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a b s t r a c t 

We propose a compartmental mathematical model for the spread of the COVID-19 disease with special 

focus on the transmissibility of super-spreaders individuals. We compute the basic reproduction number 

threshold, we study the local stability of the disease free equilibrium in terms of the basic reproduction 

number, and we investigate the sensitivity of the model with respect to the variation of each one of its 

parameters. Numerical simulations show the suitability of the proposed COVID-19 model for the outbreak 

that occurred in Wuhan, China. 
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. Introduction 

Mathematical models of infectious disease transmission dynam-

cs are now ubiquitous. Such models play an important role in

elping to quantify possible infectious disease control and mitiga-

ion strategies [1–3] . There exist a number of models for infectious

iseases; as for compartmental models, starting from the very clas-

ical SIR model to more complex proposals [4] . 

Coronavirus disease 2019 (COVID-19) is an infectious disease

aused by severe acute respiratory syndrome coronavirus 2 (SARS-

oV-2). The disease was first identified December 2019 in Wuhan,

he capital of Hubei, China, and has since spread globally, re-

ulting in the ongoing 2020 pandemic outbreak [5] . The COVID-

9 pandemic is considered as the biggest global threat world-

ide because of thousands of confirmed infections, accompanied

y thousands deaths over the world. Notice, by March 26, 2020,

eport 503,274 confirmed cumulative cases with 22,342 deaths.

t the time of this revision, the numbers have increased to
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,353,361 confirmed cumulative cases with 79,235 deaths, accord-

ng to the report dated by April 8, 2020, by the Word Health

rganization. 

The global problem of the outbreak has attracted the interest of

esearchers of different areas, giving rise to a number of proposals

o analyze and predict the evolution of the pandemic [6,7] . Our

ain contribution is related with considering the class of super-

preaders, which is now appearing in medical journals (see, e.g.,

8,9] ). This new class, as added to any compartmental model, im-

lies a number of analysis about disease free equilibrium points,

hich is also considered in this work. 

The manuscript is organized as follows. In Section 2 , we pro-

ose a new model for COVID-19. A qualitative analysis of the

odel is investigated in Section 3 : in Section 3.1 , we compute the

asic reproduction number R 0 of the COVID-19 system model; in

ection 3.2 , we study the local stability of the disease free equi-

ibrium in terms of R 0 . The sensitivity of the basic reproduction

umber R 0 with respect to the parameters of the system model is

iven in Section 4 . The usefulness of our model is then illustrated

n Section 5 of numerical simulations, where we use real data from

uhan. We end with Section 6 of conclusions, discussion, and fu-
ure research. 

https://doi.org/10.1016/j.chaos.2020.109846
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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Fig. 1. Flowchart of model (1) . 
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2. The proposed COVID-19 compartment model 

Based on a 2016 model [10] , and taking into account the ex-

istence of super-spreaders in the family of corona virus [11] , we

propose a new epidemiological compartment model that takes

into account the super-spreading phenomenon of some individu-

als. Moreover, we consider a fatality compartment, related to death

due to the virus infection. In doing so, the constant total popula-

tion size N is subdivided into eight epidemiological classes: sus-

ceptible class ( S ), exposed class ( E ), symptomatic and infectious

class ( I ), super-spreaders class ( P ), infectious but asymptomatic

class ( A ), hospitalized ( H ), recovery class ( R ), and fatality class ( F ).

The model takes the following form: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= −β I 

N 
S − lβ H 

N 
S − β

′ P 
N 

S, 

dE 

dt 
= β I 

N 
S + lβ H 

N 
S + β

′ P 
N 

S − κE, 

dI 

dt 
= κρ1 E − ( γa + γi ) I − δi I, 

dP 

dt 
= κρ2 E − ( γa + γi ) P − δp P, 

dA 

dt 
= κ( 1 − ρ1 − ρ2 ) E, 

dH 

dt 
= γa ( I + P ) − γr H − δh H, 

dR 

dt 
= γi ( I + P ) + γr H, 

dF 

dt 
= δi I + δp P + δh H, 

(1)

with β quantifying the human-to-human transmission coefficient

per unit time (days) per person, β
′ 

quantifies a high transmis-

sion coefficient due to super-spreaders, and l quantifies the rela-

tive transmissibility of hospitalized patients. Here κ is the rate at

which an individual leaves the exposed class by becoming infec-

tious (symptomatic, super-spreaders or asymptomatic); ρ1 is the

proportion of progression from exposed class E to symptomatic in-

fectious class I; ρ2 is a relative very low rate at which exposed in-

dividuals become super-spreaders while 1 − ρ1 − ρ2 is the progres-

sion from exposed to asymptomatic class; γ a is the average rate at

which symptomatic and super-spreaders individuals become hos-

pitalized; γ i is the recovery rate without being hospitalized; γ r is

the recovery rate of hospitalized patients; and δi , δp , and δh are
he disease induced death rates due to infected, super-spreaders,

nd hospitalized individuals, respectively. At each instant of time,

 (t) := δi I(t) + δp P (t) + δh H(t ) = 

dF (t ) 

dt 
(2)

ives the number of death due to the disease. The transmissibility

rom asymptomatic individuals has been modeled in this way since

t was not apparent their behavior. Indeed, at present, this question

s a controversial issue for epidemiologists. A flowchart of model

1) is presented in Fig. 1 . 

. Qualitative analysis of the model 

One of the most significant thresholds when studying infectious

isease models, which quantifies disease invasion or extinction in

 population, is the basic reproduction number [12] . In this section

e obtain the basic reproduction number for our model (1) and

tudy the locally asymptotically stability of its disease free equilib-

ium (see Theorem 1 ). 

.1. The basic reproduction number 

The basic reproduction number, as a measure for disease spread

n a population, plays an important role in the course and control

f an ongoing outbreak. It can be understood as the average num-

er of cases one infected individual generates, over the course of

ts infectious period, in an otherwise uninfected population. Using

he next generation matrix approach outlined in van den Driess-

he and Watmough [13] to our model (1) , the basic reproduction

umber can be computed by considering the below generation ma-

rices F and V , that is, the Jacobian matrices associated to the rate

f appearance of new infections and the net rate out of the corre-

ponding compartments, respectively, 

 F = 

⎡ 

⎢ ⎣ 

0 β β l β
′ 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎦ 

and 

J V = 

⎡ 

⎢ ⎣ 

κ 0 0 0 

−κρ1 � i 0 0 

−κρ2 0 � p 0 

0 −γa −γa � h 

⎤ 

⎥ ⎦ 

, 

here 

 i = γa + γi + δi , � p = γa + γi + δp and � h = γr + δh . (3)
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Table 1 

Values of the model parameters corresponding to the situation of Wuhan, as discussed in Section 5 , for which 

R 0 = 0 . 945 . 

Name Description Value Units 

β Transmission coefficient from infected individuals 2.55 day −1 

l Relative transmissibility of hospitalized patients 1.56 dimensionless 

β
′ 

Transmission coefficient due to super-spreaders 7.65 day −1 

κ Rate at which exposed become infectious 0.25 day −1 

ρ1 Rate at which exposed people become infected I 0.580 dimensionless 

ρ2 Rate at which exposed people become super-spreaders 0.001 dimensionless 

γ a Rate of being hospitalized 0.94 day −1 

γ i Recovery rate without being hospitalized 0.27 day −1 

γ r Recovery rate of hospitalized patients 0.5 day −1 

δi Disease induced death rate due to infected class 3.5 day −1 

δp Disease induced death rate due to super-spreaders 1 day −1 

δh Disease induced death rate due to hospitalized class 0.3 day −1 
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The basic reproduction number R 0 is obtained as the spectral

adius of F · V −1 , precisely, 

 0 = 

βρ1 (γa l + � h ) 

� i � h 

+ 

(βγa l + β
′ 
� h ) ρ2 

� p � h 

. (4) 

For the parameters used in our simulations (see Table 1 ), one

omputes this basic reproduction number to obtain R 0 = 0 . 945 .

his means that the epidemic outbreak that has occurred in

uhan was well controlled by the Chinese authorities. 

.2. Local stability in terms of the basic reproduction number 

Noting that the two last equations and the fifth of system

1) are uncoupled to the remaining equations of the system, we

an easily obtain, by direct integration, the following analytical re-

ults: 
 

 

 

 

 

A (t) = κ(1 − ρ1 − ρ2 ) 
∫ t 

0 E(s ) ds 

R (t) = γi 

∫ t 
0 

(
I(s ) + P (s ) 

)
ds + γr 

∫ t 
0 H(s ) ds 

F (t) = δi 

∫ t 
0 I(s ) ds + δp 

∫ t 
0 P (s ) ds + δh 

∫ t 
0 H(s ) ds. 

(5) 

Furthermore, since the total population size N is constant, one

as 

(t) = N − [ E(t) + I(t) + P (t) + A (t) + H(t) + R (t) + F (t) ] . (6) 

Therefore, the local stability of model (1) can be studied

hrough the remaining coupled system of state variables, namely,

he variables E, I, P , and H in (1) . The Jacobian matrix associated to

hese variables of (1) is the following one: 

 M 

= 

⎡ 

⎢ ⎣ 

−κ β lβ β
′ 

κρ1 −� i 0 0 

κρ2 0 −� p 0 

0 γa γa −� h 

⎤ 

⎥ ⎦ 

, (7) 

here ϖi , ϖp , and ϖh are defined in (3) . The eigenvalues of the ma-

rix J M 

are the roots of the following characteristic polynomial: 

(λ) = λ4 + a 1 λ
3 + a 2 λ

2 + a 1 λ + a 4 , 

here 

 1 = κ + � h + � i + � p , 

 2 = −βκρ1 − β
′ 
κρ2 + κ� h + κ� i + � h � i + κ� p 

+ � h � p + � i � p , 

 3 = −βγa κ lρ1 − βγa κ lρ2 − βκρ1 � h − β
′ 
κρ2 � h − βκρ1 � p 

− β
′ 
κρ2 � i + κ� h � i + κ� h � p + κ� i � p + � h � i � p , 

 4 = −βγa κ lρ2 � i − βγa κ lρ1 � p − β
′ 
κρ2 � i � h 

− βκρ1 � h � p + κ� h � i � p . 
p
Next, by using the Liénard–Chipard test [14,15] , all the roots of

 ( λ) are negative or have negative real part if, and only if, the fol-

owing conditions are satisfied: 

1. a i > 0, i = 1 , 2 , 3 , 4 ; 

2. a 1 a 2 > a 3 . 

In order to check these conditions of the Liénard–Chipard test,

e rewrite the coefficients a 1 , a 2 , a 3 , and a 4 of the characteristic

olynomial in terms of the basic reproduction number given by

4) : 

 1 = κ + � h + � i + � p , 

 2 = (1 − R 0 )(κ� i + κ� p ) + κ� p 
βρ1 

� i 

+ κ� i 

β
′ 
ρ2 

� p 

+ βγa lρ1 κ
(

1 

� h 

+ 

� p 

� h � i 

)
+ βγa lρ2 κ

(
1 

� h 

+ 

� i 

� h � p 

)

+(κ + � i ) � h + (� h + � i ) � p , 

 3 = κ(1 − R 0 )(� h � p + � h � i + � i � p ) + κ� p 
βρ1 � h 

� i 

+ κ� i 

β
′ 
ρ2 � h 

� p 
+ κ� p βγa lρ1 

(
1 

� h 

+ 

1 

� i 

)

+ κ� i βγa lρ2 

(
1 

� h 

+ 

1 

� p 

)
+ � i � h � p , 

 4 = κ� i � h � p (1 − R 0 ) . 

Moreover, we also compute, in terms of R 0 , the following ex-

ression: 

 1 a 2 − a 3 = (1 − R 0 )(κ + � i ) κ� i + (1 − R 0 )(κ + � h + � p ) κ� p 

+ (κ + � p + � i ) 
(
βρ1 

� p 
+ 

βγa lρ1 

� i 

)
κ� p 

+ (κ + � p + � i ) 
(
β

′ 
ρ2 

� p 
+ 

βγa lρ2 

� p 

)
κ� i 

+ (κ + � h + � i ) 
βγa lρ1 κ

� h 

+ (κ + � h + � p ) 
βγa lρ2 κ

� h 

+ (κ + � i ) � h + (� h + � i ) � p . 

From these previous expressions, it is clear that if R 0 < 1, then

he conditions of the Liénard–Chipard test are satisfied and, as a

onsequence, the disease free equilibrium is stable. In the case

hen R 0 > 1, we have that a 4 < 0 and, by using Descartes’ rule

f signs, we conclude that at least one of the eigenvalues is posi-

ive. Therefore, the system is unstable. In conclusion, we have just

roved the following result: 
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Table 2 

Sensitivity of R 0 evaluated for the 

parameter values given in Table 1 . 

Parameter Sensitivity index 

β 0.963 

l 0.631 

β
′ 

0.366 

κ 0.000 

ρ1 0.941 

ρ2 0.059 

γ a 0.418 

γ i −0.061 

γ r −0.395 

δi −0.699 

δp −0.027 

δh −0.238 
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Theorem 1. The disease free equilibrium of system (1) , that is, ( N , 0,

0, 0, 0, 0, 0, 0), is locally asymptotically stable if R 0 < 1 and unstable

if R 0 > 1 . 

Next we investigate the sensitiveness of the COVID-19 model

(1) , with respect to the variation of each one of its parameters, for

the endemic threshold (4) . 

4. Sensitivity analysis 

As we saw in Section 3 , the basic reproduction number for the

COVID-19 model (1) , which we propose in Section 2 , is given by

(4) . The sensitivity analysis for the endemic threshold (4) tells us

how important each parameter is to disease transmission. This in-

formation is crucial not only for experimental design, but also to

data assimilation and reduction of complex models [16] . Sensi-

tivity analysis is commonly used to determine the robustness of

model predictions to parameter values, since there are usually er-

rors in collected data and presumed parameter values. It is used

to discover parameters that have a high impact on the threshold

R 0 and should be targeted by intervention strategies. More accu-

rately, sensitivity indices’ allows us to measure the relative change

in a variable when a parameter changes. For that purpose, we use

the normalized forward sensitivity index of a variable with respect

to a given parameter, which is defined as the ratio of the relative

change in the variable to the relative change in the parameter. If

such variable is differentiable with respect to the parameter, then

the sensitivity index is defined as follows. 

Definition 1.1 (See [17,18] ) . The normalized forward sensitivity in-

dex of R 0 , which is differentiable with respect to a given parameter

θ , is defined by 

ϒR 0 
θ

= 

∂R 0 

∂θ

θ

R 0 

. 

The values of the sensitivity indices for the parameters values

of Table 1 , are presented in Table 2 . 

These values have been determined experimentally in such a

way the mathematical model describes well the real data, giving

rise to Figs. 2 and 3 . Other values for the parameters can be found,

e.g., in Aguilar et al. [19] . 

Note that the sensitivity index may depend on several param-

eters of the system, but also can be constant, independent of any

parameter. For example, ϒ
R 0 
θ

= +1 means that increasing (decreas-

ing) θ by a given percentage increases (decreases) always R 0 by

that same percentage. The estimation of a sensitive parameter

should be carefully done, since a small perturbation in such pa-

rameter leads to relevant quantitative changes. On the other hand,

the estimation of a parameter with a rather small value for the

sensitivity index does not require as much attention to estimate,
ecause a small perturbation in that parameter leads to small

hanges. 

From Table 2 , we conclude that the most sensitive parameters

o the basic reproduction number R 0 of the COVID-19 model (1) are

, ρ1 and δi . In concrete, an increase of the value of β will in-

rease the basic reproduction number by 96.3% and this happens,

n a similar way, for the parameter ρ1 . In contrast, an increase of

he value of δi will decrease R 0 by 69.9%. 

. Numerical simulations: the case study of Wuhan 

We perform numerical simulations to compare the results of

ur model with the real data obtained from several reports pub-

ished by WHO [20,21] and worldometer [5] . 

The starting point of our simulations is 4 January 2020 (day 0),

hen the Chinese authorities informed about the new virus [20] ,

ith already 6 confirmed cases in one day. From this period up to

anuary 19, there is less information about the number of people

ontracting the disease. Only on January 20, we have the report

21] , with 1460 new reported cases in that day and 26 the dead.

hus, the infection gained much more attention from 21 January

020, with 1739 confirmed cases and 38 the dead, up to 4 March

020, when the numbers in that day were as low as 11 and 7, re-

pectively infected and dead, after a pick of 3892 confirmed cases

n 27 January 2020 and a pick of 254 dead on 4 February 2020.

ere we follow the data of the daily reports published by [5] . We

how that our COVID-19 model describes well the real data of daily

onfirmed cases during the 2 months outbreak (66 days to be pre-

ise, from January 4 to March 9, 2020). 

The total population of Wuhan is about 11 million. During the

OVID-19 outbreak, there was a restriction of movements of in-

ividuals due to quarantine in the city. As a consequence, there

as a limitation on the spread of the disease. In agreement, in

ur model we consider, as the total population under study, N =
10 0 0 0 0 0 / 250 . This denominator has been determined in the first

ays of the outbreak and later has been proved to be a correct

alue: according to the real data published by the WHO, it is an

ppropriate value for the restriction of movements of individu-

ls. As for the initial conditions, the following values have been

xed: S 0 = N − 6 , E 0 = 0 , I 0 = 1 , P 0 = 5 , A 0 = 0 , H 0 = 0 , R 0 = 0 ,

nd F 0 = 0 . 

We would like to mention that there exist gaps in the reports of

he WHO at the beginning of the outbreak. For completeness, we

ive here the list L C of the number of confirmed cases in Wuhan

er day, corresponding to the green line of Fig. 2 , and the list L D of

he number of dead individuals in Wuhan per day, corresponding

o the red line of Fig. 3 : 

 C = [6 , 12 , 19 , 25 , 31 , 38 , 44 , 60 , 80 , 131 , 131 , 259 , 467 , 688 , 776 ,

776 , 1460 , 1739 , 1984 , 2101 , 2590 , 2827 , 3233 , 3892 , 3697 , 3151

387 , 2653 , 2984 , 2473 , 2022 , 1820 , 1998 , 1506 , 1278 , 2051 , 1772

891 , 399 , 894 , 397 , 650 , 415 , 518 , 412 , 439 , 441 , 435 , 579 , 206 , 

30 , 120 , 143 , 146 , 102 , 46 , 45 , 20 , 31 , 26 , 11 , 18 , 27 , 29 , 39 , 39] , 

L D = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 4 , 4 , 8 , 15 , 15 , 25 , 26 , 26 , 38 , 43 , 46 , 4

57 , 64 , 66 , 73 , 73 , 86 , 89 , 97 , 108 , 97 , 254 , 121 , 121 , 142 , 106 , 10

98 , 115 , 118 , 109 , 97 , 150 , 71 , 52 , 29 , 44 , 37 , 35 , 42 , 31 , 38 , 31 , 30

28 , 27 , 23 , 17 , 22 , 11 , 7 , 14 , 10 , 14 , 13 , 13] . 

Lists L C and L D have 66 numbers, where L C (0) represents the

umber of confirmed cases 04 January 2020 (day 0) and L C (65)

he number of confirmed cases 09 March 2020 (day 65) and, anal-

gously, L D (0) represents the number of dead on January 4, and

 (65) the number of dead on March 9, 2020. 
D 
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Fig. 2. Number of confirmed cases per day. The green line corresponds to the real data obtained from reports [5,20,21] while the black line ( I + P + H) has been obtained 

by solving numerically the system of ordinary differential Eq. (1) , by using the Matlab code ode45 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 3. Number of confirmed deaths per day. The red line corresponds to the real data obtained from reports [5,20,21] while the black line has been obtained by solving 

numerically, using the Matlab code ode45 , our system of ordinary differential Eq. (1) to derive D ( t ) given in (2) . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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. Conclusions and discussion 

Classical models consider SIR populations. Here we have taken

nto consideration the super-spreaders ( P ), hospitalized ( H ), and fa-

ality class ( F ), so that its derivative (see formula (2) ) gives the

umber of deaths ( D ). Our model is an ad hoc compartmental

odel of the COVID-19, taking into account its particularities, some

f them still not well-known, giving a good approximation of the
eality of the Wuhan outbreak (see Fig. 2 ) and predicting a di-

inishing on the daily number of confirmed cases of the disease.

his is in agreement with our computations of the basic reproduc-

ion number in Section 4 that, surprisingly, is obtained less than 1.

oreover, it is worth to mention that our model fits also enough

ell the real data of daily confirmed deaths, as shown in Fig. 3 . 

Our theoretical findings and numerical results adapt well to the

eal data and it reflects or reflected the reality in Wuhan, China.
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The number of hospitalized persons is relevant to give an estimate

of the Intensive Care Units (ICU) needed. Some preliminary simula-

tions indicate that this would be useful for the health authorities.

Our model can also be used to study the reality of other coun-

tries, whose outbreaks are currently on the rise. We claim that

some mathematical models like the one we have proposed here

will contribute to reveal some important aspects of this pandemia.

Of course, this investigation has some limitations, being the

first on the relative recent spread of the new coronavirus and

therefore the limited data accessible at the beginning of this study.

In the future, we can develop further this prototype. Even with

these shortcomings, the model can be useful due to the high rel-

evance of the topic. Finally, we suggest new directions for further

research: 

1. the transmissibility from asymptomatic individuals; 

2. compare, in the near future, our results with other models; 

3. consider sub-populations related to age, gender, etc.; 

4. introduce preventive measures in this COVID-19 epidemic and

for future viruses; 

5. integrate into the model some imprecise data by using fuzzy

differential equations; 

6. include the viral load of the infectious into the model. 

These and other questions are under current investigation and

will be addressed elsewhere. 
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