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Background Mathematical modeling constitutes an im-
portant tool for planning robust responses to epidemics. 
This study was conducted to guide the Qatari national 
response to the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) epidemic. The study investi-
gated the epidemic’s time-course, forecasted health care 
needs, predicted the impact of social and physical dis-
tancing restrictions, and rationalized and justified eas-
ing of restrictions.

Methods An age-structured deterministic model was 
constructed to describe SARS-CoV-2 transmission dy-
namics and disease progression throughout the popu-
lation.

Results The enforced social and physical distancing in-
terventions flattened the epidemic curve, reducing the 
peaks for incidence, prevalence, acute-care hospitaliza-
tion, and intensive care unit (ICU) hospitalizations by 
87%, 86%, 76%, and 78%, respectively. The daily num-
ber of new infections was predicted to peak at 12 750 on 
May 23, and active-infection prevalence was predicted 
to peak at 3.2% on May 25. Daily acute-care and ICU-
care hospital admissions and occupancy were forecast 
accurately and precisely. By October 15, 2020, the basic 
reproduction number R0 had varied between 1.07-2.78, 
and 50.8% of the population were estimated to have 
been infected (1.43 million infections). The proportion 
of actual infections diagnosed was estimated at 11.6%. 
Applying the concept of Rt tuning, gradual easing of re-
strictions was rationalized and justified to start on June 
15, 2020, when Rt declined to 0.7, to buffer the increased 
interpersonal contact with easing of restrictions and to 
minimize the risk of a second wave. No second wave has 
materialized as of October 15, 2020, five months after 
the epidemic peak.

Conclusions Use of modeling and forecasting to guide 
the national response proved to be a successful strategy, 
reducing the toll of the epidemic to a manageable level 
for the health care system.

Cite as: Ayoub HH, Him Chemaitelly H, Seedat S, Makhoul M, Al Kanaani Z, Al Khal A, Al Kuwari E, 
Butt AA, Coyle C, Jeremijenko A, Kaleeckal AH, Latif AN, Shaik RM, Rahim HA, Yassine HM, Al Kuwari 
MG, Al Romaihi HE, Al-Thani MH, Bertollini R, Raddad LJA. Mathematical modeling of the SARS-CoV-2 
epidemic in Qatar and its impact on the national response to COVID-19. J Glob Health 2021;11:05005.
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Mathematical modeling has become a fundamental tool to guide surveillance of infectious diseases and emer-
gency responses to epidemics [1-3]. Powered by surveillance and outbreak data, infection transmission mod-
els help monitor and predict epidemiological trends using real-time estimation of key indicators, such as inci-
dence of infection, severe and critical disease cases, disease mortality, and basic reproduction number (R

0
; the 

number of secondary infections each infection would generate in a fully susceptible population) [3,4].

Qatar is a peninsula located in the Arabian Gulf, with a diverse population of 2.8 million people [5]. Like other 
countries, Qatar has been affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic [6-12]. Yet, the nation mounted an evidence-informed national response, in which in addition to ear-
ly case identification, isolation, and quarantine through contact tracing, diverse standardized and centralized 
sources of data were generated, including population-based surveys. This wealth of data provided a special op-
portunity to understand infection transmission dynamics, predict health care needs associated with the resulting 
disease, coronavirus disease 2019 (COVID-19) [13], and to inform the global epidemiology of this infection.

Qatar has a unique socio-demographic structure that affected the transmission patterns of SARS-CoV-2 
[8,10,12], a respiratory infection that propagates through social networks. Nearly 90% of the population are 
expatriates [5,14,15] with craft and manual workers (CMWs) constituting 60% of the population [16]. Of the 
national subpopulations, Indians (28%) constitute the largest population segment [15], followed by Bangla-
deshis (13%) [15], Nepalese (13%) [15], Qataris (11%) [15], Egyptians (9%) [15], and Filipinos (7%) [15]. The 
CMW population is predominantly male, single, and young, with the top three countries of origin being India, 
Bangladesh, and Nepal [16]. Most CMWs live in shared housing accommodations akin to dormitories [17].

This study was conducted to describe SARS-CoV-2 transmission dynamics in Qatar and to craft a national re-
sponse using mathematical modeling of the epidemic time-course, predicting the impact of social and physical 
distancing restrictions and the impact of easing those restrictions, and forecasting health care needs, in terms 
of hospitalizations requiring acute-care and intensive care unit (ICU) beds. The study was possible thanks to 
a close collaborative partnership between Qatar’s Ministry of Public Health, Hamad Medical Corporation, and 
Weill Cornell Medicine-Qatar, and in collaboration with other national institutions such as the Primary Health 
Care Corporation, Qatar Biobank, and Qatar University. The study was initiated on February 20, 2020, before 
the identification of the first laboratory-confirmed case of community transmission on March 6, 2020, and 
has continued to provide real-time projections and forecasts, up to October 31, 2020 in the present study, us-
ing empirical data for SARS-CoV-2 infection for the period extending from February 5 to October 31, 2020.

The overarching aim of the present article was to provide the technical tools and a “case study” to demonstrate 
how individual countries can use mathematical modeling to effectively craft national public-health responses 
and to formulate evidence-based policy decisions that minimize the epidemic’s toll on morbidity, mortality, 
societies, and economies.

METHODS

Mathematical model

Building on our previously developed models [8,18-21], an age-structured, meta-population, deterministic 
mathematical model was constructed to describe SARS-CoV-2 transmission dynamics and disease progression 
(Figure S1 in the Online Supplementary Document). The model stratified the Qatari population into groups 
(“compartments”) according to the major nationality groups (Indians, Bangladeshis, Nepalese, Qataris, Egyp-
tians, Filipinos, and all other nationalities), age group by decile, infection status (infected, uninfected), severi-
ty of illness (asymptomatic/mild, severe, critical), and disease/hospitalization stage (severe, critical), using sets 
of coupled, nonlinear, differential equations. A detailed description of the model is available in Appendix S1 
of the Online Supplementary Document.

The risk of acquiring the infection varied between susceptible populations based on nationality, infectious con-
tact rate per day, age-specific exposure/susceptibility to the infection, and subpopulation-mixing and age-mix-
ing matrices parametrizing the mixing between individuals in different nationality and age groups. Following 
a latency period, infected individuals in the model develop an asymptomatic/mild, severe, or critical infection. 
The age-dependence of the proportions of infected persons developing asymptomatic/mild, severe, or criti-
cal infections was based on the modeled SARS-CoV-2 epidemic in France [22]. Severe and critical infections 
progress to severe and critical disease, respectively, prior to recovery. Patients are hospitalized in acute-care 
and ICU-care beds, respectively, based on existing standards of care in Qatar. Critical disease cases have an 
additional risk of COVID-19 mortality.
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The model was parameterized using the best available data for SARS-CoV-2 natural history and epidemiology. 
A detailed description of model parameters, definitions, values, and justifications is found in Tables S1-S2 in 
the Online Supplementary Document. The size and demographic structure of the population of Qatar were 
based on a population census conducted by Qatar’s Planning and Statistics Authority [5]. Life expectancy was 
obtained from the United Nations World Population Prospects database [23].

Model fitting and analyses

The model was fitted to the standardized and centralized databases of SARS-CoV-2 testing, infections, hospi-
talizations, and mortality extending from February 5 to October 31, 2020 [8], as well as to findings of ongo-
ing epidemiologic studies [8,10,24]. Data included: 1) time-series of the number of polymerase chain reaction 
(PCR)-confirmed SARS-CoV-2 cases, 2) time-series of the SARS-CoV-2 testing PCR positivity rate in each na-
tional subpopulation, 3) time-series of the PCR positivity rate in symptomatic patients with suspected SARS-
CoV-2 infection coming to primary health care centers, 4) time-series of the proportion of laboratory-confirmed 
SARS-CoV-2 cases aged >60 years, 5) time-series of new/daily hospital admissions in acute-care beds and ICU-
care beds, 6) the proportion of acute-care cases subsequently transferred to ICUs, 7) time-series of hospital 
occupancy in acute-care and ICU-care beds, 8) the cumulative number of deaths (not time series, due to the 
relatively small number of deaths), 9) a community survey assessing active-infections using PCR, 10) age-dis-
tribution of antibody positivity [8,10,24], and 11) national subpopulation distribution of antibody positivity 
[8,10,24]. A nonlinear least-square data fitting method, based on the Nelder-Mead simplex algorithm, was 
used to conduct the model fitting [25].

Model fitting was used to estimate, up to October 31, 2020, epidemiologic indicators such as incidence, prev-
alence, attack rate (proportion of the population ever infected), and R

0
, as well as to forecast acute-care and 

ICU-care hospital admissions and hospital bed occupancy. The model was further used to evaluate the im-
pact of implemented social and physical distancing restrictions by comparing model projections of the actual 
epidemic to those in a counter-factual scenario in which such interventions were not enforced. Informed by 
global estimates of R

0
 in the early epidemic that ranged between 2-4 [26,27], the counter-factual scenario with 

no interventions was implemented assuming R
t
 = 3. The model was also used to predict the impact of different 

scenarios for easing of social and physical distancing restrictions.

Uncertainty analysis

Five hundred simulation runs were conducted to determine the range of uncertainty attending model predic-
tions. At each run, Latin Hypercube sampling was applied in selecting input parameter values [28,29] from 
pre-specified ranges that assume ±30% uncertainty around parameter point estimates. The model was then 
refitted to input data. The resulting distribution for each model prediction, based on the 500 runs, was used 
to derive the mean and 95% uncertainty interval (UI).

Mathematical modeling analyses were conducted in MATLAB R2019a (Boston/MA/USA) [30] whereas statis-
tical analyses were performed in STATA/SE 16.1 (Stata Corp, College Station, TX, USA) [31].

RESULTS

The model fitted the various data sources (examples in Figures S2-S3 in the Online Supplementary Docu-

ment). Figure 1 shows model predictions for evolution of SARS-CoV-2 incidence, cumulative incidence, ac-
tive-infection prevalence, and attack rate in the total population. Peak incidence was estimated at 12 750 new 
infections on May 23, 2020 while peak prevalence was estimated at 3.2% on May 25, 2020. By October 15, 
2020, an estimated 1 426 500 infections were projected to have occurred, for a proportion of the population 
infected of 50.8%. Also by October 15, 2020, the proportion of all infections that had actually been diagnosed 
and confirmed by PCR was estimated at 11.6%. R

0
 varied between 1.07-2.78 from March 1 to October 15, 

with the highest values reached well after the onset of easing of restrictions on June 15, 2020 (Figure S4A in 
the Online Supplementary Document).

Figure 2, Panels A-B shows model-predicted daily hospital admissions in acute-care and ICU-care beds, re-
spectively. New hospital admissions were predicted to peak at 292 acute-care beds on May 22, 2020 and 23 
ICU-care beds on May 27, 2020. Figure 2, Panels C-D shows evolution of hospital occupancy in acute-care 
and ICU-care beds. Peaks were predicted at 1910 acute-care beds on May 27, 2020 and 244 ICU-care beds 
on June 6, 2020. The average hospital stay in an acute-care bed was estimated at 7.7 days while the stay in an 
ICU-care bed was estimated at 14.0 days. These model predictions agreed with actual COVID-19 hospital ad-
mission data (Figure S3 in the Online Supplementary Document).
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Figure 1. Model predictions for 
evolution of SARS-CoV-2 infec-
tions in the total population of 
Qatar. Panel A. Incidence (num-
ber of daily new infections). Pan-
el B. Cumulative number of 
infections. Panel C. Active-in-
fection prevalence (those latent-
ly infected or infectious). Panel 
D. Attack rate (proportion ever 
infected).

Figure 2. Model predictions for 
evolution of COVID-19 disease 
cases. Panel A. Daily hospital 
admissions in acute-care beds. 
Panel B. Daily hospital admis-
sions in ICU-care beds. Panel 
C. Cumulative number of hos-
pitalizations in acute-care beds. 
Panel D. Cumulative number 
of hospitalizations in ICU-care 
beds. Panel E. Hospital occu-
pancy of COVID-19 patients 
(number of beds occupied at any 
given time) in acute-care beds. 
Panel F. Hospital occupancy of 
COVID-19 patients (number of 
beds occupied at any given time) 
in ICU-care beds.
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Figure 3. Rationale and criteria 
used for the start of easing of so-
cial and physical distancing re-
strictions. Panels A-C show the 
model fit and results at the time 
when the policy decision was ac-
tually made. An updated predic-
tion for R

t
 is in Figure S4 of the 

Online Supplementary Docu-
ment. Panel A. Effective repro-
duction number R

t
 and easing of 

social and physical distancing 
restrictions. Panel B. Prediction 
of the number of daily new in-
fections with early easing of re-
strictions, three weeks before the 
epidemic peak. Panel C. Predic-
tion of the number of daily new 
infections with delayed easing 
of restrictions, three weeks af-
ter the epidemic peak. Panel D. 
The number of daily new diag-
nosed and laboratory-confirmed 
infections.

Discussions with policymakers to plan easing of social and physical distancing restrictions were initiated in April 
of 2020. The effective reproduction number (R

t
), the number of secondary infections each infection is generat-

ing at a given time, t, heavily influenced these discussions. Based on the model-predicted evolution of R
t
 at that 

time (Figure 3, Panel A), it was advised that no easing of restrictions should occur before the epidemic peak, 
then predicted to occur on May 20, as the epidemic was still in its exponential growth phase (R

t
>1). Model 

simulations confirmed that premature easing of restrictions would result in epidemic amplification (Figure 3, 
Panel B). To minimize the likelihood of a second wave and to buffer against a potential increased contact rate 
in the population, it was advised that easing of restrictions should not start before R

t
 reached 0.70, and that 

easing of restrictions should be implemented gradually over at least two months. Model simulations confirmed 
this rationale, and indicated that gradual easing of restrictions after R

t
 reached 0.70 would minimize the risk 

of a second wave (Figure 3, Panel C). Accordingly, policymakers planned and subsequently implemented a 
gradual easing of restrictions starting June 15, 2020, the day on which R

t
 was predicted to decline to 0.7. This 

line of analysis and rationale proved successful, as no second wave had materialized as of October 15, 2020, 
five months after the epidemic peak (Figure 3, Panel D).

Figure 4 and Figure S5 in the Online Supplementary Document show the predicted evolution of the epi-
demic in the counter-factual scenario of no social and physical distancing interventions. In the absence of these 
interventions, the epidemic would have peaked at 97 100 new infections per day on April 3, 2020 (Figure 4, 
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Panel A), and at a prevalence of 23.4% on April 5, 2020 (Figure 4, Panel B). New hospital admissions would 
have peaked at 1235 acute-care bed admissions on April 7, 2020 (Figure 4, Panel C) and at 103 ICU-care 
bed admissions on April 10, 2020 (Figure 4, Panel D). Accordingly, by October 15, 2020, the enforced social 
and physical distancing restrictions reduced the peaks for incidence, prevalence, and acute-care and ICU-care 
hospital admissions by >75% (Figure 4, Panels A-D), and averted 840 000 infections (37%; Figure S5A in 
the Online Supplementary Document), 209 deaths (46%; Figure S5B in the Online Supplementary Docu-

ment), 10 110 acute-care hospital admissions (32%; Figure S5C in the Online Supplementary Document), 
and 1056 ICU-care hospital admissions (34%; Figure S5D in the Online Supplementary Document). These 
results show the extent of flattening of the epidemic curve that was accomplished with the enforced social and 
physical distancing interventions.

Figure S6 in the Online Supplementary Document shows the results of the uncertainty analysis for the key 
epidemiological indicators in Figure 1, and Figure S7 in the Online Supplementary Document shows the 
results of the uncertainty analysis for the key hospitalization indicators in Figure 2. The results indicated over-
all narrow uncertainty intervals confirming the model’s predictive power.

DISCUSSION

Our study demonstrates that mathematical modeling was influential in informing the national public-health 
response and in formulating evidence-based policy decisions to minimize the pandemic’s toll on health, so-
ciety, and the economy. The model, which was implemented in real-time, starting from late February 2020, 
and was continuously updated and refined as more data became available, predicted with reasonable accura-
cy and precision the key epidemiologic indicators, such as the epidemic peak and the impact of easing of re-
strictions, as well as health care needs, at a time of uncertainty in which knowledge of the epidemiology of this 
infection was growing but still limited.

Figure 4. Impact of social and 
physical distancing interven-
tions. Panel A. Number of dai-
ly new infections. Panel B. Ac-
tive-infection prevalence (those 
latently infected or infectious). 
Panel C. Daily hospital admis-
sions in acute-care beds. Panel 
D. Daily hospital admissions in 
ICU-care beds.
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One of the highlights of this modeling approach is the application of the concept of rational R
t
 tuning for man-

aging the easing of restrictions (Figure 4). Grounded on a theoretical foundation [4], rational R
t
 tuning proved 

to be a successful and effective strategy in safely easing the restrictions so as to ensure social and economic sta-
bility and functionality, while minimizing the risk of a second wave (Figure 3). Another highlight is the esti-
mation of health care needs that guided resource-allocation planning well before the time when these resourc-
es were needed. Throughout the epidemic, including the epidemic peak, health care needs in Qatar remained 
well within the health system capacity, avoiding any serious strain. Importantly, this forecasting of health care 
needs also prevented resource waste by avoiding overestimation of health care needs.

Despite the large number of infections in Qatar, results show that the epidemic would have been far worse if 
no social and physical distancing interventions had been enforced. In absence of interventions, the epidemic 
would have progressed very rapidly to a peak nearly 10-fold higher than what was actually observed (Figure 

4). Disease burden would have been much larger and the health care system would have been strained to the 
point of collapse. This demonstrates that for a respiratory infection with such large R

t
 and serious disease se-

qualae, inaction would have had dire consequences, and that the national strategy focused on flattening the 
epidemic curve was appropriate to manage the epidemic.

An important finding of this study is that PCR-confirmed infections constitute only a small fraction of the ac-
tual number of infections. Only 11.6% of infections were estimated to have ever been diagnosed, probably 
because most infections were asymptomatic or mild. Indeed, a nation-wide population-based survey in Qatar 
showed that 58.5% of those who were PCR positive in this survey reported no symptoms during the last two 
weeks preceding the survey [8]. The growing number of serological testing studies in Qatar have also shown 
that the vast majority of those who are antibody-positive were never diagnosed with this infection [8,10,12,24]. 
For instance, out of all those antibody-positive in a nation-wide seroprevalence survey of the CMW popula-
tion, only 9.3% had a documented, PCR-confirmed infection prior to antibody testing [10], affirming that as 
estimated by the model, nine of every 10 infections were never diagnosed. These findings are also consistent 
with a growing body of serological evidence from other countries [32-36]. Of note that the latter further sug-
gests high variability in exposure to the infection across countries [32-36].

We found that >97% of infections estimated to have occurred did not require hospitalization. The low infection 
severity appears to be a consequence of the young age profile of the population, with only 2% being >60 years 
of age [5,8,11,19], in addition to a well-funded health care system that emphasizes a proactive, high-quality 
standard of care [8], and possibly high levels of T cell cross-reactivity against SARS-CoV-2, reflecting T cell 
memory of circulating ‘common cold’ coronaviruses [37-41].

This study has limitations. Model estimates are contingent on the validity and generalizability of input data. 
Our estimates were based on current SARS-CoV-2 natural history and disease progression parameters, but our 
understanding of this infection is still evolving. We modeled the age-specific distributions for infection se-
verity, criticality, and mortality using relative risk data from the SARS-CoV-2 epidemic in France [22], which 
may not extend to Qatar. However, these estimates broadly agreed with those of a recently-completed study 
that estimated these relative risks specifically for Qatar [11]. Available input data were most complete at the 
national level. We did not have regional data or sufficient data about social networks of different national sub-
populations and patterns of mixing between those subpopulations to factor them into the model. Despite these 
limitations, our model, tailored to the complexity of the epidemic in Qatar, was able to reproduce observed 
epidemic trends, and to provide useful and consequential predictions and insights about infection transmis-
sion and health care needs. Importantly, the modeling estimates successfully influenced the national response.

In conclusion, Qatar experienced a large SARS-CoV-2 epidemic, but avoided a burdensome epidemic, such as 
that unfolding in other counties. Mathematical modeling played an influential role in guiding the national pub-
lic-health response by characterizing and understanding the epidemic, forecasting health care needs, predicting 
the impact of social and physical distancing restrictions, and rationalizing and justifying the easing of restric-
tions. While this article illustrates a successful case study, the modeling tools employed here can be adapted 
and applied in other countries to guide SARS-CoV-2 epidemic control, preparedness for the current or future 
waves of infection, or enforcement and easing of restrictions or other interventions, such as vaccination [21].
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