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Hepatitis B virus (HBV) infection is a worldwide public health problem. In this paper, we study the dynamics of hepatitis B virus
(HBV) infection which can be controlled by vaccination as well as treatment. Initially we consider constant controls for both
vaccination and treatment. In the constant controls case, by determining the basic reproduction number, we study the existence and
stability of the disease-free and endemic steady-state solutions of the model. Next, we take the controls as time and formulate the
appropriate optimal control problemandobtain the optimal control strategy tominimize both the number of infectious humans and
the associated costs. Finally at the end numerical simulation results show that optimal combination of vaccination and treatment
is the most e
ective way to control hepatitis B virus infection.

1. Introduction

Hepatitis B is a potentially life-threatening liver infection
caused by the hepatitis B virus. It is a major global health
problem. It can cause chronic liver disease and chronic
infection and puts people at high risk of death from cirrhosis
of the liver and liver cancer [1]. Infections of hepatitis B occur
only if the virus is able to enter the blood stream and reach the
liver. Once in the liver, the virus reproduces and releases large
numbers of new viruses into the blood stream [2].

	is infection has two possible phases: (1) acute and (2)
chronic. Acute hepatitis B infection lasts less than sixmonths.
If the disease is acute, your immune system is usually able
to clear the virus from your body, and you should recover
completely within a few months. Most people who acquire
hepatitis B as adults have an acute infection. Chronic hepatitis
B infection lasts six months or longer. Most infants infected
with HBV at birth and many children infected between 1
and 6 years of age become chronically infected [1]. About
two-thirds of people with chronic HBV infection are chronic
carriers.	ese people do not develop symptoms, even though

they harbor the virus and can transmit it to other people.	e
remaining one-third develop active hepatitis, a disease of the
liver that can be very serious. More than 240 million people
have chronic liver infections. About 600 000 people die every
year due to the acute or chronic consequences of hepatitis B
[1].

Transmission of hepatitis B virus results from exposure
to infectious blood or body �uids containing blood. Possible
forms of transmission include sexual contact, blood trans-
fusions and transfusion with other human blood products
(horizontal transmission), and possibly from mother to
child during childbirth (vertical transmission) [3]. 	e most
important in�uence on the probability of developing carriage
a�er infection is age [4]. Children less than 6 years of age who
become infected with the hepatitis B virus are the most likely
to develop chronic infections:

80–90% of infants infected during the �rst year of life
develop chronic infections;

30–50% of children infected before the age of 6 years
develop chronic infections.
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In adults:

<5% of otherwise healthy adults who are
infected will develop chronic infection;

15–25% of adults who become chronically
infected during childhood die from hepatitis B
related liver cancer or cirrhosis [1, 5].

Patients with chronic carrier o�en have no history of
acute illness but may develop cirrhosis (liver scarring) that
can lead to liver failure and may also develop liver cancer
[5]. A small portion (1–6%) of chronic carries clear the
virus naturally [5]. Someone who is infected with hepatitis
B may have symptoms similar to those caused by other viral
infections. However, many people infected with hepatitis B
do not have any symptoms until when more serious side
e
ects such as liver damage can occur. Someone who has
been exposed to hepatitis B may have signs 2 to 5 months
later. Some people with hepatitis B do not notice warning
signs until they become very intense. Some have few or
no symptoms, but even someone who does not notice any
symptoms can still transmit the disease to others and can
still develop complications later in life. Some people carry the
virus in their bodies and are contagious for the rest of their
lives [6].

	e risk of transmission from mother to newborn can
be reduced from 20–90% to 5–10% by administering to the
newborn hepatitis B vaccine (HBV) and hepatitis B immune
globulin (HBIG) within 12 hours of birth, followed by a
second dose of hepatitis B vaccine (HBV) at 1-2 months and a
third dose at and not earlier than 6 months (24 weeks) [7, 8].
	e hepatitis B infection does not usually require treatment
because most adults clear the infection spontaneously [9].
Early antiviral treatment may be required in less than 1%
of people whose infection takes a very aggressive course
(fulminant hepatitis) or who are immunocompromised. On
the other hand, treatment of chronic infection may be
necessary to reduce the risk of cirrhosis and liver cancer.
Treatment lasts from six months to a year, depending on
medication and genotype [10].

One of the primary reasons for studying hepatitis B
virus (HBV) infection is to improve control and �nally to
put down the infection from the population. Mathematical
models can be a useful tool in this approach which helps us
to optimize the use of �nite sources or simply to goal (the
incidence of infection) control measures more impressively.
Anderson and May [11] used a simple mathematical model
to illustrate the e
ects of carriers on the transmission of
HBV. A hepatitis B mathematical model (Medley et al.
[4]) was used to develop a strategy for eliminating HBV
in New Zealand [5, 12]. Zhao et al. [13] proposed an age
structuremodel to predict the dynamics ofHBV transmission
and evaluate the long-term e
ectiveness of the vaccination
programme in China.Wang et al. [14] proposed and analyzed
the hepatitis B virus infection in a di
usion model con�ned
to a �nite domain. Xu and Ma [15] proposed a hepatitis
B virus (HBV) model with spatial di
usion and saturation
response of the infection rate was investigated. Zou et al.
[16] also proposed a mathematical model to understand the

transmission dynamics and prevalence of HBV in mainland
China. Pang et al. [17] developed a model to explore the
impact of vaccination and other controlling measures of
HBV infection. Zhang and Zhou [18] proposed analysis and
application of an HBV model. Bhattacharyya and Ghosh
[19], Kar and Batabyal [20], and Kar and Jana [21] proposed
optimal control of infectious diseases.

In this paper, we study the dynamics of hepatitis B virus
(HBV) infection under administration of vaccination and
treatment, where HBV infection is transmitted in two ways
through vertical transmission and horizontal transmission.
While the horizontal transmission is reduced through the
administration of vaccination to those susceptible individ-
uals, the vertical transmission gets reduced through the
administration of treatment to infected individuals; therefore,
the vaccine and the treatment play di
erent roles in control-
ling the HBV [19]. In this study we analyze and apply optimal
control to determine the possible impacts of vaccination to
susceptible individuals and treatment to infected individuals.
Some numerical simulations of the model are also given
to illustrate the results and to �nd optimal strategies in
controlling HBV infection.

	e paper is organized as follows. In Section 2, we
proposed an HBV infection model with vaccination and
treatment. In Section 3, we analyzed the qualitative property
of themodel. In Section 4, we considered the optimal analysis
of the model and in Section 5, we considered some numerical
experiments under special choice of parameter values. 	e
paper will be �nished with a brief discussion and conclusion.

2. Model and Preliminaries

To analyze and control hepatitis B virus (HBV) infection in
the present paper, we consider a model with two controls:
vaccination and treatment. 	e model is constructed based
on the characteristics of HBV transmission and the model
of Medley et al. [4]. According to the natural history of
HBV, this study has a unique characteristic that distinguishes
it from Medley’s model as follows. Firstly, in this study,
two controlling variables are considered (vaccination and
treatment) in order to prevent the spread of the HBV
and �nally to put down the infection from the population,
whereas in Medley’s model only one controlling variable,
the vaccination, was employed. Secondly, in our model we
have considered two di
erent ways of the transmission of
hepatitis B virus infection, namely, vertical transmission
(hepatitis B virus infection transmits directly from the par-
ents to the o
spring) and horizontal transmission (hepatitis
B virus infection transmits through contact with infective
individuals) [19].	irdly, we have considered a proportion of
the vaccination in susceptible individuals to all age groups,
whereas Medley et al. [4] have utilized only the newborns
vaccination. In fact, the adults, especially the teenagers, are
encouraged to hepatitis B vaccine [17]. Fourthly, “immunity”
has been considered as “permanent” in Medley’s model,
whereas the e
ect of the vaccination may be decreased a�er
sometime, and the person may be a
ected and be susceptible
[22]. Consequently we have considered a parameter �4 to
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Figure 1: FlowdiagramofHBVdynamics under application of vaccine and treatment. �,�, �,�, and�denote �ve compartment of susceptible,
exposed, acute infection, chronic carriers, and immune or recovered class, respectively. 	e �(� + 	�)� indicates the horizontal transmission
from compartment � to �, whereas ]
1� denotes the vertical transmission from � to � by birth of o
spring from a carrier individual.
Similarly, ]
2� represents the proportion of immune newborn from recovered class. �3� shows individuals’ spontaneous recovery and move
from compartment � to � and �2� denotes proportions of carriers move to recovered class by treatment. �4� denotes a portion that moves
from compartment � to � due to loss of immunity. 
3�2� shows proportion of acute infection individuals who become carries and (1−
3)�2�
shows proportion of acute infection individuals, clear HBV, and move from � to �. �1� denotes proportions of susceptible move to recovered
class by vaccination and each compartment has its own death rate.

account for the turning back recovered people to susceptible
ones [16, 17].

We consider an �-�-�-�-� epidemic model by dividing
total population into �ve time-dependent classes, namely, the
susceptible individuals �(�); infected but not yet infectious
individuals (exposed) �(�); acute infection individuals �(�);
chronic HBV carriers �(�); and recovered �(�) for hepatitis
B virus (HBV) infection that propagates through contact
between the infected and the susceptible individuals and also
through the infected parents to the o
spring. A �ow chart
of this compartmental model is shown in Figure 1. 	ese
assumptions, however, lead to the following dynamic model:

̇� (�) = ] − ]
1� − ]
2� − � (� + 	�) � − ]� − �1� + �4�,
�̇ (�) = � (� + 	�) � − (] + �1) �,
̇� (�) = �1� − (] + �2) �,

�̇ (�) = ]
1� + 
3�2� − (] + �3) � − �2�,
�̇ (�) = ]p2� + (1 − 
3) �2� + �3� − ]� − �4� + �1� + �2�.

(1)

In these equations, all the parameters are nonnegative.
We assume stable population with equal per capita birth and
death rate ] (as disease-induced death rate is not considered
in system) and �1 is the rate of exposed individuals becoming
infections, �2 is the rate at which individuals leave the
acute infection class, �3 is the rate of carrier individuals
who recover from the disease by natural way (spontaneous
recovery) and move from carrier to recovered [16, 21], and 	
is the infectiousness of carriers relative to acute infections. A
proportion 
3 of acute infection individuals become carriers
and another clear HBV moves directly to immunity class
[17]. 	e horizontal transmission of disease propagation is
denoted by the mass action term �(� + 	�)�, where �
represents the contact rate. For vertical transmission, we
assume that a fraction 
1 of newborns from infected class
are infected and it is denoted by the term ]
1�, (
1 < 1).
Similarly, a fraction 
2 of newborns from recovered class

are immune and it is denoted by ]
2�, (
2 < 1) [23].
Consequently, the birth �ux into the susceptible class is given
by ] − ]
1� − ]
2�.

For simplicity, we normalize the population size to 1; that
is, now �, �, �, �, and � are, respectively, the fractions of the
susceptible, the exposed, the acute infective, the carriers, and
the recovered individuals in the population and �+�+�+�+� = 1 holds [17]. Hence, the ��h equation may be omitted,
and (1) becomes

̇� (�) = ] − ]
1� − � (� + 	�) � − ]� − �1�
+ (�4 − ]
2) (1 − � − � − � − �) ,

�̇ (�) = � (� + 	�) � − (] + �1) �,
̇� (�) = �1� − (] + �2) �,

�̇ (�) = ]
1� + 
3�2� − (] + �3) � − �2�.

(2)

Among them �1 is the proportion of the susceptible
that is vaccinated per unit time; further we assume that
the vaccination is not perfect; that is, although vaccination
o
ers a very powerful method of disease control, there are
many associated di�culties. Generally, vaccines are not 100%
e
ective, and therefore only a proportion of vaccinated indi-
viduals are protected, then some proportion of the vaccinated
individuals may be susceptible again to that disease [22].
Similarly, �2 is the proportion of the chronic HBV carriers
that is treated per unit time. 	e transfer rate from the
recovered class to the susceptible class is taken as �4 (�4 ≥ 0).
We assume that the population of newborn carriers born to
carriers is less than the sum of the death carriers and the
population moving from carrier to recovery state [16]. In this
case we have ]
1 < ] + �2 + �3; otherwise, carriers would
keep increasing rapidly as long as there is infection; that is,��/�� > 0 for � ̸= 0 or � ̸= 0 and � ≥ 0.

Let�(�) = �(�) + �(�) + �(�) + �(�); then we have

d�
�� =

��
�� +

��
�� +

��
�� +

��
�� ; (3)
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that is,

��
�� + (] + �4 − ]
2)� ≤ ] + �4. (4)

Now integrating both sides of the above inequality and using
the theory of di
erential inequality [21, 24], we get

�(�) ≤ �−(]+�4−]�2)� [ ] + �4
] + �4 − ]
2 �

(]+�4−]�2)� + �] , (5)

where � is a constant and letting � → ∞, we have

� + � + � + � ≤ ] + �4
] + �4 − ]
2 ,

̇� (�) = ] − ]
1� − � (� + 	�) � − ]� − �1�
+ (�4 − ]
2) (1 − � − � − � − �) ;

(6)

then

� ≤ ] + �4
] + �4 + �1 − ]
2 ; (7)

then

Π = { (�, �, �, �) ∈ R
4
+ | � ≤ ] + �4

] + �1 + �4 − ]
2 ,
� + � + � + � ≤ ] + �4

] + �4 − ]
2}
(8)

is positively invariant. Hence, the system is mathematically

well-posed. 	ere, for initial starting point � ∈ R
4
+, the

trajectory lies inΠ.	erefore, wewill focus our attention only
on the region Π.
3. Analysis of the System for

Constant Controls

In this section, we assume that the control parameters �1(�)
and �2(�) are constant functions.
3.1. Equilibrium Points and Basic Reproduction Number. We
will discuss the existence of all the possible equilibriumpoints
of the system (2). We see that system (2) has two possible
nonnegative equilibria.

(i) Disease-free equilibrium point�0 = (�0, 0, 0, 0), where
�0 = ] − ]
2 + �4�1 + ] + �4 − ]
2 ; (9)

it is always feasible. In the absence of vaccination, this is
reduced to the equilibrium (1, 0, 0, 0).
De�nition 1. 	e basic reproduction number, denoted by �0,
is the expected number of secondary cases produced, in
a completely susceptible population, by a typical infective
individual [25].

Using the notation in van den Driessche and Watmough
[25], we have

F = [
[
0 ��0 �	�00 0 00 0 0 ]

]
V = [

[
] + �1 0 0−�1 ] + �2 00 −
3�2 ] + �3 + �2 − ]
1

]
]
.

(10)

	e reproduction number is given by �($%−1), and

�0
= ��1 (] + �3 + �2 − 
1] + 	
3�2) (] − ]
2 + �4)(] + �1) (] + �2) (] + �3 + �2 − 
1]) (�1 + ] + �4 − ]
2)
= ��1 (] + �3 + �2 − 
1] + 	
3�2)(] + �1) (] + �2) (] + �3 + �2 − 
1])�0
= ��1(] + �1) (] + �2) [1 +

	
3�2(] + �3 + �2 − ]
1)] �0
= ��1(] + �1) (] + �2)
× [1 + 	
3�2(] + �3 + �2 − ]
1)] [

] − ]
2 + �4�1 + ] + �4 − ]
2 ] .
(11)

De�ne

�1 = ��1�0(] + �1) (] + �2) ,
�2 = �	
3�1�2�0(] + �1) (] + �2) (] + �3 + �2 − ]
1) ;

(12)

then we can see that �0 = �1 + �2.
Remark 2. We should note from (11) that the use both of
vaccine and treatment control to both reduce the value of �0,
and at the same time e
ects of both intervention strategies
on �0 are not simply the addition of two independent e
ects,
rather they multiply together in order to improve the overall
e
ects of population level independently (Figure 2). Consider
the following:

(ii) endemic equilibria, �∗∗ = (�∗, �∗, �∗, �∗), which has
four di
erent cases.
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Figure 2: Variation of di
erent reproduction numbers by using
of two control variables (vaccination and treatment). Figure 2
illustrates the impact of application of two controls (vaccination and
treatment) on di
erent basic reproduction numbers. �0 = 3.9810,
when there is no vaccination and treatment (�1 = 0; �2 = 0). 	e
�gure shows that application of vaccination reduces�0more rapidly
than treatment, though mixed intervention strategies always work
better to reduce the disease burden.

(a) No vaccine, no treatment control (�1 = 0, �2 = 0),�∗∗1 = (�∗1 , �∗1 , �∗1 , �∗1 ), where

�∗1 = (] + �1) (] + �2) (] + �3 − 
1])��1 (] + �3 + 	�2
3 − 
1]) ,

�∗1 = 	� (] + �2) �∗1 �∗1(] + �1) (] + �2) − ��1�∗1 ,

�∗1 = 	��1�∗1 �∗1(] + �1) (] + �2) − ��1�∗1 ,
�∗1 = (�1�2
3 (] + �4 − ]
2) �∗1 (�0 − 1))

× ( (] + �3 − 
1])
× [(] + �4 − ]
2) (] + �2 + �1) + �1�2]
+�1�2
3 (]
1 − ]
2 + �4) )−1.

(13)

(b) No vaccine, with treatment control (�1 = 0, �2 ̸= 0),�∗∗2 = (�∗2 , �∗2 , �∗2 , �∗2 ), where

�∗2 = (] + �1) (] + �2) (] + �3 − 
1] + �2)��1 (] + �3 + 	�2
3 − 
1] + �2) ,

�∗2 = 	� (] + �2) �∗2 �∗2(] + �1) (] + �2) − ��1�∗2 ,

�∗2 = 	��1�∗2 �∗2(] + �1) (] + �2) − ��1�∗2 ,

�∗2 = (�1�2
3 (] + �4 − ]
2) �∗2 (�0 − 1))
× ( (] + �3 − 
1] + �2)

× [(] + �4 − ]
2) (] + �2 + �1) + �1�2]
+�1�2
3 (]
1 − ]
2 + �4) )−1.

(14)

(c) With vaccine, no treatment control (�1 ̸= 0, �2 = 0),�∗∗3 = (�∗3 , �∗3 , �∗3 , �∗3 ), where
�∗3 = (] + �1) (] + �2) (] + �3 − 
1])��1 (] + �3 + 	�2
3 − 
1]) ,

�∗3 = 	� (] + �2) �∗3 �∗3(] + �1) (] + �2) − ��1�∗3 ,

�∗3 = 	��1�∗3 �∗3(] + �1) (] + �2) − ��1�∗3 ,
�∗3 = (�1�2
3 (] + �4 − ]
2 + �1) �∗3 (�0 − 1))

× ( (] + �3 − 
1])
× [(] + �4 − ]
2) (] + �2 + �1) + �1�2]
+�1�2
3 (]
1 − ]
2 + �4) )−1.

(15)

(d) With vaccine, with treatment control (�1 ̸= 0, �2 ̸= 0),�∗∗4 = (�∗4 , �∗4 , �∗4 , �∗4 ), where
�∗4 = (] + �1) (] + �2) (] + �3 − 
1] + �2)��1 (] + �3 + 	�2
3 − 
1] + �2) ,

�∗4 = 	2 (] + �2) �∗4 �∗4(] + �1) (] + �2) − ��1�∗4 ,

�∗4 = 	��1�∗4 �∗4(] + �1) (] + �2) − ��1�∗4 ,
�∗4 = (�1�2
3 (] + �4 − ]
2 + �1) �∗4 (�0 − 1))

× ( (] + �3 − 
1] + �2)
× [(] + �4 − ]
2) (] + �2 + �1) + �1�2]
+�1�2
3 (]
1 − ]
2 + �4) )−1.

(16)

Clearly �∗∗ is feasible if �∗ > 0, that is, if �0 > 1. Also for�0 = 1, the endemic equilibrium reduces to the disease-free
equilibrium and for �0 < 1 it becomes infeasible. Hence we
may state the following theorem.

�eorem 3. (i) If �0 < 1, then the system (2) has only one
equilibrium, which is disease-free.

(ii) If �0 > 1, then the system (2) has two equilibria: one is
disease-free and the other is endemic equilibrium.

(iii) If �0 = 1, then the endemic equilibrium reduces to the
disease-free equilibrium.
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3.2. Stability Analysis. In this section, we will discuss the
stability of di
erent equilibria. Firstly, we analyse the local
stability of the disease-free equilibrium.

�eorem 4. If �0 < 1, then the disease-free equilibrium is
locally asymptotically stable.

Proof. 	e Jacobian matrix of system (2) at the disease-free
equilibrium is

J0 = [[[[
[

− (] + �4 − ]
2 + �1) − (�4 − ]
2) − (��0 + �4 − ]
2) − (]
1 + �4 − ]
2 + 	��0)0 − (] + �1) ��0 	��00 �1 − (] + �2) 0
0 0 
3�2 ]
1 − ] − �3 − �2

]]]]
]
. (17)

	e characteristic polynomial of 60 given by

7 (�) = (� + :0) (�3 + :1�2 + :2� + :3) , (18)

where

:0 = ] + �1 + �4 − ]
2,
:1 = 3] + �1 + �2 + �3 + �2 − ]
1,
:2 = (] + �2) (] + �3 + �2 − ]
1)

+ (] + �1) (2] + �2 + �3 + �2 − ]
1) − �1��0,
:3 = (] + �1) (] + �2) (] + �3 + �2 − ]
1)

− �1��0 (] + �3 + �2 + 	
3�2 − ]
1) .

(19)

We need to verify the following two conditions:

(a) :0, :1, :2, :3 > 0;
(b) :1:2 − :3 > 0.

It is easy to see that :0, :1 > 0 and :2, :3, :1:2 − :3 > 0 if�0 < 1. It follows from the Routh-Hurwitz criterion that the
eigenvalues have negative real parts if �0 < 1. Hence, the
disease-free equilibriumofmodel (2) is locally asymptotically
stable if �0 < 1 and unstable if �0 > 1.

To discuss the properties of the endemic equilibrium
point

�eorem 5. �e endemic equilibrium point is locally asymp-
totically stable if �0 > 1.
Proof. We use Routh-Hurwitz criterion to establish the local
stability of the endemic equilibrium. 	e Jacobian matrix of
system (2) at endemic equilibrium is

J
∗ = [[[

[

− (] + �4 − ]
2 + �1 + ��∗) − (�4 − ]
2) − (��∗ + �4 − ]
2) − (]
1 + �4 − ]
2 + �	�∗)��∗ + �	�∗ − (] + �1) ��∗ �	�∗0 �1 − (] + �2) 00 0 
3�2 ]
1 − ] − �3 − �2
]]]
]
. (20)

	en the characteristic equation at �∗∗ is �4 + B1�3 + B2�2 +B3� + B4 = 0, where
B1 = C1 + D2 + E3 + �4,
B2 = C1C3 + C1�4 + C1D2 + E3�4 + D2E3 + D2�4 − D3E2 − D1C2,
B3 = C1E3�4 + C1D2E3 + C1D2�4 + D2E3�4 + D4E2�3 + D1E2C3

− C1D3E2 − D3E2�4 − D1C2E3 − D1C2�4,
B4 = C1D2E3�4 + C1D4E2�3 + D1E2C3�4 − C1D3E2�4

− D1C2E3�4 − D1C4E2�3,
(21)

where

C1 = − (] + �4 − ]
2 + �1 + ��∗) ,
C2 = − (�4 − ]
2) , C3 = − (��∗ + �4 − ]
2) ,

C4 = − (]
1 + �4 − ]
2 + �	�∗) , D1 = ��∗ + �	�∗,
D2 = − (] + �1) , D3 = ��∗,
D4 = �	�∗, E1 = 0,
E2 = �1, E3 = − (] + �2) ,
E4 = 0, �1 = 0,
�2 = 0, �3 = 
3�2,
�4 = ]
1 − ] − �3 − �2.

(22)

We need to verify the following three conditions:

(a) B1, B2, B3, B4 > 0;
(b) B1B2 − B3 > 0;
(c) B3(B1B2 − B3) − B21B4 > 0.
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It is easy to see that conditions (a) and (b) are satis�ed.
A�er computations, we can prove that B3(B1B2 − B3) −B21B4 > 0 is also valid.	eRouth-Hurwitz criterion and those
inequalities in (a)–(c) imply that the characteristic equation
at �∗∗ has only roots with negative real part, which certi�es
the local stability of �∗∗.
4. Optimal Control with Two Objectives

One of the early reasons for studying hepatitis B virus (HBV)
infection is to improve the control variables and �nally to put
down the infection of the population. Optimal control is a
useful mathematical tool that can be used to make decisions
in this case. In the previous sections we have analyzed the
model with two control variables, one is treatment and the
other is vaccination and we consider their constant controls
throughout the analysis. But in fact these control variables
should be time dependent. In this section we consider the
vaccination and treatment as time-dependent controls in a
compact interval of time duration.

Our goals here are to put down infection from the popu-
lation by increasing the recovered individuals and reducing
susceptible, exposed, infected, and carrier individuals in a
population and to minimize the costs required to control the
hepatitis B virus (HBV) infection by using vaccination and
treatment. First of all, we construct the objective functional
to be optimized as follows:

6 = ∫�
0
[H1� (�) + H2� (�) + H3� (�) + H4� (�)

+12 (I1�21 (�) + I2�22 (�))] ��
(23)

subject to

̇� (�) = ] − ]
1� − � (� + 	�) � − ]� − �1�
+ (�4 − ]
2) (1 − � − � − � − �) ,

�̇ (�) = � (� + 	�) � − (] + �1) �,
̇� (�) = �1� − (] + �2) �,

�̇ (�) = ]
1� + 
3�2� − (] + �3) � − �2�.

(24)

Our object is to �nd (�∗1 , �∗2 ) such that

6 (�∗1 , �∗2 ) = min 6 (�1, �2) , (25)

where

�1 (�) , �2 (�) ∈ Γ
= {� (�) | 0 ≤ � (�) ≤ �max (�) ≤ 1, 0 ≤ � ≤ M,

� (�) is Labesgue measurable} .
(26)

Here H �, for O = 1, . . . , 4 are positive constants that
are represented to keep a balance in the size of �(�), �(�),�(�), and �(�), respectively; I1 and I2, respectively, are the
weights corresponding to the controls �1 and �2. �max is the
maximum attainable value for controls (�1max and �2max);�1max and �2max will depend on the amount of resources
available to implement each of the control measures [26].
	e I1 and I2 will depend on the relative importance of
each of the control measures in mitigating the spread of the
disease as well as the cost (human e
ort, material resources,
etc.) of implementing each of the control measures per unit

time [26]. 	us, the terms I1�21 and I2�22 describe the costs
associated with vaccination and treatment, respectively. 	e
square of the control variables is taken here to remove the
severity of the side e
ects and overdoses of vaccination and
treatment [27].

4.1. Optimal Control Solution. For existence of the solution,
we consider the control system (24) with initial condition

� (0) = �0, � (0) = �0,
� (0) = �0, � (0) = �0; (27)

then, we rewrite (2) in the following form:

�� (�)�� = H� + $ (�) , (28)

where �(�) = (�(�), �(�), �(�), �(�)) is the vector of the state
variables and A and F(x) are de�ned as follows:

A =
[[[[[[[
[

−] − �1 − �4 + ]
2 −�4 + ]
2 −�4 + ]
2 −�4 + ]
2
0 −] − �1 0 0
0 �1 −] − �2 0
0 0 
3�2 ]
1 − ] − �3 − �2

]]]]]]]
]
,

F (x) =
[[[[[[
[

] + � (� + 	�) � + �4 − ]
2
� (� + 	�) �

0
0

]]]]]]
]
.

(29)
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We set

Q (�) = H� + $ (�) . (30)

	e second term on the right-hand side of (30) satis�es

RRRR$ (�1) − $ (�2)RRRR
≤ S (RRRR�1 − �2RRRR + RRRR�1 − �2RRRR + RRRR�1 − �2RRRR + RRRR�1 − �2RRRR) , (31)

where the positive constant S is independent of the state
variables � andS ≤ 1. Also, we get

RRRRQ (�1) − Q (�2)RRRR ≤ T RRRR�1 − �2RRRR , (32)

where T = max{S, ‖H‖} < ∞. 	erefore, it follows that
the function Q is uniformly Lipschitz continuous. From the
de�nition of the controls �1(�) and �2(�) and the restrictions
on the nonnegativeness of the state variables we see that a
solution of the system (28) exists [24, 28, 29].

4.2.�e Lagrangian and Hamiltonian for the Control Problem.
In order to �nd an optimal solution pair, �rst we should
�nd the Lagrangian and Hamiltonian for the optimal control
problem (24). In fact, the Lagrangian of problem is given by

T (�, �, �, �, �1, �2) = H1� (�) + H2� (�) + H3� (�)
+ H4� (�) + 12 (I1�21 (�) + I2�22 (�)) .

(33)

We are looking for the minimal value of the Lagrangian.
To accomplish this, we de�ne HamiltonianV for the control
problem as follows:

V(�, �, �, �, �1, �2, W1, W2, W3, W4)
= T + W1 (�) ���� + W2 (�)

��
�� + W3 (�)

��
�� + W4 (�)

��
�� ,
(34)

where W�(�) for O = 1, 2, 3, 4 are the adjoint variables and can
be determined by solving the following system of di
erential
equations:

Ẇ1 (�) = −XVX�
= − [H1 + W1 ((]
2 − �4) − � (� + 	�) − �1 − ])

+W2� (� + 	�)] ,
Ẇ2 (�) = −XVX�

= − [H2 + W1 (]
2 − �4) + W2 (−] − �1) + W3�1] ,
Ẇ3 (�) = −XVX�

= − [H3 + W1 ((]
2 − �4) − ��) + W2��
+W3 (−] − �2) + W4
3�2] ,

Ẇ4 (�) = −XVX�
= − [H4 + W1 (]
2 − �4 − ]
1 − �	�)

+W2�	� + W4 (]
1 − ] + �3 + �2)] ,
(35)

satisfying the transversality conditions and optimality condi-
tions:

W1 (M) = W2 (M) = W3 (M) = W4 (M) = 0,
XV
X�1 = I1�1 − W1� = 0,
XV
X�2 = I2�2 − W4� = 0.

(36)

We now state and prove the following theorem.

�eorem 6. �ere is an optimal control (�∗1 , �∗2 ) such that
6 (�, �, �, �, �∗1 , �∗2 ) = min 6 (�, �, �, �, �1, �2) (37)

subject to the system of di�erential equation (24).

Proof. Here both the control and state variables are non-
negative values. In this minimized problem, the necessary
convexity of the objective functional in �1 and �2 are satis�ed.
	e set of all control variables �1(�), �2(�) is also convex and
closed by de�nition. 	e optimal system is bounded which
determines the compactness needed for the existence of the
optimal control. In addition, the integrand in the functional

∫�
0
[H1� (�) + H2� (�) + H3� (�) + H4� (�)
+12 (I1�21 (�) + I2�22 (�))] ��

(38)

is convex on the control set. Hence the theorem (the proof is
complete).
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4.3. Necessary and Su	cient Conditions for Optimal Controls.
Applying Pontryagin’s maximum principle [30] on the con-
structed Hamiltonian V, and the theorem (24), we obtain
the optimal steady-state solution and corresponding control
as follows: If taking � = (�, �, �, �) and Y = (�1, �2),
then (�∗, Y∗) is an optimal solution of an optimal control
problem; then we now state the following theorem.

�eorem 7. �e optimal control pair (�∗1 , �∗2 ) which mini-
mizes J over the region Γ is given by

�∗1 = max
[0,�]

{0,min (�̃1 (�) , 1)} ,
�∗2 = max

[0,�]
{0,min (�̃2 (�) , 1)} , (39)

where �̃1 = W̃1�/I1 and �̃2 = W̃4�/I2 and let {W̃1, W̃2, W̃3, W̃4} be
the solution of system (35).

Proof. With the help of the optimality conditions, we have

XV
X�1 = I1�1 − W1� = 0 [⇒ �1 = W̃1�I1 = (�̃1) ,
XV
X�2 = I2�2 − W4� = 0 [⇒ �2 = W̃4�I2 = (�̃2) .

(40)

Using the property of the control space Γ, the two controls
which are bounded with upper and lower bounds are,
respectively, 1 and 0; that is,

�∗1 =
{{{{{
0 if �̃1 ≤ 0�̃1 if 0 < �̃1 < 11 if �̃1 ≥ 1.

(41)

	is can be rewritten in compact notation

�∗1 = max
[0,�]

{0,min (�̃1 (�) , 1)} , (42)

and similarly

�∗2 =
{{{{{
0 if �̃2 ≤ 0�̃2 if 0 < �̃2 < 11 if �̃2 ≥ 1.

(43)

	is can be rewritten in compact notation

�∗2 = max
[0,�]

{0,min (�̃2 (�) , 1)} . (44)

Hence for these pair of controls (�∗1 , �∗2 ) we get the optimum
value of the functional 6 given by (24).

5. Numerical Examples

Numerical solutions to the optimality system (24) are
discussed in this section. We make several interesting
observation by numerically simulating (2) in the range
of parameter values. We consider the parameter set

Δ = {], �, 	, �1, �2, �3, �4, 
1, 
2, 
3, H1, H2, H3, H4, I1, I2};
some of the parameters are taken from the published articles
and some are assumed with feasible values. Moreover, the
time interval for which the optimal control is applied is
taken as 70 years; also consider Ψ = {�0, �0, �0, �0} as initial
condition for simulation of the model. 	e main parameter
values are listed in Table 1. We compare the results having no
controls, only vaccination control, only treatment control,
and both vaccination and treatment controls.

With the parameter values in Table 1, the system asymp-
totically approaches towards the equilibrium �∗∗1 (0.0858,0.3327, 0.4003, 0.5349), where the basic reproduction ratio�0 = 3.9810 (Figure 2). For the parameters set the system
(2) has two feasible equilibria; one is disease free and the
other is endemic, and the endemic equilibrium is locally
asymptotically stable. 	e e
ect of two control measures on
disease dynamics may be understood well if we consider
Figure 2. It explains how control reproduction ratio �0
evolves with di
erent rates of �1 and �2. It is seen that both
vaccination and treatment reduce the value of �0 e
ectively.
But an integrated control works better than either of the
control measures.

In this section, we use an iterative method to obtain
results for an optimal control problem of the proposedmodel
(24). We use Runge-Kutta’s fourth-order procedure [23] here
to solve the optimality system consisting of eight ordinary
di
erential equations having four state equations and four
adjoint equations and boundary conditions. Because state
equations have initial conditions and adjoint equations have
conditions at the �nal time, an iterative program was created
to numerically simulate solutions. Given an initial guess
for the controls, to compute the optimal state values, the
program solves (24) with initial conditions (27) forward in
time interval [0, 70]using aRungeKuttamethod of the fourth
order. Resulting state values are placed in adjoint equations
(35). 	ese adjoint equations with given �nal conditions are
then solved backwards in time. Again, a fourth order Runge
Kutta method is employed. Both state and adjoint values are
used to update the control using the characterization (39)
and the entire process repeats itself. 	is iterative process
terminates when current state, adjoint, and control values
are su�ciently close to successive values. 	en we use the
backward Runge-Kutta fourth-order procedure to solve the
adjoint variables in the same time interval with the help of
the solution of the state variables transversality conditions.

We have plotted susceptible, exposed, acute infection
individuals, and carriers individuals with andwithout control
by considering values of parameters. We simulate the system
at di
erent values of rate of �1 and �2.

From Figures 3, 4, and 5, we see that a�er 20 years the
number of susceptible population decreases than when there
is no control. In this case most of this population tends to the
infected class. Again when only treatment control is applied,
then the number of susceptible population is not much
di
erent than the population in the case having no control.
But the susceptible population di
ers much from these two
strategies if we apply the strategies of only vaccination control
and both vaccination and treatment controls. At a high rate
of vaccination, the sensitive population density is reduced
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Table 1: Parameter values used in numerical simulations.

Parameter Description Values range Reference

] Birth (and death) rate 0.0121 [17, 18]

� Transmission rate 0.8–20.49 [17]

	 Infectiousness of carriers relative to acute infections 0-1 [17]

�1 Rate of moving from exposed to acute 6 per year [16]

�2 Rate at which individuals leave the acute infection class 4 per year [16]

�3 Rate of moving from carrier to recovery 0.025 per year [16]

�4 Loss of recovery rate 0.03–0.06 [17]

71 Probability of infected newborns 0.11 [19]

72 Probability of immune newborns 0.1 [19]

73 Proportion of acute infection individuals becoming carriers 0.05–0.9 [17]

H1 Weight factor for susceptible individuals 0.091 [31]

H2 Weight factor for exposed individuals 0.01 [31]

H3 Weight factor for infected individuals 0.04 [31]

H4 Weight factor for carrier individuals 0.05 [31]

I1 Weight factor for the controls �1 1.5 [31]

I2 Weight factor for the controls �2 2.7 [31]

�0 Susceptible individuals 0.493 [4]

�0 Exposed individuals 0.0035 [4]

�0 Acute infection individuals 0.0035 [4]

�0 Chronic HBV carriers 0.007 [4]
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Figure 3: 	e plot shows the changes in sensitive populations
(without) vaccination and (without) treatment.

to a very low level initially and then it takes longer time to
restore the steady-state value.

From Figures 6, 7, and 8, we see that the number of
exposed population increase thanwhen there is no control. In
this case, most of this population tends to the acute infected
class. Again when only treatment control is applied, then
the number of exposed population is not much di
erent
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Figure 4: 	e plot shows the sensitivity of sensitive populations for
di
erent values of control �1.

than the population in the case having no control. But the
exposed population di
ers much from these two strategies if
we apply the strategies of only vaccination control and both
vaccination and treatment controls.

From Figures 9, 10, and 11, we see that the number of
acute infected population increases than when there is no
control. In this case most of this population tends to the
carrier class. Again when only treatment control is applied,
then the number of acute infected population is not much
di
erent than the population in the case having no control.
But the acute infected population di
ersmuch from these two
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Figure 5: 	e plot shows the sensitivity of sensitive populations for
di
erent values of control �2.
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Figure 6: 	e plot shows the changes in exposed populations
(without) vaccination and (without) treatment.

strategies if we apply the strategies of only vaccination control
and both vaccination and treatment controls.

Again from Figures 12, 13, and 14, we see that the
number of carrier population increases than when there is
no control. We see that the application of only vaccination
control gives better result than the application of no control.
Again application of treatment control would give better
result than the application of vaccination control since the
treatment control is better than the vaccination control while
the application of both vaccination and treatment controls
give the best result as in this case the number of carrier
population would be the least in number.
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Figure 7: 	e plot shows the sensitivity of exposed populations for
di
erent values of control �1.
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Figure 8: 	e plot shows the sensitivity of exposed populations for
di
erent values of control �2.

Finally, the e
ect of two control measures on disease
dynamics may be understood well if we consider Figures 1–
14, 15, 16, 17, and 18. Since our main purpose is to reduce
the number of sensitive, exposed, acute infection, and carrier
individuals, therefore numerical simulation results show that
optimal combination of vaccination and treatment is themost
e
ective way to control hepatitis B virus infection.
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Figure 9:	e plot shows the changes in acute infection populations
(without) vaccination and (without) treatment.
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Figure 10: 	e plot shows the sensitivity of acute infection popula-
tions for di
erent values of control �1.

6. Conclusion and Suggestions

In this paper, we propose an S-�-�-�-� model of hepatitis B
virus infection with two controls: vaccination and treatment.
First we analyze the dynamic behavior of the system for con-
stant controls. In the constant controls case, we calculate the
basic reproduction number and investigate the existence and
stability of equilibria.	ere are two nonnegative equilibria of
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Figure 11: 	e plot shows the sensitivity of acute infection popula-
tions for di
erent values of control �2.

C
ar

ri
er

 p
o

p
u

la
ti

o
n

NV-NT

NV-T

V-NT

V-T

0 10 20 30 40 50 60 70

Time (year)

10−4

10−3

10−2

10−1

100

Figure 12: 	e plot shows the changes in carrier populations
(without) vaccination and (without) treatment.

the system, namely, the disease-free and endemic.We see that
the disease-free equilibriumwhich always exists and is locally
asymptotically stable if �0 < 1, and endemic equilibrium
which exists and is locally asymptotically stable if �0 > 1.

A�er investigating the dynamic behavior of the system
with constant controls we formulate an optimal control
problem if the controls become time dependent and solve it
by using Pontryagin’s maximum principle. Di
erent possible
combinations of controls are used and their e
ectiveness is
compared by simulation works. Also, from the numerical
results it is very clear that a combination of mixed control
measures respond better than any other independent control.
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Figure 13: 	e plot shows the sensitivity of carrier populations for
di
erent values of control �1.
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Figure 14: 	e plot shows the sensitivity of carrier populations for
di
erent values of control �2.

	ere is still a tremendous amount of work needed to
be done in this area. Parameters are rarely constant because
they depend on environmental conditions. We do not know,
however, the detailed relationship between these parameters
and environmental conditions. 	ere may be a time lag as a
susceptible populationmay take some time to be infected and
also a susceptible population may take some time to immune
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Figure 15: 	e plot shows the changes in total populations without
vaccination and without treatment.
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Figure 16: 	e plot shows the changes in total populations with
vaccination and without treatment.
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Figure 17: 	e plot shows the changes in total populations without
vaccination and with treatment.
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Figure 18: 	e plot shows the changes in total populations with
vaccination and treatment.

a�er vaccination. We leave all these possible extensions for
the future work.
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