eng
21 ¼ ν

eng
12

� �

− 1
¼ −

e
eng
1

e
eng
2

¼
sin θð Þ − sin θ0ð Þ

cos θð Þ − cos θ0ð Þ

h=l − cos θ0ð Þ

sin θ0ð Þ

(2) Infinitesimally small strains and Poisson’s function:

dε1 θð Þ ¼
dX11

X11
¼

1

X11

dX11

dθ
dθ ¼

2l cos θð Þ

2l sin θð Þ
dθ ¼

cos θð Þ

sin θð Þ
dθ ¼ cot θð Þdθ

dε2 θð Þ ¼
dX11

X11
¼

1

X11

dX11

dθ
dθ ¼

2l sin θð Þ

2h − 2l cos θð Þ
dθ ¼

sin θð Þ

h=l − cos θð Þ
dθ

ν21 ¼ ν12ð Þ − 1 ¼ −
dε1

dε2
¼ −

h=l − cos θð Þð Þ cos θð Þ

sin2 θð Þ

(3) True strains and true Poisson’s ratio:

etrue1 θð Þ ¼ ln
X11 θð Þ

X11 θoð Þ

� �

¼ ln
2l sin θð Þ

2l sin θoð Þ

� �

¼ ln
sin θð Þ

sin θoð Þ

� �

¼ ln sin θð Þð Þ − ln sin θoð Þð Þ

etrue2 θð Þ ¼ ln
X22 θð Þ

X22 θoð Þ

� �

¼ … ¼ ln
h=l − cos θð Þ

h=l − cos θoð Þ

� �

¼ ln h=l − cos θð Þð Þ − ln h=l − cos θoð Þð Þ

νtrue21 ¼ νtrue12

� �

− 1
¼ −

etrue1

etrue2

¼ −
ln sin θð Þð Þ − ln sin θoð Þð Þ

ln h=l − cos θð Þð Þ − ln h=l − cos θoð Þð Þ

It should be noted that, due to physical constraints,

if the structure had to be loaded in tension in the

horizonal Ox1 direction, the system would not have

been able to go past the 90o conformation (T-shaped

joints) through the hinging mechanism as this would

represent a locking position. There are no such lock-

ing positions for loading in the vertical Ox2 direction

(apart from the extreme conformations were θ = 0o or

θ = 180o).

Typical results for the hexagonal honeycombs

where l = 1 and h = 2 (i.e. as in Fig. 6 below) are

reported through plots of the unit cell lengths, plot-

ted against each other and against θ (Fig. 7), as well

as the so derived Poisson’s ratio plotted against the

applied engineering strain and the angle θ for the

systems (Fig. 8). These plots were produced for vari-

ous initial conformations of the honeycomb which

include the ones where honeycombs are almost fully

closed. In the case of the true Poisson’s ratio, this is

also plotted against the applied true strain.

The Poisson’s ratio properties of the type I rotating

rectangles

Using the procedure described above, the strains and

Poisson’s ratios for the ‘rotating rectangles’ system may

be expressed as follows:

Table 2 The dimensions of the system (in mm) in Fig. 5 together with the strains and Poisson’s ratio computed. System A is

considered as the initial structure

Dimensions Strains in y-direction Strains in x-direction Poisson’s ratio ν21

X22 X11 e
eng
2

δε2 etrue2 e
eng
2

δε2 etrue2 Eng. Instant True

A 30 25

B 34 22 0.133 0.133 0.125 -0.120 -0.120 -0.128 0.900 0.900 1.021

C 38 17 0.267 0.118 0.236 -0.320 -0.227 -0.386 1.200 1.932 1.631

D 42 17 0.400 0.105 0.336 -0.320 0.000 -0.386 0.800 0.000 1.146

E 46 23 0.533 0.095 0.427 -0.080 0.353 -0.083 0.150 -3.706 0.195

F 50 25 0.667 0.087 0.511 0.000 0.087 0.000 0.000 -1.000 0.000

G 54 28 0.800 0.080 0.588 0.120 0.120 0.113 -0.150 -1.500 -0.193

H 58 31 0.933 0.074 0.659 0.240 0.107 0.215 -0.257 -1.446 -0.326

I 62 27 1.067 0.069 0.726 0.080 -0.129 0.077 -0.075 1.871 -0.106
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Fig. 6 To-scale representation of the hinging honeycombs with h = 2, l = 1 as these are stretched/compressed in the vertical or horizontal

direction. Note that systems where θ < 90o cannot be pulled in the horizontal direction past the system where θ = 90o to achieve θ > 90o whilst

the systems where θ > 90o cannot be pulled in the horizontal direction past the system where θ = 90o to achieve θ < 90o, i.e. θ = 90o

corresponds to a ‘locking conformation’ for pulling in the horizontal direction

Fig. 7 a The cell parameters for the honeycombs plotted against each other. b The cell parameters plotted against the parameter θ. Note that

the plot in (a-i) would be most useful for loading in Ox2 whilst that in (a-ii) for loading in Ox1, where the turning point corresponds to the locked

conformation (θ = 900) and the lower portion refers to angles less than 900 whilst the upper portion refers to angles more than 900
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(1) Engineering strains and engineering Poisson’s ratio:

e
eng
1 θð Þ ¼

a cos
θ

2

� �

þ b sin
θ

2

� �

− a cos
θ0

2

� �

− b sin
θ0

2

� �

a cos
θ0

2

� �

þ b sin
θ0

2

� �

e
eng
2 θð Þ ¼

b cos
θ

2

� �

þ a sin
θ

2

� �

− b cos
θ0

2

� �

− a sin
θ0

2

� �

b cos
θ0

2

� �

þ a sin
θ0

2

� �

(2) Infinitesimally small strains and Poisson’s function:

dε1 θð Þ ¼

− a sin
θ

2

� �

þ b cos
θ

2

� �

2a cos
θ

2

� �

þ 2b sin
θ

2

� �

dε2 θð Þ ¼

a cos
θ

2

� �

− b sin
θ

2

� �

2a sin
θ

2

� �

þ 2b cos
θ

2

� �

ν
f
21 ¼ ν

f
12

� 	

− 1

¼ −

a sin
θ

2

� �

þ b cos
θ

2

� �� �

− a sin
θ

2

� �

þ b cos
θ

2

� �� �

a cos
θ

2

� �

þ b sin
θ

2

� �� �

a cos
θ

2

� �

− b sin
θ

2

� �� �

¼

a2 sin2
θ

2

� �

− b2 cos2
θ

2

� �

a2 cos2
θ

2

� �

− b2 sin2
θ

2

� �

Fig. 8 Plots of the Poisson’s ratios for honeycombs having h = 2, l = 1 for an initial configuration having an angle between the ligaments of θo =

30o plotted against strain (left) and against the angle θ (right). The shaded region (grey) highlights a non-accessible range of angles. Note that in

the case of axial straining in the Ox2 direction, a second set of plots is presented which highlights a smaller range of Poisson’s ratios

ν
eng
21 ¼ ν

eng
12

� �

− 1
¼ −

a cos
θ

2

� �

þ b sin
θ

2

� �

− a cos
θ0

2

� �

− b sin
θ0

2

� �� �

b cos
θ0

2

� �

þ a sin
θ0

2

� �� �

b cos
θ

2

� �

þ a sin
θ

2

� �

− b cos
θ0

2

� �

− a sin
θ0

2

� �� �

a cos
θ0

2

� �

þ b sin
θ0

2

� �� �
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(3) True strains and true Poisson’s ratio:

εtrue1 θð Þ ¼ ln

a cos
θ

2

� �

þ b sin
θ

2

� �

a cos
θ0

2

� �

þ b sin
θ0

2

� �

2

6

6

4

3

7

7

5

εtrue2 θð Þ ¼ ln

b cos
θ

2

� �

þ a sin
θ

2

� �

b cos
θ0

2

� �

þ a sin
θ0

2

� �

2

6

6

4

3

7

7

5

νtrue21 ¼ νtrue12

� �

¼ −

ln

a cos
θ

2

� �

þ b sin
θ

2

� �

a cos
θ0

2

� �

þ b sin
θ0

2

� �

2

6

6

4

3

7

7

5

ln

b cos
θ

2

� �

þ a sin
θ

2

� �

b cos
θ0

2

� �

þ a sin
θ0

2

� �

2

6

6

4

3

7

7

5

Note that in this case, as amply discussed elsewhere

(Grima et al., 2004; Grima, Alderson, & Evans, 2005),

there are locking conformations which correspond to

the conformations when the diagonals of rectangular
units become aligned to the direction of loading. As
shown in Fig. 9, for loading in the Ox2 direction, these

angles correspond to 2ϕ2 + θm2 = 180o where ϕ2

¼ tan − 1ðb
a
Þ whilst for loading in Ox1 direction, they

correspond to 2ϕ1 + θm1 = 180o where ϕ1 ¼ tan − 1ða
b
Þ .

Thus, for this specific case where loading is in the Ox2
direction, if the original structure has an angle between
the rectangles of θ0, where 0o < θ0 < θm2, then the system
cannot be stretched past θ = θm2, at which angle, X22 is
at a maximum. Similarly, for θm2 < θ0 < 180

o. The prac-
tical relevance of these conformations may be appreci-
ated better in Fig. 10 below which shows a to-scale
representation of the rotating rectangles model were a =
2 and b = 1. This image also visually highlights the typ-
ical Poisson’s ratio properties of these systems.

General discussion

The intention of this discussion will not be to focus on

the ability of these systems to exhibit negative Poisson’s

ratios as such properties are amply documented (Abd

El-Sayed et al., 1979; Evans et al., 1995; Gibson et al.,

1982; Grima et al., 2004; Grima, Alderson, & Evans,

2005; Masters & Evans, 1996). Instead, the focus will be

to discuss the appropriateness of the various Poisson’s

ratios to represent what is really happening as the sys-

tems are being stretched or compressed. To do this, it is

important to interpret the plots of the Poisson’s ratios in

conjunction with the images depicting the systems and

the plots of the unit cell parameters.

Looking at the honeycomb systems shown in Fig. 6,

without loss of generality, the discussion will first focus

on the properties when the starting conformation is a

re-entrant honeycomb having a geometry where the

Fig. 9 The ‘locking conformations’ of the type I rotating rectangles system as this is stretched in a the Ox2 direction and b the Ox1 direction.

Note that locking occurs when diagonals of rectangular units become parallel to the direction of loading as this would correspond to the most

stretched conformation in that direction
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initial angle between the ligaments is θ0 = 30o. This is a

representative dimension in the Ox2 direction of X22 ≈

2.27 mm. Recognising that the representative dimensions

in the Ox2 direction can span from X22 = 2.00 mm (fully

closed re-entrant system, θ = 0o) to X22 = 6.00 (fully

closed non re-entrant system, θ = 180o), this corresponds

to a structure which is very near to the fully closed re-

entrant conformation. From the perspective of dimen-

sions in the horizontal direction, θ0 = 30o corresponds to

X11 = 1.00 mm, which corresponds to the median size,

since in this case, the permissible range of values is be-

tween 0.00 mm (corresponding to the hypothetical fully

closed system) and 2.00 mm (corresponding to the fully

stretched structure with T-shaped joints). This suggests

that this system can be compressed by c. 0.27 mm in the

vertical direction, which would result in a massive hori-

zontal contraction of almost ×4 this amount (c. 0.97) to

become, at least in theory, negligibly thin. This situation

for compressing in the vertical direction presents one of

the classical dilemmas on the Poisson’s ratio and how

this should be reported. On the one hand, one could

argue that the system is simply contracting by a finite

amount when it is strained by another finite amount,

resulting in a Poisson’s ratio which obviously should be

large in magnitude, but finite. Such a Poisson’s ratio is

reported through the engineering or true Poisson’s ratio,

which in this case is negative (as it should be) since the

system is contracting laterally as it is compressed, and

large in magnitude, reflecting the fact that the system

shrinks laterally by a very substantial amount (see

structures in Fig. 6). Nonetheless, one could equally

argue that since this system becomes, theoretically, infin-

itely thin as it is axially compressed, reporting of a Pois-

son’s ratio ν21 which tends to −∞ would be merited. Such

‘giant auxeticity’ is only obtainable by the Poisson’s func-

tion. Here, it should however be mentioned that the three

formulations of the Poisson’s ratio can be considered as

relatively concordant at least when compared to other sit-

uations where the difference is much more pronounced.

For example, if one looks at the same system when this is

subjected to a tensile load in the vertical direction, one

would notice that the three versions of the Poisson’s ratios

differ substantially from each other, even in sign. The

‘true’ and ‘engineering’ Poisson’s ratios seem to suggest

that auxetic behaviour is retained till the system is

stretched from 0% strain (θ0 = 30o) till reaching an engin-

eering strain of c. 1.50, representing an axial extension of

c. 150% (θ = 150o, which is almost the fully stretched con-

formation in Ox2 direction). This tallies with the observa-

tion that if one had to compare a ‘before’ and ‘after’

scenario, there is always an evident widening upon

stretching compared to the initial system. As noted above,

from a practical perspective, this extensive widening com-

pared to the initial system is an important result since in a

number of practical situations, it is these ‘before’ and

‘after’ states which are of utmost importance, and not the

path undertaken during the deformation. On the other

hand, if knowledge of Poisson’s ratio during the deform-

ation path is required, for example, in applications where

the sample needs to be “seen” getting fatter as it is

Fig. 10 To-scale representation of the rotating rectangles model were a = 2 and b = 1. Note that the different conformations in a correspond to

0o < θ < 126.87o whilst those in b correspond to 126.87o < θ < 180o
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stretched, then the only usable ‘auxetic’ portion of the de-

formation would be till stretching by c. 76% (e
eng
2 ≈ 0:76,

θ = 90o) as it is only till that conformation that the sample

is visibly getting wider, following which it would start to

contract again (see Fig. 6), as expected, since such honey-

combs are not re-entrant. This information is only ex-

tractable from the Poisson’s function.

It is sometimes also equally important to have know-

ledge of the Poisson’s ratio at some particular extent of

deformation. For example, if the application is such that

the system needs to be initially deformed, and after this

deformation, the Poisson’s ratio of the ‘stretched (or

compressed) sample’ would still need to be negative,

then the Poisson’s function would need to be considered.

A practical example of this is in the use of auxetics for

the manufacture of insoles where, to be able to benefit

from the advantages associated with auxeticity, the sam-

ple needs to retain the auxeticity after contracting due

to the effect of the bodyweight of the individual.

All this may suggest that the Poisson’s function offers

the most advantages compared to other methods of

reporting the Poisson’s ratio. However, the results

reported here also suggest that the formulation of

Poisson’s function is rather inadequate to describe the

behaviour of systems which approach a ‘locking con-

formation’. This can be very clearly seen by looking at

the results for loading in the horizontal direction where

the Poisson’s function seems to suggest that the system

should be exhibiting giant auxeticity as it is approaching

the θ = 90o conformation. Nevertheless, when looking at

the conformations in Fig. 6, this supposedly giant auxeti-

city is not easy to detect. In fact, an analysis of the

deformations clearly suggests that there is nothing

remarkable as the system is stretched on approaching

θ = 90o (e
eng
1 →1:00) with the engineering and true Pois-

son’s ratio reporting a more modest value of − 0.76 and

− 0.82, respectively, which is more in line with what is

being observed. The artificial report of ‘giant auxeticity’

as e
eng
1 →1:00 may be explained by the fact that the ex-

pression for the Poisson’s function involves a division by

0, since in the following:

ν
f 0n
12 θð Þ ¼ −

dε2 θð Þ

dε1 θð Þ
¼ −

X22

X11

dX22

dθ

� �

dX11

dθ

� �

− 1

dX11

dθ
¼ cosðθÞ ¼ 0 when θ = 90o, a maximum turning

point in the plot of X11 vs. θ.

Unfortunately, from a physical perspective this corre-

sponds to a ‘locking conformation’ (i.e. a point where

deformation becomes blocked) and not one where the

system gets very significantly thicker as it is stretched,

and hence one may conclude that this report of sup-

posedly ‘giant auxeticity’ is a mere artefact of the method

used rather than a real effect. All these emphasise that

no formulation of the Poisson’s ratio that have been for-

mulated so far can be considered as being optimal.

Focusing the attention on the results obtained when

the starting conformation is a re-entrant honeycomb

where the initial angle between the ligaments is θ0 =

1.00o, i.e. a re-entrant conformation which is practically

fully closed and almost infinitly thin, differences between

the output of the different formulations, and some other

inadequacies, come to light. Looking first at stretching

in the vertical direction, with this starting conformation,

the system can be stretched from a practically infinitely

thin conformation (re-entrant) to another practically in-

finitely thin conformation (the non-re-entrant, where

θ→ 180o, e
eng
1 →2:00) with the widest conformation be-

ing mid-way through the deformation when θ = 90o (e
eng
1

¼ 1:00). Here, the three formulations of the Poisson’s ra-

tio differ significantly from each other with the engineer-

ing form predicting giant auxeticity over most of the

range of stretching (even when the thickness is actually

decreasing) to describe the fact that, compared with the

initial system, the width of the stretched system would

always have increased by orders of magnitude thus

becoming very noticeably wider when compared to the

practically infinitly thin initial conformation. From this

perspective, it is the engineering Poisson’s ratio which

highlights best the giant auxeticity, and, as noted before,

the Poisson’s function reports the Poisson’s ratio as it

varies along the path, changing sign from negative to

positive mid-way when θ = 90o. However, in this case,

the most remarkable differences can be spotted when

stretching in the Ox1 horizontal direction where the

engineering Poisson’s ratio reports near zero negative

values almost throughout the deformation whilst the

Poisson’s function reports a much larger negative value

which tends to −∞ as the system approaches the ‘locking

conformation’ when θ = 90o. In analogy to what was dis-

cussed before, such giant auxeticity is just an artefact of

the method rather than a massive expansion upon

stretching. What needs to be considered well is the re-

port of the near zero engineering Poisson’s ratios, which

brings its own niche of importance and practical applica-

tions (Attard & Grima, 2011; Gaal, Rodrigues, Dantas,

Galvão, & Fonseca, 2020; Grima et al., 2010). One could

argue that the observed increase in size in the Ox2 direc-

tion upon stretching in the Ox1 direction is not insignifi-

cant (i.e. the magnitude of the Poisson’s ratio should not

be too low). However, one could equally argue that over

most of the deformation, this increase in width is prac-

tically insignificant when compared to the manifold

increase in size that is experienced in the direction of

stretching (Ox1), i.e. a Poisson’s ratio close to zero is

justifiable. In fact, on closer observation of Fig. 6, one

may note, for example, that as θ changes from 1 to 30o,
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although there is a gigantic increase in the length in the

direction of stretching, the width only changes by a

comparatively negligible amount from c. 2 to c. 2.27 (c.

10%.).

An obvious remark that should also be made at this

point is that, in addition to what is stated above, an

advantage of using the Poisson’s function is that it is

independent of the starting conformation, i.e. in some

aspects, it is more amenable for discussion and report-

ing. In contrast, the engineering and true Poisson’s

ratios are highly dependent on the initial conformation,

as evident when one compares Figs. 8, 11, and 12,

which consider systems with a different initial conform-

ation, including one where the initial conformation is

not re-entrant, from which plots similar conclusions to

those discussed above can be drawn.

At this point, it should be remarked that the findings on

the differences between the forms of the Poisson’s ratios

as reported for the hexagonal honeycomb are also trans-

ferable to other systems. To show this, similar plots are

also reported for the type I rotating rectangles with a = 2

and b = 1 (as drawn to scale in Fig. 10) where the initial

conformation has θ0 = 20o and θ0 = 160o (see Fig. 13). Note

that when the rectangles have these dimensions, the lock-

ing angle for uniaxial loading in the Ox2 direction is θm2 =

126.87o, i.e. the system with θ0 = 20o can be operated

through stretching/compression in the Ox2 direction

within the range 0o < θ < 126.87o whilst the system with

Fig. 11 Plots of the Poisson’s ratios for honeycombs having h = 2, l = 1 for an initial configuration having an angle between the ligaments of θo
= 1o plotted against strain (left) and against the angle θ (right). The shaded region (grey) highlights a non-accessible range of angles. Note that a

second set of plots is presented which highlights a smaller range of Poisson’s ratios
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θ0 = 160o can be similarly operated within the range

126.87o < θ < 180o, see Fig. 11. Note that at θ = 126.87o, the

system would be at its maximum dimensions in the Ox2
direction. As was the case for the honeycombs, an import-

ant conclusion that can be drawn is that the Poisson’s

function reported artificially large magnitudes of the

Poisson’s ratio as the system approached a locking con-

formation whilst the engineering and true Poisson’s ratio

formulations reported more realistic values. On the other

hand, the Poisson’s function once again offered the advan-

tage that it permitted to easily identify when a change in

behaviour (from ‘getting thinner’ to ‘getting fatter’, or vice

versa) was observed whilst the deformation was taking

place.

Given these various observations about the strengths

and weaknesses of the various forms of expressing the

Poisson’s ratio, it is rather difficult to conclude which form

is the best descriptor of reality, but one can definitely con-

clude that caution should be taken when interpreting any

results. In view of this, it would be ideal if the report of

the Poisson’s ratio as the ‘Poisson’s function’ (i.e. what is

typically reported in analytical models (Alderson & Evans,

1995; Evans et al., 1995; Gatt, Attard, Manicaro, Chetcuti,

& Grima, 2011; Grima & Evans, 2000; Grima, Gatt, et al.,

2005) is complemented with either the report of the en-

gineering or true Poisson’s ratio, as was done in isolated

cases (Alderson & Evans, 1995). An important remark that

should be made is that the true Poisson’s ratio formulation

seems to avoid most of the ‘extreme’ reports of the Pois-

son’s ratio. However, one must acknowledge that the true

strains may be difficult to relate to the actual extent of

deformation due to the use of the logarithmic function.

For example, a 50% extension would correspond to a true

strain of ln(1 + e) = ln(1 + 0.5) ≈ 0.405, a value which is not

of much ‘meaning’. Thus, had one to opt to report the

Poisson’s ratio as a ‘true Poisson’s ratio’, it would still be

preferable to plot it against the more meaningful engineer-

ing strain, which could in itself lead to confusion in inter-

pretation. Hence, from this aspect, the engineering

Poisson’s ratio is preferred over the true strain.

Before concluding, it must be noted that although this

work has emphasised on the best way of reporting the

Poisson’s ratio, it must be stressed that the plots of the

cell parameters themselves, which are generally not

given much importance, contain a wealth of information

in a very succinct manner. For example, when a load is

Fig. 12 Plots of the Poisson’s ratios for honeycombs having h = 2, l = 1 for an initial configuration having an angle between the ligaments of θo
= 150o plotted against strain (left) and against the angle θ (right). This initial conformation is a non-re-entrant system and thus not auxetic at

small strains. The shaded region (grey) highlights a non-accessible range of angles
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applied in the Oxi direction, plots of Xjj vs. Xii can yield

the sign of the Poisson’s function through the gradient,

since from the following:

ν
f 0n
ij θð Þ ¼ −

dε j θð Þ

dεi θð Þ
¼ −

dX jj=X jj

dX ii=X ii

¼ −
X ii

X jj

dX jj

dX ii

since Xjj and Xii are always positive, a negative Pois-

son’s ratio requires a positive gradient
dX jj

dX ii
. Furthermore,

it should be noted that such plots can be used to easily

identify locking conformations, as these are the confor-

mations where the graph ‘loops’. Here, it should be

noted that whenever a graph of Xjj vs. Xii ‘loops’ (as is

the case in X22 vs. X11 for the hexagonal honeycombs),

from a mathematical perspective, Xjj cannot be consid-

ered as a function of Xii. This can, however, be consid-

ered as a proper function by only considering part of the

data on a particular side of the locking conformation.

The magnitude of the gradient of these plots also gives a

very realistic measure of what one normally expects

from a Poisson’s ratio. Such data can usually be obtained

from both modelling and experiment (it is normally the

‘raw data’), and one may argue that it should become

more standard practice to report it, possibly alongside

the analysis of such data.

Fig. 13 Results for a typical type I rotating rectangles system with a = 2 and b = 1: a Plot of the cell parameters plotted against each other with

X22 on the x-axis since this corresponds to the direction of loading. The ‘loop’ in this figure indicates the presence of a locked conformation; b

the cell parameters plotted against the angle θ; c the Poisson’s ratios plotted against applied strain in the Ox2 direction for two different systems;

d the Poisson’s ratio plotted against the angular parameter θ where the shaded region indicates an inaccessible region. Plots (d-iii) and (d-iv) are

equivalent to (d-i) and (d-ii) but with a larger range plotted
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Conclusion

This work has compared the various ways how strain

may be defined and how the actual definition affects the

Poisson’s ratio being computed. It was shown that differ-

ent strain formulations result in rather different values

and trends in the Poisson’s ratio and that both the Pois-

son’s ratio computed using the engineering strains and

the ones obtained from the ‘instantaneous strains’ have

their advantages and disadvantages.

In particular from this work, it was concluded that the

various forms of determining the Poisson’s ratio comple-

ment each other in describing the behaviour of systems

which do not merely undergo infinitesimal deformations,

particularly those which could exhibit both positive or

negative Poisson’s ratio (depending on the actual con-

formation, or extent of applied strain). It was thus con-

cluded that the report of the Poisson’s ratio should

ideally be made both as the ‘Poisson’s function’ and as

the ‘engineering/true Poisson’s ratio’. A case was also

made for reporting the actual ‘sample’ dimensions (or

unit cell parameters) as these contain very useful and

unbiased information which describe the Poisson’s ratio

of the system. It was argued that given that such data is

normally easy to obtain from both modelling and experi-

ment (the ‘raw data’), it should become more standard

practice to report it. Such more complete reporting of

the Poisson’s ratio behaviour would provide a more visu-

ally descriptive and unbiased picture of the true behav-

iour of auxetic systems and thus be of benefit to permit

further research and development of systems studied

computationally.

Abbreviations

Oxi (i = 1,2,3): The mutually orthogonal Cartesian axis; εi (i = 1,2,3): Strain in

the Oxi direction (general definition); νij (i,j = 1,2,3): Poisson’s ratio in the Oxi-

Oxj plane for loading in the Oxi direction (general definition); e
eng
i

: Engineering strain in the Oxi direction; e
true
i (i = 1,2,3): True strain in the Oxi

direction; δεi(i = 1,2,3): Incremental strain in the Oxi direction;

dεi: Infinitesimally small incremental strain in the Oxi direction; ν
eng
ij (i,j =

1,2,3): Engineering Poisson’s ratio in the Oxi-Oxj plane for loading in the Oxi
direction (computed from engineering strains); νtrueij (i,j = 1,2,3): True Poisson’s

ratio in the Oxi-Oxj plane for loading in the Oxi direction (computed from

engineering strains); ν f
0n

ij (i,j = 1,2,3): Poisson’s function in the Oxi-Oxj plane

for loading in the Oxi direction (computed from incremental strains); a, b,

c: Unit cell vectors; Xij (i,j = 1,2,3): Component of the unit cell vectors, with

X11 and X22 being the projections of the unit cell in Ox1 and Ox2 directions,

respectively; Linit, Lfin: The initial and final length of a wire-like sample (defined

in Fig. 1); L[k], k = 0, 1, 2, 3, …: Successive length measures of a wire-like

sample (defined in Fig. 1); δL[k], k = 0, 1, 2, 3, …: Change in length between

successive measurements in a wire-like sample between measurement k-1

and measurement k (defined in Fig. 1); ΔL[k], k = 0, 1, 2, 3, …: Total change

in length from the initial length to kth measurement in a wire-like sample

(defined in Fig. 1); l1, l2, h, θ1, θ2: Geometric parameters which define the

shape of a generic hexagonal honeycomb (defined in Fig. 2); l, h,

θ: Geometric parameters which define the shape of the more symmetric

hexagonal honeycomb (defined in Fig. 2) where l1 = l2 = l and θ1 = θ2 = θ

throughout the deformation. For the hinging model discussed here, θ is a

variable whilst the other parameters are constants; a, b, θ: Geometric

parameters which define the shape of the rotating rectangles (defined in Fig.

4) For the hinging model discussed here, θ is a variable whilst the other

parameters are constants.; θo: The value of θ for the initial structure; θm: A

value of θ which corresponds to a ‘locking position’ (defined in Fig. 9 for

rotating rectangles)
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