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ABSTRACT 

 

 

 

 

Tissue engineering is a rapidly developing field seeking to solve biomedical problems which 

have a wide-range of clinical applications.  Bioreactor cultures have been shown to be essential 

for improving the functional properties of the tissue engineered constructs.  However, the major 

obstacle to-date for the generation of functional tissues in these reactors for wide-spread clinical 

use is the limited understanding of the regulatory role of specific physicochemical culture 

parameters on tissue development.  Not only is the cellular environment within and around the 

constructs ill defined, but the complex cellular responses to this environment are also not fully 

understood.  In this context, computational methods can serve as a valuable tool to facilitate 

better understanding of the underlying mechanisms governing physical, chemical, and biological 

processes in a 3-dimensional culture environment.  These methods can also be used to correlate 

the cell and tissue behavior to changes in global biochemical bioreactor inputs.   

 

These concepts are illustrated in the present work by three distinct tissue engineering 

applications – hematopoietic cell expansion in a perfusion bioreactor, human mesenchymal stem 

cell expansion in perfusion and static culture units, and cartilage tissue formation in hollow fiber 

bioreactors.  Material balances with mass transport and chemical reaction of nutrient 

consumption and product formation are coupled with cell growth, differentiation and 

extracellular matrix formation in 3-dimensional constructs to determine the effects of transport 

limitations on cell behavior.  The method of volume averaging is used for the determination of 

the effective diffusion and reaction terms in the species continuity equations in terms of local 

geometry and spatial restrictions in these multiphase systems.  The volume averaged equations 
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are thereafter solved over the macroscopic dimensions of the reactor to assess system 

performance.  This study has the potential to improve tissue engineered functional constructs. 

 

These tissue engineering model development applications considered the cellular processes in 

terms of net kinetic expressions linked to changes in macroscopic environmental parameters.  In 

order to understand and incorporate a complete model framework an understanding of processes 

at the cellular level is also essential.  To do so, in the second major part of this project, the 

muscle cell was chosen for study of metabolic processes in terms of production, transport, 

conversion and utilization of metabolite species.  It is known that in a muscle cell many cellular 

compartments, chemical species, enzymes, biochemical reactions, metabolic pathways, and 

control mechanisms interact with each other simultaneously to maintain homeostasis of the most 

important energy delivering metabolite, ATP.  A reaction-diffusion model of phosphorous 

metabolites involved in various metabolic pathways in the muscle was shown to provide a 

suitable framework for the study of diffusion, reaction, and metabolic organization.  This 

metabolic study is intended to understand the interactions between metabolism and cell structure.  

The current study is a first step towards an overall goal of setting up a rationale for cellular 

design for attaining a desired cell function.  
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

 

“From an engineering perspective the human body is one of the most interesting and challenging 

“systems” to study and describe.” 

- David Hawkins, PhD 

 “Biomechanics of musculoskeletal tissues”, University of California   

 

 

Biological systems are inherently complex due to the presence of many reacting chemical 

species in multiphase environments.  The art of mathematical modeling is to unravel this 

complexity by identifying the key features of a given system.  This is done by deriving equations 

based on the fundamental principles of conservation of mass, energy, and momentum, which 

govern system behavior.  Using various mathematical techniques and computer simulations, 

these equations can be solved over a wide range of physiological parameter values, thereby 

generating predictions that can be tested in the laboratory (Wastney, 1998; Green, 2003).  The 

focus of the present research is to develop these types of theoretical models which, when 

integrated with experimental results in a mutually iterative framework, can quantitatively explain 

the underlying mechanisms governing physical, chemical, and biological processes.  These 

models would help to estimate parameters and variables that cannot be measured directly by 

experiments, to test proposed hypotheses and previously observed relationships, to address the 

experimental design issues, and to develop increasing insight and understanding of the system 

itself, thereby opening up new avenues for research.  

 



 2

Tissue engineering is an exciting new field that uses an engineering approach to solve biological 

problems with clinical significance.  In the past decade, tissue engineering has emerged as a 

viable alternative to solve the problem of organ and tissue shortage.  Tissue engineering aims to 

develop biological substitutes that can restore, maintain, or improve tissue function (Skalak and 

Fox, 1991).  The engineered tissue, or construct, usually consists of 3-dimensional polymer 

scaffolds containing living cells in an environment with desired structure and functionality.  The 

constructs are cultured in bioreactors designed for specific purposes that provide the chemical 

and mechanical environments well suited for cell proliferation and differentiation.   

 

‘Tissue engineering: mathematical models are helping to take tissue engineering from concept to 

reality’ (McArthur et al., 2005).  The focus of my work is to develop mathematical models for 

cell growth and overall tissue formation in cell culture reactors in order to build a quantitative 

platform to analyze and integrate the information on events occurring at the cellular level to their 

macroscopic environment.  In general, this work attempts to develop predictive tools, which 

would link the cell population response to the external environment using the fundamental 

principles of transport phenomena and cell biology.  These concepts are illustrated in the present 

work by three distinct tissue engineering applications – hematopoietic cell expansion in 

perfusion bioreactor, human mesenchymal stem cell expansion in different kinds of culture units, 

and cartilage tissue formation in hollow fiber bioreactors; and also in the cellular metabolic 

modeling of the muscle metabolism intended to understand the interactions between metabolism 

and cell structure.   

 

The first three chapters (Chapter 2, 3, 4) of the thesis focus on my work on large scale ex vivo 

expansion of lymphohematopoietic cells in bioreactors.  Hematopoiesis is the process of 

formation and development of blood cells.  In the body these hematopoietic cells (HCs) grow 

and differentiate in the 3-dimensional bone marrow (BM) microenvironment made up of various 

stromal cells, extracellular matrix (ECM) proteins, and an array of soluble and ECM-bound 

growth factors (Mantalaris et al., 1998; Li et al., 2001).  Ex vivo expansion of these cells in order 

to reconstitute a functioning bone marrow is a rapidly developing area and has broad range of 

biomedical applications (Cabrita et al., 2003; Palsson et al., 1993).   
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Traditional static culture systems such as T-flasks and gas permeable bags (Damas et al., 1999) 

have been widely used for expanding HCs since the pioneering work of Dexter (Cabrita et al., 

2003).  However, these culture systems are inherently 2-dimensional and therefore are unable to 

replicate the in-vivo BM microenvironment.  The 2-dimensional culture does not promote proper 

cell-cell interactions and cell-ECM interactions, thus leading to lower cell growth (Nielsen et al., 

1988; Li et al., 2001; Wang and Wu, 1992).  For long term production of these cells, 3-

dimensional culture systems incorporated within various bioreactors have been studied (Horner 

et al., 1998; Cabrita et al., 2003; Koller et al., 1993 a; Hevehan et al., 2000; Collins et al., 1998; 

Mantalaris et al., 1998; Wang and Wu, 1992).  For example, static culture systems have been 

replaced extensively with spinner flask bioreactor or perfusion systems to provide for better 

control of the culture environment.  These topics are discussed in detail in Chapter 2. 

 

The most important factors necessary for control of cell growth in bioreactor systems include 

pH, nutrient (dissolved oxygen, glucose) concentrations, and metabolic byproduct (lactate) 

concentration (Koller et al., 1993(a, b, c); Oh et al., 1994; Schwartz et al., 1991; Koller et al., 

1992).  The effects of dissolved oxygen tension, lactate production, and pH have been 

extensively studied for these cell types.  However, there are very few studies that report on the 

effect of glucose concentration on HC growth.  In addition hematopoietic cultures, unlike any 

other cell culture system, are very complex, due to the presence of multiple cell types co-existing 

in culture, each with different rates of proliferation and differentiation and metabolic 

requirements.  Therefore, macroscopic changes observed in culture systems experimentally are 

cumulative responses for all hematopoietic cell types existing in the culture.    These different 

cell types and the other important factors affecting the expansion of the former are carefully 

outlined in Chapter 2 of the thesis. 

 

The present work also deals with a novel 3-dimensional perfusion bench top bioreactor system 

developed in Dr Teng Ma’s lab at Florida State University (Zhao et al., 2005).  The bioreactor 

system is being used for lymphohematopoietic cell ex vivo expansion.  One of the objectives of 

the work reported in the present dissertation is to develop mathematical models to quantify the 

immune lineage cell growth characteristics and macroscopic parameter changes over an extended 

period of time in and around the 3-dimensional matrix of the bioreactor.  The model is also 
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intended to provide a proper understanding of the physical parameters that govern cell growth 

leading to the production of specific cell types in the reactor, which in turn, will help in 

achieving the long term goal of scaling up the bench-top bioreactor system for clinical 

applications.   

 

Although there are a number of parameters as discussed that affect HC growth and the co-

existence of multiple cell types in reactor systems, as a first approach, the model discussed in 

Chapter 3 of this dissertation deals with the growth of a single cell type, the granulocyte 

progenitor cell, and one nutrient, oxygen, in this 3-dimensional perfusion bioreactor unit (Pathi et 

al., 2005).  These cells were chosen because they occupy the major fraction of the BM 

compartment (Chow et al., 2001) and are the fastest growing HCs.  They have the highest 

metabolic rate of oxygen consumption in the BM, and thus they provide a limiting case to assess 

the depletion of oxygen by cell growth and metabolism.  This study can also be used to 

determine an upper limit to oxygen limitations in these culture systems.  Moreover, these cells 

mature into neutrophils, which have a limited life span of only 48 hours, thereby forming the first 

line of defense against microbial invasion (Hevehan et al., 2000), and hence ex vivo large scale 

production of this cell type is required.   

 

Various mathematical models have been developed using the population balance approach to 

account for HC self-renewal, cellular differentiation into mature cells, and cell death (Nielsen et 

al., 1988; Silva et al., 2003; Hevehan et al., 2000; Abkowitz et al., 2000; Peng et al., 1996).  

Models of spatial distribution of HCs in the bone marrow hematopoietic compartment have also 

been developed (Chow et al., 2001).  However, these developed models are discrete, and they do 

not account for cell growth dependence on culture parameters such as oxygen tension.  The 

dynamic model proposed in Chapter 3 is intended to provide quantitative estimates of the oxygen 

consumption for granulocyte progenitor cell growth and metabolism thus relating macroscopic 

changes to cellular events using basic physiological principles.  Molar balances describing 

oxygen consumption and cell growth are solved using the volume averaging approach (Whitaker, 

1999).  The method of volume averaging has been extensively used to study transport and 

reaction in multiphase systems for various chemical engineering problems (Carbonell and 

Whitaker, 1984).  This method allows for the determination of the effective diffusion and 
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reaction terms in the molar balances in terms of local geometry and spatial restrictions.  This 

model is extended in Chapter 4 by the addition of material balances accounting for the effects of 

other nutrients such as glucose and by-product formation such as lactate on multiple cell types 

coexisting in cultures.  These computed macroscopic parameters and cell densities in the 

bioreactor are used to assess the key bioreactor design parameters and to optimize the overall 

reactor performance.   

 

The second major application of mathematical model in tissue engineering is demonstrated in the 

expansion of human mesenchymal stem cells (hMSCs) in various culture units.  Experimental 

data on hMSC growth-kinetics and spatial growth patterns, metabolism, and oxygen 

consumption in various culture devices - static and perfusion units have been studied (Grayson et 

al., 2004; Zhao et al., 2005 (a), (b)) to elucidate the effects of perfusion culture on cell growth 

and tissue development.  Convective oxygen transport was found to be important for enabling 

and sustaining high cell growth rates, high cell density, and uniform growth pattern.  In order to 

reemphasize the significance of flow quantitatively in terms of oxygen delivery on hMSC 

development, a dynamic mathematical model describing oxygen distribution in the static and 

perfusion culture units is developed in the present dissertation.  The model is based on the 

principles of mass transport and reaction and provides estimates of the spatio-temporal oxygen 

concentration profiles in the two units, which is difficult to measure experimentally.  The 

objective of this part of the work, however, is not to develop an a priori predictive model but to 

use the developed model results on spatial oxygen concentrations along with the available 

experimental data to help understand the role of oxygen transport on cell behavior (growth and 

metabolism) in different culture units.  The model and the results are given in detail in Chapter 5 

of this dissertation. 

 

The third major application of mathematical modeling in tissue engineering demonstrated in this 

dissertation is in the area of the engineering of functional cartilage tissue substitutes.  In vivo, in 

mammals, cartilage is primarily found in the skeleton.  It is present in small amounts in certain 

viscera, e.g. in parts of the respiratory tract.  Much of the skeletal cartilage is replaced by bone in 

adults but some persists throughout life as articular, costal and nasal cartilage, for example.  The 

focus of the present study is articular cartilage - a thin layer of connective tissue located within 
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joints at the end of bones (Buckwalter et al., 1997).  This tissue is made up of relatively few 

cartilage cells called chondrocytes, present in an extensively hydrated extracellular matrix 

(ECM) made up of collagens and proteoglycans.  Degeneration of this articular cartilage in the 

body is seen to occur during osteoarthritis and joint injury.  The limited capacity of the cartilage 

tissue to respond to mechanical injury with a reparative process has motivated the incorporation 

of cell-based repair approaches after articular cartilage lesions (Raimondi et al., 2002).  Tissue 

engineering approaches can be thus used to design an in vitro cartilage tissue system to resemble 

the in vivo system structurally and functionally.  These in vitro systems can be used as functional 

substitutes and also be used for systematic study of the process of chondrogenesis.   

 

Cartilage tissue have been grown successfully in tissue culture bioreactors starting from 

chondrocyte cells, either attached to biodegradable polymeric scaffolds in mixed flasks and 

rotating wall bioreactors (Freed and Vunja-Novakovic, 2000b; Vunjak-Novakovic et al., 1999) 

or in the absence of scaffolds in hollow fiber bioreactors (Petersen et al., 1997; Potter et al., 

1998; Ellis et al., 2001).  The morphology, composition and mechanical properties of these 

constructs are strongly influenced by the microenvironment of the cell.  Experimental studies 

have shown mass transfer limited nutrients and/or oxygen supply in these cartilage culture 

systems which are believed to govern the cell metabolic rates and tissue growth characteristics 

(Vunjak-Novakovi et al., 1996; Obradovic et al., 1999).  Thus, there have been several studies 

dealing with development of functional cartilage constructs from chondrocyte cells seeded in 2-

dimensional T-flasks to 3-dimensional bioreactors in order to understand and optimize cartilage 

tissue characteristics in vitro.  To understand, and compile the large amounts of experimental 

data and to further use this data for the rational design of tissue constructs a mechanistic 

approach needs to be developed.  

 

Additionally, to reach a stage of clinical applicability a definite need arises for improved control 

over the functional properties and composition of the developed cartilage tissue engineered 

constructs in culture units.  Mathematical models can help to provide a better understanding of 

the complex interplay among the array of factors that control the functional tissue development 

(Sengers et al., 2004).  Models can be used to predict the spatio-temporal variations of the 

concentration of many components involved affect construct composition, formation of new 
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tissue mass (cell and ECM) and the microenvironment around the cartilage cell.  The model 

developed in the present dissertation relates the kinetics of in vitro tissue formation to events 

occurring at the cellular and molecular levels, and may potentially allow for enhanced design 

through development of control strategies and may assist in engineered tissue optimization 

(Williams et al., 2002).  

 

Spencer and coworkers (Petersen et al., 1997; Potter et al., 1998, 2000; Ellis et al, 2001) have 

developed an in vitro 3-dimensional cartilage tissue model in a hollow fiber bioreactor (HFBR) 

which permits a wide range of interventions and in which both biochemical and noninvasive 

nuclear magnetic resonance spectroscopy and imaging studies (MRI, EPR Oxygen Mapping) 

were performed (Potter et al., 2000).  HFBRs provide a more realistic diffusion barrier between 

cells and nutrient supply and permit interaction between chondrocytes and their secreted ECM.  

Like other 3-dimensional culture systems they support the chondrocyte phenotype and prevent its 

dedifferentiation into fibroblasts (Ellis et al., 2001).   

 

The present study develops a mathematical model to study the cartilage tissue formation in this 

hollow fiber bioreactor unit (Potter et al., 1998).  In this unit, cells are not grown in constructs 

(compared to the study by Langer’s group).  The cells are injected into the extracapillary space 

of the reactor.  They attach themselves onto the outer surface of the hollow fiber tubes or 

capillaries.  These cells then proliferate radially outwards in the space available.  The moving 

boundary approach (Galban and Locke, 1997) coupled with the method of volume averaging 

(Whitaker, 1999) is utilized in the present work to simulate the experimental cell growth 

patterns, as well as to account for transport and reaction in the reactor by determination of 

effective diffusion and reaction terms for tissue formation in terms of local geometry and spatial 

restrictions.  The model was used to determine the tissue parameters and NMR measurable 

parameters for comparison with available experimental results.  The detailed modeling approach 

is outlined in Chapter 6 of the dissertation.  This study would advance our understanding of the 

factors that affect cell growth and ECM production in vitro in bioreactors.  The model will help 

in the development of optimal operational strategies for growing engineered cartilage in these 

bioreactors.  Further, the model would enable understanding and rationalization of vast amount 

of available experimental results on this system, and provide suggestions for improved 
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experimental design by identifying the key parameter measurements that need to be made.  This 

work indirectly would help in monitoring and controlling the development of the tissue 

engineered construct in the bioreactor.    

 

The above models provide quantitative understanding of the effects of macroscopic changes on 

cellular characteristics, such as growth, metabolism and ECM production.  As mentioned, this is 

accomplished by proposing kinetic functions relating the cellular changes to changes in the 

microenvironment around the cell.  However, understanding at the cellular level is incomplete. 

As a next step towards the development of structured models, the understanding of metabolism 

at the cellular level is studied in the work reported in Chapter 7 of this dissertation.   This is 

important from the perspective of cellular engineering to enhance our understanding of the role 

of metabolism on cellular design.  The cell type used for this study is a muscle cell or a 

myofiber.  This cell type was chosen because of its definite structure and the large range of 

metabolic rates observed due to change in physiological state of the animal (rest to exercise and 

vice versa).  Moreover, these cells have conserved cell structure from organism to organism.  In 

addition, extensive available literature on energy metabolism in muscle is an excellent 

opportunity to develop quantitative, predictive, and testable model of cellular function across a 

wide range of spatial and temporal boundaries.   

 

Developing a quantitative understanding of cellular metabolism by studying the production, 

transport, conversion and utilization of energy carriers, facilitated via metabolic pathways is 

performed using reaction-diffusion models.  The transport and reaction dynamics of phosphorous 

metabolites involved in various metabolic pathways in the muscle are modeled using species 

continuity equations.  This understanding of muscle energetics is used to study supply verses 

demand of metabolites in various muscle fiber types.  Further this understanding of the 

interactions between metabolism and cell structure is used in setting up a rationale for cellular 

design for attaining the desired functions. 
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CHAPTER 2 
 

 

ROLE OF NUTRIENT SUPPLY AND PRODUCT FORMATION 

ON CELL GROWTH IN BIOREACTOR DESIGN FOR TISSUE 

ENGINEERING OF HEMATOPOIETIC CELLS  
 

Background and Literature Review 
 

 

 

 

2.1. Introduction 

 

 

Every day the human body produces billions of red blood cells, white blood cells, and platelets to 

replace the blood cells lost due to normal turnover processes such as death, or due to illness or 

trauma.  A variety of homeostatic mechanisms allow blood cell production to respond quickly to 

stresses such as bleeding or to infection and allow return to normalcy when the stresses are 

resolved.  This highly orchestrated process is called hematopoiesis (Smith, 2003).  Thus 

hematopoiesis refers to the process of formation and development of blood cells to maintain 

homeostasis (Wang et al., 1995).  

 

Hematopoiesis in vivo takes place primarily in the bone marrow.  The bone marrow is made up 

of a vascular and an extra-vascular compartment.  The vascular compartment as the name 

indicates is supplied by a nutrient artery, which branches into central longitudinal arteries, which 

in turn send out radial branches that eventually open into the sinuses.  These sinuses converge 

into a central vein which carries the blood out of the bone marrow into the general circulation.  
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Hematopoiesis takes place in the extra-vascular compartment called the hematopoietic 

compartment.  The extra-vascular compartment consists of stroma made up of reticular 

connective tissue and a parenchyma of developing blood cells, plasma cell, macrophages and fat 

cells.  Hematopoiesis also occurs in spleen and liver during early stages of development of 

embryo. 

 

2.2. Process of Hematopoiesis 

 

 

The commonly accepted theory on the process of hematopoiesis is called the monophyletic 

theory.  This theory states that there exists a single type of stem cell which gives rise to all the 

different mature blood cells in the body.  This stem cell is called the pluripotential (pluripotent) 

stem cell or also called as hematopoietic stem cell (HSC).  Most of these types of cells are found 

within the bone marrow (BM) at typically very low percentages (typically 0.01-0.05%).  They 

are also found in the circulating peripheral blood (PB), the umbilical cord blood (UCB) and the 

fetal liver at even lower percentages (typically 0.001%) (Cabrita et al., 2003).  

 

All the HSCs are not identical.  Experimental studies reveal that these HSC can be divided into 

three types: long-term self-renewing HSCs (LT-HSCs), short-term self-renewing HSCs (ST-

HSCs) and not self-renewing multipotent progenitors (MPPs) (Cabrita et al., 2003).  It is thought 

that the LT-HSCs self-renew throughout the lifespan of the organism.  They maintain 

hematopoiesis by differentiating into ST-HSCs and then to MPPs.  The self renewal capabilities 

of ST-HSCs and MPPs are only for short duration.  These MPPs differentiate again into lineage-

committed progenitor cells, which as their name suggests give rise to blood cells of specific 

lineages.  These two specific hematopoietic lineages are called lymphoid lineage and myeloid 

lineage.  The lymphoid lineages consist of T-cell and B-cell lineages.  The myeloid lineages 

include the erythroid (production of erythrocytes or red blood cells), granulocytic (production of 

neutrophils, infection fighting cells), macrophagic (production of macrophages, cells with 

general regulatory and immune functions), and megakaryocytic (production of platelets, blood 

clotting component) lineages.  The schematic of this process is shown in Figure 2.1. 
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2.3. Bone Marrow Microenvironment 

 

 

The regulation of HSC self-renewal/multilineage differentiation is dependent upon the intimate 

contact with the bone marrow microenvironment.  As discussed already the hematopoietic 

compartment, which makes up the microenvironment for these cell types, consists of the so-

called stromal cells (macrophages, adipocytes, endothelial cells and fibroblasts) and components 

of the extracellular matrix (ECM).  The proliferation and maturation of highly primitive HSC 

and also the mature lineage committed progenitor cells are influenced by the myriad of growth 

factors expressed on the surface of and/or secreted by the stromal cells.  It is presumed that these 

growth factors are able to create a suitable microenvironment that plays an important role by 

binding to specific receptors on the cell membrane of target cells and activating the current 

messenger pathways.  

 

2.4. HSC Culture 

 

 

2.4.1. Need for Culture and potential applications 

 

Large-scale hematopoietic cultures could provide several types of important mature blood cells 

like the granulocytes, platelets, and red blood cells.  About 12 million units of RBCs are 

transfused in the United States every year, the majority of them during elective surgery, and the 

rest in acute situations.  About 4 million units of platelets are transfused every year into patients 

who have difficulty exhibiting normal blood clotting.  Mature granulocytes are transfused to 

patients with weaker immune system, such as during chemotherapy and during the healing of the 

burn wounds.  The availability of donors is a traditional problem, and coupled with that the short 

life of blood cells, blood-type incompatibility and some contamination of blood makes the 

current supply of blood unstable and is not able to meet the major changes in demand by patients 

(Koller et al., 1993).   
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Figure 2. 1 Stucture of the Hematopoietic system.  All cell types above the dotted line are found in the BM 

and all the cells below (the mature blood cells) are found in the circulating PB (Cabrita et al., 2003; Web 

design by Stephen Traub, American Society of Health-System Pharmacists, Inc.) 

 

 

Hence over the past few years, there has been an increased interest in the development of 

clinical-scale culture systems for ex vivo expansion of hematopoietic cells.  These ex vivo 

expanded hematopoietic cells can be used for transplantations following chemotherapy, tumor 

purging, and gene therapy.   

 

2.4.2. Culture conditions that affect expansion  

 

Choosing optimal culture parameters for the ex vivo expansion of hematopoietic cells is a major 

challenge.  This is because of complex kinetics of various cell types in different stages of 

lineage, their transient nature, and complex dependence upon the culture parameters.  The 

various culture parameters which have been reviewed in the literature for this system include 
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growth factors, stroma, perfusion or static conditions, serum, dissolved oxygen concentration, 

pH, inoculum density and the engineered surfaces for cell growth. 

 

Stroma 

Stromal cells consist of the adventitial reticular cells, endothelial cells, adipocytes, and, 

macrophages.  These cells support hematopoiesis by synthesizing the ECM and by the 

production of growth factors.  It has been reported that cultures containing a stromal layer or 

stroma-derived factors have greater longevity and progenitor cell expansion in comparison to 

cultures without stroma.  However, there are a number of complications involved in using a 

stromal layer.  The quantification of the composition of this stromal layer is very complex and so 

will be the quantification of its effects on various cell processes.  Additionally, harvest of the 

stroma containing cultures is labor-intensive and requires enzymatic treatment.  The benefits of 

stromal cells can always be replaced by defined factors, by frequent medium exchanges, and by 

the addition of a sufficient amount of growth factors. 

 

Serum/Serum free medium 

The first hematopoietic cultures were performed using serum-containing media.  This media 

provides nutrition, protects the cells from shear stresses within the reactor, and also is believed to 

influence the transduction of mechanical forces that affect surface receptors.  However, the 

addition of serum to a culture medium leads to an undefined composition and brings 

uncontrolled variability, complicating the use of cells for clinical purposes.  Hence, in order to 

avoid complications of in vitro cultures, serum free medium is preferred.  It has been shown that 

by addition of multiple cytokines excellent expansion of highly purified HSCs can be obtained 

(Cabrita et al., 2003). 

 

pH 

HSC cultures might experience a pH variation of up to 0.5 pH units unless pH is controlled.  This 

pH variation is largely due to cellular metabolism which leads to the production of by product 

lactate (Nielsen, et al., 1999).  Many studies have shown that medium acidification causes 
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growth inhibition (McAdams, et al., 1996).    The pH range of 7.2-7.4 supports the survival and 

differentiation of granulocyte-macrophage.  Outside of this range, the differentiation is 

eliminated, especially at acidic pH.   

 

In an erythroid lineage it is observed that the rate and extent of differentiation increases between 

pH of 7.1 to 7.6 (McAdams, et al., 1996).  At pH less than 7.1, erythroid progenitors are still 

present and viable, but their differentiation is inhibited.  Similarly, the pH range 7.35 - 7.40 

promotes differentiation and maturation of Mk cells whereas a lower pH (~ 7.1) extends the 

expansion of primitive Mk progenitor cells (Cabrita et al., 2003).  Therefore, pH is shown to be 

an important factor for hematopoietic cultures and needs to be suitably controlled to facilitate 

cell expansion, differentiation, maturation and apoptosis. 

 

Oxygen Tension 

Oxygen tension is an important determinant of proliferation and differentiation of hematopoietic 

cells.  Reduced Oxygen tension (pO2 = 38 mm Hg, 5% O2) enhances the production of erythroid, 

megakaryocytic, and granulocytic-monocytic progenitors in vitro (Laluppa, 1998, Chow et al., 

2001).  However, the formation of mature erythrocytes, mature granulocytes and 

megakaryocytes (Mks) is extensive under a pO2 value close to 152 mm Hg (20% O2).  Thus, the 

progenitor cells of most lineages proliferate more rapidly under reduced oxygen tension, which is 

in regions that are farthest from the supply sources in the BM (the sinus).  In contrast, the mature 

cells of these lineages appear extensively under the higher oxygen tension that occurs in regions 

close to the sinus or oxygen supply source.   

 

The improved growth of progenitor cells under reduced oxygen tension is in part due to the 

increased responsiveness of hematopoietic cells to various growth factors.  For example, under 

low oxygen levels CFU-E and BFU-E exhibit increased sensitivity to EPO (Erythropoietin), and 

macrophage progenitors show increased sensitivity to M-CSF (Macrophage colony stimulating 

factor).  Accessory cells also show different responses to varying oxygen tensions in their 

production of growth factors.  Moreover, oxygen toxicity also plays an important role in the 

decreased colony formation at high oxygen concentration.  Studies performed have shown that in 
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the presence of lineage specific factors, different oxygen tensions preferentially enhance 

expansion of one hematopoietic cell lineage (Laluppa, 1998, Chow et al., 2001).  Hence the 

choice of oxygen tension will help to determine the linage and maturity of cells present in 

culture. 

 

BM oxygen tensions between 10 and 50 mmHg (indicating that saturation in ex vivo conditions 

by gases containing approximately 5% oxygen) is sufficient to provide an environment similar to 

the in vivo BM microenvironment.  Studies have shown that formation of hematopoietic cell 

colonies in colony assay cultures is enhanced under reduced oxygen conditions resulting in both 

larger and more numerous colonies.  Further studies have extended these findings to long-term 

hematopoietic cultures (LTHC), both with and without the addition of exogenous cytokines 

(Koller et al., 1993). 

 

The role of oxygen is very complicated because the oxygen availability in a culture depends on 

cell density, culture configuration and gas-phase oxygen tension in high cell density bioreactors.  

A lower oxygen tension may benefit progenitors in the early stage of culture.  However, as the 

cell number increases the oxygen demand will increase and cultures may become oxygen 

limited.  Hence, it is important to replenish the oxygen by either increasing the gas-phase oxygen 

tensions, the agitation rate, or the perfusion rates, depending upon the culture device (McAdams, 

et al., 1996).  There is also evidence to suggest that stem cells can survive under hypoxic 

conditions better than more mature progenitor cells.  Therefore, the choice of oxygen tension 

significantly influences the type of cells produced in culture and, together with the choice of 

cytokine combinations, provides a significant means by which the lineage of the cells produced 

in the culture can be controlled (McAdams, et al., 1996). 

 

Cell seeding density 

Cell inoculum density affects the total cell and progenitor expansion as well as the percentage of 

progenitor cells in the culture.  In general, experiments have shown, lower cell seeding densities 

lead to greater total cell expansion and greater depletion of colony forming cells.  High density 

cultures have greater total cell and CFC numbers but lower total cell expansion ratios in 
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comparison to low density cultures.  The positive impact of increasing the rate of medium 

exchange has been shown to be larger in high density cultures.  A greater maintenance of CFCs 

at high densities has also been seen in bioreactor cultures (McAdams, et al., 1996). 

 

The cell seeding density has been found to affect culture performance for BM MNC, and PB 

MNC as well as for CD34
+
 cell culture systems.  Lower density cultures expand total cells 

preferentially over CFC.  In contrast, higher density cultures expand CFC considerably but 

without larger expansion of the total cells.  Thus, it can be understood that a high density culture 

maintains progenitors and long-term culture-initiating cells (LTC-IC) better than a low inoculum 

density culture that induces differentiation.  Culture systems that can maintain higher number of 

progenitor cells are desirable.  Hence a perfusion system (discussed in the next section) that can 

maintain pH and oxygen tension in desirable levels in high density cultures is what is necessary 

(Laluppa, 1998, Chow et al., 2001). 

 

Feeding/Perfusion 

Perfusion and the rate of medium exchange are important culture variables.  Hematopoiesis in 

BM takes place under homeostatic conditions, which in vitro can be achieved under frequent or 

continuous (perfusion) feeding.  The in vivo perfusion rate of plasma through the BM is 

approximately 0.1 ml/cc of marrow per minute (Laluppa, 1998, Chow et al., 2001).  High-

density bioreactor systems with higher cell densities may require correspondingly higher 

perfusion rates.  In contrast, the standard feeding protocol for hematopoietic LTHC cells is a 

weakly exchange of 50%-100% of the medium rather than the daily rate (Koller et al., 1993). 

 

Hematopoietic growth factors 

Colony-stimulating factors (CSF) and interleukins (IL) are the primary regulators of the growth 

and differentiation of hematopoietic cells.  The exact combination of the two growth factors for 

optimal expansion of hematopoietic stem cells, progenitor cells and mature cells are still 

unknown.  Cytokines such as erythropoietin (EPO), thrombopoietin (TPO), and granulocyte-

colony stimulating factor (G-CSF) are ‘lineage specific’ and support proliferation and maturation 

of committed progenitors.  IL-3, granulocyte macrophage-CSF (GM-CSF) are intermediate 
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acting ‘lineage non-specific’ factors and support proliferation of multipotential progenitors.  

Other factors such as IL-6, G-CSF, IL-11, and stem cell factor (SCF), when associated with IL-3 

bring primitive, quiescent progenitors into the cell cycle and increase proliferation.  Growth 

factors like EPO, IL-3, GM-CSF, G-CSF, and SCF are considered to be survival factors because 

they suppress apoptosis in cells at various stages in the hematopoietic lineage. 

 

These regulators are added depending on the kind of cells being cultured and the desired lineage.  

For example a combination of IL-6, G-CSF, GM-CSF are used for the expansion of more mature 

cells and progenitors of the neutrophil lineage (Laluppa, 1998).  The proliferation and maturation 

of Mks requires the addition of TPO.  However, the growth factor combination for maintenance 

and expansion of primitive progenitors (LTC-IC) is still not well defined.  A combination of 

growth factors that would bring about proliferation of progenitor cells, prevent their 

differentiation and apoptosis are desired (Laluppa, 1998, Chow et al., 2001). 

 

Local geometry 

Local geometry can influence the function of cells in culture.  A 2-dimensional flat surface 

provided by standard tissue culture plastic is non-physiological, and is probably undesirable for 

retaining normal physiological function over extended periods of time (Koller et al., 1993).  A 3-

dimensional tissue culture might provide a similar microenvironment to the in vivo environment 

and result in long-term multilineage production of hematopoietic cells.  This topic will be further 

discussed in the section dealing with culture devices. 

 

2.4.3 System for expansion of hematopoietic cells 

 

BM cells have traditionally been cultured on flat, two-dimensional surface of tissue culture 

dishes.  Dexter et. al., 1977 were the first to develop a long term murine hematopoietic (bone 

marrow) culture system, which primarily produced granulocytes.  The key features of this system 

were the establishment of the stromal layer during the first few weeks of the culture followed by 

progenitor cells expanding into colonies in the next few weeks.  Since then investigators began 

using static culture systems such as well plates, T-flasks and gas permeable blood bags for 
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expanding hematopoietic cells.  These systems, however, suffer, severe limitations including the 

following: 

(a) lack of mixing resulting in critical gradients for dissolved oxygen (low solubility) and 

nutrients (such as cytokines and metabolites); hence heterogeneity, 

(b) lack of control options for dissolved oxygen concentration and pH, 

(c) lack of support for frequent feeding, 

(d) productivity limited by the number of cells that can be supported by a given surface area, 

(e) cumbersome for large scale applications, because of the need for more flasks, bags or 

dishes, 

(f) low process reproducibility, and 

(g) increased risk of contamination due to repeated handling required to feed cultures or to 

obtain data on culture performance. 

These limitations restrict the usefulness of static systems to relatively low density cultures with 

low total cell requirements. 

 

The use of bioreactor systems is an alternative approach to standard flask culture systems in 

vitro.  Advanced bioreactors are necessary when a large number of cells are required, accessory 

cells are used and high cell density is desired.  These systems may also have the potential to 

become automated.  They are closed systems which thereby decrease the space and labor 

requirements, reduce contamination, and facilitate continuous automated medium exchange.  

They can be well monitored and optimally controlled, and thus can be used to develop an 

understanding of the influence of various input parameters in the culture system on the 

hematopoietic cell expansion and commitment.  The most important bioreactors used so far for 

the expansion of hematopoietic cells include: perfusion chambers, stirred reactors, fluidized bed 

reactors, fixed (packed bed) reactors, airlift reactors and hollow fiber reactors. 

 

Perfusion chambers 

Palsson and collaborators (Schwartz et al., 1991; Palsson et al., 1993) have developed a 

perfusion culture system based on flat small-scale cell culture chambers with an attached stromal 

layer to retain inoculated cells.  The design of such a reactor is driven by the fact that more 
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frequent medium exchanges and the supply of soluble growth factors increased the total cell 

production and progenitor maintenance in the culture.  Radial flow type chambers are used in 

order to provide a uniform environment (because of the absence of walls parallel to the flow path 

and hence no slow-flowing regions).  The bioreactor schematic is shown in Figure 2.2 (a). 

 

These cultures have achieved approximately 20-fold expansion of CFU-GM, 2-7-fold expansion 

of primitive LTC-IC as these reactor systems could maintain better-defined culture parameters, 

such as pH, and dissolved oxygen concentration by continuously supplying cells with nutrients 

and removing metabolic byproducts.  Clinical trials have been initiated using a prototype of a 

perfusion system developed by the University of Michigan and Aastrom Bioscience.  The cell 

production system (CPS) operates as a fully automated, closed system with pre-sterilized, 

disposable reactor cassettes and automated sterile cell recovery.   

 

It was found out that ex vivo expansion of these cells (from PB, UCB, BM-MNC) for clinical 

applications would be simplified by using a long-termed hematopoietic culture without an 

attached stroma.  Hence the perfusion bioreactor was modified to a grooved flat bed perfusion 

system by the addition of grooves perpendicular to the flow direction at the bottom of the 

chamber (Horner et al., 1998).  The schematic of the grooved perfusion flat bed bioreactor is 

shown in Figure 2.2 (b).  The grooves retain cells in the bioreactor in the presence of continuous 

perfusion.  They also reduce mechanical stresses on the cells by isolating them from the primary 

flow.  The simple design also provides the ease for harvesting cells at the end of the culture 

period; in direct contrast to hollow fiber bioreactors (to be discussed later).  Moreover, the 

growth environment in this chamber is reproducible and has well defined, substantial advantages 

for automation.  Table 2.1 lists the various cells that have been grown using these bioreactors.   

 

Stirred bioreactors 

Stirred bioreactors are easy to operate: allow sampling, monitoring and control of culture 

conditions.  They provide a homogeneous environment for cell growth because mixing 

overcomes the diffusion limitations of static cultures.  Most common operating modes of stirred 
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bioreactors are batch, fed-batch and perfusion mode (retention of cells by means of 

internal/external filtration modules).  The schematic of the bioreactor is shown in Figure 2.2 ( c)  

Although these reactors are simple to operate, readily scalable and provide relatively 

homogeneous environment, it was not certain how well they can support the accessory cells 

unless a microcarrier was added or the cells were encapsulated.  Moreover HCs are relatively 

sensitive to shear and hence agitation due to mixing in this reactor might affect cell growth 

(thought to affect the surface marker expression, including cytokine receptors).   

 

Packed and fluidized bed reactors 

Packed bed bioreactors (Figure 2.2 (e)) are designed to provide 3-dimensional scaffolding for 

cell attachment and culture.  In these systems an initial attachment-dependent stromal cell culture 

is started on the bed particles whereupon the HSCs can be co-cultivated (Wang et al., 1995; 

Mantalaris et al., 1998).  The bioreactors are operated in small volumes (approximately 500 ml 

working volume).  The screening and optimization of the culture conditions were effectively 

performed in a miniaturized loop reactor containing a fixed bed of collagen microcarriers with a 

working volume of 1 ml, which can be placed in conventional tissue culture plates.  In the case 

of fluidized bioreactors the carrier movement inhibited the addition of HSCs to stromal cells.   

 

Other reactor types 

‘Hollow fiber’ and ‘air-lift’ (Figure 2.2 (d)) reactors were also used to culture HCs.  They did not 

provide considerable cell expansion (Sardoni and Wu, 1993).  The poor performance of the 

hollow fiber bioreactor was due to the difficulty of harvesting cells from the reactor.  The culture 

environment in such a bioreactor is highly spatially non-homogeneous, which creates large 

concentration gradients of critical nutrients, e.g., oxygen, and pH.  Gradients of pH and oxygen 

could result in the production of different cell types in different sections of the reactor.  Process 

monitoring could be problematic in such a reactor since the cells cannot be easily sampled or 

observed during the culture.  In addition, limited recovery of cells from this type of reactor has 

been reported.  ‘Rotating vessel bioreactors’, a new low shear bioreactor that would be able to 

reproduce some of the in vivo characteristics related to HC growth, differentiation, maturation 

and death are yet to be implemented for culturing these cells. 
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Bioreactor systems are advantageous because they have the potential to become automated.  

They are closed systems thereby decreasing space and labor requirements and contamination and 

also facilitating compliance with regulatory requirements.  A uniform culture environment and a 

simple design are the primary advantages of stirred systems.  However, hematopoietic cells 

being shear sensitive posses a major disadvantage in using stirred systems.  Flat bed perfusion 

systems would provide a low shear environment, a proper supply of nutrients maintaining the 

various culture conditions and culture cells more effectively over all the bioreactor system.  

However, being 2-dimensional they still do not provide proper cell-cell and cell-matrix 

interactions for optimal cell growth.  Hence, it is critical to design a similar system but with 3-

dimensional microstructure.   

 

Further studies need to be conducted in order to determine the sensitivity of a particular 

hematopoietic lineage to various culture parameters discussed above.  This includes analysis of 

the effects of such factors as oxygen and lactate concentrations, pH, shear forces, and other 

conditions to determine how closely they should be controlled in the bioreactor system in order 

to replicate the in vivo bone marrow microenvironment.   

 

The field of hematopoietic stem and progenitor cell expansion has progressed rapidly since the 

first Dexter cultures were performed in the mid-1970s.  Within these few years progress has been 

especially rapid in the identification of suitable microenvironment for large scale cell expansion.  

This includes the utilization of 3-dimensional matrices and novel bioreactor systems that help in 

maintaining high levels of nutrient concentration and facilitating byproduct removal.  The 

potential for ex vivo expansion is manifest, as clinicians have already begun to utilize ex vivo 

expanded hematopoietic cells for transplantation and gene therapy.  Clinically the potential for 

ex vivo expansion are promising, however, still many factors need to be considered before the 

process can be a clinical routine.  My research deals with the development of mathematical 

models for these novel 3-dimensional culture systems for optimally desired ex vivo expansion of 

these cells.  This will advance research on mathematical modeling for this system. 
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Figure 2. 2 Bioreactors more frequently used for the culture of hematopoietic stem cells: (a) perfusion 

chamber; (b) grooved surface of perfused chamber; (c) stirred tank; (d) air-lift fixed bed; and (e) fixed bed or 

fluidized bed bioreactor (Cabrita et al., 2003) 
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Table 2. 1 Bioreactors most frequently used for the culture of hematopoietic stem cells (HSCs)  

(Cabrita et al., 2003) 

 

 

 

 

2.5 Mathematical Modeling 

 

 

2.5.1 Motivation 

 

Implementing a successful 3-dimensional bioreactor system for either clinical study or basic-

study requires a reliable transport-reaction model.  Such a model would allow for the estimation 

of operational limits of a given bioreactor design for a particular cell culture application by 

ensuring that the cells are grown under non-limiting culture conditions.  The model would also 

allow for the selection of suitable design characteristics and/or operational variables to achieve a 

desirable level of one or more culture parameters, such as dissolved oxygen, pH, and nutrient or 

byproduct concentrations.  This would directly affect the growth of that cell in that culture 
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system.  Hence, the growth of the cell in the bioreactor system may be effectively manipulated 

by the use of mathematical models (Horner et al., 1998). 

 

2.5.2 Need for modeling of hematopoietic system 

 

As discussed in the introduction in vivo hematopoiesis process occurs in the bone marrow (BM).  

Compared with all other tissues in the body the bone marrow has been extensively studied.  Bone 

marrow cultures have significant applications to clinical practice and to basic scientific studies of 

tissue structure-function relationships (Koller and Palsson, 1993).  Therefore, hematopoiesis is a 

logical candidate system for the initial development of mathematical models of ex vivo function.   

 

Section 2.4.3 described the importance of 3-dimensional bioreactor systems for ex vivo 

expansion of hematopoiesis in order to reconstitute a functioning BM.  Evaluating the kinetics in 

these hematopoietic culture systems is complicated by the distribution of cells of multiple 

lineages over different stages of differentiation.  Thus, an observed response (experimentally) is 

an integral response from several cell populations of cells.  Models are developed to predict the 

different kinetic parameters of various HC types that are experimentally difficult to determine.  

For example, the developed models can be used to obtain the cell growth of early progenitors 

(present in low frequencies in culture), as their content and distribution cannot be identified even 

by flow cytometry (Yang et al., 2000).  The concentration of various nutrients and products in 

the matrix that are important in determining and manipulating cell growth can be studied.  This 

information obtained from the model can be further used in the optimization of ex vivo cultures. 

 

2.5.3 Available Mathematical Models  

 

Various mathematical models have been reported in literature describing the hematopoiesis 

process in vivo in the BM and ex vivo in the culture systems.  A few of the most important 

models are briefly reviewed below. 
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2.5.3.1 Krogh’s Model 

 

Krogh’s model (Krogh, 1918) approximates a tissue as a cylinder and has been extensively used 

in the modeling of oxygen transfer through different types of tissues, including the skeletal 

muscle, myocardium, brain, lung, and the skin.   

 

Chow and coworkers (Chow et al., 2001 a) have used this Krogh’s modeling approach to 

estimate the oxygen partial pressure (pO2) (or concentration distribution) in the bone marrow 

hematopoietic compartment (BMHC).  The model simulates the cellular arrangement of various 

cell types depending on the oxygen consumption.  A tissue cylinder consisting of various cell 

types with the bone marrow sinus at the center is constructed.  The following assumptions are 

made to simplify the mathematical formulation: 

1. steady state oxygen transfer, 

2. oxygen molecules are assumed not to bind to any carriers or preferentially adsorb on 

certain parts of the cells, 

3. sinuses are assumed to be straight and parallel for a length sufficient to establish 

equilibrium between the sinus and hematopoietic tissue, 

4. oxygen consumption and resistance to oxygen diffusion of the sinusoidal wall are 

insignificant, and 

5. extra-vascular tissue in BMHC is composed of only one cell type (i.e., a homogeneous 

Kroghian model). 

 

The oxygen transport and utilization can be mathematically described as: 

 

( )PQPK =∇2
 

(2.1) 

 

where K is the effective oxygen permeability (mol/cm/s/mm Hg), P is the oxygen partial 

pressure pO2 (mm Hg), and Q(P) is the volumetric oxygen consumption rate (mol/cm
3
/s).  The 

effective oxygen permeability is the product of the oxygen diffusivity (D, cm
2
/s) and the oxygen 
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solubility coefficient (α, mol/cm
3
/mm Hg).  Q is the ratio of the specific oxygen uptake rate (qO2, 

mol/cell/h) and the specific cell volume (V, cm
3
/cell).   

 

 

Figure 2. 3 Graphical representation of the Kroghian model (Chow et al., 2001 a) 

 

 

Assuming P in the extra-vascular tissue depends only on the radial position (R) relative to sinus, 

equation 2.1 describing the oxygen continuity reduces to, 
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The P at the sinus wall (R1) in Figure 2.3 equals the saturation oxygen tension (PS) and the 

oxygen flux is zero at the boundary wall of the cylinder at R2 (symmetry boundary condition).   
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Dimensionless forms of the oxygen continuity equation 2.2 and the boundary conditions 

(equation 2.3) are given as, 
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(2.5) 

 

where r
*
= r/R2 , P

*
= P/Ps and β = r/R2 = R1/R2. 

 

The volumetric oxygen consumption rate Q(P) is written either as a zero order kinetics, a first 

order oxygen uptake kinetics, or as a saturation-type (Michaelis-Menten) kinetics, 

 

Zero order:   max)( QPQ =   , where Qmax is the maximal oxygen uptake rate 

First order:   PQkPQ ⋅⋅= max)(   , where k is first-order rate constant 

Michaelis-Menten: 
PK

PQ
PQ

M +
= max)(   , where KM is the oxygen affinity constant 

(2.6) 

 

The expression for the non-dimensional oxygen partial pressure is calculated using the zero order 

kinetics as, 
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Equation 2.7 was solved for different cell types (assuming one cell type in the extra-vascular 

space at a time) and oxygen partial pressures were obtained along the tissue (BMHC).  The 

model is more effectively used to determine the radius at which each type of cell is located.  The 

model showed that progenitor cells are found to be located farther away from the sinus whereas 

the mature cells are located closer to the sinus.   

 

Chow et al., 2001 (Part II) modified their homogeneous Kroghian model in order to incorporate 

the presence of multiple cell types in the BMHC.  The three different approaches used are 

described below.    

 

1. In order to evaluate the effects of heterogeneity in cellular properties on the pO2 

distribution in BMHC the extra vascular tissue was divided into multiple cell layers with 

different metabolic and transport characteristics (multi-layer model) surrounding a sinus 

(oxygen source) called the ‘Multi-layer Kroghian model’.  Different layers were made up 

of different cells – from early progenitors to the mature cells – of the same lineage or 

different lineages.  The simulated results of the typical pO2 distribution of a composite 

tissue (multi-layer model) shows that the metabolically active cells should be located 

further away from the sinus, as that would cause a lower pO2 levels in their proximity.   

2. The homogeneous Krogh model was modified to a 2-dimensional model by adding 

another spatial dimension to describe the complicated cellular architecture in which cells 

are arranged in clusters.  Large hematopoietic cell types (Megakaryocytes or Adipocytes) 

closely resemble cells in cluster.  These cells are considered as the secondary cell type.  

The granulocytes occupy most of the BMHC and are defined as the primary cell type.  

The primary cell type is assumed to occupy the extra vascular tissue space as shown in 

Figure 2.3.  The secondary cell types are chosen to be located either close to the sinus or 

further away from the sinus.  The pO2 profiles in this model are asymmetric because of 

localized variations in cell types.   

3. Further on, in order to simulate the pO2 distributions in colony type cellular 

arrangements, such as in erythroblastic islets, granulocytic loci, and lymphocytic nodules, 

the multi-layer model is modified by placing the sinus outside the colonies.  The results 

show that the macrophage at the center of the islet is a metabolically active cell and 
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experiences the lowest pO2 values, while the mature erythrocytes (with low metabolic 

activity) are located at the outer periphery and against the sinus wall, which is region of 

highest pO2 value (close to supply).   

 

The above three models provided us with a simplified picture of the pO2 distribution in a 

heterogeneous cell-type situation.  The simulation results can be used to eliminate the cellular 

architectures that are physiologically unrealistic.  The 2-dimensional model can be used to 

account for the asymmetry in cellular arrangements that might not be arranged as in the multi-

layer model.  Finally, the modified cylinder model in which the sinus is located in the outer 

periphery is used to describe cells that grow in colony like structures such as the erythroblastic 

islets, granulocytic loci, to name a few. 

 

In these Krogh’s models (Part I and Part II) the importance of the oxygen partial pressures on the 

growth of specific cell types was determined.  The models were used to determine the oxygen 

partial pressure distribution in vivo, in the bone marrow, and in systems with cell distributions 

similar to that in the bone marrow tissue.  These models were used to obtain the metabolic 

functions and parameters describing the oxygen consumption in vivo of different cell types for 

analysis in the ex vivo bioreactor model.  The model results showed the growth of mature cells at 

regions of higher oxygen tension and early progenitors at regions of lower oxygen tension in 

BMHC.  These results indicate a similar spatial distribution in the bioreactor ex vivo.  Moreover, 

the dimensions of different cell types in the BM and diffusivity of oxygen in cellular media is 

also obtained from the information provided in this study. 

 

2.5.3.2 Palsson’s Perfusion Bioreactor Model 

 

Palsson and collaborators were the first group to develop perfusion bioreactors to grow HCs 

(discussed in section 2.4.3).  In hematopoietic bioreactors, as discussed, oxygen plays an 

important role in a variety of physiological processes such as cell attachment, spreading, cell 

growth and differentiation.  HCs experience growth inhibition and even toxicity at high oxygen 

concentrations, and anoxia at low oxygen concentrations.  Hence, maintaining an optimal oxygen 

concentration range near the cell surface is important in attaining a successful culture.  However, 
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measurement of the local oxygen concentration near the cells is difficult; hence a mathematical 

analysis is needed to estimate the local oxygen concentration.   

 

Peng and Palsson (1996) have developed a mathematical model of oxygen delivery to the cells in 

a perfusion bioreactor.  The schematic of the bioreactor is shown in Figure 2.4.  The growth 

medium with oxygen (concentration, Cin) is pumped with a peristaltic pump and flows parallel to 

the lower plate (i.e., the bottom of the bioreactor) with a fully developed laminar velocity profile 

u(x).  Oxygen in the gas phase permeates through the membrane into the liquid layer and diffuses 

across into the cell bed.  The oxygen concentration at the liquid side of the membrane is assumed 

to be at saturation C
*
.  The cell bed is located at the bottom of the reactor.  Cells consume 

oxygen and the uptake rate is described by Michaelis-Menten kinetics (similar to that explained 

by the Kroghian model).  The local oxygen concentration is computed based on the design 

parameters: oxygen partial pressure, medium depth (h), and cell inoculum density.  

 

 

 

 

Figure 2. 4 Two-dimensional schematic diagram of a radial flow perfusion bioreactor 

 

 

A mathematical model describing this process is developed with the following assumptions: 

1. Medium flow rate is slow corresponding to a transit time of 1.33 days. The diffusional 

response time is nearly 1 hr.  Therefore, the ratio of the diffusional time to transit time is 

much smaller than unity, hence the effects of fluid flow can be neglected in the liquid 

phase, 
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2. pseudo-steady state analysis is used since the rate of diffusion is much faster than the 

growth rate of cells (cell doubling time is nearly 24-48 hour), 

3. cells are uniformly distributed at the lower boundary of the liquid layer i.e. in cell layer. 

 

Oxygen mass balance in the reactor is dominated by diffusion and is described as, 
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The oxygen is at saturation at the membrane surface (i.e. @ x=h) and the oxygen flux at the cell 

surface (i.e. @ x=0) is the uptake rate by the cells for their metabolic and growth needs.  So 

boundary conditions are written as, 
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The pseudo-steady state and Michaelis-Menten uptake rate kinetics for oxygen consumption by 

cells is given as, 
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where Co is the oxygen concentration at the bottom surface, i.e. the local oxygen concentration 

experienced by the cells, q is the specific oxygen uptake rate of the cells, Km is Michaelis-

Menten constant (1-5% of C
*
) and X is the cell density.  Upon solving the equation 2.8 with the 

boundary conditions (equation 2.9) the oxygen concentration profile is given by, 
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Non-dimensionalizing the oxygen concentration relative to saturation we get, 
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The parameter φ measures the ratio of the time constants for oxygen diffusion to oxygen uptake 

(i.e. reaction).  The numerical estimation of φ suggests that at the earlier time of the culture the 

value is less than unity as the oxygen diffusion is fast and hence sufficient oxygen reaches the 

cell bed.  With time the cell density changes and hence the time for oxygen uptake becomes 

faster and hence the value of φ becomes much higher than unity and by the end of the culture 

oxygen delivery is limited to the cells.  Therefore, the most important aspect of this bioreactor 

design is to maintain the value of φ small, by manipulating the liquid layer height, the cell 

density and the gas phase oxygen concentration. 

 

This model is a simple way of quantitatively determining the oxygen concentration in the liquid 

layer and explaining the various parameters that need to be manipulated for optimizing the 

design and performance of the perfusion hematopoietic bioreactor.  This model is definitely a 

first step towards describing ways of bioreactor optimization by manipulating the supply vs. 

consumption rate.   

 



 33

However, this model has the following major drawbacks which need to be improved.  

1. In this model the calculations are made at fixed values of cell density.  In reality in 

cultures the cell densities are related to the local oxygen concentration and vary in space 

and time in cultures.  

2. This model accounts for total oxygen consumption rate.  Oxygen is consumed for 

metabolism and for growth (two distinct processes).  In order to understand the oxygen 

dependence on cell growth separate functions describing oxygen consumption for 

metabolism and oxygen consumption for growth need to be developed.   

3. The model assumes diffusion to be the most important mode of oxygen delivery rather 

than oxygen delivery by convective transport.  Hence the model does not take into 

account variations of oxygen concentration in three dimensions.  However, for higher 

liquid layer heights (greater than 3 mm), hydrodynamic flow would be required along 

with supply from headspace oxygen chambers, to avoid oxygen limitations in the 

bioreactor.  Then it would be necessary to model spatial variation in the oxygen 

concentration in the liquid layer.  

4. This model does not have a separate cell layer made up of the matrix and cells and hence 

need not account for the oxygen concentration and cell density spatial variation in the cell 

layer, which exists in ex vivo experiments. 

5. The model accounts for the overall cell growth rate.  However, hematopoietic cultures are 

different from other cell cultures.  As discussed in section 2.2 multiple cell types coexist 

and cells along different lineages grow, differentiate, mature and die.  It is essential to 

consider the dynamic distribution of various cell types along different lineages in these 

culture systems.  A population modeling approach (described in section below) need to 

be coupled to these established transport models. 

  

2.5.3.3 Grooved Perfusion Bioreactor Model 

 

Grooved perfusion bioreactors have been shown to overcome some of the mass transfer 

limitations present in other cultures, and these reactors retain cells (subjected to constant 

perfusion in the bioreactor) under reduced mechanical stresses by isolating them from primary 
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flow.  The bioreactor schematic is shown in Figure 2.5.  An advection-diffusion model was 

developed by Horner et al., 1998 to describe 2-dimensional version of this bioreactor system.   

 

 

 

’ 

 

Figure 2. 5  Model of a flat bed perfusion bioreactor system with a series of grooves to retain cells in the 

presence of constant perfusion.  This is a closed system with no headspace.  Medium flows in the z direction 

across the chamber. y
’ 
 and z

’
 represent the local co-ordinate system in a cavity (Horner et al., 1998) 

 

 

The model considers oxygen consumption and lactate production by HCs.  The model 

assumptions include: 

1. flow is steady state, 

2. mass transfer of model solutes (oxygen and lactate) are given by a pseudo-steady approach,  

3. average cell doubling time (~ 1day) is long compared to the time required for establishment 

of steady state of model solutes. 

 

The Navier-Stokes equation and species continuity equation are used to describe the flow in the 

perfusion chamber and the molar balance for each solute, respectively.  The solute balance is 

coupled to the flow balance (hydrodynamics) in the dilute solution limit.   
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where i denotes solutes oxygen and lactate.  Heterogeneous zero order reaction boundary 

conditions were applied at the bottom of each groove and the no slip conditions at the reactor 

walls and is given as,   

 

( )

)(0

2

'

'

max

conditionfluxno
y

C
D

WL

Nq
r

y

C
D

g

g

Hy

timei

Hy

=
∂
∂

−

⋅
==

∂
∂

−

+=

−=

 

(2.15) 

 



 36

The magnitude of the effective reaction rate of solutes (i) is obtained by multiplying the specific 

reaction rate of the solute (i) to the total cell number and then dividing by the surface area for 

reaction.  The time period of culture is divided into three phased early, middle and late, and the 

cell numbers for these phases are obtained from literature.  Computational fluid dynamics (CFD) 

code (FIDAP) was used to solve these equations.  The velocity field and solute concentration 

distribution in the grooved chamber is obtained.   

 

The model showed that the hematopoietic cultures were neither oxygen-limited nor lactate-

inhibited.  High (20%) oxygen feed concentration for flow rates greater than 1.0 ml/min the late 

cultures with 20*10
6
 cells were not oxygen limited.  However, for lower oxygen feed (5%) 

concentration, the culture may become oxygen limited during the late phase of the culture.  The 

model study suggests that the perfusion rate may be started from 0.5 ml/min and increased up to 

2.5 ml/min.  This would decrease the amount of media needed to be recycled.  During the early 

phase of the culture medium should be fed at 2.5 ml/min and in equilibrium with low (5%) 

oxygen feed concentration, favoring progenitor growth.  Later in the culture the oxygen feed 

should be increased (20%) to promote progenitor cell differentiation.  Similar observations were 

also made from calculations with the model developed and shown in Chapter 3 of this proposal.  

This model also did not show an increase in lactate concentration above the inhibitory level 

(<20mM).  However, in culture the cell numbers may increase to levels greater than the fixed 

number of cells assumed in the model during the late phase of the culture and this in turn would 

increase the lactate concentration in the grooves above the inhibitory range, inhibiting further 

cell growth in the grooves.   

 

This model has similar drawbacks as those discussed for the Palsson’s perfusion bioreactor 

model.  However, this model provides an approximation of averaged nutrient and product 

concentrations for a desired cell growth in a grooved perfusion bioreactor.  The addition of 

grooves as shown in the model provides good cell retention for very high medium flows (20 

ml/min).  Thus, modification of bioreactor geometry can be used to effectively manipulate cell 

growth, by controlling the delivery of nutrients and removal of products.  Future work needs to 

consider the improvements of this model because of its significance for HC growth.   
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2.5.3.4 Population balance model 

 

The population balance method is a discrete modeling approach that incorporates the (pseudo-) 

stochastic and deterministic elements of the hematopoietic process.  A number of models in the 

literature have used this modeling approach to incorporate the dynamic variation of the various 

cell types in hematopoietic cultures (Nielsen et al., 1998; Silva et al., 2003; Hevehan et al., 2000; 

Abkowitz et al., 2000; Peng et al., 1996, Williams et al., 2002).  The model developed by 

Nielsen et al., 1998 using similarity of the hematopoietic system to chemical engineering 

reactors is explained as a basic study for a clear understanding of this approach. 

 

Hematopoiesis is described using chemical engineering metaphors of tanks and tubular reactors.  

This kinetic model describes five processes: (1) differentiation (2) growth (3) death (4) phase 

transition from cycling to quiescent phase (5) phase transition from quiescent cells to cycling 

cells.  Modeling these processes of cell expansion and differentiation from the early stem cells to 

mature blood cells is complex as the molecular and regulatory mechanisms governing these 

processes are still largely unknown.   

 

Differentiation process 

Two types of patterns can macroscopically describe the cell differentiation process: discrete and 

continuum patterns.  Stem cells exist in discrete states in which they grow without loosing their 

stem cell potential.  They loose this state through an apparently stochastic and discrete process of 

commitment.  The apparent stochastic nature of stem cells may be due to a set of complex 

deterministic mechanisms and hence the process is termed as pseudo-stochastic.  In contrast to 

stem cells the lineage committed cells follow a continuous, deterministic differentiation pattern.  

In between the two, the specialization process can be considered as discrete or continuum. 

 

These two types of differentiation are modeled using the similarities of the process to tank and 

tubular reactors.  Discrete differentiation of stem cells has the features of a tank reactor; the 

elements do not have any history. The probability of a particular cell/molecule leaving the 

compartment/tank is independent of how long it has been therein.  The commitment /exit of the 

cell/molecule is governed by a stochastic process.  Similarly the continuum differentiation 
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process of lineage committed cells shares the features of a tubular reactor: the elements have a 

history.  The ‘axial dimension of a tubular reactor’ is in ‘a cell compartment’ the measure of the 

extent of differentiation and the ‘flow rate’ is equivalent to the ‘rate of differentiation’.  The 

reactions in these reacting compartments are those of cell growth (auto catalytic), cell death 

(degradation) and phase transition.  The three distinct stages of differentiation include: stem cell 

commitment, specialization and expansion and maturation discussed in detail below. 

Stage 1: Stem cell commitment 

It is not exactly clear as to how the body balances the stem cell self-renewal versus commitment 

which leads to differentiation to maintain homeostasis in the body.  Mathematically, this process 

can be explained by a multi-component discrete model using the self-renewal probability (p), 

i.e., the probability that a newborn daughter cell will remain as a stem cell.  The two-phases or 

populations are defined as active (S) and quiescent (So), the cycle time as TS, exit rate as the 

specific rate of commitment λ, the two reaction rates as – the specific growth rate, µ, and the 

specific death rate, δ, and the two transition rates as the specific rate of quiescent-to-active 

transition, α, and the specific rate of active-to-quiescent transition, β. 

 

( ) ( )
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T
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121 −=⋅−−⋅=  
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o ⋅−−−+⋅= βλδµα  

o
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dt

dS
⋅−⋅= αβ  

(2.16) 

 

The growth rate (µ) and the commitment rate (λ) are independent parameters as the model is 

discrete.  The model does not account for any spatial variation or dependence on environmental 

factors.   

Stage 2: Specialization 

There is no well-established mechanism of specialization and hence it is difficult to propose a 

model for the specialization process.  The model specialization process has a temporal extension, 
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which causes cell number expansion, distributes the cells among the different branches of 

hematopoiesis, and allows for quiescence.  There are three possible models that can be used to 

describe this process as shown in Figure 2.6. 

 

 

 

Figure 2. 6 Three models of specialization (Nielsen et al., 1998) 

  

 

The simplest model is a single tank reactor (Figure 2.6 a) with outlets to all branches of 

hematopoiesis.  Let P and Po be the numbers of pluripotent progenitors in the cycle and in 

quiescence, respectively, then population balance yields, 

 

( ) PPS
dt

dP
io ⋅−−−+⋅+⋅= ∑λβδµαλ  

o
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dt

dP
⋅−⋅= αβ  

(2.17) 

 

where λi’s represent the rate of commitment into different branches in the tree. 
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The second model (Figure 2.6 b) is a little more extensive and considers several tanks in series 

and parallel.  The myeloid branch of hematopoiesis, for example, could be described with 

separate tanks for pluripotent cells, erythroid-megakaryocytic bipotent, and granulocytic-

monocytic bipotent cells.   

 

The third model (Figure 2.6 c) describing the specialization process is still more extensive.  The 

lineage commitment can occur through a series of asymmetric divisions; the committed stem cell 

divides into a lymphoid and myeloid progenitor, and then each of these progenitors subdivides 

into different distinct lineages.  This fully deterministic model is best described by a series of 

tubular reactors with each reactor representing a single division cycle.  In this case the doubling 

of cell number will occur at one upstream and two downstream reactors.  For example as cells 

leave the granulocytic-monocytic (GM) reactor cell division causes the flux to double so that the 

flux into either the granulocytic (G) or monocytic (M) pipe equals the flux leaving the GM 

rector.  

Stage 3: Expansion and maturation 

Following the stage of specialization/lineage commitment, expansion of cells occurs through a 

number of cell divisions.  This process almost goes hand in hand with the differentiation process 

(at least during the later stages of differentiation, when cells are in the mature stage).  The kinetic 

model for the process is written as, 
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(2.18) 

 

where n(t,τ) is the distributed density population at time t and at a differentiation stage τ (τ = 0 

corresponds to the specific lineage cell entering the expansion and maturation phase and τ = 1 

corresponds to the mature cells that join the blood stream) and  ν(t,τ) represents the rate of cell 

differentiation.  The number of cells in the quiescent stage are given as no(t,τ).  The cycling 

between the quiescent and active cell populations is given as 
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The kinetic model equations 2.16-219 are simultaneously solved to obtain the cell numbers of 

different cell types at different stages of differentiation.  However to be noted here, the model is 

discrete, not continuous, hence it does not account for the continuous process of cell growth, 

differentiation, expansion, maturation, and cell death.  Moreover, the model does not incorporate 

the effects of the cell growth environment, which typically plays a major role in the process of 

hematopoiesis.  These models have been applied for erythropoietic and granulopoietic processes.  

For example, in the erythropoietic process the model can predict the total cell number along the 

differentiation lineage and the total number of mature blood cells (RBCs).  Using these data it 

has been determined that TGF-β1 (differentiation promoting cytokine) accelerated differentiation 

throughout the pathway rather than at a particular stage in the pathway.  

 

2.6 Introduction to method of volume averaging 

 

 

The method of volume averaging first developed by Whitaker (1967) is a technique used to 

analyze transport and reaction in multiphase systems.  Species continuity equations (mass 

balances) describing transport and reaction of every species in particular phases in multiphase 

systems can be spatially smoothed to obtain equations that are valid everywhere.  Thus, in other 

words, the volume averaging approach allows for a single reacting species for example in a two-

phase system, to be represented by a single averaged continuity equation.  These equations are 

called volume averaged equations (Whitaker, 1999).  This method is explained by means of an 

example below. 

 

Oxygen transport in respiring tissue can be studied using the method of volume averaging.  

Figure 2.7 illustrates the system of analysis.  The first step is to select an averaging volume ‘V’ 

as shown in Figure 2.7.  The averaging volume is large in comparison to the cell volume, 

however, much smaller than the total system volume.  This volume is representative of the whole 
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system.  The system under consideration is made up of two distinct phases, the cell phase (γ) and 

the fluid phase (β).  The volume of the cell phase (Vγ) and fluid phase (Vβ) change with time 

(increase in cell number) however, the total averaging volume (V) remains the same (Galban, 

1999).   

 

 

 

 

 

Figure 2. 7 Graphical representation of heterogeneous tissue slice (method of volume averaging) 

 

 

The cells in the averaging volume (V) consume oxygen as well as grow.  Consumption occurs 

only in the cell phase.  Species continuity equations describing the transport-reaction of oxygen 

by cells in the cell phase and transport in the fluid phase of the averaging volume are written.  

These describe the local point oxygen concentrations in the averaging volume cell phase (Cγ ) 

and fluid phase (Cβ).  A similar material balance for cell growth in the cell phase is also written.  

The equations are averaged in the volume V.  A single averaged species continuity equation for 

the oxygen concentration in the two phase system is obtained using the principle of local mass 

equilibrium described below.  The equilibrium weighted concentration is written as, 
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along with the macroscopic spatial deviation concentrations given by, 
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and the local spatial deviation in concentration is given by Gray’s decomposition 
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where iε  is the i
th

 volume fraction (Vi/V), 
i

iC  is the intrinsic phase average concentration and 

Keq is the equilibrium coefficient.  Equation 2.22 is based on the fact that the macroscopic spatial 

deviations in concentration in β and γ phase given as 
^

iC is zero when the system is in 

equilibrium.  The averaged species continuity equations in both the phases are now reduced to a 

single equation expressed in terms of both the volume averaged concentration and the local and 

macroscopic spatial deviation concentrations.  Similar equations are also used in the derivation 

of the cell growth equations.   

 

The final step in this approach is to obtain a differential equation for the local spatial deviations 

β

~

C and γ

~

C .  This is called the ‘closure problem’.  Thus, this closure problem would provide a 
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solution for the local spatial deviation concentration in terms of geometry of the averaged 

system.  Thus, an effective diffusion coefficient and an effective rate coefficient are derived 

which are functions of cell volume fraction.  The macroscopic spatial deviation concentration 

can be assumed to be very small in comparison to the local spatial deviation concentration.  

These equations coupled to the single averaged species continuity equation would give the 

species (oxygen/cells) variation in the entire volume (Ochoa, 1986; Galban, 1999; Whitaker, 

1999).   

 

In this study we have used this established approach for the analysis of transport process in 

multiphase systems.  Details of the implications are discussed for the various systems in 

Chapters 3, 4, 5, 6 and 7.   
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CHAPTER 3 
 

 

ROLE OF NUTRIENT SUPPLY AND PRODUCT FORMATION 

ON CELL GROWTH IN BIOREACTOR DESIGN FOR TISSUE 

ENGINEERING OF HEMATOPOIETIC CELLS  
 

Analysis of oxygen supply on granulocyte progenitor cell growth in 

3-dimensional perfusion bioreactor 
(Pathi et al., 2005 a; Reproduced with permission from John Wiley & Sons, Inc.) 

 

 

 

 

3.1 Problem Statement 

 

 

In the present study, a dynamic mathematical model of the growth of granulocyte progenitors in 

the hematopoietic process is developed based on the principles of diffusion and chemical 

reaction.  This model simulates granulocyte progenitor cell growth and oxygen consumption in a 

three-dimensional (3-D) perfusion bioreactor system. Molar balances describing oxygen 

consumption and cell growth are developed using the volume averaging approach (Whitaker, 

1999).  Spatial variations of oxygen concentration and granulocyte progenitor cell density are 

obtained in the bioreactor in order to assess the roles of convection and diffusion on oxygen 

supply and cell growth.  The model provides quantitative estimates of the oxygen consumption 

for growth and for metabolism, and information on oxygen consumption and cell growth are 

further used to estimate the roles of key bioreactor design parameters, including flow rates and 

liquid depth, and to optimize the reactor performance. 
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3.2 Model Formulation 

 

 

3.2.1 Reactor Design 

 

Analysis of granulocyte progenitor cell proliferation is conducted for a 3-dimensional perfusion 

bioreactor system developed in Dr Teng Ma’s lab at Florida State University.  The bioreactor is a 

rectangular block with 10 cm length, 2.5 cm width, and 13.2 mm thick.  This bioreactor has a 

polyethylene terapthalate (PET) porous matrix (1.2 mm thick) sandwiched between two 

perfusion chambers made of polycarbonate (PC).  A gas permeable FEP (fluorocarbon film) 

membrane is attached on the outer sides along the length of the perfusion chambers as shown in 

Figure 3.1.  The bioreactor is placed in an incubator with a fixed oxygen supply.  Cells grow in 

the matrix and form the cell layer of the bioreactor.  Medium supplying nutrients to cells in the 

cell layer flows through the perfusion chambers above and below the cell layer (labeled bulk 

liquid layers).  Oxygen diffuses into the reactor through the FEP membranes into the bulk liquid 

layers.  

 

The modes of mass transport are convection, diffusion, and inter-phase mass transport across the 

gas permeable membranes.  In the bulk liquid layer oxygen is subject to both convective and 

diffusive transport, whereas in the cell layer oxygen is carried only by diffusive transport.  The 

absence of flow in the cell layer prevents flow restrictions on cell growth by, for example, shear 

forces.  Furthermore, the absence of flow in this region promotes adhesion of the cells to the 

matrix surface.  Oxygen can be supplied by convection through either a once through mode or by 

recirculation of the bulk liquid layer medium as well as through inter-phase mass transport across 

the FEP membrane from the incubator. 

 

3.2.2 Mathematical model 

 

A mathematical model is developed for this reactor to quantitatively describe the oxygen 

concentration variations in space and time.  The model describes the effect of oxygen supply on 

the growth of cells.  This model is also used to assess various configurations for the design of the 

bioreactor by quantifying the relative contributions of the diffusive oxygen supply through the 
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FEP membrane and convective oxygen supply through flow in the reactor and hence can be used 

to determine the most important mode of supply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1 Schematic of perfusion bioreactor model (Florida State University) 

 

 

3.2.2.1 Model equations 

 

For the development of the model one half of the reactor is considered because of symmetry.  

Species continuity equations describing the spatial and temporal variations of oxygen 

concentration and cell number are written for both the bulk liquid layer and the cell layer.  The 

method of volume averaging is used to develop a single species continuity equation for the 
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multiphase cell layer made up of cells and medium solution (Wood et al., 2000; Wood et al, 

2002; Whitaker, 1999; Galban and Locke, 1999).  Volume averaging allows representation of the 

local 3-dimensional structure in the porous matrix where the cells are growing.  The primary 

factor in the present model affected by this 3-dimensional structure is the effective diffusion 

coefficient.  It can be noted that the overall reactor model is solved in two dimensions since the 

width of the reactor is much larger than the depth and thus variations in the width are neglected.   

 

Bulk liquid layer 

The bulk liquid consists of the nutrient medium solution containing dissolved oxygen.  Transport 

of oxygen takes place by diffusion and convective flow in this layer.  There are no cells in this 

layer, hence there are no reaction terms describing oxygen consumption.  The molar species 

continuity equation describing the oxygen concentration variation in space and time is given as 

 

cvcD
t

c
∇⋅−∇⋅∇=

∂
∂

)( β  

(3.1) 

 

where c is the non-dimensionless oxygen concentration in the bulk liquid layer
*
, Dβ is the 

oxygen diffusion coefficient in the liquid, ν is the velocity vector of the fluid flow.  The one-

dimensional flow is oriented along the reactor length (x-direction) and is assumed to be laminar 

(Re=0.17).  The velocity profile is thus 
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(3.2) 

 

where vavg is the average velocity of medium flow in the perfusion chamber (bulk liquid layer), y 

is the direction perpendicular to the direction of flow, l is half the height of the matrix (cell layer) 

and T is the height of the liquid layer in the bioreactor.   

                                                 
* The oxygen concentration terms are non-dimensionalized by dividing the oxygen concentration at any point in 

space and time with the dissolved oxygen concentration in equilibrium with air (20% oxygen). 
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Cell layer 

The cell layer is a two phase region made up of cells and the liquid nutrient medium.  The cell 

phase is indicated as the γ  phase and the nutrient or liquid phase is indicated as the β phase.  As 

discussed above the method of volume averaging is used to formulate the material balances for 

this multi-phase transport problem.  Equations valid in a particular phase are written and 

spatially smoothed to produce equations that are valid everywhere in the reactor (Whitaker, 

1999). 

 

In this method a small representative volume termed the averaging volume (V) is selected.  

Figure 3.1 shows a schematic of the averaging volume.  Cell growth is expressed in terms of the 

cell volume fraction (εγ), i.e., the volume occupied by cells in the averaging volume, Vγ, relative 

to the total averaging volume V in the cell layer.  The sum of the volume fractions of the cell 

phase and the fluid phase in the averaging volume is one. 

 

βγ εε +=1                                                              

(3.3) 

 

Molar balances describing the oxygen concentration and cell growth in the cell phase and 

nutrient phase (in the averaging volume) are described below. 

 

Nutrient balance 

Oxygen is assumed to be the rate limiting nutrient since it plays an important role in granulocyte 

progenitor expansion and also because other much more soluble nutrients such as glucose are 

assumed to be present in excess.  The molar species continuity equations for oxygen include 

diffusive transport and consumption in the cell layer and are written for the β (liquid) and γ (cell) 

phases as, 
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where Cβ and Cγ are the oxygen concentrations in the fluid phase (β) and cell phase (γ), 

respectively; Dβ and Dγ are the oxygen diffusivities in β and γ phases, respectively; km and kg are 

the oxygen consumption rates by these cells for metabolism and for growth, respectively. 

 

The cells consume oxygen both for metabolic requirements (Hevehan et al., 2000) as well as for 

growth.  The metabolic oxygen consumption by cells is suggested in previous literature (Collins 

et al., 1998; Chow et al., 2001) to be best described by a Michaelis-Menten kinetics, 
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where Qmm and Km are the metabolic rate parameters.  The parameters used in the present study 

were obtained from the literature and are listed in Appendix A. The growth rate is given by an 

inhibitory kinetic form, and the oxygen consumption for growth is written as, 
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where Y is the yield coefficient given as the ratio of the mass of cells to the mass of oxygen 

consumed and kk, K1, KI are the growth rate parameters.  The reason for the use of this type of 

kinetic function is described in detail later in the text. 
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The material balances equations. 3.4 (a) and 3.4 (b) describe the variation of oxygen 

concentration in the cell phase and in the fluid phase of V and are generally applicable at any 

spatial position in the appropriate phase in V.  In order to develop a locally averaged equation to 

describe the concentration fields in the cell layer of the reactor, these equations are averaged 

spatially to obtain volume-averaged equations.  The principle of local mass equilibrium is used 

to obtain a single averaged species continuity equation for the oxygen concentration variation in 

V (Whitaker, 1999; Ochoa, 1988; Galban and Locke, 1999).  Thus, using the kinetic expressions 

for oxygen consumption described in equations 3.5 and 3.6, the single averaged species 

continuity equation is written as, 
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(3.7) 

 

where C is the volume-averaged dimensional oxygen concentration and Deff is the effective 

diffusion coefficient.   

 

The averaged equation 3.7 is obtained assuming the following length scale constraints in the 

averaging volume (Galban and Locke, 1999; Carbonell and Whitaker, 1984; Wood et al., 1994; 

Wood et al., 2002), 
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where lβ and lγ  are the distances across the respective phase (fluid and cell respectively) within 

averaging volume (V), R is the radius of averaging volume, and l is the height of the bioreactor 

cell layer or the matrix.  At least one of these constraints must be valid for changes in cell 

volume fraction over time.  The initial length scale for the cell phase (lγ) is nearly 10 µm while 

the initial length scale for the liquid phase is approximately 50 µm.  As the cell density increases 
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the magnitude of lβ decreases and lγ increases.  The ratio R/l is constant and approximately 0.083, 

where R is 50 µm and l is 0.06 cm.  Although lβ and lγ may vary with time the condition in 

equation 3.8 will typically hold since the size of the reactor is much larger than the averaging 

volume.  The averaging volume (V) remains constant keeping R much less than l, but the 

volumes of cell and liquid phase in the volume V changes with time.  This is expressed as, 

 

( ) ( )tVtVV γβ +=  

(3.9) 

 

where the volume of the cell phase (Vγ) and volume of the liquid phase (Vβ) are functions of time 

while the total averaging volume is not (Galban and Locke, 1999).   

 

The effective diffusion coefficient and effective rate coefficient for oxygen consumption for 

metabolism and growth are determined as functions of the cell volume fraction and oxygen 

concentrations.  In principle, the effective diffusion coefficient can be determined as a function 

of the volume fraction from solution of a closure problem posed over a well defined unit cell 

(Whitaker, 1999).  For complex unit cell geometry numerical solutions are required, however a 

number of analytical solutions are available for isotropic media with simple geometry (see 

Locke, 2001 for review).  In the present study an analytical expression for the effective diffusion 

coefficient of an isotropic two dimensional two phase medium defined by a square unit cell 

(Ochoa, 1988) containing circular particles is used.  Although this relationship is derived for two 

dimensional media, the effective transport coefficients for 2-dimensional media are very similar 

to those for 3-dimensional media for isotropic systems that do not exhibit percolation limits 

(Trinh et al, 2000).  This relationship accounts for the diffusion in the non-cellular (liquid) β 

phase and the cellular γ phase as well as the mass transport across the two phases.  This effective 

diffusion coefficient is written as, 
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where k = (Keq Dγ/Dβ) is the ratio of the diffusion coefficient in the cell phase over that in the 

void phase (here the liquid phase) and α =(Dγ/L P) is the ratio of the cell phase diffusion 

coefficient over the mass transfer coefficient at the cell-liquid inter-phase in the averaging 

volume.  P represents the mass transfer coefficient at the cell membranes, i.e. at Aβγ, and Keq is 

the equilibrium coefficient for oxygen between β and the γ phases of the averaging volume.  For 

cellular transport of very permeable solutes such as oxygen it can be assumed that at local mass 

equilibrium the solute concentrations across the cell membrane are equal and hence the 

parameter Keq is equal to one (Wood et al., 2000).  The effective diffusion coefficient can also 

be described in other ways, e.g., Chang’s unit-cell solution, Maxwell’s solution, or other 

functions depending upon the geometry of the system considered (Galban and Locke, 1999; 

Wood et al., 2000; Wood et al., 2002).  Calculations with the present model (not presented here) 

showed that the model results are not highly sensitive to the functional form of the diffusion 

coefficient since diffusive restrictions of oxygen in the cellular region are not very large.  For 

analysis of larger solutes that would have larger restrictions to diffusion in the cellular phase 

further consideration of the local 3-dimensional geometry and solution of the closure problem in 

such systems is needed.   

 

The volume averaged oxygen species continuity equation 3.7 is non-dimensionalized, 
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(3.11) 

 

where the non-dimensional oxygen concentration,
oC

Cc = , Co is the dissolved oxygen 

concentration in equilibrium with the saturated oxygen concentration in air (20%) and p (= 

kk/Co), q (=K1/Co
2
) and r (=1/(KI*Co)) are the non-dimensional growth parameters.  The oxygen 

consumption rates by metabolism and growth, i.e., the second and third terms on the right hand 

side in the above expression, are denoted as mm and growth_o, respectively. 
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Cell balance 

The conservation of cell mass is given by, 
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where m(t) is the cell mass, ργ is the specific cell density, Vγ
 
the volume occupied by the cells and 

Rγ is the rate of cell growth.  The above equation is based on the assumptions that the cell phase 

is made up of only cells (i.e., the granulocyte progenitors), that the diffusivity of cells in the cell 

phase is negligible, and that the specific cell density in the cell phase is uniform. 

 

The integral in the above equation is evaluated over an arbitrary volume Vγ within the averaging 

volume V to give 
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(3.13) 

 

It has been reported in the literature that very low oxygen concentration retards the growth of 

these cells and very high concentration may be inhibitory or even toxic (Hevehan et al., 2000).  

An oxygen concentration of 5% in the gaseous phase equilibrated with the medium is optimal for 

progenitor cell growth (Hevehan et al., 2000).  Hence substrate inhibition kinetics can be used to 

describe the growth kinetics of these cells and this is represented by  
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* Mass transport of cells (by diffusion) is not included in the model, however it can be noted that future work may 

consider the effects of cell migration by diffusion or chemotaxis. 
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where kk, K1 and KI are the kinetic parameters.  The values for these parameters were determined 

using the experimental results of Hevehan et al. (2000).  Oxygen consumption for cell growth in 

equation 3.11 was obtained by multiplying a suitable yield coefficient to the above expression.  

The cell material balance can be rewritten by substituting equation 3.14 in equation 3.13, and 

further integrating and non-dimensionalizing to give, 
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(3.15) 

 

where c is the dimensionless oxygen concentration, p, q, and r are the non-dimensional rate 

parameters.  The growth rate on the right hand side of equation 3.15 is denoted as growth.  The 

growth function is first order with respect to the cell volume fraction and the parameters are 

determined to give maximal cell growth in regions where the oxygen concentration is the liquid 

phase concentration that is in equilibrium with a 5% gas phase concentration.  

  

Boundary conditions 

Oxygen flux at the upper boundary of the bulk liquid layer with the membrane is represented by 

the rate of mass transfer of oxygen from the incubator (saturated with oxygen in equilibrium with 

concentration co) through the FEP membrane (with permeability, Perm) into the bulk liquid.  

This boundary condition is written as, 
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(3.16 a) 

 

The Danckwerts boundary conditions, extensively applied to convection-diffusion problems in 

chemical reactors, includes a flux balance at the inlet of the reactor coupled with a zero diffusive 

gradient condition at the end of the reactor (Danckwerts, 1953).  These conditions are given by 
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where cin is the dissolved oxygen concentration being delivered by flow at the inlet.  The oxygen 

concentration cin is equal to 20 % gas phase oxygen in equilibrium with the liquid phase. 

 

The equal flux condition exists at the interface of the cell layer and the liquid layer, and it is 

given as, 
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cDcD ∇−=∇− β  

(3.16 d) 

 

It is assumed that there is no flux of oxygen along the external boundaries of the cell layer with 

the solid walls of the reactor.  Hence,  
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3.2.2.2 Solution procedure 

 

The equations describing variations in oxygen concentration in the fluid layer (equation 2.1) and 

in the cell region (equation 2.11) and the cell volume fraction in the cell region (equation 2.15) in 

space and time are solved simultaneously coupled with the appropriate boundary conditions.  A 

MATLAB (version 6.5, The Mathworks, Inc.) based FEMLAB (version 2.3, COMSOL) program 

utilizing a finite element method was used to numerically solve the system of partial differential 

equations.  The model is run from the initial state until the time point where the oxygen 

concentration is depleted to zero at any position in the reactor.  Since the model does not account 

for inhibitory factors on cell growth such as natural cell death, the cell growth can also increase 

without bound.  Thus, an additional limit is when the cell volume fraction approaches 1.0. 

 

3.2.2.3 Macroscopic area averaging 

 

The locally averaged oxygen concentrations and cell volume fractions obtained using the 

FEMLAB software can be further averaged over the entire domains, i.e., the cell layer and the 

liquid layer, and these averages are referred to as macroscopic averages.  One reason to compute 

these averages is to condense a large amount of model output, in terms of time and 2-

dimensional spatial variations, into output containing only time variation.  Thus, macroscopic 

area averaging is performed to obtain the area averaged oxygen concentration c , cell volume 

fraction γε , oxygen consumption rates ( mm , ogrowth _ ) and growth rate ( growth ) in 

the bulk liquid layer and cell layer separately.  For example the area averaged oxygen 

concentration is obtained as, 
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The variation of the oxygen concentration and granulocyte progenitor cell volume fraction from 

their macroscopic average values at various points in the cell layer of the bioreactor are 

computed as, 
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where ci is the non-dimensional oxygen concentration at a location i in the cell layer of the 

reactor and <c> is the macroscopically averaged oxygen concentration.   

 

3.2.2.4 Fixed Oxygen Concentration Model 

 

In order to assess the results from the finite element solution and to obtain a putative maximum 

cell growth rate, a simplified model neglecting all transport limitations can be considered.  Since 

maximum cell growth occurs in a well mixed reactor when the oxygen concentration is at a value 

in equilibrium with 5% oxygen in the gas phase, the cell material balance can be solved with 

constant oxygen concentration, c5%, 
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The solution of this expression is denoted as εmax and is a simple exponential function given by, 
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3.2.2.5 Well-Mixed bioreactor model 

 

Another limit to the full spatial distribution model can be formed by assuming that the cell layer 

and the fluid domain as well mixed compartments.  This limit removes the spatial variation of 

the oxygen concentrations in the cell and bulk liquid layers and the cell volume fraction in the 

cell layer of the bioreactor while retaining the effects of nutrient mass transfer supply.  Oxygen is 

delivered to the reactor both by mass transfer through the membrane and by hydrodynamic flow 

at the entrances and exits of the bulk liquid layer of the bioreactor.  Hence, the molar balances 

describing variation of the oxygen concentration in the cell layer (1) and bulk liquid layer (2) and 

cell volume fraction are written as, 
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(3.20) 

 

where V1 and V2 are the volumes of the cell and bulk liquid layers, respectively, F is the medium 

flow rate, A is the area for mass transfer between the two layers, cin and co are the inlet dissolved 

oxygen concentration through flow and through the FEP membrane in saturation with gas phase 

oxygen concentration, respectively, and km1 and km2 are the mass transfer coefficients for 

transport across the membrane to the bulk liquid layer and across the bulk liquid layer to the cell 

layer, respectively.  The rate of mass transfer across the membrane is determined by the 

membrane permeability.  Mass transfer in the presence of convective flow in the bulk liquid 

layer, km2 is dominated by the flow field and for laminar flow is written as (Middleman, 1998), 
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In principle, these equations can be obtained by averaging the material balances in equations 3.1, 

3.11, 3.15 and 3.16 that includes the spatial variation terms. 

 

3.3 Results and Discussion 

 

 

The spatial variation of the dimensionless oxygen concentration at approximately 15 days in the 

reactor is shown in Figure 3.2.  The dimensionless oxygen concentration represents the fractional 

liquid-phase oxygen saturation as mentioned earlier.  The color represents the variation in 

oxygen concentration in space, i.e., along the reactor length (varying from 0 cm to 10 cm) and 

the reactor thickness (varying from 0 cm to 0.66 cm).  The oxygen concentration of the inlet 

flowing liquid and the oxygen concentration in the incubator are set to values in equilibrium with 

20% gas phase oxygen (which corresponds to the non-dimensional value 1).  The residence time 

for flow is 1 hr, and the flow rate is computed as the ratio of the volume of the liquid layer and 

the residence time of flow.  The gradients in oxygen concentration seen in the bulk liquid layer 

arise from mass transfer and flow coupled to reaction, i.e., consumption by cells in the cell layer, 

that consume oxygen at a rate faster than it can be supplied.  The oxygen concentration in the 

cell layer is severely depleted by this time because of consumption by the cells (see also 

discussion of Figure 3.4(a) below). 

 

As discussed previously, the granulocyte progenitors in the cell layer consume oxygen for their 

growth and metabolic needs.  The consumption rates are functions of the oxygen concentration 

and the amount of cells present at any time in space as shown in equation 3.11.  In order to 

obtain the total oxygen consumption rate for growth and the oxygen consumption rate for 

metabolism in the cell layer at any time the rates are macroscopically averaged in the cell layer 

(as given by equation 3.17) and are denoted as <growth_o> and <mm>, respectively.  The 

variations in the macroscopically area-averaged consumption rates with time are shown in Figure 

3.3.  It can be seen that the oxygen consumption rates increase with time over a large time span 

because of the formation of cells.  However, when the oxygen concentration reaches very low 

values where there is little available oxygen for consumption, the metabolic consumption rate 

levels off.  If the model is run for longer time, as the oxygen concentrations deplete to zero the 
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rate of metabolism will also decrease to zero.  The figure also shows that the metabolic oxygen 

consumption rate is nearly three orders of magnitude higher than the rate of oxygen consumption 

for cell growth.  This result is consistent with the fact that an individual cell spends much more 

time in metabolism than in growth. 

 

The variation of cell volume fraction in space (along with the corresponding expanded view of 

the oxygen concentration in the cell layer) at approximately 15 days in the reactor is shown in 

Figure 3.4 (for all the same parameters as in Figures 3.2 and 3.3).  The maximum cell volume 

fraction reached is around 0.63 (Figure 3.4(b)) and this corresponds to a cell density of 2.25 *10
8
 

cells/ml (
gV

densitycell
γε

= ).  The figure shows that the concentration of progenitor cells is 

higher in the region closer to the center of the matrix and nearer to the source of convective 

supply.  This peak value in cell density is a result of the time course of the process whereby cells 

seeded in the deep interior do not obtain enough oxygen for high growth rates while cells on the 

periphery are exposed to more inhibitory oxygen levels.  The oxygen concentration in the cell 

layer at this time is almost completely depleted as seen in Figure 3.4(a).  This result partially 

resembles the in vivo state where the progenitors are found in the niches (with a relatively lower 

oxygen concentration around 5%) farther away from the sinus (higher value of oxygen 

concentration around 10%) and is essentially due to the inhibitory nature of the kinetics 

describing cell growth.   
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Figure 3. 2 Non-dimensional oxygen concentration (in color) varying in space at nearly 15 days (13*10
5
 s) in 

the perfusion bioreactor.  Parameters: T=0.6 cm; l=0.06cm; res_time = 1hr; F=4.17*10
-3

 cm
3
/s; vavg = 2.8*10

-3
 

cm/s 
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Figure 3. 3 Macroscopically averaged oxygen consumption by metabolism (<mm>) and for cell growth (<growth_o> at various times.  Parameters: 

T=0.6 cm; l=0.06cm; res_time = 1hr; F=4.17*10
-3

 cm
3
/s; vavg = 2.8*10
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 cm/s 
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Figure 3.4  a Spatial variation in non-dimensional oxygen concentration in the cell layer at nearly 15 days 

(13*10
5
 s) 

 

 

 

Figure 3. 4 b  Simulated growth in the cell layer at nearly 15 days (13*10
5
 s) 
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Figure 3. 5 Macroscopically averaged flux of oxygen through the FEP membrane and through flow variation with time.  Parameters T=0.6 cm; l=0.06cm; 

res_time = 1hr; F=4.17*10
-3
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The perfusion bioreactor has two sources of oxygen: one by diffusion though the FEP membrane 

from the incubator filled with oxygen saturated air (20% Oxygen) and the other by convective 

flow with the entering media containing dissolved oxygen in equilibrium with saturated air (20% 

Oxygen).  The variations of the averaged fluxes of oxygen through these two sources with time 

are plotted in Figure 3.5 (again for same parameters as in the previous figures).  It can be seen 

that the influx of oxygen by convective transport (<flux_conv>) is constant, as expected, and is 

much higher than by diffusive transport through the membrane (<flux_mem>).  As the cell 

number increases with time the oxygen demand also increases leading to a larger oxygen 

concentration gradients between the bulk liquid and incubator oxygen level, thus increasing the 

supply of oxygen by diffusion across the membrane.  However, membrane restrictions to oxygen 

transport remain very high for all times, hence the values of average flux through the membrane, 

<flux_mem> are always considerably smaller than the convective flux. 

 

Design parameters 

 

The model is also used to assess the effects of the liquid layer height, the residence time of the 

fluid flow, and the various modes of oxygen supply.  The objective is to determine how these 

system parameters affect the spatial and temporal variations of cell density and oxygen 

concentration in the bioreactor.   
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Figure 3.6 a Simulated macroscopically averaged oxygen concentrations in the cell layer (matrix) and the liquid layer for varying liquid layer heights (T) at 

different times.  Parameters T=0.6 –0.3 cm; l=0.06cm; res_time = 1hr; F=2.08 *10
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Figure 3.6 b Spatially averaged cell growth for various liquid layer heights at different time.  Parameters T=0.6 –0.3 cm; l=0.06cm; res_time = 1hr; F=2.08 
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Figure 3. 6 c Simulated fluxes through the membrane with time. Parameters: T=0.6 –0.3 cm; l=0.06cm; res_time = 1hr; F=2.08 *10
-3
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Figure 3.7 a Simulated average oxygen concentration and averaged cell volume fraction in the cell layer of the bioreactor with time.  Parameters T=0.6 cm; 

l=0.06cm; res_time = 0hr-2hr; F=0 cm
3
/s- 8.33*10

-3
 cm

3
/s; vavg = 2.8*10

-3
 cm/s 
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Figure 3. 7 b Spatial variation in cell volume fraction in the cell layer at nearly 15 days (13*10
5
 s) for different residence times and correspondingly different 

flow rates (F) 
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Figure 3.8 a The effect of different modes of oxygen supply on the averaged oxygen concentration in the cell layer and the cell volume fraction.  Parameters: 

T=0.3 cm; l=0.06cm; res_time = 1hr; cgas chamber = 1; cin_flow = 1; F= 2.083*10
-3
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Figure 3.8 b The effect of different modes of oxygen supply on the averaged oxygen concentration in the cell layer and the cell volume fraction.  Parameters: 

T=0.4 cm; l=0.06cm; res_time = 1hr; cgas chamber = 1; cin_flow = 1; F= 2.8*10
-3
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Figure 3. 8 c The effect of different modes of oxygen supply on the averaged oxygen concentration in the cell layer and the cell volume fraction.  Parameters: 

T=0.6 cm; l=0.06cm; res_time = 1hr; cgas chamber = 1; cin_flow = 1; F= 4.17*10
-3
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Liquid layer height 

Figure 3.6(a) shows the effect of varying the liquid layer height on the macroscopically area-

averaged oxygen concentrations in the cell and bulk liquid layers.  The average oxygen 

concentrations in the bulk liquid layer are higher for larger liquid layer heights since the bulk 

molar flow rate is larger at a fixed residence time.  At long times the oxygen concentrations in the 

bulk liquid appear to level off indicating limitations in metabolic consumption.  In general since 

there is more available oxygen, the oxygen consumption rates are higher for larger liquid layer 

heights thus leading to larger depletion of oxygen in the cell layer and thus the figure also shows 

lower oxygen concentration in the cell layer at larger liquid layer thickness.  However, the oxygen 

profiles in the cell layer are not monotonic functions of the bulk liquid layer height as indicated by 

similar rates of decrease for the 0.5 and 0.3 cm and the 0.4 and 0.2 cm.  These trends are partially 

reflected in the cell density profiles (Figure 3.6(b)) whereby growth is highest for 0.6 cm and 

lowest for 0.2 cm, but the growth of cells is slightly larger for 0.3 cm than for 0.4 cm.  Similar 

results were also seen when the flow is changed to plug flow (results not shown here).  These non-

monotonic variations might be attributed to the convective flow coupled to the non-linear growth 

characteristics.  It can be noted that calculations with the well mixed model did not lead to such 

variation in the oxygen profile with bulk liquid layer height (results not shown).  There was a 

monotonic decrease in oxygen concentration in the cell layer with various liquid layer heights and 

a monotonic increase in cell growth with higher supply of oxygen by convective flow. 

 

The oxygen supply by diffusion through the FEP membrane is also affected by increases in bulk 

liquid layer heights.  As seen in Figure 3.6( c) the oxygen delivery by diffusive supply through the 

membrane is larger in the case of smaller bulk liquid layer heights in comparison to larger bulk 

liquid layers.  However, the magnitude of oxygen delivery by diffusion is much smaller compared 

to that of flow, and thus this larger supply is still not as significant at the smaller bulk liquid layer 

heights.  

 

Residence time  

The residence time of the flow is a measure of the contact time for the flowing fluid, i.e., the rate at 

which oxygen is supplied to the cells through convection.  Longer residence times imply the flow 

is slow and that there would be large oxygen depletion in the regions of the reactor farther away 
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from the supply end in comparison to the cell regions closer to the inlet.  Thus, longer residence 

times lead to regions of very low oxygen concentration and might lead to formation of dead zones.  

 

Figure 3.7(a) shows the averaged oxygen concentrations and cell volume fractions in the cell layer 

of the reactor at different residence times.  Variation of residence time with a constant liquid layer 

height of 0.6 cm changes the medium flow rate, and hence the average velocity at which oxygen is 

transported by convection through the reactor.  A residence time of 1 hr corresponds to a flow rate 

F.  The oxygen concentration in the cell layer is seen to deplete much faster (Figure 3.7b) in the 

case where there is no flow (F = 0), i.e., oxygen is delivered only through the FEP membrane.  

Correspondingly, the growth rate of cells is much slower due to these transport limitations and the 

maximum cell volume fraction reached is less than 0.1 (Figure 3.7a).  However, upon introducing 

flow more oxygen is delivered to the cell layer by convective flow and hence the growth rate 

increases for flows of F/2 and F.  However, at flow rates of 3F the growth rate as shown in Figure 

3.7(a) is less than that for F.  It is likely that the higher oxygen concentrations (Figure 3.7b) 

occurring at this higher flow rate lead to inhibitory kinetics thus decreasing the growth rate.  Thus, 

there exists an optimal flow rate that leads to maximum cell growth due to transport limitations at 

low flow and kinetic inhibitions at high flow.  Similar effects were also seen for the case in which 

oxygen was supplied by plug flow with the same average velocity rather than by laminar flow 

(result not shown here).   

 

Mode of oxygen supply 

It is already shown above that convection clearly enhances the cell growth, as compared to cell 

growth that occurs when diffusion is the only mode of supply.  In order to further consider this 

factor, analysis is conducted to compare cases with convection alone, diffusion alone, and 

combinations of convection and diffusion.  These comparisons are important because perfusion 

bioreactors are generally more complex and difficult to set up and operate than reactors that only 

utilize diffusive supply.  Therefore a quantitative analysis of the role of convection on oxygen 

supply is needed to determine when flow is necessary.  The present model can be used to 

quantitatively determine the relative contribution of oxygen supply through flow in comparison to 

diffusive supply though the FEP membrane.  Thus, the model can be used to determine if diffusive 
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transport of oxygen through the FEP membrane can meet the demands of the cells or if convective 

flow needs to be added in the bioreactor design.   

 

Figures 3.8(a), 3.8(b) and 3.8(c) show that for three different liquid layer heights the oxygen 

delivered to the cell layer by diffusion through the membrane is less effective in maintaining cell 

growth for longer periods of time than would be possible with the addition of convective flow.  

The membrane restrictions are so large that the amount of oxygen delivered to the cell layer in the 

case of both membrane transport and hydrodynamic flow and the case of only oxygen delivered by 

convective flow are seen to be similar by model calculations.  In addition, the cell volume fractions 

in the cell layers are similar for these two cases.  Thus for these levels of oxygen consumption the 

membrane would appear to be superfluous, however it may still be useful to incorporate such a 

backup mechanism for oxygen supply in case of problems with the fluid pumps. 

 

Figure 3.9 summarizes results for the cell density and oxygen concentration for a number of cases.  

For example, increasing the concentration of oxygen in the incubator and the oxygen concentration 

in the supply by flow to values in equilibrium with 100% oxygen gas causes the oxygen 

concentration in the cell layer to take a longer time to deplete in comparison to supply at 20%.  In 

addition, convection and membrane transport at 100% supply maintains the oxygen concentration 

at higher values for longer periods of time than all other cases.  However, the higher oxygen 

concentrations for this 100% supply lead to kinetic inhibition for longer times, thus reducing the 

growth rate (Figure 3.9b).  The cell volume fraction achieved upon complete depletion of oxygen 

(at some position in the reactor) for the 100% supply is lower than the case with 20% supply as 

shown in Figure 3.9(b).  Further the convective diffusive supply at 100% has a lower rate of cell 

growth than the membrane supply alone and the convection supply alone.  This confirms the effect 

that the higher oxygen concentrations in the 100% range lead to slower cell growth. 
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Figure 3.9 a Oxygen concentration variation with time in a mixed bioreactor under different oxygen supply conditions with different membrane 

permeability, km and medium flow rates (Perm=1.343*10
-4

 cm/s known value of permeability of the FEP membrane, F=4.17*10
-3

 cm
3
/s) 



 79

0.00001

0.0001

0.001

0.01

0.1

1

0 200000 400000 600000 800000 1000000 1200000 1400000

time (s)

<
e

p
>

<ep> (conv 20%+ mem 20%)

<ep> (conv 20%)

<ep> (mem 20%)

<ep> (con 100%+mem 100%)

<ep> (conv 100%)

<ep> (mem 100%)

ep_max

ep_ode_solution (F:20% diff:20%)
 

Figure 3. 9 b Cell volume fraction variation with time in a mixed bioreactor under different oxygen supply conditions with different membrane 

permeability, km and medium flow rates (Perm=1.343*10
-4

 cm/s, F=4.17*10
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Figure 3. 10 b Effect of mode of oxygen supply on cell volume fraction of granulocyte progenitors at different times.  Parameters: T=0.6 cm; l=0.06cm; 
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The case of a well-mixed tank reactor for 20% supply at similar flow rates was analyzed using 

equation 3.20.  In this case, the cell growth rate is higher than all cases for 100% supply but 

lower than most of the other cases for 20% supply.  The mixed reactor gave cell growth similar 

to the membrane-only supply at 20%, however the growth was significantly lower than the 

convective and convective-diffusive supplies at 20%.  Mixing clearly decreases performance of 

the flow reactor, as expected, but only slightly affects performance of the diffusion only.   

 

Also shown in Figure 3.9 are the results for the putative maximum growth rate (ep_max) 

whereby the oxygen concentration is set at concentration in equilibrium with 5% gas phase 

oxygen throughout the reactor (Fixed oxygen concentration model).  The kinetics for the cell 

growth are developed from experimental results that show that these cell have maximum growth 

rates at an oxygen concentration around 5%.  Oxygen concentrations higher and lower to this 

value inhibit cell growth.  Equation 3.19 was used to determine the cell volume fraction changes 

with time for a uniform oxygen concentration in the cell layer of 5%.  The growth rate at this 

putative maximum is higher than the cases for 100% supply and for the mixed reactor and 

membrane-only supply at 100%.  However, surprisingly as shown in Figure 3.9(b) the cell 

growth is faster for the cases of oxygen supply at 20% by flow and membrane transport and by 

flow alone than the putative maximum growth case.   

 

It is possible that this effect can be due to either the amount of nutrient delivery or to the spatial 

distribution of the delivery.  To address this issue, the mixed bioreactor case is solved for 

different oxygen supply rates.  Supply in the mixed reactor case was varied by changing the flow 

rates (‘Flow’ corresponding to flow rate for 0.6 cm liquid layer height and residence time of 1 hr, 

i.e. 4.17*10
-3

 cm/s) and by changing mass transfer rates across the membrane (the membrane 

permeability, km1).  It is seen clearly in Figure 3.10(a) and 3.10(b) that either by increasing the 

oxygen supply by flow to 40 times the value ‘Flow’ or increasing the membrane permeability the 

growth rates is still below the expected putative maximum growth rate.  Hence the higher growth 

rates for the cases seen in Figure 3.9 (b) cannot be obtained simply by increasing supply rates 

and must be attributed to the spatial distribution of oxygen in the bulk liquid layer and the cell 

layer of the bioreactor. 
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The results shown in Figure 3.9(b) clearly indicate that optimal cell growth can be attained by 

operating the reactor with convective-diffusive supply at 20% concentration for nearly 15 days 

(12.5*10
5
 s).  However, by that time the oxygen concentration is severely depleted.  In order to 

maintain high cell growth for a longer time, it is thus necessary to increase the gas phase supply 

to 100% and add convective flow at 100% gradually.  Thus, the model results suggest that an 

increase in feed oxygen concentration should begin at approximately 10
5
 s and should gradually 

rise to maintain the highest rates of cell growth. 

 

3.4 Conclusions 

 

 

The present study models a three-dimensional perfusion bioreactor system seeded with 

granulocyte progenitors.  The method of volume averaging is used to formulate the material 

balances for the cells and nutrients in the porous matrix containing the progenitor cells.  The 

model is used to compute the variation in oxygen concentration with space and time in the matrix 

as well as the bulk liquid region.  The results of the model illustrate the effects of oxygen mass 

transfer restrictions in the matrix due to cell growth.  This model includes the dependence of cell 

growth on the oxygen concentration.  The derived effective diffusivities and effective rate 

expressions used for solving the effect of oxygen delivery to the cells account for local 3-

dimensional geometry.  However, the volume averaged expressions do not include the effect of 

the local 3-dimensional cell-cell interactions and ECM environment, an important factor in the 3-

dimensional structure that affects cell proliferation.  Future experimental and theoretical work 

shall consider these aspects. 

 

The model is used to analyze the various design parameters of the reactor.  Cells consume much 

larger amounts of oxygen for metabolism compared to cell growth.  Hence, a larger supply of 

oxygen with an optimal reactor design is necessary to improve the productivity of the reactor.  

The model shows the effects of liquid layer height and residence time, as well as the roles of the 

mode of oxygen supply.  Variation of the liquid layer height between 0.3 cm and 0.6 cm affected 

the rates of oxygen supply by hydrodynamic flow and membrane delivery.  However, the 

delivery of oxygen by hydrodynamic flow always exceeds that by membrane transport, thus 
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leading to larger growth rates at higher liquid layer heights.  Lower residence times, i.e. higher 

flow rates, supplied larger amounts of oxygen to the cell layer of the bioreactor.  Larger amounts 

of the oxygen were then available for cell growth and metabolic consumption, which produced 

larger number of progenitor cells.  However, an optimal growth rate at a specific flow rate was 

found whereby at lower flows the growth was transport limited by oxygen supply and at higher 

flows the growth was limited by kinetic inhibition.  The spatial pattern of delivery by convection 

was also found to play a significant role increasing the rate of cell growth.  The model results 

clearly indicate that variation of the oxygen concentration in the inlet feed with time may lead to 

enhanced granulocyte progenitor cell growth in the 3-dimensional perfusion bioreactor.   

 

This model can be further extended to include the effects of glucose consumption and the effects 

of lactate production (Patel et al., 2000).  Cell loss because of flow and product inhibition may 

occur and needs to be included in future studies.  Moreover, in order to model a bioreactor used 

for growing hematopoietic cultures it will also be necessary to incorporate the presence of 

multiple cell populations, starting from the progenitor cells to the mature cells of all lineages 

(Cabrita et al., 2003; Nielsen et al., 1988; Silva et al., 2003; Hevehan et al., 2000).  Our 

preliminary work on including these parameters in the model is discussed in detail in Chapter 4. 



 85

 

 

 

 

 

 

CHAPTER 4 
 

 

ROLE OF NUTRIENT SUPPLY AND PRODUCT FORMATION 

ON CELL GROWTH IN BIOREACTOR DESIGN FOR TISSUE 

ENGINEERING OF HEMATOPOIETIC CELLS 
 

 Analysis of glucose and oxygen supply and by-product (lactate) 

concentration on progenitor and mature cells in 3-dimensional well-

mixed reactor  
 

 

 

 

4.1 Introduction 

 

 

In Chapter 2 we discussed the complicated process of hematopoiesis (cell proliferation, 

differentiation, and maturation), the need for ex vivo hematopoietic cell expansion, the various 

factors that affect hematopoietic cell expansion in cultures, and also the different culture devices 

that are being used for this process.  The necessity for higher cell production and more 

progenitor expansion led researchers from simple Dexter hematopoietic (bone marrow) cultures 

to various complicated bioreactors (spinner flasks, perfusion bioreactors) by maintaining systems 

at ‘better-defined’ culture conditions (pH, dissolved oxygen, other metabolic reactants and 

products).   

 

The reactor designed at Florida State University, as discussed in Chapter 3, is a continuous 

perfusion bioreactor with cells growing on 3-dimensional PET matrices.  The bioreactor is 

chosen so that the reactor is maintained at the so-called ‘better-defined’ culture conditions with 
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cells continuously bathing with nutrients and flow removing the byproducts.  The reactor 

provides a 3-dimensional growth environment for cells, close to the microenvironment in vivo 

and results in long-term multilineage production of hematopoietic cells.  The hydrodynamic flow 

in the bulk liquid layer allows cells to settle in the matrix and grow.  However, some cells will 

fall and be carried away by the flowing fluid.  Moreover, by isolating the cells from the primary 

flow they can be protected from the mechanical stressed exerted by the flow.   

 

Chapter 2 discussed the various continuous and discrete mathematical models developed for 

describing hematopoietic process in bone marrow and in culture devices in literature.  The 

Krogh’s model of the bone marrow is indicative of the distribution of the various progenitor and 

mature cell types in the bone marrow and their location relative to the sinus.  Oxygen was found 

to be one of the most important parameters that controlled this cell distribution in the bone 

marrow compartment.  Efforts were also made to develop mathematical models to describe 

physicochemical behavior of cells in ‘in vitro’ culture devices (discussed in Chapter 2.5.3).  This 

can be done by a careful selection of suitable design characteristics and operational variables to 

achieve a desirable level of one or more culture parameters (dissolved oxygen, pH, and nutrient 

or byproduct concentrations) that directly affect the growth.    

 

The importance of oxygen on hematopoietic cells led to the development of the dynamic 

mathematical model explained in Chapter 3.  The reactor as mentioned has a distinct cell layer 

comprising of the PET matrix where the cells grow, squeezed in between two flow chambers, 

which make up the bulk liquid layer of the reactor.  The granulocyte progenitor cells are shown 

to become oxygen-limited in the cell layer although there is a large supply from the bulk liquid 

above.  This mathematical model was the first of its kind to describe the spatio-temporal changes 

in cells coupled to transport of nutrient (oxygen) delivery in ex vivo hematopoietic cultures.  

Thus, the mathematical model determines the immune lineage cell growth characteristics 

(granulocyte progenitors) in the 3-dimensional matrix of the bioreactor and quantitatively 

describes progenitor cell production and substrate consumption (oxygen) over an extended 

period of time.  Material balances on cells are coupled to the nutrient (oxygen) balances in 3-

dimensional matrices to determine the effects of transport limitations on cell growth.  This model 

has flexibility to be extended to cell types other than hematopoietic cells based on the availability 
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of growth kinetics for that cell type of interest.  However, future work on understanding the other 

important parameters is necessary in order to improve the modeling of 3-dimensional 

hematopoietic bioreactor system.  To address this issue, the current chapter develops models that 

build upon the  model developed in Chapter 3, by incorporating other important environmental 

factors (other than oxygen), accounting for the co-existence of multiple cell population, 

understanding the effects of various cell-cells, cell-ECM interactions, and addressing the effects 

of using of different matrix geometries.   

 

4.2 Literature Review 

 

 

4.2.1 Model Factors 

 

The most important factors that have been addressed extensively in literature and discusses here 

in the model perspective include are the metabolic parameters - glucose consumption and lactate 

production by hematopoietic cells; multiple cell populations in culture systems, and the effects of 

a different cell microenvironment in terms of geometry of the reactor. 

 

4.2.1.1 Effect of glucose supply on cell growth in the 3-dimensional perfusion bioreactor 

 

Glucose is the most commonly used carbohydrate energy source for cells and it is normally 

included in culture at concentrations between 5 and 25 mM.  Few studies have been conducted to 

determine the glucose consumption rate and to assess its effect on hematopoietic cell metabolism 

and growth.  This is because experiments reported (Collins et al., 1997; Patel et. al., 2000) have 

shown that cell cultures inoculated at low cell densities in spinner flask cultures have shown a 

wide scatter in glucose data.  The error in the glucose assay was approximately the same order of 

magnitude as the amount of glucose consumed.  Experimental studies in the perfusion bioreactor 

in Dr Ma’s lab and modeled in our current study (Chapter 3) have shown similar scatter in data 

during the early culture phase, however the scatter stabilizes late during the culture.  Therefore, 

the effect of glucose on hematopoietic cell growth in culture should be studied for two reasons.  

Glucose is one of the most important nutrients for cell metabolism and growth and is also one of 
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the sources of lactate production observed in hematopoietic cultures.  Moreover, glucose 

concentration can be measured in real time in the culture, thus enabling comparison of model 

results to experimental data.   

 

Glucose is consumed in cultures both aerobically and anaerobically.  In oxidative or aerobic 

metabolism glucose and oxygen produce carbon dioxide, water, and energy in the form of ATP 

through the well known Krebs cycle.  Anaerobic metabolism, which takes place in the absence of 

oxygen, involves the formation of lactate from glucose by glycolysis.     

 

Collins et al., 1997 examined the specific glucose consumption rate for hematopoietic cultures 

carried out in spinner flasks.  The glucose consumption increased from day zero until a 

maximum was attained, and then decreased until it reached a minimum value maintained until 

the end of the culture.  A similar increase and decrease in the fraction of colony forming cells 

(CFCs) in this culture system was also seen.  This shows that rapidly proliferating cells (CFCs) 

have much greater metabolic demand.  These cells consume glucose for metabolism, and, thus 

manipulating glucose concentration in ex vivo cultures can help in manipulating desired cell 

growth.  The specific glucose consumption rate at day ‘n’ was computed by Collins and 

coworkers as a time weighted average given as, 
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The effect of glucose as a substrate (or nutrient) along with oxygen on the growth of different 

cell types is explored by adding a glucose mass balance to the model developed in Chapter 3.  

Suitable glucose consumption rates for metabolism and cell growth were obtained from the 

literature.  Details on the model development are discussed in section 4. 2.2.   

 

 



 89

4.2.1.2 Effect of lactate production on cell growth in the 3-dimensional perfusion bioreactor 

 

Lactate is a metabolic product of glycolysis and is largely derived from glucose although 

glutamine may also contribute to the accumulation of lactate.  Studies have shown that the cell 

proliferation ceases – in hematopoietic cultures of varying cell densities – when the lactate 

concentration approaches 20 mM (Patel et. al., 2000).  Hence the effect of lactate on 

hematopoietic cell growth has been extensively studied and reported in the literature.   

Collins et al., 1997 observed a strong correlation between the specific lactate production rate 

(qlac) and the percentage of CFCs – with a close correspondence between maxima in qlac and % 

CFC and a low value for qlac after the CFCs are depleted for cultures of cord blood (CB) 

mononuclear cells (MNC), peripheral blood (PB) MNC.  Hence as for glucose, an understanding 

of the lactate production would help in increased expansion of the CFC (early progenitor cells) in 

cultures.  It was also shown that this difference in the qlac can be used to group cells along a 

lineage into two distinct groups - progenitors and post-progenitor cell types.  This information is 

used to develop a two cell population model which will be discussed in detail in section 4.2.2.   

 

Further analysis by the same group (Collins et. al., 1998) for different feeding protocols also 

showed that there was a maximum in qlac near the maximum in %CFC.  However, for some 

feeding protocols there was a secondary increase in qlac that exceeded the initial peak value 

although the specific oxygen consumption rate qO2 did not show a significant secondary peak.  

Thus, this showed that post-progenitors are highly glycolytic and do not have high oxidative 

metabolic activity.  The ratio of the specific lactate production rate to specific oxygen 

consumption rate (Ylac,ox) for the cells in this stirred bioreactor culture varied with time, 

increasing with increase in post-progenitor cells further showing utilization of glycolysis by post-

progenitor cells for energy production.   

 

Two distinct models were proposed to model lactate concentration in culture units (Collins et al., 

1997, 1998; Yang et al., 2000)- 

a) Linear Chemometric or Two Population Model 

Based upon the experimental observation of the linear correlation between the specific lactate 

production rate (qlac) and the percentage of colony forming cells (%CFCs) Collins et al. 1997 
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established a ‘Linear Chemometric model’ relating the lactate production rate to the percentage 

of the CFC production, 
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where α and β are the model parameters for the two population model (CFC or progenitor cells 

and other post-progenitor cells).  The model groups all the different progenitor cells as CFCs and 

remaining cells as post-progenitor cells assuming that cells belonging to each of these separate 

groups have the same lactate production rate.  This is correct as a first approximation due to 

unavailability of quantitative experimental data on rate constants for individual cell types.  

However in culture, different progenitor cells and post-progenitor cells have a different lactate 

production rate that also varies with the culture conditions.   

 

b) Modified Linear Chemometric Model 

Multi- population Model 

Yang et al., 2000 extended the two population model of Collins and co-workers by grouping all 

cell types of granulomonocytic lineage into six distinct cell types (groups) with different growth 

rates, cell density and metabolite consumption/formation rates.   
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where xj(t) and βS,j are the respective cell fraction and specific metabolic rate of cell type j, and p 

(=6) is the number of cell types (groups) considered.  The model assumes that the specific 

metabolic rates for each cell type are constant at any culture time and any cell composition.  

However, for hematopoietic cultures the metabolic activities depend on culture conditions, such 

as pH, availability of nutrients (dissolved oxygen, glucose), amino acids and cytokines.  
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However, theoretically, through regular feeding and saturation the concentration of these 

substances can be always kept nearly in the desirable range.   

 

Growth Rate Influence Model 

The linear model ignores the effect of growth rate and hence the specific lactate production can 

be also calculated as, 
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(4.4) 

 

These models have been extensively used in describing microbial metabolite uptake and 

formation rates, respectively, where YX,S is the yield coefficient, mS is the maintenance rate, as the 

growth associated product formation coefficient, and bS is the non-growth associated product 

formation rate.  This model is supported by experimental data showing a tendency for higher 

lactate production rate with increasing growth rate in cultures.   

 

Combination of Multi- population Model and Growth Rate Influence Model 

The growth rate influence can be added to the linear model described in equation 4.3,   
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(4.5) 

 

The cellular overcrowding (‘crowding effect’) especially observed in two-dimensional cultures 

(2-dimensional) and also observed in spinner flask cultures (Collins et al., 1998) was found to 

decrease the metabolic activity of the cells.  This can be further incorporated in equation 4.4 by 
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assuming that the cell density and other factors (growth rate and cell types) affect cell 

metabolism independently. 
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Thus, the total metabolic activity is made up of two parts.  The first part describes the metabolic 

activity at very low (‘zero’) cell density, while the second part represents the dependence of the 

maximum metabolic activity on cell density.   

 

These developed models could be used to establish accurate relationship between the specific 

lactate production rate and the cell density of various cell types in the granulomonocytic lineage.  

After model parameters are determined by comparing the model output of lactate concentration 

with the available experimental results for the system, the model can be used to get an estimate 

of the percentage of the cell types in culture for a known lactate concentration.  This would 

further help in calculating the harvest time for different cell types in culture to obtain a desired 

cell density than using the uniform harvest time for all cell types.  The model development 

section outlined below incorporates these already proposed approaches for lactate production 

kinetic rates to the overall model. 

 

Experiments in the perfusion bioreactor with hematopoietic mononuclear cells (at FSU) have not 

shown an increase in lactate concentration beyond the inhibitory range for the culture conditions 

used in the model.  However, it is necessary to examine the effects of lactate for a better 

understanding of the sensitivity to the toxic metabolite (lactate) accumulation on the growth of 

different hematopoietic cell types.  This understanding would further add to the long range goal 

of optimization and control of the developed bioreactor.   

 

 

 



 93

4.2.1.3 Multiple cell population 

 

As described in Chapter 2, hematopoietic cultures are made up of multiple cell types starting 

from the stem cells, to progenitor cells, to lineage committed cells and mature cells with different 

growth rates and metabolite consumption and production rates.  Hence a complete mathematical 

model to describe such a culture needs to consider multiple cell types.  Use of specific cytokines 

helps to produce cells of certain lineages only, thus streamlining the model to a three 

compartment model as described in Chapter 2.5.3.4.  Each compartment involves the production 

of different cell types by processes of proliferation, differentiation, and maturation.  The models 

discussed in Chapter 2 with multiple-population are discrete models and does not account for the 

effects of environmental changes on cell growth of different cell types.  These models do not 

describe the growth rate in culture, nor do they account for mass transfer restrictions and its 

effects on cell growth. 

 

There are no continuous mathematical models that have accounted for the effect of changes in 

the environmental condition, for example oxygen tension, glucose or lactate concentrations on 

the changing hematopoietic cell population (cell growth, cell differentiation and cell maturation) 

in ex vivo 3-dimensional cultures.  The model developed in Chapter 3 of this work using a single 

population model (granulocyte progenitor cells) has shown the importance of a continuous 

change in oxygen tension with time and in space and its effects on cell growth in perfusion 3-

dimensional bioreactor.  The importance of oxygen tension distribution has also been shown in 

vivo in the bone marrow (Chow et al., 2001). 

 

As a next step towards improvement of the current models we intend to add the effects of 

nutrient supply (oxygen and glucose) and metabolite product (lactate) removal in the 3-

dimensional perfusion bioreactor by diffusion and convection.  As a first step this model 

incorporates the coexistence of only two distinct cell types the ‘progenitor cells’ and the ‘post-

progenitor cells’ as discussed above.   
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4.2.1.4 Geometry of the cell layer in bioreactor 

 

Several groups have studied the effect of changes in the geometry of the bioreactor cell layer on 

the cell growth, differentiation, and maturation.  One such proposed modification in the 

geometry is shown in Figure 4.1.  The addition of grooves in the matrix, i.e., the cell layer of the 

bioreactor is believed to provide an enhanced supply of nutrients (oxygen and glucose) and 

removal of byproduct (lactate) by increasing the surface area for mass transfer (Horner et al., 

1998).  These grooves will deliver oxygen locally to all regions in the cell layer, which would 

lead to uniform cell growth in the entire cell layer.  The modeling of such a reactor would be 

used to quantitatively estimate the importance of grooved perfusion reactor units in terms of 

enhanced cell growth. 

 

 

 

 

Figure 4. 1 Schematic of a proposed grooved matrix (cell layer) of the bioreactor (Florida State University)  

 

 

4.2.1.5 Local 3-dimensional cell geometry 

 

The dynamic mathematical model developed in Chapter 3 for studying the growth of granulocyte 

progenitor cells in the hematopoietic process in the 3-dimensional perfusion bioreactor uses an 
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analytical expression for the effective diffusion coefficient of an isotropic two dimensional two 

phase medium defined by a square unit cell (Ochoa, 1988) containing spherical particles.  This 

relationship accounts for the diffusion in the non-cellular β phase and the cellular γ phase as well 

as the mass transport across the two phases.  This macroscopic viewing of the process can be 

used for analysis of low molecular weight solutes in 3-dimensional environment.  However, for 

analysis of solutes that have larger restrictions (glucose and lactate) to diffusion in the cellular 

phase further consideration of the local 3-dimensional geometry and solution of the closure 

problem in such systems are needed.   

 

Moreover, Chang’s unit cell approach can be transformed from the original cubic unit cell (used 

in the model in Chapter 3) with the spherical γ phase to a spherical unit cell with similar γ phase 

particles (Ochoa, 1988).  The effective diffusivity is then given as, 
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In order to address the local 3-dimensional cell geometry 3-dimensional cell-cells interactions, 

the effects of cellular overcrowding and environmental factors needs to be addressed.  Analysis 

of these factors requires more extensive evaluation of the volume averaging formalism.  The 

current work utilizes effective diffusion coefficients based on specific ‘unit cells’.  In the full 3-

dimensional culture, the three dimensional nature of the local environment may affect more than 

the effective diffusion coefficient as accounted for in the present work.  To fully deal with these 

issues we may need to take more creative approaches such as incorporating the cellular automata 

or other simulations of cell growth in local regions and coupling those to the macroscopic 

models based on volume averaging.  The approach as to which other models need to be 

incorporated (for studying hematopoietic cell growth and the changes in their local cell 

environment) with the macroscopic volume averaging approach has not been worked out for this 

tissue engineering application.  This is primarily because even if the model was developed there 
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is not sufficient quantitative experimental data available in literature or work in Dr Ma’s lab to 

validate the model for the current system under study. 

 

To be noted here, however, Chapter 6 of this dissertation outlines a step-by-step procedure to 

approach the effects of 3-dimensional local geometry that incorporates local cell-cell interactions 

along with the overall macroscopic variation in mass transport of various reacting species for 

cartilage growth in a hollow fiber bioreactor.  The model can be extended for this system, 

however, unlike the cartilage tissue which is made up of a single type of cells (chondrocytes) this 

system is made up of a number of different cell types where obtaining the growth, metabolic, and 

extracellular matrix synthesis rates for each cell type is not that simple. 

 

4.2.2 Model Equations 

 

Outline 

The next step towards improvement of the current model discussed in Chapter 3 is to incorporate 

the metabolic nutrients – oxygen and glucose; metabolic by-product – lactate and the presence of 

more than one cell type in the perfusion reactor.  The model developed has two cell types the 

‘progenitor cells (cell type 1)’ and the ‘post-progenitor cells (cell type 2)’.  The schematic of this 

process is shown in Figure 4.2   

 

Well-Mixed Model 

Species continuity balances describing the variation in oxygen, glucose and lactate 

concentrations are written in the cell and bulk liquid layer of the bioreactor (shown in Figure 

4.3).  The cell volume fractions of cell type 1 (progenitor cells) and cell type 2 (post progenitor 

cells) are written in the cell layer. 

 

The modeling approach similar to that described for well-mixed compartments in Chapter 3 

(section 3.2.2.5) is used.   The spatial variations of metabolic species concentrations in the cell 

and bulk liquid layers and the cell volume fractions in the cell layer of the bioreactor are 

removed while retaining the effects of nutrient mass transfer supply.   



 97

 

 

Figure 4. 2 Schematic of cell proliferation and differentiation process 

 

 

 

 

 

Figure 4. 3 Bioreactor Schematic showing continuous flow of oxygen 
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Oxygen is delivered to the reactor by mass transfer through the membrane and also by 

hydrodynamic flow at the entrances and exits of the bulk liquid layer of the bioreactor (shown in 

Figure 4.3).  Glucose and lactate transport through the reactor occurs by convective flow and 

diffusive transport.  The delivery of oxygen is continuous while lactate and glucose are replaced 

at specific time intervals.  Thus, the reactor is continuous with oxygen supply but batch with 

respect to glucose supply and lactate removal.  The conditions used with respect to the time 

interval of media exchange and concentration of oxygen are similar to the experimental system 

being modeled. 

 

Liquid Layer 

Molar balances of oxygen, glucose and lactate concentrations are written as, 
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(4.8) 

 

where CO2
l
, Cglu

l
, and Clac

l
 are the averaged oxygen, glucose and lactate concentrations 

respectively in the bulk liquid layer of the bioreactor; CO2
c
, Cglu

c
, and Clac

c
 are the averaged 

oxygen, glucose and lactate concentrations respectively in the cell layer of the bioreactor.   kmo, 

kmglu, kmlac are the mass transfer coefficients for transport of oxygen, glucose and lactate across 

the bulk liquid layer to the cell layer respectively; and kmem is the oxygen mass transfer 

coefficient for transport across the membrane to the bulk liquid layer.  F is the medium flow rate, 

A is the area for mass transfer between the two layers, and Vl is the volume of the liquid layer. 

CO2
in

 and CO2
g
 are the inlet dissolved oxygen concentration through flow and through the FEP 

membrane in saturation with gas phase oxygen concentration, respectively. 
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Cell Layer 

Molar balances on oxygen, glucose and lactate concentrations are written as, 

( ) ( )

( ) [ ]

( ) an

laccell

c

lac

l

lac

c

lac

c

lac

glucell

anaOglu

c

glu

l

glu

c

glu

c

glu

Ocell

a

c

O

l

O

c

o

c

O

mm
Y

CC
V

kmA

dt

dC

glugrowth
Y

mmmmYCC
V

kmA

dt

dC

ogrowth
Y

mmCC
V

kmA

dt

dC

⋅+−⋅
⋅

+=

⋅−−⋅−−⋅
⋅

+=

⋅−+⋅−−⋅
⋅

+=

/

/

2/

/

2122
2

1

_
1

_
1

2

γγ εε

 

(4.9) 

 

where Ycell/O2, Yglu/O2, Yglu/lac, Ycell/lac, Ycell/glu  are the yield coefficients.  These are discussed in 

detail in Appendix B. 

 

Oxygen and glucose consumption by aerobic metabolism (mma) are given by Michaelis-Menten 

kinetics (Chow et al., 2001).   Glucose is also consumed for anaerobic metabolism.  As 

mentioned in section 4.2.1.1 and 4.2.1.2 the rates of glucose consumption and lactate production 

are directly proportional to the percentage of proliferating cells, a linear dependence with cell 

growth rate is proposed for anaerobic (mman) metabolism 
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where Qm and Km are the Michaelis-Menten parameters; µ is the specific growth rate of 

progenitor cells (cell group 1) and εγ1 is the cell volume fraction of this cell type in an averaging 
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volume.  As mentioned before cell volume fraction is defined as the ratio of volume occupied by 

the cells to the total volume of the selected averaging volume.   The specific growth rate of 

progenitor cells (µ) depends on glucose, oxygen, lactate concentrations and is discussed in more 

detail below. 

 

Oxygen consumption for cell growth (growth_o) is described by inhibition kinetics as discussed 

in Chapter 3.  Glucose consumption for growth (growth_glu) is given as a Michaelis-Menten 

function. 
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The cell growth of cell type 1, i.e. the progenitor cells in the cell layer, is written as a function of 

oxygen, glucose and lactate concentrations.  The dependence of growth rate of cell group 1 on 

glucose and lactate concentration is given by competitive product inhibition kinetics as used by 

Truskey and coworkers (1990) for HuT-78 cell line.  Differentiation of cell type 1 at a rate φd
2
 

gives rise to the post progenitor cells or cell type 2.  The species balances for varying cell 

volume fractions of cells in the culture is written as, 
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4.2.3 Parameter Estimation 

 

The parameters for the model can be obtained by comparing experimental data performed by 

using a cytokine, directing cells to differentiate along a particular lineage and fitting the model to 

the total number of early progenitor cells started off with and the total number of mature cells 

formed.  Moreover, on-line measurements of glucose and oxygen consumption and lactate 

production obtained experimentally in 3-dimensional batch culture units are used to fit the model 

bulk liquid layer glucose, oxygen and lactate concentrations.  

 

In order to obtain the metabolic and growth parameters, the model equations for species 

concentrations are reduced for a tissue culture flask system (2-dimensional).  This is done to 

compare with the experimental data of Yan et al., 2001.   In the experimental set-up the HCs 

were grown in 3-dimensional non-woven PET matrices (diameter = 1.4 cm; thickness = 1mm) 

and placed in 24 culture plates.  2 ml of long-term culture medium was added to each of the 

plates.  Twice weekly medium exchange was performed with 1 ml replaced every week.  The 

cells were cultured for 7-10 weeks.   

 

The model equations of only the liquid layer (equation 4.8) has to be changed to incorporate no-

flow conditions for this culture system and are given as, 
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Oxygen in this system is not supplied by convective transport by medium flow or by diffusive 

transport through any membranes.  Diffusion of oxygen occurs from the outside gas phase to the 

bulk liquid layer and then to the cell layer.  Assuming that the gradient across the bulk liquid 



 102

layer can be neglected due to frequent medium exchanges, the oxygen concentration can be 

assumed to be constant in the liquid layer and is the same as the 21% gas phase oxygen 

concentration in equilibrium with liquid.  Glucose and lactate concentration change in the liquid 

layer due to removal from the liquid layer and byproduct addition to the liquid layer of the 

reactor. 

 

The model equations in the cell layer (equation 4.9) and in the bulk liquid layer (equation 4.13) 

along with metabolic and growth kinetics (equation 4.10 – 4.12) for the 3-dimensional batch 

culture were solved in MATLAB, to obtain the time-varying changes in the cell numbers of cell 

group 1 and group 2, and metabolic species i.e. glucose, lactate and oxygen concentrations.  

These model results are compared with available experimental results on cell numbers and 

lactate metabolism (Yan et al., 2001).  Yan and coworkers have reported the total cell number 

and number of progenitor (CD34+) cells in their work.  The experimental results are shown 

below in Table 4.1. 

 

 

Table 4. 1 Experimental results of cell numbers from Yan et al., 2001 

 

Time 

(weeks) 

% CD34+ 

cells 

CD34+ cell 

number 

(Cell Type 1) 

Total cell no. Total – CD34+ cell 

number 

(Cell Type 2) 

0 69.4 0.35*10
5
 0.504*10

5
 0.154*10

5
 

3 12.4 1.89*10
5
 1.524*10

6
 1.335*10

6
 

5 10.1 2.46*10
5
 2.436*10

6
 2.1896*10

6
 

7 7.7 2.39*10
5
 3.104*10

6
 2.865*10

6
 

 

 

The experimental results on the specific lactate production rate in the liquid medium as a 

function of time were available for this system.  The trapezoidal rule of integration under a given 

area was used to compute the lactate concentration at specific intervals of time (as shown in 

Table 4.2).  The lactate fold increase is computed comparing the lactate concentration at all time 

points compared to the initial lactate concentration in the media added to the tissue culture plates. 
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Table 4. 2 Experimental result of lactate concentration from Yan et al., 2001 

 

Time 

(days) 

Sp. Lac Prod. Rate 

(mg/l/h) 

[Lactate] 

mol/cm3 

Lactate fold 

increase 

0 0.25 2.360*10
-8

  

10 0.7 5.970*10
-8

 2.53 

15 0.8 1.014*10
-7

 4.30 

20 2.25 1.860*10
-7

 7.88 

25 4.9 3.850*10
-7

 16.31 

30 6.4 6.990*10
-7

 29.62 

35 6.95 1.153*10
-6

 48.86 

40 6.95 1.540*10
-6

 65.25 

 

 

To be noted here, the model reduction, allows for comparison with available on-line 

measurements of metabolites and cell numbers, in order to obtain the unknown metabolic and 

growth parameters for this cell type under consideration.  Modeling results for cell numbers in 

cell group 1 and group 2 are plotted in Figure 4.4 (a).  The model appears to follow the 

experimental results very well.  Figure 4.4 (b) shows the lactate concentrations varying with time 

of culture.  50% liquid media is exchanged twice weekly which can be seen as a decrease in 

lactate concentration every 3.5 days in the culture.  The drop in lactate concentration in the cell 

layer is due to lactate transport to the bulk liquid layer, which as seen in equation 4.14 is driven 

by a concentration difference between the cell and liquid layer.  Medium exchange lowers the 

lactate concentration accumulation in the bulk liquid layer, and allows for more flux of lactate 

into the liquid layer.  This can be seen as a decrease followed by an increase in lactate 

concentration in the cell layer, similar to that of liquid layer.  The rate of lactate concentration 

increase is smaller during the initial few weeks which is the time corresponding to the formation 

of aerobic progenitor cells.  However, the lactate concentration reaches a much higher steady 

state and rate of lactate consumption after every media exchange due to formation of post-

progenitor cells.  The lactate concentrations in Figure 4.4 (b) are averaged to compute the lactate 

fold increase as shown in Figure 4.4(c).  These results are compared to the experimental data as 

shown in Table 4.2. 
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Figure 4.4 (d) shows changes in non-dimensional glucose concentration in the cell layer and the 

liquid layer in this 3-dimensional culture system.  With every media exchange the glucose 

concentration in the bulk liquid layer increased, thereby increasing the supply to the cell layer.  

However over the culture time of 69 days the rate of decrease in glucose concentration increases 

with time even with frequent feeding because of increase in cell number.  The drop in non-

dimensional oxygen concentration in the cell layer is only by 20% because of the high end 

supply in the liquid layer maintaining uniformly maximum oxygen concentration in this layer 

(shown in Figure 4.4(e)). 

 

 

 

 

 

 

Figure 4.4 a Increase in progenitor cells (group 1) and post-progenitor cells (group 2) over culture time in 3-

dimensional batch culture.   Modeling results (solid line) compared to available experimental data (dots) from 

Yan et al., 2001 shown in Table 4.1 
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Figure 4.4 b Lactate concentration in 3-dimensional batch culture 

 

 

Figure 4.4 c Fold increase in Lactate concentration in 3-dimensional batch culture.   Modeling results (solid 

line) compared to available experimental data (dots) from Yan et al., 2001 shown in Table 4.2  
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Figure 4.4 d Glucose concentration in 3-dimensional batch culture 

 

 

 

 

 
 

Figure 4. 4 e Oxygen in 3-dimensional batch culture 
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This model did not seem to fit the lactate kinetics well as seen in Figure 4.4 ( c).  This is possibly 

because the above model establishes a direct correlation of lactate production with the growth of 

progenitor cells.  However, as mentioned in section 4.2.1.2, it is the post-progenitor cells i.e. 

non-CD34+ cells are the cells that are really anaerobic, and a major contributor to lactate 

produced in cultures.  Therefore, the kinetic expression for the anaerobic lactate production rate 

in equation 4.10 was modified as given by the ‘linear chemometric model’, 
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The lactate production rates for cell group 2 (β) was set to be higher than the lactate production 

coefficient of cell type 1 (α) as described above.  The new model results on number of cells of 

each group and the lactate fold increase are shown in Figure 4.5 (a) and 4.5 (b).  The change in 

the expression of rate of anaerobic metabolism expression is able to obtain model results on 

lactate fold increase similar to the experimental results available (Figure 4.5 (b)).  During the 

early weeks of culture the number of cells of group 1 or progenitor cells is high as seen in Figure 

4.5 (a).  However, by the process of differentiation in culture the number of progenitor cells 

drops giving rise to post-progenitor cells or cells of group 2.  This new formulated model is also 

better able to handle the experimental results in terms of cell numbers of various cell groups. 

 

These estimated specific metabolic and growth parameter values are enlisted in Appendix B.  So 

now these values and the functional forms of glucose, lactate, and oxygen metabolism for these 

types of cells can be used to compute the cell kinetics and nutrient-byproduct concentrations in 

the bioreactor system discussed in Chapter 4.2.2.   
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Figure 4.5 a Increase in progenitor cells (group 1) and post-progenitor cells (group 2) over culture time in 3-

dimensional batch culture using new kinetic expression for anaerobic metabolism shown in equation 4.15.   

Modeling results (solid line) compared to available experimental data (dots) from Yan et al., 2001 shown in 

Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5 b Fold increase in lactate concentration in 3-dimensional batch culture using new kinetic 

expression for anaerobic metabolism shown in equation 4.15.   Modeling results (solid line) compared to 

available experimental data (dots) from Yan et al., 2001 shown in Table 4.2  

 * 105

Cell Group 1

Cell Group 2

11 69584634230
time (days)

81

11 69584634230
time (days)

81

* 106

* 105

Cell Group 1

Cell Group 2

11 69584634230
time (days)

8111 69584634230
time (days)

11 69584634230
time (days)

81

11 69584634230
time (days)

8111 69584634230
time (days)

11 69584634230
time (days)

81

* 106

 

11 69584634230
time (days)

81

11 69584634230
time (days)

Cell Layer

Bulk Liquid

Lactate
Fold 

Increase

Lactate
Fold 

Increase

11 69584634230
time (days)

81

11 69584634230
time (days)

Cell Layer

Bulk Liquid

Lactate
Fold 

Increase

11 69584634230
time (days)

8111 69584634230
time (days)

11 69584634230
time (days)

81

11 69584634230
time (days)

11 69584634230
time (days)

Cell Layer

Bulk Liquid

Lactate
Fold 

Increase

Lactate
Fold 

Increase



 109

4.2.4 Preliminary results on Well-Mixed Bioreactor Model 

 

Once the rate parameters are obtained by model-experimental fit for the current cell type in 3-

dimensional batch reactor systems, these numbers are used to predict the cell growth and 

metabolic characteristics for the well-mixed reactor.  The growth of progenitor cells (Group 1) 

and post progenitor cells in the reactor are shown in Figure 4.6 (a).  The model predicts an 

increase in cells of both group 1and group 2 throughout the entire time of culture.  The maximum 

progenitor cell number and post progenitor cell number reached are ~ 6*10
4
 cells and ~ 1*10

6
 

cells by the end of ~ 70 day. 

 

 

 

 

Figure 4.6 a Increase in progenitor cells (group 1) and post-progenitor cells (group 2) over culture time in 3-

dimensional well-mixed perfusion bioreactor system.  Model parameters used are discussed in Appendix B. 
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Figure 4.6 b Lactate concentrations in 3-dimensional well-mixed perfusion bioreactor system.  Model 

parameters used are discussed in Appendix B.  

 

 
 

Figure 4.6 c Glucose concentrations in 3-dimensional well-mixed perfusion bioreactor system.  Model 

parameters used are discussed in Appendix B.  
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Figure 4. 6 d Oxygen concentrations in 3-dimensional well-mixed perfusion bioreactor system.  Model 

parameters used are discussed in Appendix B.  Oxygen concentration increases to a non-dimensional value of 

one and reaches a steady state 

 

 

The supply of glucose and removal of lactate by frequent medium flow reduces the drop in 

glucose concentration and rise in lactate concentration in the cell and liquid layers of the 

bioreactor as compared to batch culture.  This is shown in Figure 4.6(b) and 4.6(c).  Moreover, 

continuous supply of oxygen by medium flow and diffusive transport through the FEP 

membrane keeps the oxygen concentration in the bulk liquid layer high and prevents drop of 

concentration in the cell layer.  The variations in oxygen concentration in the cell and bulk liquid 

layer of the reactor are shown in Figure 4.6(d). 

 

4.3 Conclusions 

 

 

Summarizing, this chapter discusses the need for quantitative estimation of other environmental 

factors along with oxygen, such as metabolite glucose and by-product lactate concentration in 

order to improve the model developed in Chapter 3.  The idea of co-existence of more than one 

cell type in culture is incorporated by the use of a simple two cell-group model.  The cell types 
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are separated on the basis of large differences in their metabolic lactate production rates.  

Experimental data for 3-dimensional batch culture (tissue-flask) system is utilized for obtaining 

the rate parameters for the CD34+ or the progenitor cells (cell group 1) and the mature or post-

progenitor cells (cell group 2) by model-experimental data fit.  Once a suitable list of parameters 

is obtained, these numbers are utilized for predicting cell growth, glucose and oxygen 

consumption, and lactate production in the bioreactor system.  The model developed here is for a 

well-mixed reactor system.  This is done by spatially averaging the concentration of metabolites 

and cells in the cell layer and the bulk liquid layer of the perfusion reactor unit discussed in 

chapter 3.  The current study shows that the reactor system can sustain larger cell growth rates, 

by maintaining the glucose and oxygen concentration high enough and by efficient removal of 

lactate. 

 

4.4 Recommendations for Future Work 

 

 

This model can be extended by improving the well-mixed reactor model by incorporating the 

effects of mass transport due to flow and computing the spatial distribution of nutrients and 

products.  This could be done by adding glucose, lactate, and cell growth balances for the 

progenitor and post-progenitor cell types to the full spatial variation model presented in Chapter 

3.  The mathematical model results of glucose, oxygen and lactate concentrations in the bulk 

liquid layer can be compared to experimental results obtained from the experiment on the 3-

dimensional perfusion bioreactor from Dr Ma’s lab.  The effects of rates of nutrients (oxygen and 

glucose) delivery and byproduct (lactate) removal and their spatial distributions in the cell layer 

on cell growth can be studied.  Initial calculation of the model would incorporate two cell types 

as developed above.  However, in further studies glucose consumption and lactate production by 

multiple cells in the same lineage and in different lineages need to be studied.  This 

understanding would add to the long-range goal of optimization and control of the developed 

bioreactor.  Despite the large potential contribution, numerical models involving multiple cell 

types and their kinetic and metabolic behavior in culture systems will only be useful when 

properly validated.  This requires a large amount of systematic experimental data with respect to 

the same or similar reference systems.  Hence, suitable experimental strategies should be 



 113

developed to obtain this information.  The model is a good way of suggesting new experimental 

designs by making it easy for the experimenter to know the parameters to be accurately 

determined.   

 

The growth and kinetic parameters for the perfusion unit can then be obtained by fitting model to 

available experimental data for this system.  This model could then be used to obtain variable 

variations in terms of design, flow, and media used for the 3-dimensional perfusion bioreactor 

model (FSU).  Moreover, the effects of 3-dimensional cell-cell interactions and the formation of 

extracellular matrix (ECM) leading to cell-ECM interactions on cell behavior as discussed in 

Chapter 4.2.1.5 need to be studied.  The study could incorporate model developments for 

different matrix geometries, to improve upon cell growth in the reactor unit.  One such matrix 

type is suggested in Chapter 4.2.1.4 of the text.  This model when complete would closely 

replicate the ex vivo environment in cultures more effectively.  This robust model can be used in 

the estimation of different cell numbers and in the long run for designing appropriate conditions 

for the formation of the cell types of interest.  
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CHAPTER 5 
 

 

EFFECTS OF OXYGEN TRANSPORT ON 3-DIMENSIONAL 

HUMAN MESENCHYMAL STEM CELL TISSUE 

DEVELOPMENT IN PERFUSION AND STATIC CULTURES 
(Reproduced in part with permission from Biotechnology Progress, in press Zhao et al., 2005.  

Unpublished work copyright [2005] American Chemical Society.) 

 

 

 

 

5.1 Problem Statement 

 

 

Human Mesenchymal Stem Cell’s (hMSC’s) potential applications for treating wide range of 

diseases including osteogenesis imperfecta (Horwitz et al., 1999, Prockop, 1997), stroke (Chen 

et al., 2004, Chen et al., 2003), and heart failure (Orlic et al., 2001) have made it necessary to 

obtain high yields of these cells in vitro in suitable culture devices.  Experimental data on hMSC 

growth-kinetics and spatial growth patterns, metabolism, and oxygen consumption in various 

hMSC culture devices such as static and perfusion units have been studied (Zhao et al., 2005 

(a,b)) to elucidate the effects of perfusion culture on cell growth and tissue development.  The 

modular perfusion system similar to the unit discussed in Chapter 3 was used to measure growth 

kinetics, metabolism, and oxygen consumption experimentally in Dr Ma’s lab (Florida State 

University).  Convective oxygen transport was found to be important for enabling and sustaining 

high cell growth rates, high cell density, and uniform growth pattern.  In order to reemphasize 

the significance of flow quantitatively in terms of oxygen delivery on hMSC development, a 

dynamic mathematical model describing oxygen distribution in the static and perfusion culture 

units is developed.  The model is based on the principles of mass transport and reaction and 
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provides estimates of the spatio-temporal oxygen concentration profiles in the two units, which is 

difficult to be measured experimentally.  The objective here is not to develop an a priori 

predictive model but to use the developed model along with the available experimental data and 

understand the role of oxygen transport on cell behavior (growth and metabolism) in these 

different culture units.   

 

5.2 Reactor Designs 

 

 

Perfusion reactor design (Unit 1) 

Unit 1 represents the 3-dimensional perfusion chamber as shown as a schematic in Figure 5.1(a).  

The dimensions of this perfusion unit are similar to the one discussed in Chapter 3.  hMSCs are 

grown in the 3-dimensional matrix and form what is termed the ‘cell layer’ of the chamber.  This 

cell layer is assumed to be a rectangle for modeling simplicities and also because the accuracy of 

calculation does not need the exact dimensions of circular constructs used for experiments (Zhao 

et al., 2005 (a)).  Medium supplying nutrients to cells in the cell layer flows through the 

perfusion chambers above and below the matrix and is termed the ‘bulk liquid layer’.   

 

As mentioned earlier oxygen transport to the bulk liquid layer is by convective and diffusive 

transport.  Nutrients are supplied by convection through either a once through mode or by re-

circulation of the bulk liquid layer medium.  Diffusion of oxygen from the incubator occurs 

through the gas permeable, FEP membrane into the perfusion chambers.  In the cell layer oxygen 

is delivered by diffusive transport only.  Convective oxygen supply in the construct is not 

proposed because the matrix is assumed to be incompressible and the two perfusion chambers 

above and below the matrix are identical with respect to flow and resistances.  Moreover, the 

absence of flow in the cell layer prevents flow restrictions on cell growth by shear or other 

mechanical forces and promotes adhesion of the cells to the matrix surface. 

   

Static culture design (Unit 2) 

In order to study the effects of flow on tissue development the same 3-dimensional PET matrix is 

placed in a tissue culture plate as is used in a static culture unit.  Unit 2 (Figure 5.1b) is used to 
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model this static culture system.  The unit used for the model is a similar rectangular block 10 

cm length, 2.5 cm width, and 13.2 mm thick as the flow unit.  The 3-dimensional PET porous 

matrix (1.2 mm thick) is placed on the bottom of the reactor and forms the ‘cell layer’.  Medium 

supplying nutrients (oxygen) above the matrix forms the ‘bulk liquid layer’.  The mode of 

oxygen supply to the cells in the cell layer is only by diffusion through the stagnant liquid layer 

above the construct.  Transport of oxygen in the cell layer is also by diffusion only, again to 

avoid the effects of shear and to allow cell adhesion to the matrix.  In addition to the absence of 

convection in the bulk liquid layer of Unit 2, the surface area for oxygen transport to the 

construct is also reduced to one half of that in the perfusion bioreactor (Unit 1), reducing the 

amount of oxygen delivered to meet cell demands. 

 

5.3 Experimental Data 

 

 

Cell numbers in the PET matrices in static and perfusion culture units were determined by DNA 

assays.  The cell density was computed by dividing the cell number and matrix volume and is 

shown as open triangles in Figure 5.2 (a), (b).  Oxygen tension was measured through sampling 

ports located at the inlets and outlets of the perfusion chambers.  Oxygen consumption is 

computed by the difference between the measured oxygen tensions at the two ports.  The specific 

oxygen consumption rate in the perfusion reactor was obtained by dividing this oxygen 

consumption in the perfusion chambers by the cell numbers at that time point and the residence 

time of the nutrient media (Zhao et al., 2005 b).   

 

5.4 Mathematical Model Development 

 

 

Mathematical models for oxygen transport and reaction are modeled in perfusion and static 

culture units to assess the importance of perfusion flow on cell proliferation and metabolism.   
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Figure 5. 1 Schematic of the Culture units (a) Perfusion Reactor (Unit 1) (b) Static Culture (Unit 2) 
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5.4.1 Model Equations Perfusion Reactor (Unit 1)  

 

For the model development of Unit 1, only half of the reactor needed to be considered because of 

symmetry.  Species continuity equations describing the spatial and temporal variations of oxygen 

concentration were written for both the bulk liquid layer and the cell layer.  The method of 

volume averaging was used to develop a single species continuity equation for the multiphase 

cell layer made up of cells and medium solution (Pathi et al., 2005; Galban et al., 1999; 

Whitaker et al., 1999).  It can be noted that the overall reactor model was solved in two 

dimensions (length and depth) since variation over the width are small compared to the length 

and depth.  Similar formulation of the model and boundary conditions as described in chapter 3 

was considered for this reactor unit (equations 3.16).    
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(5.1) 

 

where cc and cl are non-dimensional oxygen concentration in the cell layer and bulk liquid layer
1
 

; εγ is the cell volume fraction; vx is the velocity profile; Dβ is the oxygen diffusion coefficient of 

oxygen in the bulk liquid layer; Deff is the effective diffusion coefficient; Keq is the equilibrium 

coefficient of oxygen between the cell and the nutrient phases of the averaging volume.  The 

effective diffusion coefficient accounts for the diffusion in the cellular and the nutrient (non-

cellular) phase as well as the mass transport between the two phases in the cell layer (Pathi et al., 

2005; Ochoa et al., 1988; Galban et al., 1999 a,b; Whitaker et al., 1999).  The one-dimensional 

flow is oriented along the reactor length (x-direction) and is assumed to be laminar (Re = 0.28) 

corresponding to flow rate of 0.1 mL/min).  The reaction rate kinetic function describing the 

overall oxygen consumption (for metabolic and growth processes) is assumed to follow 

                                                 
1 The oxygen concentration terms are non-dimensionalized by dividing the oxygen concentration at all point in 

space and time with the dissolved oxygen concentration in equilibrium with air (Co=20% oxygen or 152 mmHg or 

2.10*10-7 mol/cm3). 
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Michaelis-Menten kinetics (Chow et al., 2001 a, b). Qm and Km are Michaelis-Menten 

parameters. 

 

Cell growth in the model is expressed in terms of the cell volume fraction (εγ).  The cell volume 

fraction is defined as the fraction of volume occupied by cells in the averaging volume, Vγ, 

relative to the total averaging volume V in the cell layer of the culture units.  The cell mass 

balance in the cell layer of the perfusion reactor is written assuming exponential homogeneous 

growth and neglecting effects of oxygen on cell growth and occurrence of cell death and is given 

as, 

 

tme •= 0γγ εε  

(5.2)  

 

where εγo is the initial cell volume fraction (computed from initial cell density) and m is the cell 

growth rate.   

 

5.4.2 Model Equations Static Culture (Unit 2)  

 

For the static culture unit there is no convective flow either in the bulk liquid layer or in the cell 

layer.  The effective area of supply of oxygen is reduced to one half as the supply is only at the 

upper boundary of the construct.  Similar to the perfusion Unit 1 material balances describing the 

oxygen transport and reaction are written in the bulk liquid layer and cell layer for this unit.  The 

continuity equation describing oxygen concentration variation due to diffusion in the bulk liquid 

layer and cell layer is written as, 
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Boundary conditions  

Oxygen concentration at the upper boundary of the bulk liquid layer is in equilibrium with 21% 

oxygen concentration in gas phase (Catm). This boundary condition is written as, 

 

atmCc =  [ ] TlyLx +==∀ 2,0  

(5.4 a) 

 

The equal flux condition exists at the interface of the cell layer and the liquid layer, and it is 

given as, 

 

celllayereffrliquidlaye
cDcD ∇−=∇− β  

(5.4 b) 

 

As for the perfusion unit it is assumed that there is no flux of oxygen along the external 

boundaries of the cell layer with the solid walls of the reactor.  Hence,  

 

0=∇ cDeff  [ ] 02,0 ==∀ xly  

(5.4 c) 

 

0=∇ cDeff  [ ] Lxly ==∀ 2,0  

(5.4 d) 

 

0=∇ cDeff  [ ] 0,0 ==∀ yLx  

(5.4 e) 

 

As in perfusion unit the dependence of cell mass on cell volume fraction for the static culture 

unit is also written by assuming exponential homogeneous growth and neglecting effects of 

oxygen on cell growth and occurrence of cell death as, 
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tme •= 0γγ εε  

(5.5)  

 

where εγo is the initial cell volume fraction (computed from initial cell density information for 

this reference system) and m is the cell growth rate.   

 

5.4.3 Parameter Estimation 

 

Metabolic parameters: 

The specific oxygen consumption rate, Qm for perfusion unit (Unit 1) is directly determined from 

experimental data using a second order polynomial equation fit (Figure 5.3).  The cell growths in 

static and perfusion culture units are seen to be similar for the first 24 days of culture.  Hence Qm 

for the static culture unit is obtained by averaging the specific oxygen consumption of the first 

three experimental data points obtained for the perfusion unit (Figure 5.3).  Km value for hMSCs 

have been reported in literature to be in the similar range as that of other human cells i.e. ~ 1.5 – 

7.6 mm Hg of the saturation oxygen tension (Chow et al., 2001 a, b; Peng et al., 1996 a).  So for 

our model a Km value of 0.05*Co (7.6 mm Hg) is chosen for oxygen consumption in the static 

and perfusion units. 

 

Cell growth parameters 

The cell growth rate for hMSCs in perfusion and static culture units are determined by statistical 

methods only during the growth phase.  Linear least square regression analysis is used to obtain 

the best-fit curve as shown in Figure 5.2 (e-Handbook of Statistical Methods).  The exponential 

growth rate coefficient m is calculated to be 1.177×10
-6

 s
-1

 and 3.875x10
-7

 s
-1

 for perfusion 

reactor (Unit 1) and static culture (Unit 2) respectively.  Using the value of this computed growth 

coefficient and known initial cell density for the respective units in equation 5.2 and 5.5 cell 

growth function for the perfusion unit (Unit 1) and static culture unit (Unit 2) are generated.  

Appendix C lists down all the model parameter values. 
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(b) 

Figure 5. 2 Growth kinetics of hMSCs under (a) static and (b) perfusion conditions. Cell density is expressed 

in cells/ml. 
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5.4.4 Solution Procedure 

 

Linear least square regression analysis was used to obtain the best-fit curves for computing 

growth rate coefficients.  The equations describing variations in oxygen concentration in the bulk 

liquid layer and in the cell layer (equation 5.1) and the cell growth (equation 5.2) in space and 

time were solved simultaneously coupled with the appropriate boundary conditions (equation 

3.16 detailed in Chapter 3) and growth parameters for perfusion culture (Unit 1).  Similarly for 

the static culture (Unit 2), species continuity balances equation 5.3 coupled with specific growth 

kinetics (equation 5.5) were solved using the boundary conditions stated in equation 5.4.  A 

MATLAB (version 6.5, The Mathworks, Inc.) based FEMLAB (version 2.3, COMSOL) program 

utilizing a finite element method was used to numerically solve the system of partial differential 

equations.  The oxygen concentration in both units at the initial time is set to be Catm (oxygen 

concentration in equilibrium with 21% oxygen in gas phase).  The local oxygen concentrations 

obtained are macroscopically averaged to obtain the area averaged oxygen concentration as a 

function of time (area averaging approach discussed in detail in Chapter 3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 3 Experimental results of the specific oxygen consumption rate (open diamond) throughout the 

culture period and polynomial fit for model development (solid line) 
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5.5 Results and Discussion 

 

 

HMSCs modeled to be grown in similar 3-dimensional PET constructs placed under different 

flow conditions, i.e. static (or no-flow) vs. perfusion (or flow), are believed to have different cell 

growth and metabolic oxygen needs.  Mathematical models can provide a better understanding of 

the complex interplay between the spatial and temporal oxygen concentration distribution in the 

reactors and its role in functional tissue development.  Therefore, the oxygen profiles in the 

perfusion and static culture units are simulated and compared.   

 

The spatial and temporal variations of oxygen concentration in the cell layer and bulk liquid 

layer of the perfusion reactor (Unit 1) are shown in Figure 5.4(a) and 5.4(b), respectively.  The 

color represents the oxygen concentration variation in space, along the reactor length (from 0 – 

10 cm) and thickness (from 0 – 0.66 cm).  The oxygen concentration of the inlet flowing liquid 

was set to values in equilibrium with 21% gas phase oxygen (which corresponds to the non-

dimensional value 1.05).  The oxygen concentration decreased along with reactor depth and flow 

direction.  The gradients in the liquid layer (Figure 5.4b) are believed to arise from mass transfer 

and flow coupled with reaction, i.e., consumption by cells in the cell layer, that consume oxygen 

at a faster rate than it can be supplied.  Figure 5.4(a) shows the oxygen concentration variation in 

time and space for the flow Unit 1 in the cell layer.  As the cells in the matrix (or the cell layer) 

grow exponentially, the highest oxygen consumption is to be expected at the later periods of 

time.  However, during these times the specific oxygen consumption rate of these cells decreases 

considerably (as obtained from experimental data shown in Figure 5.3), thus decreasing the total 

rate of oxygen consumption.  This decrease in specific oxygen consumption rate and the large 

supply of oxygen by convective flow leads to an increase in the oxygen concentration around 

day 35.  

 

 

 

 

 

 

 

 

 



 125

 

 

Figure 5.4 a Mathematical simulation of the spatio-temporal variation of oxygen concentration in the cell 

layer of the perfusion bioreactor Unit 1 

 

 

For static culture (Unit 2), the calculated growth rate from the experimental data (Figure 5.2b) 

and oxygen consumption parameters as described in the parameter estimation section are used to 

determine the oxygen concentration distribution.  Oxygen concentration profiles in the bulk 

liquid layer and the cell layer are obtained as a function of space and time for the no-flow Unit 2 

(Figure 5.4c).  Compared with perfusion culture, this unit has a more uniform oxygen 

concentration distribution in space but a faster depletion during the whole culture time period.  

The larger depletion of oxygen in static culture (drops to non-dimensional value of 0.19) 

compared to the perfusion bioreactor (drops to a non-dimensional value of 0.47), is attributed to 

the mode of oxygen supply, the surface area for oxygen supply, different cell growth kinetics 

and, the physiological differences in specific oxygen consumption in the two units.  
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Figure 5.4 b Mathematical simulation of the spatio-temporal variation of oxygen concentration in the bulk 

liquid layer of the perfusion reactor Unit 1 

 

 

The 2-dimensional concentration profiles in the cell layer of the static (Figure 5.4 c) and 

perfusion (Figure 5.4 a) units are spatially averaged to obtain the macroscopically averaged 

oxygen concentration variation in time.  As also seen in the spatial-temporal plots the averaged 

result shows that oxygen concentration gradually decreased in the cell constructs or the cell layer 

both in static and perfusion units (Figure 5.5).  However, the predicted depletion rate of oxygen 

in the static culture unit is approximately double that of the perfusion unit, confirming that the 

presence of flow in liquid layer prevents the depletion of oxygen in the cell layer of the 

bioreactor throughout the course of the culture.  The increase of averaged oxygen level in both 

bulk media and cell constructs of the perfusion unit after 35 days are attributed to the decreased 

specific oxygen consumption rate and higher cell densities.  
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Figure 5. 4 c Mathematical simulation of the spatio-temporal variation of oxygen concentration in the cell 

layer and bulk liquid layer in static culture Unit 2 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Figure 5. 5 Average non-dimensional oxygen concentration variations in cell layer with time for static and 

perfusion culture units 
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Oxygen tension has been mentioned to be one of the various environmental factors that influence 

cellular events leading to the construct formation, including cell attachment and spreading 

(Mitchell et al., 2004, Rotem et al., 1994), proliferation (Mitchell et al., 2004, Duggan et al., 

2004), migration (Annabi et al., 2003), secretion of ECM (Chen et al, 2003, Gebb et al., 2003), 

and differentiation (Cipolleschi et al., 1993, Terai et al., 2002).  Experimental results using BrdU 

staining in Dr Ma’s lab have shown different cell proliferation patterns under static culture on 

either sides of the PET construct (Zhao et al., 2005 b); with higher proliferating cells on the 

upper surface of the construct exposed to higher oxygen and nutrient supply.  On the other hand 

for constructs grown in the perfusion condition there was no difference in the growth patterns at 

the two surfaces of the constructs (Zhao et al., 2005 b).   

 

In the perfusion bioreactor (Unit 1) the results from modeling indicate that there exists an oxygen 

gradient in the constructs at high cell densities.  The lowest level of oxygen tension in the 

construct was maintained above 0.47 (~ 9.4 % gas phase oxygen) throughout the culture period 

even at the highest cell densities.  However, to be noted in static culture (Unit 2) the lowest non-

dimensional oxygen level in the cell layer decreased from nearly 0.5 (~ 10 % gas phase oxygen) 

in the initial phase (around 10 days) of the culture period to nearly 0.19 (~ 3.8 % gas phase 

oxygen) at end of the culture period (around 40 days).  Experimental studies have shown that the 

effects of oxygen tension on cell proliferation and ECM secretion are significant only when the 

oxygen tension is lower than 40 mmHg (Jiang et al., 1996), which corresponds to the 

dimensionless oxygen tension of 0.26 (~ 5.3 % gas phase oxygen) in this study.  Therefore, it is 

reasoned that the oxygen level in the constructs of the perfusion bioreactor system (Unit 1) is 

maintained above the level that could lead to the significant cellular physiological changes, 

whereas oxygen distribution might limit the cell growth and metabolism of the constructs in 

static culture (Unit 2).  The non-uniform growth patterns in the static culture are again attributed 

to the oxygen and nutrient transfer limitations.  These results demonstrate the significant role of 

perfusion in sustaining the development of engineered tissue constructs.   

 

It is important to note, however, that oxygen tension may not be the only factor that influences 

cell spatial growth pattern in these different culture units.  In addition to oxygen, diffusion also 

limits other nutrients delivery and waste removal in the static culture that possibly hinders cell 
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growth in this unit.  Moreover, the medium flow and shear stress also influence cell proliferation 

in the perfusion bioreactor (Li et al., 2004) and the expression of various hMSC differentiation 

markers (Li et al., 2004; Meinel et al., 2004; Park et al., 2004).  While the flow rate of 0.1 

ml/min (Re = 0.28) used in this study is sufficiently low compared to these studied (Re ~ 50), 

further investigation under different flow rate is necessary to independently elucidate the effects 

of shear stress on cell growth. 

 

5.6 Conclusions 

 

 

High cell density and construct uniformity are important parameters for in vitro 3-dimensional 

tissue development which require sufficient nutrient delivery.  In this study, we modeled the 

oxygen profiles of the 3-dimensional constructs grown under static and perfusion conditions, and 

evaluated the effects of the culture environment on construct development.  Within the construct, 

some degree of empiricism and approximation is utilized to determine an estimate of oxygen 

concentration.  The results show that the 3-dimensional constructs grown in static cultures 

developed significant oxygen gradients and have the tendency to give rise to spatially non-

uniform and inconsistent construct development.  The perfusion system provides the cells a 

controlled environment with enhanced nutrient transport by maintaining a much higher oxygen 

concentrations that sustains a high proliferation rate and high cell density.  Experimental results 

on the cell spatial developmental patterns between the cells grown in static culture as opposed to 

perfusion culture could possibly be attributed to the spatial variations in oxygen concentration in 

the 3-dimensional constructs within the flow and no-flow units.  Our study demonstrates the 

need to use perfusion bioreactor systems to support engineered tissue construct development. 
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CHAPTER 6 
 

 

ANALYSIS OF CARTILAGE TISSUE GROWTH AND 

EXTRACELLULAR MATRIX FORMATION EX VIVO IN 

HOLLOW FIBER BIOREACTOR 
(Submitted July 2005 to Biotechnology and Bioengineering) 

 

 

 

 

6.1 Introduction 

 

 

Articular cartilage is a thin layer of connective tissue located within joints at the end of bones 

(Buckwalter et al., 1997).  It is made up of relatively few cartilage cells called chondrocytes 

present in an extensively hydrated extracellular matrix (ECM), composed primarily of collagens 

and proteoglycans.  The proteoglycan molecules exhibit a tendency to swell and provide the 

tissue with resistance to compression.  The collagen network in the cartilage provides the tissue 

with integrity and mechanical strength during tensile and shear loading (Dimico et al., 2003). 

The chondrocyte cells though few in number do fulfill a very essential function of ensuring that 

the composition of the cartilage matrix (or ECM) remains constant.  The synthesis of ECM alters 

the microenvironment around the cells.  In vivo or in vitro it is clearly seen that cells and ECM 

are mutually interdependent; chondrocyte activity is necessary for matrix synthesis; in turn 

matrix controls the environment of cells (Wilkins et al., 2000).       

 

Degeneration of articular cartilage occurs during osteoarthritis and joint injury.  The limited 

capacity of cartilage to respond to mechanical injury with a reparative process has motivated the 

incorporation of cell-based repair approaches to articular cartilage lesions (Raimondi et al., 
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2002).  Tissue engineering approaches are extensively being employed to produce replacement 

cartilage, which closely resembles healthy native cartilage both structurally and functionally.  

These neocartilage samples, commonly designed as plugs, are manufactured within in vitro 

bioreactor systems, which can further be used for systematic studies of the process of 

chondrogenesis.  Current bioreactor technologies – spinner flasks, rotating vessels, perfusion 

reactor, hollow fiber reactors, and cylindrical bioreactors – provide a uniform and quantifiable 

growth environment (Temenoff et al., 2000; Williams et al., 2002).  Enhanced growth observed 

in these bioreactor systems is partly due to increased efficiency in nutrient transport as compared 

to static culture systems.  Efficient oxygen delivery in mixed flasks and rotating vessels resulted 

in aerobic conditions, which is shown to favor rapid tissue formation (Vunjak-Novakovi et al., 

1996; Obradovic et al., 1999).  It is seen that the morphology, composition, and mechanical 

properties of the developed tissue constructs are strongly influenced by the microenvironment of 

the cells. 

 

Although these bioreactor systems deliver large amounts of nutrients to cells and provide a better 

biochemical and mechanical environment to support chondrogenesis in comparison to static 

culture units, there exist spatial and temporal gradients in nutrient concentrations that would 

directly affect the growth of cartilage tissue.  For suitable scale-up for clinical applicability to 

produce cartilage constructs with desired composition and functional properties a better 

understanding of the processes occurring in the reactor is necessary.  Mathematical models can 

be used to parametrically relate the kinetics of in vitro tissue formation to events occurring at cell 

and molecular levels, and can also be utilized to investigate various designs and operating 

conditions for enhancing bioreactor performance.   This could be done by quantifying the 

nutrient transport and consumption processes for various tissue functionalities.  Understanding of 

the transport and reaction processes of various metabolites would enhance our understanding of 

the complex interplay among the array of known factors that control the functional tissue 

development (Sengers et al., 2004).  The model can be used to predict the spatio-temporal 

variations in construct composition, with regard to new tissue mass (cell and ECM) and the 

microenvironment around the cartilage cell.  Further, the mathematical model can also be used to 

compile and understand the vast amounts of experimental data available for cartilage growth in 
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2-dimensional flasks and 3-dimensional bioreactors and can be utilized for suggesting rational 

designs for tissue constructs.   

 

Various models have been developed to simulate chondrogenesis in tissue culture systems.  

Galban and Locke (1999 b) used volume averaging methods, first developed by Whitaker, 1967, 

to study growth kinetics, diffusion, mass transfer restrictions, and spatial variations of cell mass 

within polymer matrix.  The model results were compared to the experimental data of Freed at 

al., 1994b for chondrocyte growth in petri-dishes. They refined their model (Galban and Locke, 

1999 a) by introducing effects of nutrient concentration and product inhibition and cell death in 

expression for cell growth kinetics.  However, in their study they observed that two component 

models including cells and substrate are not sufficient to describe the range of behavior observed 

in the experiments and a more wide range of cell and tissue specific parameters need to be 

incorporated.  Computational fluid dynamics (CFD) models to quantify momentum and mass 

transport under conditions of tissue growth in cylindrical bioreactors have also been developed 

(Williams et al., 2002).  CFD models are used to calculate flow-fields, shear stresses, and oxygen 

profiles around non-porous constructs simulating cartilage development in concentric cylinder 

bioreactors.     

 

Several other models have been developed to describe the role of oxygen on GAG synthesis and 

distribution in cellular constructs in rotating bioreactors (Obradovic et al., 2000, Pisu et al, 

2003).  These models account for the spatio-temporal changes in oxygen concentration due to 

diffusion and consumption for chondrocyte metabolism and matrix synthesis.  GAG deposition is 

described by product inhibition kinetics with respect to GAG formation and a first order 

dependence with respect to oxygen concentrations.  Cell density variations in time and space are 

described using mass structured population balances.  The simulated GAG concentrations were 

compared with available experimental data as a function of space.  Several other time varying 

models describing ECM synthesis (accumulation of both GAG and collagen) and the degradation 

of polymeric scaffold for constant cell mass have been formulated for engineered cartilage 

construct (Wilson et al., 2002).  Malda et al., 2004 have improved upon the work of Obradovic 

and coworkers by correlating pseudo-steady state simulated oxygen concentration variations in 

the construct with their experimentally measured local oxygen concentrations.  However, all 
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these models suffer from the inherent drawback of not accounting for suitable mass transport of 

nutrients that is directly affected by the increase in cell mass by growth and differentiation, as 

well as ECM production.  The above models also do not incorporate the effects of the restricted 

diffusion of nutrients on the chondrocyte activity.  

 

The present study develops a mathematical model of cartilage tissue formation in the hollow 

fiber bioreactor (HFBR) unit developed by Spencer’s group (Petersen et al., 1997; Potter et al., 

1998; Ellis et al., 2001).  As seen in this unit, cells were not grown in constructs (compared to 

the study by Langer’s group).  The cells were injected into the extracapillary space between the 

hollow fiber tubes in the reactor.  Thereafter these cells attach themselves onto the outer surface 

of the hollow fiber tubes or capillaries.  These cells then proliferate radially outwards in the 

space available.  The moving boundary approach (Galban and Locke, 1997) coupled with the 

method of volume averaging (Whitaker, 1967) is proposed to simulate the experimental radial 

cell proliferation pattern, as well as account for transport and reaction processes in the reactor by 

determination of effective diffusion and reaction terms for tissue formation in terms of local 

geometry and spatial restrictions.  The model computes the tissue and NMR measurable 

parameters for comparison with available experimental results.   

 

This study is intended to enhance our understanding of various factors that affect cell growth and 

ECM production in vitro in bioreactors.  The model would enable a further rationalization of 

experimental results providing suggestions for improved experimental design and identifying the 

key cell and tissue parameter measurements need to be made during cell cultures.  Understanding 

the responses of chondrocyte cells in terms of growth, differentiation, and ECM production with 

respect to changes in the environment in the reactor would help in development of optimal 

operational strategies in these reactors.  Indirectly, the model would improve our understanding 

of ways to monitor and control the development of the tissue engineered constructs in vitro in 

bioreactors.  
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6.2 Methodology 

 

 

6.2.1 Experimental Data 

 

Spencer’s group at NIH have used HFBR units for production and development of 3-dimensional 

hyaline cartilage from isolated chondrocytes (Petersen et al., 1997; Potter et al., 1998; Ellis et 

al., 2001).  The unique feature of their methodology is the use of NMR to monitor tissue 

development.  This technique evaluates the over-all- tissue formation in the reactor without 

disrupting the sample.  The NMR measurable parameters are correlated to the chemical 

characteristics of the tissue (cartilage tissue growth, metabolism and ECM composition); opening 

up a new field in tissue engineering.   

 

The NMR measurable parameters include water diffusion coefficient, relaxation parameters (T1, 

longitudinal spin-lattice relaxation time constant and T2, transverse spin-spin relaxation time 

constant), and magnetization transfer and proton densities.  Measurement of the water diffusion 

coefficient (Deff
w
) and T1 relaxation constant (T1eff) gives information on the obstruction to the 

motion of water in the tissue due to tissue formation.  This can be due to an increase in cell mass 

or increase in ECM mass produced by the cells over the culture time.  Magnetization transfer 

(MT) measures the degree of interaction between the free and bound components of water.  

Appendix D enlists the variation of these parameters with time as observed in the experiments of 

Potter et al., 1998. 

 

6.2.2 Model Formulation 

 

6.2.2.1 Outline 

 

The HFBR set-up used for model development is described by Petersen et al., 1997.  The major 

findings of Potter et al., 1998 on macroscopic tissue development are incorporated in the model.  

Cells were found organized into columns radiating from individual hollow fiber tubes.  The 

transverse slices show bright central hollow fiber or capillary and cylindrical symmetry of tissue 
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growth.  After week 2 of tissue formation, the extracapillary space is almost filled with tissue 

mass due to cell proliferation.  The mean cell area is seen to increase with development time 

after 2 weeks.  This is consistent with a period of rapid cell proliferation during the early culture 

time (first 2-3 weeks) followed by over-all tissue maturation (last 2-4 weeks).  Following 

development, the wet tissue weight increased with time, whereas the tissue water content drops, 

consistent with an increase in tissue GAG and collagen content.  Collagen content increased 

significantly for all the 4 weeks of culture whereas the GAG content increased till 3 weeks of 

culture and reached saturation.  Water diffusion coefficient decreased from week 1 to week 4.  

However the drop is seen to be remarkable between weeks 3 and 4, in spite the fact that the 

overall tissue growth is almost over by week 3. The reduction is attributed to cartilage cell 

maturation (increase in dry weight) that occurs during later weeks of culture, and also to increase 

in collagen content over time (Potter et al., 1998).  These variations of the cell and NMR 

parameters as observed in the experiments are listed in Appendix D. 

 

The modeling approach incorporates the idea of ‘unit cells’.  A ‘unit cell’ comprises of a single 

chondrocyte cell and the niche it creates around itself.  The niche is made up of the cell produced 

ECM mainly proteoglycan (GAG) and collagen and the void phase associated around it.  These 

‘unit cells’ propagate outwards from the surface of the hollow fiber as shown in Figure 6.1.  The 

method of volume averaging is employed to derive effective diffusion and reaction rates of 

components in this cartilage tissue, a multiphase system (Wood et al., 2000; Wood et al, 2002; 

Whitaker, 1999).  However, this method is not sufficient to account for the radial growth of cells 

in this reactor unit.  Hence the moving boundary approach proposed by Galban and Locke, 1997 

is incorporated with the volume averaging method to model the spatial growth patterns.   

 

The developed model describes the following tissue and NMR parameters - cell mass production 

which includes cell proliferation (accounting for increase in number of cells) and cell growth 

(accounting for increase in area of cells during the maturation stage); cell metabolism (oxygen 

consumption by cells); cell ECM production (Proteoglycan (GAG) and Collagen); NMR 

parameters i.e. Deff
w
 and T1 relaxation time.  It must be noted here that the cell proliferation and 

cell growth are separated into two different distinct processes because experimental results 

clearly show that cells in these stages are different both metabolically and in their rates of ECM 
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production (Potter et al., 1998).  The concept used in our model development is unique and 

differs from previous modeling efforts of chondrocyte growth and ECM production for tissue 

engineered cartilage generation.  The model couples all the cell physiological processes – the cell 

growth, cell metabolism, collagen and GAG synthesis in each ‘unit cell’, as well as accounts for 

the increase in number of ‘unit cells’ because of increase in cell number or proliferation using 

suitable kinetic functions.   

 

 

 

 

 

 

Figure 6. 1 Schematic of the reactor showing the idealized single hollow fiber with cells growing radially from 

the outer walls of the hollow fiber 
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6.2.2.2 Model Equations 

 

For the development of the model one hollow fiber tube is considered (Figure 6.1).  It is assumed 

that tissue formation around each hollow fiber tube or capillary is identical.  Each ‘unit cell’ is 

made up of two phases, the cell phase comprising of a single chondrocyte cell and the ECM 

phase.  The ECM phase is made up of three phases, GAG or proteoglycans, collagen, and the 

void (or free) phase.  Species continuity equations describing the local spatial and temporal 

variations of nutrient (oxygen) concentration are written for both the cell and ECM phases.  The 

method of volume averaging is used to develop a single species continuity equation for this 

multi-phase system (Wood et al., 2000; Wood et al, 2002; Whitaker, 1999; Galban and Locke, 

1999).  Assuming that the processes of ECM synthesis and chondrocyte growth (maturation) in 

each ‘unit cell’ are identical; this material balance is then averaged in space along the available 

extracapillary space for tissue formation.  Mass balances for ECM production are written in each 

‘unit cell’ and then multiplied with the number of ‘unit cells’ to obtain the total GAG and 

collagen mass produced.  Similarly cell growth mass balance is also written in each ‘unit cell’.  

Balance for increase in number of these ‘unit cells’ is written to account for the process of cell 

proliferation.         

 

Nutrient (Oxygen) Balance  

Due to its low solubility, oxygen is expected to be one of the first nutrients to become limiting.  

Apart from being an essential nutrient, oxygen plays an important role in chondrocyte expansion 

and ECM production (Obradovic et al., 2000; Zhou et al., 2004, Malda et al., 2004).  

Chondrocytes in hollow fiber reactor cultures need approximately 20% oxygen in the gas phase 

to produce ideal growth and GAG and collagen production (Ellis et al., 2001).  The current 

model assumes that the other much more soluble nutrients such as glucose are present in excess.   

 

Method of Volume Averaging 

The method of volume averaging is used to formulate the material balances for this multiphase 

transport-reaction problem (Whitaker, 1967; Ochoa, 1988).  In this method a small representative 

volume termed the averaging volume (V) is selected.  This corresponds to the ‘unit cell’ in our 

model.  Figure 6.2 shows a schematic of the averaging volume.  It is made up of two distinct 



 138

phases - the cell phase, indicated as ‘c’ and the ECM phase indicated as ‘e’.  Cell growth is 

expressed in terms of the cell volume fraction (εc), i.e., the volume occupied by cells in the 

averaging volume, Vc, relative to the total averaging volume V.  The sum of the volume fractions 

of the cell phase and the ECM phase in the averaging volume is one, 
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Figure 6. 2 Schematic of the averaging volume showing the cell phase and details of the extracellular matrix 

 

 

The ECM phase is made up of three distinct phases – the fiber or GAG phase (g), collagen phase 

(col), and the void phase (l).  As mentioned before the sum of the volume fractions of these 

phases is also one, 

 

Cell phase, Vc

ECM phase, Ve

Averaging volume or 

unit cell, V 

‘col’ phase 

(Collagen) 

‘l’ phase (fluid) 

‘g’ phase (GAG)

Rg 

Rl

Rcol



 139

e

ll

e

e

colcol

e

e

gg

e

l

e

col

e

g

e
V

V
and

V

V

V

V
where ===++= εεεεεε ,,1  

(6.2) 

 

Species continuity balances of oxygen concentration in the particular phases are written and 

spatially smoothed to produce a single equation that is valid everywhere in the ‘unit cell’ 

(Whitaker, 1999). 

 

Cell Phase 

This phase comprises of a single chondrocyte cell.  The molar species continuity equations for 

oxygen in this phase incorporates oxygen diffusive transport, and also consumption of oxygen by 

the chondrocyte cell, and is written as, 
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(6.3) 

 

where Sc is the local oxygen concentration in the cell phase, Dc is the diffusion coefficient of 

oxygen through the cell phase, and kc is the metabolic rate constant for oxygen consumption in 

the cell phase.  The metabolic oxygen consumption reaction rate kinetic function is assumed to 

be first-order and independent of cell growth kinetics.  This can be assumed by considering that 

the rate of oxygen consumption by metabolic reactions is much higher than the consumption for 

cell growth.     

 

ECM Phase 

Oxygen in the ECM phase is not consumed by reaction.  The molar balance describing the 

oxygen concentration variation in space and time by diffusive transport in the GAG, collagen 

and void phases are written as, 
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where Sg, Scol are the point oxygen concentrations on GAG and collagen surfaces, respectively 

and Sl is the point oxygen concentrations in the void phase; Dl is the diffusion coefficient of 

oxygen in the void phase; σg
o
, σcol

o
 are detachment rate of oxygen on the surface of GAG fibers 

and collagen; and Pg
o
 and Pcol

o
 are the binding coefficients of oxygen to GAG and collagen, 

respectively.  

 

Equations 6.4 describe the oxygen concentration distribution throughout the various phases 

within the ECM of an averaging volume and are applicable at any spatial position in the 

appropriate phases.  In order to develop a locally averaged equation to describe the concentration 

fields in the ECM phase of the ‘unit cell’, these equations are averaged spatially to obtain a 

single volume-averaged equations.  Approach similar to that presented by Penke et al., 1998 and 

Whitaker and coworkers (Carbonell and Whitaker, 1984; Ryan et al., 1981; Nozad et al, 1985; 

Kim et al., 1987; Ochoa et al., 1994) is used. The single averaged species continuity equation is 

written as, 

 

ee

e

eff
e VinSD

t

S
∇⋅⋅∇=

∂
∂

 

(6.5) 

 



 141

where Se is the local oxygen concentration averaged over the entire ECM phase and Deff
e
 is the 

effective diffusion coefficient of oxygen in the ECM phase.  The effective diffusion coefficient is 

given as, 
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(6.6) 

 

The area to volume ratio for GAG and collagen in equation 6.6 is given as, 
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(6.7) 

 

Single Nutrient Balance 

The overall point equations in the cell phase and the ECM phase with appropriate boundary 

conditions can be summarized as, 
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where P represents the mass transfer coefficient at the cell membranes, i.e. at Aec(ECM-Cell 

interface), and Keq is the equilibrium coefficient for oxygen between the ‘c’ and the ‘e’ phases 
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of the averaging volume.  The method of volume averaging is used to obtain a single species 

nutrient balance by combining the local nutrient balances in the phases with appropriate 

boundary conditions (equation 6.8).  The principle of local mass equilibrium is used to obtain a 

single averaged species continuity equation for the oxygen concentration (Whitaker, 1999; 

Ochoa, 1988; Galban and Locke, 1999).  The single averaged species continuity equation is 

written as, 
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Equation 6.9 was obtained by assuming the following length scale constraints in the averaging 

volume (Ochoa, 1988), 
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where Rc
max

 and Re
max

  are the maximum radius across the respective phase (cell and ECM, 

respectively) within the averaging volume (V), R is the radius of the averaging volume, and Tbf 

is the available radius in the extracapillary space of the bioreactor for tissue production.  One of 

the constraints needs to be valid for all changes in cell volume fraction over time.  The initial 

length scale for the cell phase (Rc) is nearly 3.34 µm while the initial length scale for the ECM 

phase is approximately 0.6 µm.  With time in culture more ECM is produced by cells and the 

magnitude of Re increases and so does the cell size, corresponding to increase in Rc.  The ratio 

R/Tbf is a constant with an approximate value of 0.015, where R is 12.03 µm and Tbf is 818 µm.  

Although Rc and Re may vary with time the condition in equation 6.8 will typically hold since the 

size of the reactor is much larger than the averaging volume.  To be noted here while the 

individual volumes of the cell (Vc) and ECM (Ve) phase in the averaging volume (V) vary with 

time, the volume of the averaging volume remains constant and is given as (Whitaker, 1985), 
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The effective diffusion coefficient and effective rate constant for oxygen consumptions are 

derived as functions of the cell and ECM volume fractions by using the solution of a closure 

problem posed over a well-defined ‘unit cell’ (Whitaker, 1999).  However, for complex unit cell 

geometry numerical solutions are required, and a number of analytical solutions are available for 

isotropic media with simple geometry (see Locke, 2001 for review).  In the present study an 

analytical expression for the effective diffusion coefficient of an isotropic two dimensional two 

phase medium defined by a square unit cell (Ochoa, 1988) containing circular particles is used.  

This relationship accounts for the diffusion in the non-cellular ‘e’ phase and the cellular ‘c’ 

phase as well as the mass transport across the two phases.  This effective diffusion coefficient is 

written as, 
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where k = (Keq Dc / Deff
e
) is the ratio of the diffusion coefficient in the cell phase over that in the 

ECM phase (here the non-cellular phase) and α =(Dc/R P) is the ratio of the cell phase diffusion 

coefficient over the mass transfer coefficient at the cell-ECM interface in the averaging volume.  

The parameter Keq is computed by dividing the solubility of oxygen in lipids to solubility of 

oxygen in water (Chow et al., 2000).  From our study of hematopoietic cells with much higher 

oxygen consumption rates we have seen that the model results are not highly sensitive to the 

functional form of the diffusion coefficient since diffusive restrictions of oxygen in the cellular 

region are not very large (Pathi et al., 2005).  For analysis of solutes that have larger restrictions 

to diffusion in the cellular phase further consideration of the local 3-dimensional geometry and 

solution of the closure problem would be needed.  The effective oxygen consumption rate is 

found to be, 
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Moving Boundary Approach 

Experimentally, tissue growth along the long axis of the bioreactor was observed to be largely 

uniform (Potter et al., 2000; Ellis et al., 2001).  Thus, it is reasonable to use a 1-D assumption for 

model development.  The moving boundary approach as described in Galban and Locke, 1997 is 

used to account for the total nutrient concentration and total ECM production over the entire 

number of averaging volume units (‘unit cells’).   In contrast, if the cells were uniformly seeded 

in the space around the hollow fiber volume averaging could be used in that region and need not 

be coupled with the moving boundary approach. 

 

L(n) in Figure 6.1 is referred to as the moving front or the boundary and is a function of the 

number of averaging volumes or ‘unit cells’, n.  It is the radius up to which cells are 

proliferating.  The magnitude of L(n) can range from r0, radius of a hollow fiber to Tbf, the 

maximum available radius for tissue mass production.  For r0>L(n) the reaction terms 

(accounting for oxygen consumption by cells) in the balance in equation 6.9 would be zero since 

no cells are assumed present.   

 

An analytical expression of nutrient (oxygen) concentration is obtained by simplifying equation 

6.9 with the following assumptions, 

a) 1-D geometry  

b) quasi-steady state approximation (since the time scale for cell proliferation in the 

experiment is of the order of 4 weeks).  This would mean, 
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c) oxygen concentration can be spatially averaged from 0< r <δ by assuming that the rate of 

nutrient consumption is small relative to the rates of diffusion provided, 
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(6.14 b) 

 

This assumption for small oxygen gradients is supported by experimental studies of Ellis et al., 

2001 using EPROM (EPR Oxygen Mapping).  Although the spatial resolution was small this 

study showed that for chondrocyte cultures grown in HFBR for 4 weeks, small oxygen gradients 

occur in the cartilage tissue constructs.  The constraints shown in equations 14 were found in the 

present study to hold for the entire culture time under consideration. 

 

Using assumptions (a) [1-D geometry] and (b) [pseudo-steady state] equation 6.9 reduces to, 
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The flux of oxygen from the capillary to the tissue region at x = r0 occurs at both the cell 

boundary as well as ECM boundary (Galban and Locke, 1997).  The oxygen flux at the moving 

front is set to zero.  The macroscopic boundary condition is given as, 
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where Km is the external mass transfer coefficient at the interface between the cell and ECM 

phases, So is nutrient concentration in the hollow fiber.  It is assumed that there is no significant 

drop in oxygen concentration in the axial and radial directions in the lumen of the hollow fiber or 

capillary. 

 

The nutrient balance from equation 6.15 and the boundary conditions from equation 6.16 are 

non-dimensionalized to give, 
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where the non-dimensional oxygen concentration, { } oSS /=µ , and non-dimensional distance, 

Tbfx /=δ .  Boundary condition in equation 6.16 is simplified to the above equation by utilizing 

the principle of local mass equilibrium and by assuming the local and macroscopic spatial 

deviations in nutrient concentrations to be negligible in the cell and ECM phases.  Here one 

would appreciate the reason for choosing a first order kinetics for oxygen consumption vs. a 

Michaelis-Menten as has been extensively reported by Obradovic et al., 2000 and others.  The 

first order kinetics helps in obtaining a standard analytical solution as compared to any non-

linear kinetic expressions.  However, in the future once experimental data for the variation of 

nutrient concentration with time in the HFBR unit is available various kinetic expressions can be 

used to determine the effects of other kinetic forms if necessary.  A spatially independent 

average nutrient concentration equation is obtained by deriving the analytical solution for the 

boundary-value problem in equation 6.17 and then averaging over r0 and L(n).  The average 

nutrient concentration is given as, 

 



 147

[ ] ( ) ( ){ } ( ) ( ) ( ){ }[ ]

( ) ( ) ( )

( ) ( ) ( )uSinhvuCoshCTC

uCoshvuSinhSTC

STCCTCSh

Sh
A

uCoshvCoshvuSinhvSinh
uv

A

⋅⋅−⋅=

⋅⋅−⋅=

⋅−⋅
=

⋅−⋅⋅⋅−⋅−⋅
−⋅

=

φφφ

φφφ

φ

φφφφφ
φ

µ

.tanh

.tanh

tanh

 

(6.18) 

 

It must be noted here that φ2
 is not a constant with time since the effective rate coefficient for 

oxygen consumption, keff and effective rate of constant for oxygen diffusion through the cartilage 

tissue, Deff, vary in time due to changes in the volume fractions of cells and ECM.  

 

Cell mass balance 

With tissue formation over time there is an increase in total cell mass due to the processes of cell 

proliferation and cell growth in the hollow fiber reactor.  Experimentally it was observed around 

3 weeks of culture that the cell number remained constant, however the average cell area 

(accounting for cell growth in a ‘unit cell’) increased significantly.  Because these two processes 

occur at two different time frames and under different surrounding environmental conditions, 

they need to be accounted for by writing two distinct balances.   

 

The increase in cell number is the process of cell proliferation and the total cell mass balance 

accounting for this process is given as, 
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where M(t) is the total cell mass surrounding a hollow fiber in the reactor, ρc is the specific cell 

density, Vc
T
 

 
the total volume occupied by the cells around a single fiber and Rp is the specific 
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total cell mass production rate.  The total volume occupied by cells is a product of the volume of 

each chondrocyte cell, Vc and the number of ‘unit cells’ or averaging volumes, nc (Vc
T
 = Vc*nc).  

The above equation is based on the assumptions that the diffusivity and migration of cells are 

negligible, and that the specific cell density in the cell phase is uniform.  Further expanding 

equation 6.19, dividing by the averaging volume V and rearranging we obtain, 
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(6.20) 

 

where dnc/dt accounts for increase in cell number (or the number of averaging volumes) while 

dεc/dt signifies increase in cell area (cell growth) in each averaging volume or ‘unit cell’. 

 

A modified Contois function (Galban and Locke, 1999) is used to describe overall increase in 

cell mass due to growth and proliferation and is given as, 
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where kp, Kmf and kpd are the cell mass formation, cell saturation and cell death parameters.  The 

overall cell proliferation balance is obtained by substituting equation 6.21 into 6.20 and non-

dimensionalizing with respect to the maximum number of averaging volumes that can fill the 

available volume in the reactor (nmax) and the nutrient concentration (So). 
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(6.22) 

 

where non-dimensional number of cells is give as, 
maxn

n
n c= and 

( )
o

p S
nKmf

K max⋅= . 

 

Cell growth balance 

Cell growth (denoted by a change in cell volume fraction, εc) is obtained by writing a cell mass 

balance of a single chondrocyte cell in the averaging volume or ‘unit cell’.  The conservation of 

cell mass is given by,  
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(6.23) 

 

where m(t) is the cell mass in a ‘unit cell’ or averaging volume , ρc is the specific cell density, Vc
 

the averaging volume containing the cells and Rc is the specific cell growth rate.  The above 

equation is based on the assumptions that the cell phase is made up of only chondrocyte cells, the 

diffusivity and migration of cell
2
 in the cell phase are negligible, and the specific cell density in 

the cell phase is uniform.  This balance signifies the stage of cell maturation, where increase in 

chondrocyte cell size takes place in each ‘unit cell’ or averaging volume, filling up the available 

extracapillary space.  

 

                                                 
2 Mass transport of cells (by diffusion) is not included in the model, however it can be noted that future work may 

consider the effects of cell migration by diffusion or chemotaxis. 
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The integral in the above equation is evaluated over the cell volume Vc within the averaging 

volume V to give 

 

∫=
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(6.24) 

 

A Michaelis-Menten dependence of cell growth on nutrient (oxygen) concentration is proposed.  

Potter et al., 1998 observed distinct cell growth only after cells stopped proliferating due to 

contact inhibition.  Thus a marked decrease in cell proliferation favors cell maturation.  To 

represent the experimental observations several kinetic functions were tested (see Results 

section) for the dependence of the cell growth rate on the number of cells; the second order 

dependence was found to fit best to the data.  Therefore, the effects of nutrient concentration and 

number of cells (similar to number of averaging volumes or ‘unit cells’) on the growth of a 

single chondrocyte cell in a ‘unit cell’ is given as, 
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(6.25) 

 

where kgrowth is the homogeneous growth rate coefficient, Kc is the modified Contois saturation 

constant, ρ is the overall cell density (ρc*εc), kcd cell death parameter; and n is the fractional 

number of cells [= number of cells at a particular time (nc) / maximum number of cells that can 

fit in the available volume (nmax) ].  A modified Contois (Galban and Locke, 1999) is used to 

include effects of cell crowding and restricted volume of cell mass formation.  

  

Substituting equation 6.25 in 6.24 and non-dimensionalizing with the nutrient concentration (So), 

the material balance for cell growth can be rewritten as, 
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where the overall growth coefficient, 2

maxnkk growthg ⋅=  and overall Contois parameter 

o

cc
cont S

K
K

ρ⋅= . 

 

Extracellular Matrix (ECM) balance 

The material balance on the extracellular matrix, assuming negligible diffusion of ECM is given 

in terms of the local volume fraction of extracellular matrix, εe, as 

 

( )ecECM

e R
dt

d
εεµ

ε
,,=  

(6.27) 

 

where RECM denotes the rate function for extracellular matrix production.  As mentioned before 

the cartilage ECM is primarily made up of GAG and collagen components.  Specific balances for 

these components are written to quantify the amount of each ECM components present.   

 

GAG and collagen molecules, when densely packed around a cell provide a mechanically 

competent native tissue-like housing, capable of changing pericellular osmolarity, permeability, 

and pH.  These local physicochemical changes, which gradually occur with matrix molecule 

accumulation, may control cell metabolism by interfering with nutrient uptake and waste 

withdrawal, adjusting cell volume, or changing the ion channel activity (Wilkins et al., 2000).  

Therefore, this model would help to understand the various factors controlling formation of these 

different ECM components.  However, our current model does not account for the effects of 

osmolarity and pH change on cell growth, metabolism or ECM production and analysis of these 

factors is proposed as future work.   

 

 



 152

GAG - 

The conservation of GAG mass is given by, 
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(6.28) 

 

where mg(t) is the total GAG mass in a unit averaging volume, ρg is the specific GAG density, Vg 

the total volume of GAG produced by a single chondrocyte cell in an averaging volume and Rg is 

the specific GAG production rate per unit area.  The above equation is based on the assumptions 

that the diffusivity of GAG is negligible and that the specific GAG density in the ECM phase is 

uniform.   

 

Obradovic et al., 2000 have shown in engineered tissue constructs, GAG deposition begins at the 

construct periphery, where a high cell density promotes rapid GAG synthesis than catabolism.  

However, over the time of cultivation, a limiting steady state concentration ‘εGAG
max

’ is 

approached at which there is a balance of production, degradation, and incorporation of GAG.  

Accordingly, they formulated a local GAG kinetics using product-inhibition kinetics, with 

‘εGAG
max

’ the maximum GAG concentration (εGAG at final time of experiment).  The dependence 

upon oxygen concentration was modeled as first-order dependence.  A similar kinetic form with 

respect to GAG and oxygen is used in our model as it best fits the experimental data as compared 

to the use of a Michaelis-Menten nutrient dependence and first order GAG dependences.  Thus, 

the rate of GAG synthesis is formulated as, 
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(6.29) 

 

where kG, and εGAG
max

 are the GAG production rate and maximum GAG volume fraction 

respectively.  Non-dimensionalizing the nutrient concentration and substituting the specific GAG 

production rate in equation 6.28 the overall GAG balance is written as, 



 153

 

3
1

3
2

3
2

max

43
,/1 ⎥⎦

⎤
⎢⎣
⎡⋅==∗

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅⎥
⎦

⎤
⎢
⎣

⎡
−⋅∗=

V
qVVwherekq

dt

d

g

GAGggc

GAG

g

GAGGAG

g π
ρ

εεµ
ε
εε

 

(6.30) 

 

where overall GAG production coefficient, oGGAG Skk ⋅= . 

 

Collagen – 

The mass balance on collagen is given by, 
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(6.31) 

 

where mcol(t) is the total collagen mass in a unit averaging volume, ρcol is the specific collagen 

density, Vcol the total volume of collagen produced by a single chondrocyte cell in an averaging 

volume and Rcol is the specific collagen production rate per unit area.  The above equation is 

similarly based on the assumptions that the diffusivity of collagen is negligible and that the 

specific collagen density in the ECM phase is uniform.   

 

The specific collagen formation rate is modeled with Michaelis-Menten dependence on oxygen 

concentration and is given as, 
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where kem and Kcol are the Michaelis-Menten parameters.  The overall collagen balance is written 

as, 
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where overall ECM saturation coefficient is given by, 
o

col
ec S

K
K = . 

 

NMR measurable parameters 

Effective water diffusion coefficient (Deff
w
) and T1 relaxation time   

The proton magnetization Ml, Mg, Mcol, Mc within the bulk water volume, on the surface of the 

GAG fibers, on the surface of the collagen fibers, and within the cells, respectively, are described 

using Bloch equations (Penke et al., 1997).  Equations describing the proton magnetization in the 

void, collagen and the GAG phases, components in the ECM are written as,  
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(6.34) 

 

where T1l
-1

(= k1l), T1col
-1

(= k1col), T1g
-1

 (= k1g) are the bulk and surface (collagen and GAG) 

relaxation times; σg, σcol are detachment rate per proton of protons on the surface of GAG fibers 

and collagen; M0l
∞
 , M0g

∞
, M0col

∞
 are the equilibrium magnetization values of the protons in the 

bulk water and on the surface of the GAG fiber and collagen; Pg
w
 and Pcol

w
 are the binding 

coefficient of water to GAG and collagen respectively.   
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The volume averaging method was used to solve for the effective relaxation constant in the ECM 

phase and gives 
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In order to obtain a one-equation model for the system, the above averaged equation 6.35 in the 

ECM phase has to be volume averaged with the magnetization equation in the cell phase given 

by 
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(6.36) 

 

where Dc
w
 is the diffusion coefficient of water through the cells, M0c

∞
 is the equilibrium 

magnetization value of the protons on the cell surface, B is the rate coefficient for proton transfer 

into the c (cell) phase, and Keq
w
 is the equilibrium coefficient into the c phase.  Following the 
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similar averaging methodology the governing one-equation model for diffusion and relaxation 

constant in the reactor is, 
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(6.37) 

 

where k
w
 = (Keq

w
 Dc

w
 / Deff

ew
) is the ratio of the diffusion coefficient of water in the cell phase 

over that in the ECM phase (here the non-cellular phase) and αw
 =(Dc

w
/R Pw) is the ratio of the 

cell phase water diffusion coefficient over the mass transfer coefficient at the cell-liquid inter-

phase in the averaging volume.  Pw represents the mass transfer coefficient at the cell 

membranes, i.e. at Aec, and Keq
w
 is the equilibrium coefficient for water between the ‘c’ and the 

‘e’ phases of the averaging volume. 

 

6.2.3 Note on Parameters 

 

Reactor dimensions are taken from Peterson et al., 1997.  Data on diffusion coefficients of 

oxygen and water in the cell phase and the respective self-diffusion coefficients are obtained 

from the literature (Chow et al., 2001; Horner et al., 1998).  The specific oxygen consumption 

rate for cell metabolism is obtained from Obradovic et al., 2000.  The first order rate constant 

(kc) is computed by calculating the ratio of Qmax /Km, the Michaelis-Menten parameters in the 

proposed Michaelis-Menten oxygen consumption rate in their model.  Specific GAG and 

collagen densities are obtained from Baser et al., 1998.   
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The remaining transport and reaction parameters are obtained by fitting the simulated model data 

of cell growth, cell proliferation, ECM (GAG and collagen) masses as functions of time to the 

experimental data of Potter et al., 1998.  Although the binding coefficients of water and oxygen 

to the GAG and collagen fibers are obtained by model experimental fitting, a fixed ratio of GAG 

to collagen binding to the components (water and oxygen) is maintained.  It has been shown in 

the literature that 70% of the water in cartilage is bound to GAG and the remaining 30% to 

collagen (Nordin & Frankel, 1989).  The parameters used in the model are listed with their 

references in Table 1.    

 

6.2.4 Sensitivity Analysis formulation 

 

The sensitivity of model variables, including the collagen volume fraction (εcol), the GAG 

volume fraction (εg), the cell volume fraction (εc), the fractional number of cells, the effective 

diffusivities of oxygen and water, and the effective NMR relaxation constant, to changes in 

model parameters were evaluated as functions of time in terms of normalized sensitivities, i.e. 

Y(t,φj) the model variable with respect to model parameters φj and normalized sensitivity S(Y,φj ) 

given as, 
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(6.38) 

 

where s(Y, φj) is the non-normalized sensitivity (Varma et al., 1999). 

 

6.2.5 Solution Procedure 

 

Kinetic expressions for cell metabolism, growth, proliferation, and ECM (GAG and collagen) 

production are proposed as functions of experimentally observed parameters that affect these 



 158

processes.  The rate parameters of these cell processes along with the oxygen and water binding 

coefficient to ECM are varied to fit the model to experimental data (Potter et al., 1998).     

 

The equations describing cell growth [equation 6.26], cell proliferation [equation 6.22], and 

ECM (GAG [equation 6.30] and collagen [equation 6.33] production as functions of time are 

solved simultaneously using MATLAB (version 6.5, The Mathworks, Inc.).  The model results 

are used in equations 6.18 and 6.12 to compute the nutrient concentration and effective diffusion 

coefficient variation of oxygen with time, due to changes in tissue mass, respectively.  Similarly, 

the volume fractions of cell and ECM components are substituted in equation 6.37 to obtain the 

effective T1 relaxation time constant and effective diffusion coefficient of water in the tissue.  

 

6.3 Results and Discussion 

 

 

The current model simulates the changes in cell mass, ECM mass, oxygen concentration, 

effective diffusion coefficient of oxygen, water diffusion coefficient and NMR relaxation 

coefficient as functions of time.  Physiological kinetic functions describing cartilage tissue 

developmental processes are used.  The effect of the microenvironment on the intrinsic tissue 

development characteristics in the 3-dimensional hollow fiber bioreactor system is studied.  The 

model is used to determine the NMR measurable parameters to further establish their correlation 

with the chemical characteristics of the tissue.  

 

The growth of a single chondrocyte cell inside an averaging volume with time is shown in Figure 

6.3.  Cell growth (maturation) is expressed in terms of volume fraction of cell and accounts for 

an increase in the average area of a chondrocyte cell in a ‘unit cell’ or averaging volume during 

the culture time.  Since all ‘unit cells’ are identical this cell growth is representative of growth in 

all averaging volumes.  The solid line represents the simulated results from the model whereas 

the solid dots denote the experimental data from Potter et al., 1998 (Appendix D).  Growth of 

cells is seen to be slow during early period in time, corresponding to the initial lag phase of cell 

growth.  However, after week 3, the growth is exponential.  The results shown here are for 

kinetic growth rate function with Michaelis-Menten nutrient dependence, second order cell 
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number dependence and first order cell volume fraction dependence, which gives the best fit to 

the experimental data among the various functions used.  This kinetic function used in the model 

could not completely account for the higher cell growth during the later times in culture (Figure 

3).  Several other growth rate functions such as Contois, Modified Contois, Moser and 

heterogeneous functions (Galban and Locke, 1999a) were tested (results shown in Figure 6.13).  

However, these other functional forms did not fit the data as well.  Probably there is a need to 

incorporate the effect of other environmental factors in future modeling efforts like lactate and 

glucose in order to better explain the growth pattern of chondrocytes as observed in the 

experiments.   Moreover, in order to provide quantitative information of cell growth behavior 

there is need for further systematic experimental data on oxygen concentration for example, for 

the same reference system.  

 

Cells synthesize ECM, which in our model system includes collagen and GAG, throughout the 

culture time.  Figure 6.4 shows increase in collagen mass.  The collagen mass is obtained by 

multiplying the volume fraction of collagen (εcol) in a ‘unit cell’ with the total of the sum of all 

the volume of the averaging volume (V) and the density of the collagen fibers 

( ( ) colcol nnVMassCollagen ρε ⋅⋅⋅⋅= max ).  Model simulations are is good accordance with the 

experimental results.  Similarly, simulated GAG mass in the reactor is shown as a solid line as 

function of time in Figure 6.5.  The GAG mass is also obtained by multiplying the simulated 

volume fraction of GAG in a ‘unit cell’ with the total volume of averaging volumes and density 

of GAG ( ( ) gg nnVMassGAG ρε ⋅⋅⋅⋅= max ).  The GAG content increases during the early 

weeks in culture.  However, once the maximum GAG concentration is reached at almost 2 weeks 

in culture a saturation level is reached.  The model trend fits the experimental data very well. 
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Figure 6. 3 Model-data comparison for the growth of cells (εc=Vc/V) with time (Experimental error bars 

obtained using error percentage of 5%) 
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Figure 6. 4 Model-data comparison for total Collagen mass (g) in the reactor with time (Experimental error 

bars obtained using error percentage of 5%) 
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Figure 6. 5 Model-data comparison for total GAG mass (g) in the reactor variation with time (Experimental 

error bars obtained using error percentage of 5%) 
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Figure 6. 6 Model-data comparison for total number of cells in the reactor (around all 6 fibers), [nc] with time 

(Experimental error bars obtained using error percentage of 5%) 
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Figure 6. 7  Non-dimensional nutrient concentration (µ) variation with time 

 

 

Figure 6.6 denotes changes in cell number (or ‘unit cells’), i.e. cell proliferation during the 

culture time of 4 weeks.  An increase in cell number occurs during the first 3 weeks of culture 

and then levels off with time.  The model predicts saturation, i.e. no further increase in cell 

number, at later times in the culture, and this is primarily due to contact inhibition as reflected in 

the Contois form of the kinetic rate function.  The model results seem to fit the experimental data 

very well.  The experimental results of Potter et al., 1998 have suggested that during cartilage 

tissue culture cell proliferation occurs during the early time period.  Once the cells stop 

proliferating, cells start maturing by growing in size, corresponding to cell growth in our model.  

This developed mathematical model is able to explain the experimental data in this context very 

well.   

 

Figure 6.7 shows the averaged non-dimensional nutrient concentration during the culture time.  

Due to the small hollow fiber or capillary diameter and high nutrient flow rate the variations in 

oxygen concentration in both the axial and radial directions inside the hollow fiber tube lumen 

are assumed to be negligible.  The constant supply of oxygen at the surface of the hollow fiber or 
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capillary provides more oxygen for cell metabolism, even accounting for the presence of very 

high cell numbers.  Hence, the drop of oxygen concentration is only to a non-dimensional value 

of nearly 0.885 (corresponding to a drop of nearly 12% of the feed concentration So in the hollow 

fiber tube).  The simulated oxygen concentration results cannot be compared to experimental 

results because the rate of oxygen depletion over time in these types of reactors has not been 

reported in the literature, and it is recommended that such data need to be taken in future 

experiments. 

 

An increase in cell mass (due to proliferation and cell growth) and ECM mass production over 

time increases the restrictions to diffusive transport of oxygen and water.  Figure 6.8 (a) and 6.8 

(b) show the decrease in effective diffusion coefficient of oxygen and water, respectively, in the 

reactor with time.  The lower effective diffusion coefficient of oxygen due to larger restrictions 

and binding in the tissue construct, in turn, reduces the supply of oxygen for consumption by the 

cells for various physiological processes such as metabolism, growth, proliferation, and ECM 

synthesis.  Figure 9 shows the simulated and experimental apparent diffusion coefficient of water 

as a function of time.  The apparent diffusion coefficient is computed by normalizing the 

effective diffusion coefficient of water by dividing it by the self-diffusion coefficient of water.  

This is a measure of restricted transport of water due to increase in cell and ECM mass and is 

experimentally measured by NMR.   Model results show a steady drop of this coefficient over 

the entire culture time of 4 weeks.  However, experimental results (solid dots) show that the 

normalized diffusion coefficient does not drop until the 3
rd

 week of the culture, after which it 

drops from a value of 0.8 to 0.43.  Clearly the model is not able to capture that aspect of the 

experimental data.   

 

One possible reason for the discrepancy between experimental and modeling results of the 

apparent diffusion coefficient of water is likely due to the NMR experimental diffusion 

measurement technique.  Small NMR diffusion time ( ∆ ) 10 ms considered in the experiments 

corresponds to a water diffusion distance of nearly 4.7 µm.  However, the roughly estimated 

average void phase radii at time = 1 wk and time = 4wk are 11.92 µm and 11.79 µm, respectively 

(Appendix F).  These length scales were calculated based upon the free volume in the cellular 

domain (radius L(n)) and assuming that the ECM components are clumped around the cells.  
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Since the length scale at the early times is higher than the NMR diffusion distance, probably the 

NMR measurement does not capture the restrictions due to spatial constraints and adsorption.  

The assumption that most of the ECM is clumped around the cell may be more appropriate at 

these earlier times when there is less ECM and more free void space around the cell/ECM 

complex.  However, as the cells grow and produce ECM over time the fibrous nature of the 

matrix may be more pronounced and lead to more restrictions than are reflected in the computed 

length scale above.  Therefore, the model can explain the data at four weeks and not at the earlier 

times.   

 

It should also be stated that the decrease in diffusion coefficient shown in Figure 6.9 is 

dominated primarily by the binding of water to collagen and GAG fibers and not due to 

restrictions because of cell and ECM mass formation over time (model results shown in dotted 

line).  This is further reflected by increase in magnetization transfer coefficient with time in the 

experimental results described by Potter et al., 1998 as this denotes higher binding of water to 

the ECM components.   

 

The effect of restricted transport because of tissue development can also be seen in Figure 6.10.  

The figure shows the variation of effective longitudinal relaxation coefficient (T1eff) with time.  

The relaxation constant decreases gradually between weeks 1 and 4, consistent with increases in 

collagen and GAG molecules, corresponding to not only increase in tissue mass but also larger 

binding of water to these ECM components.  There appears to be a slightly larger drop between 

weeks 3 and 4 than in the earlier weeks, in partial agreement with the diffusion coefficient data.  

The significance of this drop is not known and more detailed analysis of the experimental error 

and the water binding process may help in further understanding the reason for the model-data 

comparison.   

 

Figure 6.11 validates the basic model assumptions for derivation of analytical solution for 

nutrient (oxygen) concentration in the reactor.  Figure 6.11 (a) shows the quasi-steady state 

assumption holds for the culture time of 4 weeks. Also, Figure 6.11 (b) shows that nutrient 

concentration can be spatially averaged in the reactor by assuming the nutrient consumption rate 

to be small compared to the rate of diffusion, again for the time of culture of 4 weeks.  However, 
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upon running the program for a longer time of 8 weeks it is seen that similar trends in tissue 

growth persist.  For this length of time the assumption (Keff*Tbf*Tbf)/Deff < 1 does not hold 

anymore, which means that the nutrient concentration cannot be averaged due to large spatial 

variations (results not shown here).  This is because over longer periods of time, there is larger 

tissue growth, due to increases in cell size and higher ECM (GAG and collagen) production by 

cells in culture.  

 

The major kinetic parameters used in the model are obtained by model-experimental fit.  A 

sensitivity analysis of the system would help in the identification of the most important 

parameters affecting tissue growth (collagen, GAG, and cell mass formation); metabolite 

(oxygen) concentration and its effective diffusion coefficient, as well as the NMR measurable 

parameters, from an appropriate selection of few shown in the Figures 6.12.  The results of the 

analysis would thus suggest the key parameters that greatly affect each of these individual model 

variables, and thus suggest need for accurate estimation of these parameters through 

experimental studies. 
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Figure 6.8 a Effective diffusion coefficient of oxygen (Deff) in the reactor 
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Figure 6. 8 b Effective diffusion coefficient of water (Deff
w
) in the reactor 
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Figure 6. 9 Model-data comparison for normalized diffusion coefficient of water in cartilage construct in 

HFBR (appDeff = Deff
w
/Dl) where Deff

w
 is the effective diffusion coefficient of water in cartilage tissue, Dl is the 

diffusion coefficient of water in cartilage free constructs (Experimental error bars obtained using error 

percentage of 5%) 



 167

1.8

2.3

2.8

3.3

3.8

4.3

4.8

5.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (wks)

T
1

e
ff
 (

s
)

 

Figure 6. 10 Model-data comparison for effective relaxation constant [T1eff] variation with time 

(Experimental error bars obtained using error percentage of 5%) 
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Figure 6.11 a Validity test for the quasi-steady state assumption (Equation 6.14 a) 
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Figure 6. 11 b Validity test of Equation 6.14 b showing that the nutrient consumption rate is small relative to 

diffusion during the 4 weeks of culture 

 

 

Figure 6.12 (a) shows the normalized sensitivity of the collagen volume fraction inside an 

averaging volume.  It is seen that this model variable is most sensitive to the collagen production 

rate ‘kem’ and the saturation Michaelis-Menten parameter ‘Kec’.  Increasing ‘kem’ or decreasing 

‘Kec’ is shown to increase the rate of collagen production over nearly 2 weeks.  However, after 

week 2 the effects of the collagen production rate parameters level off.  The normalized GAG 

production expressed as concentration is seen to be highly sensitive to its production rate ‘kGAG’, 

and increases to 0.9 in the first 1-2 days and then drops gradually at later times to a value close to 

0.1 (Figure 6.12 b).  Positive sensitivity denotes that an increased ‘kGAG’ would increase the 

GAG synthesis rate.  The mass balance of GAG formation utilizes product-inhibition kinetics 

with ‘εGAG
max

’ the maximum GAG concentration.  Hence, after the maximum limit of GAG 

volume fraction is reached the sensitivity of ‘kGAG’ to a GAG volume fraction change decreases.  

Increases in the collagen and GAG volume fractions would lead to larger oxygen binding to 

these ECM components and thus decrease the diffusivity of oxygen (Figure 6.12 f).   
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The cell mass coefficient ‘kp’, the modified-Contois saturation parameter ‘Kp’, the cell growth 

coefficient ‘kg’ and the cell growth saturation coefficient ‘Kcont’ are the most important 

parameters affecting the chondrocyte cell mass .  Figure 6.12 c shows that increasing ‘kp’ or 

decreasing ‘Kp’, increases the cell number during the first 2 weeks of culture.  However, later in 

time the sensitivity of cell number to changes in these parameters almost levels off.  This is 

probably because of contact inhibition that restricts any further increase in cell number by 

proliferation.  Figure 6.12 c also demonstrates the fact that the cell growth parameters (kg, Kcont) 

have no effect at early times in culture, corresponding to the fact that this period corresponds to 

the cell proliferation stage.  However, later during culture, increasing the cell growth rate by 

increasing ‘kg’ and decreasing ‘Kcont’ the cell proliferation decreases (Figure 6.12 c).  These 

results support the experimental observation that once the proliferation stops, the cells start 

growing in size filling up the space which is the stage of cell growth or maturation.  Increased 

cell volume fraction (due to cell growth) within an averaging volume, increases the production of 

GAG and collagen associated with a ‘unit cell’ (Figures 6.12 a, 6.12 b).  Larger cell and ECM 

mass decreases diffusion of the oxygen nutrient (Figure 6.12 f) and provides larger restrictions to 

water diffusion (Figure 6.12 g).   

  

The nutrient concentration (Figure 6.12 e) is very sensitive to the cell mass coefficients ‘kp’, and 

‘Kp’ as well as the metabolic coefficient ‘kc’.  An increase in cell number by changing these 

parameters would lead to a larger consumption of oxygen, thus decreasing the oxygen 

concentration in the reactor.  An increase in kc also reduces the nutrient concentration, because of 

higher rates of oxygen consumption.  Moreover, an increased binding of oxygen to GAG (by 

increasing ‘Pg
o
’) also reduces the concentration of nutrient as expected.    
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Figure 6.12 a Normalized Sensitivity of Collagen volume fraction with varying model parameters as a 

function of time; sensitivity highest to collagen production parameters 
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Figure 6.12 b Normalized Sensitivity of GAG volume fraction with varying model parameters as a function of 

time; sensitivity highest to GAG production parameter 
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Figure 6.12 c Normalized Sensitivity of cell number with varying model parameters as a function of time; 

sensitivity highest to cell proliferation and cell growth parameters 
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Figure 6.12 d Normalized Sensitivity of cell volume fraction with varying model parameters as a function of 

time; sensitivity highest to cell growth and proliferation parameters 
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Figure 6.12 e Normalized Sensitivity of nutrient concentration with varying model parameters as a function 

of time; sensitivity highest to cell proliferation, first order oxygen consumption rate and oxygen binding 

parameters 
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Figure 6.12 f Normalized Sensitivity of effective oxygen diffusion coefficient in the reactor with varying model 

parameters as a function of time; sensitivity highest to oxygen GAG binding coefficient and the GAG 

production rate 
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Figure 6.12 g Normalized Sensitivity of water diffusion coefficient in the reactor with varying model 

parameters as a function of time; sensitivity highest to water GAG binding coefficient and GAG production 

rate coefficient 
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Figure 6. 12 h Normalized Sensitivity of NMR effective relaxation coefficient in the reactor with varying 

model parameters as a function of time; sensitivity highest to water GAG binding coefficient, GAG 

production rate coefficient, cell growth and proliferation parameters 
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VARYING GROWTH RATE FUNCTIONS – [For the same set of parameters as used in model] 

Case 1: 
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Figure 6.13 a Cartilage tissue growth over time obtained by the use of modified Contois function with respect 

to nutrient concentration and no dependence on cell number (as shown by the equation in  case 1).  Model 

results are shown by solid line and experimental results in dots. 

Case 2: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅

⋅
= cd

c

g

c kn
Kcont

k
R 1

µε
µ

 

 

Figure 6.13 b Cartilage tissue growth over time obtained by the use of modified Contois function with respect 

to nutrient concentration and 1
st
 order dependence on cell number (as shown by the equation in  case 2). 
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Case 3: 
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Figure 6.13 c Cartilage tissue growth over time obtained by the use of modified Contois function with respect 

to nutrient concentration and 3
rd

 order dependence on cell number (as shown by the equation in  case 3). 

Case 4: 
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Figure 6.13 d Cartilage tissue growth over time obtained by the use of modified Contois function with respect 

to nutrient concentration and 1
st
 order inverse (inhibitory) dependence on cell number (as shown by the 

equation in  case 4). 
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Case 5: 
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Figure 6.13 e Cartilage tissue growth over time obtained by the use of modified Contois function with respect 

to nutrient concentration and no dependence on cell number (as shown by the equation in  case 5). 
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Figure 6.13 f Cartilage tissue growth over time obtained by the use of modified Contois function with respect 

to nutrient concentration and 1
st
 order dependence on cell number (as shown by the equation in  case 6). 
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Case 7: 
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Figure 6. 13 g Cartilage tissue growth over time obtained by the use of modified Contois function with respect 

to nutrient concentration and 2
nd 

order dependence on cell number (as shown by the equation in  case 7). 

 

 

The most important factors that control the change in effective diffusion coefficient of oxygen 

are the binding coefficients of oxygen to GAG fibers, ‘Pg
o
’ and collagen ‘Pcol

o
’.  Increased ‘Pg

o
’ 

and ‘Pcol
o
’ reduce the effective diffusion of oxygen (Figure 6.12 f) to the cells due to higher 

binding to the ECM fibers.  Thus, larger GAG and collagen concentrations resulting from 

changes in their production parameters ‘kGAG’, ‘kem’ and ‘Kec’, would lead to more binding of 

oxygen to available GAG and collagen decreasing the oxygen diffusivity as seen in Figure 6.12 

f.  Increased tissue mass due to increases in cell mass (changes in ‘kp’ and ‘Kp’) and increase in 

ECM mass (changes in ‘kGAG’, ‘kem’, ‘Kec’) would provide more restrictions to mass transport, 

further decreasing the oxygen diffusivity in the reactor.  Similarly, the water diffusion coefficient 

and effective T1 relaxation coefficient in the reactor are highly sensitive to GAG-water binding 

coefficient (‘Pg
w
’) and collagen-water binding coefficient (‘Pcol

w
’) and the kinetic parameters 

describing formation of tissue mass (cell and ECM) as seen in Figures 6.12 g and 6.12 h.   
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6.4 Conclusions 

 

 

Summarizing, the developed mathematical model is able to quantify the bioreactor environment 

very well.  The proposed modeling framework enables a study of restricted transport of 

important nutrients and its influence on cell behavior.  The model supports the experimental 

evidence suggesting that construct growth in the reactor is not hindered by oxygen transport 

limitations (Williams et al., 2002).  NMR measurable parameters such as the effective water 

diffusion coefficient and T1 relaxation constant are also computed as functions of tissue mass.  

These model results are validated with available experimental data (Potter et al., 1998) and show 

that restrictions to water diffusion are primarily due to binding of water to ECM components 

rather than due to increase in tissue mass.  This work supports the use of NMR as a suitable 

monitoring tool for ECM production in ex vivo cartilage growth in hollow fiber bioreactors.  The 

effective water diffusion coefficient predicted by the model did not correspond well with the 

experimental data during the earlier time periods and estimations of diffusion times in the 

experimental data suggest that the experimental measurements do not fully probe restrictions to 

transport due to binding of water to ECM components at these times.  Additionally, the 

sensitivity analysis of tissue formation with various culture parameters provides information 

about the relative roles of cell mass production rates on ECM formation, and the change in 

microenvironment around the cell due to ECM formation on cell growth and proliferation. 

 

The current model can be readily extended to include the effects of other environmental factors 

by incorporating mass balances of nutrients such as glucose and metabolic byproducts like 

lactate that might be important to be controlled in reactor culture units.  Thus, modeling of 

transient events in the bioreactor - chondrocyte mass, matrix biosynthesis and nutrient transport 

provide additional insights into cartilage growth in vitro in bioreactors.  This quantitative 

information could be used for proposing better reactor designs and suitable operational 

conditions for reactor scale-up.   The model is also found to be suitable for suggesting improved 

experimental design and can be used to assess the important parameters to be measured 

experimentally.
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CHAPTER 7 
 

 

REACTION DIFFUSION MODEL OF MUSCLE METABOLISM 
(Based in part on work in press Kinsey et al., 2005, Journal of Experimental Biology) 

 

 

 

 

7.1 Introduction 

 

 

The complex processes involved in cell growth and metabolism require an input of energy.  The 

human body extracts hydrocarbons from food and transforms the potential chemical energy in 

these nutrients to ATP, which ultimately fuels all physiological processes.  The ‘production, 

transport, conversion and utilization of energy’ are facilitated via metabolic pathways involving 

a large number of tightly regulated enzyme-catalyzed reactions (Walliman et al., 1992).  The net 

rate of the metabolic processes in each pathway, in cells, depends on the competition between 

the reactivity of the system and the transport of nutrients to the reaction center (Weisz, 1973).  

The goal of the current work is to provide a quantitative framework of metabolic processes and 

their regulation and its relation to cellular design, in the light of reaction and diffusion. 

 

It is well known that cells can metabolize and grow in culture, separate from the organism from 

which they are derived, and lead independent lives, yet exhibit the characteristics customarily 

associated with living things.  This has been led to cell expansion ex vivo in reactors for the 

design of tissue-engineered substitutes.  These engineered tissues can be easily manipulated to 

study various physiological cellular states and effects of metabolic parameters.  The work 

reported in the previous chapters of this dissertation have focused on understanding the overall 
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macro-environmental changes to facilitate various cellular processes involved in cellular tissue 

substitute formations in vitro in bioreactors.  The current study aims to develop an understanding 

of transport and reaction of these metabolites at the cellular level and to understand the role 

metabolite spatial distribution on cell structure and metabolic regulation.  Such a structured 

framework, in future, would provide integration and coordination of detailed cellular metabolic 

pathways to overall inputs of the reactor system (or in vivo models), and in the long run with 

tissue, organ, and whole-body processes.   

 

A complete quantitative analysis of metabolic regulation cannot be obtained just from in vivo or 

in vitro experimental studies even if all necessary measurements were possible.  The complexity 

of interacting biochemical reactions distributed spatially, in the cellular metabolic pathways, and 

their integration to tissue/organ and eventually the whole organism level requires a formal 

theoretical framework for quantitative understanding (Saidel et al., 2003).  This framework is 

built by the development of physiological models based on the basic principles of conservation 

of mass, momentum, and energy, describing the metabolite production, transport and utilization 

through the various enzyme pathways.  These model results can be analyzed using suitable 

analytical and numerical methods to understand the regulation pathways in metabolic reactions 

and its effect on cell structure.     

 

Muscle cells are considered to be ideal models for this study.  These cells are highly structured 

with very slight variations in organization from organism to organism.  They can perform diverse 

mechanical functions and they display the largest changes in metabolic rates when undergoing 

transitions between rest and exercise (Suraez, 2003).  Moreover, extensive literature on energy 

metabolism in muscle presents an excellent opportunity to develop quantitative, predictive, and 

testable models of cellular function across a wide range of spatial and temporal boundaries.  

Ultimately, the quantitative understanding of interaction between metabolism and cell structure 

would help in setting up a rationale for cellular design for attaining the desired functions. 

 

The complexity of muscle metabolism is explored by developing suitable reaction-diffusion 

models of the transport and reaction dynamics of phosphorous metabolites involved in various 

metabolic pathways in the muscle.  This descriptive mathematical model would account for the 
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spatial distribution of the various enzyme catalyzed reactions and provide quantitative 

understanding of the effects of diffusion on the chemical reaction processes under various 

physiological conditions.  Understanding intracellular muscle energetics is a basic problem of 

optimizing ATP supply to meet ATP demands in these reaction processes.  This metabolic study 

is designed to address the basic question ‘what are the rules that govern cell size, and in specific, 

muscle cell size in organisms?’.  One of the possible factors governing cell size and organization 

is proposed to be the metabolic processes.  Rationally, if the metabolic process is one of the 

reasons, then the model would help us quantitatively determine which one of the following is the 

controlling step –  

a) intracellular metabolite diffusion, and/or 

b) rates of ATP utilization corresponding to the contractile machinery of the cell, and/or 

c) rates of ATP production at the mitochondrial surface co-related directly to rate of oxygen 

delivery from the surrounding capillaries. 

 

7.2 Current Modeling Objectives 

 

 

Muscle cells or fibers typically fall in the size range of 10-100 µm along the shortest axis, 

usually the diameter (Johnson et al., 2004).  Fibers with dimension exceeding this range are 

believed to compromise aerobic metabolism, which relies upon oxygen flux across cell 

membranes, as well as ATP-equivalent flux from mitochondria to sites of ATP demand 

(Mainwood and Rakusan, 1982).  This is because fiber diameters greater than 100 µm would 

lead to a dramatic decrease in surface area to volume ratio (SA:V) and thus increase the time 

required for the metabolites to diffuse radially across the cell.  Cell size maximum is thus 

believed to be modulated by the balance between aerobic ATP demand and oxygen supply to 

mitochondria.  This can be justified by observations that aerobic muscle fibers have smaller 

diameter than anaerobic fibers in animal groups as diverse as mammals, fishes and crustaceans 

(Tse et al., 1983). 

 

Most work on aerobic energy metabolism in skeletal muscle in the literature has focused only on 

the catalytic aspects of cellular enzyme systems rather than the diffusive flux of metabolites from 
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the site of formation to its site of utilization and the other way around.  This simplification has 

been based on the reasoning that cellular dimensions tend to be modest (muscle fibers ranging 

from 10-100 µm in diameter; Russell et al., 2000), and intracellular diffusion distances between 

mitochondria are typically very short in both aerobic and anaerobic skeletal muscle (e.g., Tyler 

and Sidell, 1984) fibers.  Diffusion is assumed to be rapid, relative to the catalytic capacity of the 

mitochondria, leading to a global chemical equilibrium across the cell.  This approach has been 

effectively employed to describe some of the major processes of energy metabolism in muscle, 

and a variety of kinetic models have been developed that closely match experimental data (e.g., 

Meyer, 1988; Jeneson et al., 1995; Vicini and Kushmerick, 2000; Korzeniewski, 2003; Beard, 

2005).     

 

While the value of purely kinetic analysis of muscle energy metabolism is readily apparent, the 

conditions under which diffusive flux may be important in either limiting the net rate of aerobic 

process or influencing the evolution of metabolic pathways and further governing cellular 

designs to keep up with the muscle functions are unresolved (Suarez, 2003).  The principal 

hurdle to understanding the role of diffusion and metabolic organization in muscle cells is that 

most metabolic measurements are weighted-averages over an entire cell or tissue, making it 

difficult to observe localized intracellular events or concentration gradients.  However, several 

studies that have employed reaction-diffusion mathematical modeling of aerobic metabolism 

have found theoretical evidence for concentration gradients in high-energy phosphate molecules 

during steady-state contraction in muscle (Mainwood and Rakusan, 1982; Meyer et al. 1984; 

Hubley et al. 1997; Aliev and Saks, 1997; Kemp et al., 1998; Vendelin et al., 2000; Saks et al., 

2003).   

 

In an effort to understand the role of diffusion and metabolic organization on the control of 

metabolism, we have been examining metabolic processes in an extremely anaerobic crustacean 

muscle model system.  It is often difficult to test vertebrate models because the time scales of 

diffusive and catalytic processes seem to coincide (Meyer et al., 1984).  In contrast, the SA:V 

and diffusion challenges imposed by large muscle cells of crustaceans are dramatic and should 

result in easily discernible metabolic consequences and compensatory responses.  Further, these 
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giant cells can be easily manipulated and this has made them a classic model system for 

metabolic physiologists. 

 

The crustacean blue crab, Callinectes Sapidus have two distinct kinds of muscle fibers - small, 

dark region of aerobic fibers called ‘dark fibers’ that power sustainable swimming, surrounded 

by a large mass of anaerobic fibers called ‘white fibers’ used for burst swimming (Tse et al., 

1983).  The white muscle fibers of large crustaceans like the blue crab have wide range of cell 

sizes during their life time.  The juvenile blue crabs likely have muscle cells less than 60 µm in 

diameter while the adult crustacean fiber diameters exceed 600 µm (Boyle et al., 2003).  This 

means that during development these juvenile fibers cross and exceed the usual limit on cell 

dimensions while preserving muscle function (Boyle et al., 2003).  Moreover, the distribution of 

mitochondria in these white fibers has been also seen to change dramatically with increase in cell 

size during the life time of the crab.  In small (juvenile) anaerobic white fibers mitochondria are 

uniformly distributed throughout the cell, whereas in large (adult) fibers the mitochondria are 

largely clustered at the sarcolemmal membrane forming an oxidative cylinder at the periphery of 

the cell (Boyle et al. 2003).  Thus, the average distance between mitochondria in small fibers is 

several microns, while in large fibers there may be hundreds of microns between mitochondrial 

clusters.  Aerobic dark fibers, however, have similar cell sizes as the small white fibers and 

uniformly distributed mitochondria throughout the cell.  The average distance between two 

mitochondria in these fibers are also few microns. 

 

In the muscle fibers of blue crabs the factors potentially limiting the rate of diffusive flux are not 

only the large metabolite diffusion distances but also the presence of various intracellular 

barriers.  Experiments by various groups (Kinsey et al., 1999; De Graaf et al., 2001; Kinsey and 

Moerland, 2002) have shown that these barriers could lead to a time-dependent reduction in 

metabolite diffusion coefficients for substrate movements in the direction perpendicular to the 

fiber axis (D⊥).  Over shorter diffusion distances characteristic of dark aerobic fibers and small 

anaerobic white fibers, the D⊥ is shown to be about 2-fold higher than D⊥ for the long diffusion 

distances that typify large white fibers.  While the burst contraction functions of these muscles 

are not impacted by intracellular diffusion rates, the ‘aerobic recovery’ process may be 

compromised by the extreme fiber size in adult animals.  This is again because of slower rate of 



 184

diffusion compared to the rate of metabolite demand.  Furthermore, several size-dependent 

differences in the recovery of the anaerobic white fibers following burst contraction have been 

observed experimentally.  Small anaerobic fibers are seen to accumulate lactate and modestly 

deplete glycogen during burst contractions, and both of these metabolites recover to resting 

levels relatively quickly following an exercise bout (Boyle et al., 2003; Johnson et al., 2004).  

The large anaerobic fibers similarly accumulate lactate and deplete glycogen during contraction, 

but following exercise they continue to accumulate large amounts of lactate and further deplete 

glycogen.  Full aerobic recovery of metabolic species in these large white fibers of adult blue 

crabs requires several hours (Milligan et al., 1989; Henry et al., 1994; Boyle et al., 2003; 

Johnson et al., 2004).   

 

The present study develops descriptive mathematical models to improve the quantitative 

understanding of the effects of diffusion on the chemical reaction processes occurring in this 

muscle model system.  These models would include not only the appropriate chemical reactions, 

but also the specific spatial distribution of the reaction sites and other barriers or factors that 

affect mass transport.  The proposed reaction-diffusion model would provide insight into the 

roles of cellular structure in the energy metabolism of muscle.  This model could be easily 

extended to different muscle fiber types, with varying size, ATP demand and ATP supply, to 

study the metabolic consequences on cellular design. 

 

Our general hypothesis is that increasing fiber size would induce in metabolic organization and 

dramatically impact the rates of metabolic processes.  Experiments conducted in Dr S. T. 

Kinsey’s laboratory (University of North Carolina, Wilmington) have aimed at detecting the 

effects of fiber size in blue crabs.  Their focus is primarily the white anaerobic fibers because of 

the unique feature of these muscle fibers to grow during development by increasing their size 

and reorganizing the distribution of their mitochondria.  In their previous work, Kinsey and 

coworkers have hypothesized that in large (adult) white fibers anaerobic metabolism is recruited 

following burst contractions in order to accelerate certain key phases of metabolite recovery that 

would otherwise be overly slow due to intracellular diffusion constraints (Kinsey and Moerland, 

2002; Boyle et al., 2003; Johnson et al., 2004).  In the present study we test this hypothesis by 

examining the fiber size-dependence of the rate of post-contractile arginine phosphate (AP) 
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resynthesis, by comparing the available experimental data to our mathematical model of aerobic 

metabolism in these fibers.  The focus is to develop a suitable reaction-diffusion model of this 

model system (blue crab) that can be used to interpret the measured metabolic parameters in the 

light of cellular organization and diffusional constraints.  From our study we propose probable 

model modifications to be able to explain the experimental results better.     

 

7.3 Model Formulation 

 

 

7.3.1 Model Schematic 

 

The schematic of a muscle fiber cross-section is shown in Figure 7.1 (A).  The myofibrils or the 

contractile units of muscles are packed within the muscle fiber.  Few myofibrils are surrounded 

by a tubular system, the sarcoplasmic reticulum (SR), which stores the calcium ions that regulate 

muscle contraction.  Rows of mitochondria are clustered near the SR and myofibrils, ready to 

supply ATP needed to fuel the contractile process.  A plasma membrane, the sarcolemma, 

surrounds the muscle fiber. 

 

As a first estimate for model development, it is reasonable to obtain a representative one 

dimensional radial profile of the fiber as shown in Figure 7.1 (B).  The contraction of muscle 

requires consumption of ATP.  ATP is formed in the mitochondria by oxidative phosphorylation.  

Once produced, ATP must diffuse across the cell cytoplasm to the myofibril, the functional unit 

of muscle contraction.  The model developed for this study is a simplified 1-dimensional system 

that extends from the surface of a mitochondrion to a distance λ/2, equal to half of the mean free 

spacing between mitochondria or between clusters of mitochondria around a myofibril.    

 

The proposed reaction-diffusion mathematical model is used to predict the concentration of five 

key muscle metabolites: Adenosine Triphosphate (ATP), Adenosine Diphosphate (ADP), 

Arginine Phosphate (AP), Arginine (Arg) and inorganic phosphate (Pi).  These metabolic species 

participate in several reactions that take place in the myofibrilar region or in the mitochondria.   
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Figure 7. 1 (A) Cross-sectional view of a muscle fiber cell.  Packs of myofibrils, mitochondria, Sarcoplasmic 

Reticulum and the cell membrane or Sarcolemma also shown. (B) One-dimensional schematic of the intra-

mitochondrial spacing as used for model development.  

 

 

Muscle fiber types and Mitochondrial Distribution for model geometry determination - 

Crustacean muscle cells have been extensively used in membrane physiology experiments 

because of their large size which allows for its easy manipulation during experiments.   The 

current model studies crustacean small white muscle fibers (100 µm diameter), large white fibers 

(600 µm in diameter) and dark aerobic muscle fibers (36 µm in diameter).  The mitochondria-

rich dark levator fibers of the blue crab grow to similar sizes as the white large fibers.  However, 

they maintain their aerobic function by subdividing into smaller functional units of diameter 

nearly 36 µm.  The mitochondria are distributed exclusively around the periphery of these 

aerobic fiber subdivisions.  Neither size of subdivisions nor the mitochondrial fractional areas in 

each subdivision change during development of the animal from juvenile to adult crabs (Johnson 

et al., 2004).  So for our model for dark fibers we use dimensions of the functional subunits 

rather than the entire dark fiber with the mitochondrial separation of 36 µm.  The white levator 

anaerobic fibers grow in size and have two distinct size classes of fibers as mentioned before.  

The small white fibers are nearly 100 µm in diameter with uniform mitochondrial distribution 

and modeled using mean mitochondrial spacing of 5.46 µm.  The large white fibers are nearly 
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600 µm in diameter with mitochondria distributed at periphery of the fiber and thus the relative 

diffusion distance between mitochondria clusters is 600 µm.  This is discussed further in detain 

in the ‘Parameter Estimation’ section of the text.         

 

7.3.2 Model Reactions 

 

Reaction in this system occurs at two distinct sites – the myofibrils and is called the ‘bulk 

reaction’ and the mitochondria called the ‘surface reaction’.  Reactions catalyzed by Arginine 

Kinase (AK), myosin ATPase (Myo) and basal ATPase (Basal) are assumed to occur 

homogenously throughout the domain 0 ≤ x ≤ λ/2, where x is distance from the mitochondrial 

surface (x =0) to half of the mean free spacing between mitochondria (x =λ/2), and are the ‘bulk 

reactions’ (Figure 7.2).  As the mitochondria in the muscle fiber are small relative to the size of 

the myofibril and are present adjacent to SR, the surface jump boundary condition (Whitaker, 

1992) at the boundary (x = 0) includes the mitochondrial oxidative phosphorylation reaction as 

‘surface reaction’ (Figure 7.2).  All the bulk and surface reaction rates are written in the direction 

of ATP production.  These reactions are described in detail below. 

 

The energy source for muscle contraction utilized by the myofibrils is derived from the following 

reaction, 

 

PiADPATP
ATPaseMyo

+→
sin

 

 

This myosin ATPase reaction is an irreversible ATP consuming process during muscle 

contraction.  The reaction is modeled using Michaelis-Menten kinetics (Pate and Cooke, 1985; 

Hubley et al., 1997).  The rate of reaction is given as, 

 

ATPmmyo

ATPmmyomyo

ATP
CK

CV
R

+
⋅

−=  

(7.1) 
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where Vmmyo is the Vmax, Kmmyo is the apparent Michaelis constant.  Determination of these 

parameters is discussed in the ‘Parameter Estimation’ section of the text.  The rate of ADP and 

Pi formation in this step is given as, 

 

myo

Pi

myo

ADP

myo

ATP RRR −=−=  

(7.2) 

 

The enzyme, Arginine Kinase (AK), catalyzes the reversible transfer of a phosphate group from 

arginine phosphate to ADP to form ATP, 

 

 Arg  ATP ADP  AP +⇔+
AK

 

 

This reaction is called the Arginine Kinase reaction and is comparable to the Creatine Kinase 

reaction in vertebrates (Sweeny, 1994).  During burst activities the AK reaction acts as a spatial 

and temporal buffer for ATP, by generating ATP by breaking down phosphagens, the high 

energy storage compounds of the muscle.  Thus, intracellular AP serves as the initial fuel used 

during burst contraction in crustacean muscles.  The model assumes AK to be uniformly 

distributed in the cytoplasm (Ellington, 2001) comprising of the space in between the 

mitochondria’s in our system.  This reaction proceeds by a rapid equilibrium, random 

mechanism and is modeled according to the kinetic expression of Smith and Morrison (1969), 
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(7.3) 

 

where VmAKfor and VmAKrev are Vmax values in the forward (ATP formation) and reverse direction, 

respectively, Km values are Michaelis constants for ternary complex formation, Ki values are free 



 189

enzyme-substrate complex dissociation constants, KI values are dissociation constants relevant to 

the formation of dead-end complexes.  All rate constants are taken from study of Smith and 

Morrison (1969).  Again the rates of AP consumption and ATP and Arg species formation are 

given as, 

 

AK

Arg

AK

AP

AK

ADP

AK

ATP RRRR =−=−= . 

(7.4) 

 

Even when the muscle is not exercising there exist a low rate of ATP consumption which is 

accounted for by incorporating the ‘basal ATPase reaction’.  This rate in the bulk phase is 

modeled using a Michaelis-Menten equation and is given as, 

 

ATPmbas

ATPmbasbasal

ATP
CK

CV
R

+
⋅

−=  

(7.5) 

 

where Vmbas and Kmbas are the Vmax and saturation constants of the basal reaction rate.  This 

reaction is added as one of the bulk reactions occurring in the myofibrilar region in order to 

maintain the concentrations of metabolites (Ci) constant over time in inactive fibers and to 

promote a return to the initial steady state following metabolic recovery.  Details of the model 

parameter determination are discussed in the ‘Parameter Estimation’ section of the text.  The 

reaction rate for species ADP and Pi involved in this reaction is written as, 

 

basal

Pi

basal

ADP

basal

ATP RRR −=−=  

(7.6) 
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Figure 7. 2 One-dimensional schematic of the intra-mitochondrial spacing as used for model development 

showing the various reactions occurring in the myofibrilar region (bulk) and in the mitochondria (surface).  

Arginine Kinase (AK) mediates ATP-equivalent flux in Crustacean muscle.  (A) Reactions and diffusion 

distance in small white fibers of juvenile crabs (B) Reaction and diffusion distances over hundreds of microns 

in large white fibers of adult crab.  Anaerobic glycogenolysis is believed to occur following contraction in 

large fibers, presumably to speed up phases of the recovery process. [Johnson et al., 2004]   

 

 

The rate of ATP formation in the mitochondria is modeled as a first order activation by ADP, 

making a reasonable assumption that concentrations of oxidizable substrates (pyruvate derived 

from glycogen) are present at saturated levels in the muscle.  The reaction is given as, 

 

ATPPiADP
OxPhos

→+  

 

There are significant controversies in literature about the exact mechanism of activation of this 

mitochondrial oxidative phosphorylation (OxPhos) reaction and control is likely distributed 
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among several metabolites (Jeneson et al., 1996) other than ADP.  However, as a first step, a 

more established ADP activated reaction rate (Meyer, 1984; 1988) kinetics expression is used.  

More complex kinetics would be incorporated as the model progresses.  The mitochondrial 

reaction follows Michaelis-Menten kinetics and is given as, 

 

ADPmmito

ADPmmitoOxPhos

ATP
CK

CV
R

+
⋅

=  

(7.7) 

 

where Vmmito is the maximal velocity (Vmax) of the boundary reaction, and Kmmito is the Michaelis 

constant for ADP for the boundary reaction.  The simplified approach assumes this reaction to be 

functioning near Vmmito during most of recovery rate.  This process assumes that oxygen is not 

limiting to oxidative phosphorylation, which we believe likely occurs in vivo, and is certainly 

valid using isolated muscle fibers and a high prevailing pO2 (Crow and Kushmerick, 1982).  The 

reaction rate of species ADP and Pi is given as, 

 

OxPhos

Pi

OxPhos

ADP

OxPhos

ATP RRR −=−=  

(7.8) 

 

During burst contractions, crustacean muscle metabolism is similar to that of vertebrates.  

Crustacean muscle initially relies on phosphagen (AP) hydrolysis and, once the AP pool is 

depleted, anaerobic glycogenolysis provides ATP for additional contractions.  The 

glycogenolytically powered contractions are slower and less forceful than the initial phosphagen 

powered bursts (Baldwin et al., 1999; Boyle et al., 2003) which is consistent with the fact that in 

crustacean muscle glycolytic enzyme maximal activities are lower than that of myosin ATPase 

(Zammit and Newsholme, 1976).  Lactate production, therefore, only occurs during prolonged 

series of burst contractions. 
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7.3.3 Model Equations 

 

The diffusion and reaction of ATP, ADP, AP, arginine (Arg), and Pi are modeled in the one-

dimensional system.  Again the geometry extends from the surface of a mitochondrion (x = 0) to 

a distance (x = λ/2) equal to half of the mean free spacing between mitochondria or between 

clusters of mitochondria.  Reactions catalyzed by AK, myosin ATPase and basal ATPase are 

assumed to occur homogenously throughout the domain 0 ≤ x ≤ λ/2.  The species continuity 

equations for the metabolites (i) is written as, 

 

i
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∂
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(7.9) 

 

where Ci and Di are the concentrations and diffusion coefficients of species i (ATP, ADP, AP, 

Arg, Pi) respectively and t is time.  Ri denotes the sum of the reaction rates in the inter-

mitochondrial bulk space (myofibril) in which species i participates and includes the basal ATP 

consumption, myosin ATPase and AK. The concentration terms in the continuity equation are 

non-dimensionalized using a fixed concentration of 1mM; and the spatial term using the value of 

half mean free spacing between mitochondria’s.   The time and space varying concentrations of 

each metabolite can be written as, 
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where L is equal to λ\2 and x (=X/L) is the non-dimensionalized spatial co-ordinate.  ui (=Ci/ Co) 

is the non-dimensionalized metabolite concentrations of species i and Co of 1 mM (or 1*10
-15

 

mmole/µm
3
) is used to non-dimensionalize the concentrations.  

 

Frequency and Duty Cycle 

The myosin ATPase reaction is responsible for the consumption of ATP during muscle 

contractile activities.  For each simulation, myosin ATPase was activated for 7 s at a frequency 

of 5 Hz and 50% duty to simulate burst contraction and was then deactivated during the post-

contractile recovery period
♣

.   

 

Boundary Conditions 

The boundary conditions at the mitochondrial surface at x = 0 balances the fluxes of ATP, ADP 

and Pi into the bulk phase with the rates of formation and consumption at the mitochondria.  No 

fluxes for metabolites AP, Arg and Pi into the bulk phase occur, as they do not participate in the 

mitochondrial reaction.  The boundary conditions are written as,   
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Because of symmetry no-flux boundary conditions for all the species are written at x = λ/2  

 

                                                 
♣

 Frequency is expressed in Hz (cycle/s) and is characterized by its on/off cycle.  The frequency of activation can be 

varied through the duty cycle.  Duty cycle is defined as the ratio of muscle contraction time to the total cycle time 

(work + rest time).  The frequency, duty cycle, and time of contraction of the model were varied to fit the 

experimental data provided by Dr. S. T. Kinsey. 
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Initial Conditions 

The initial conditions for the five metabolite species are written as,  

 

ui = ui
0
    ∀ 0 ≤ x ≤ λ/2   t = 0 

(7.13) 

 

where ui
0
 is the non-dimensional concentration of species i at time t = 0, and is given as  Ci/Ci

0
 , 

and Ci
0
 is the resting concentration of species i  (see Appendix G).   

 

Averaged Equations 

While the solution of the model generate concentrations of metabolites varying in time and 

space, the experimental measurements from Dr Kinsey’s lab obtained concentration values that 

were spatially averaged across the fiber.  In order to compare the model results to the 

experimental data, some of the model data was mathematically volume averaged over the 

domain from x = 0 to x=λ/2: 
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Since the time for the contraction phase is very small compared to the recovery phase, 

experimentally only the approximate averaged concentration to which AP is depleted can be 

obtained.  The duration of myosin ATPase activation was adjusted so that the decrease in [AP] 

was comparable to that in the observed data.  For the white small fibers and large fibers the 

duration of activation used in the model is 5.7s and 4s respectively.   
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7.3.4 Parameter Estimation 

 

Model input parameters are detailed in Appendix G.  

Resting Metabolite Concentration - 

The resting metabolite concentrations for crustacean anaerobic locomotor fibers are obtained 

from a combination of the data in Head and Baldwin (1986), 
31

P-NMR spectra collected by 

Kinsey and Ellington (1996), and calculations using the AK equilibrium constant (Teague and 

Dobson, 1999).  The resting metabolite concentrations are same in the small and large fibers 

(Baldwin et al., 1999).   

 

Diffusion coefficients -  

The diffusion coefficients, Di values for each metabolite are based on direct measurements from 

crustacean anaerobic fibers and calculations from the relationship of molecular mass and 

diffusion coefficient in these fibers (Kinsey and Moerland, 2002).  The Di used for the short 

diffusion distances characteristic of small white fibers are higher than that for the long distances 

found in large white fibers due to the time dependence of radial diffusion in muscle (Kinsey et 

al. 1999; Kinsey and Moerland, 2002).  

   

Averaged Mitochondrial spacing -  

For white small anaerobic fibers the intracellular diffusion distance (λ/2) is estimated from its 

correlation to the total mitochondrial fractional area and the mean area/mitochondrion.   

 

π
λ 1

./.

/
2/ ⋅=

areacellareamito

mitoarea
. 

 

The total mitochondrial fractional area for small fibers is computed as 0.026 and for large fibers 

is 0.017 (recalculated from data collected by Boyle et al. 2003).  The mean area/mitochondrion, 

is 0.608 µm
2
 (Boyle et al., 2003).  For the white large fibers and dark fibers with peripherally 

distributed mitochondria, λ/2 is half the fiber diameter. 
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Kinetic rate parameters -  

For white anaerobic fibers the Vmmito values were estimated from rates of aerobic post-contractile 

phosphagen resynthesis from white muscle fibers with a mitochondrial density comparable to 

blue crab light levator muscle
♦
.  This approach was necessary due to an absence of suitable 

measurements of maximal oxygen consumption or ATP production rates from isolated 

crustacean anaerobic fibers, and because estimates of Vmmito derived from mammalian studies 

(corrected for differences in mitochondrial density) yielded AP recovery rates that were several-

fold higher than observed in the literature or presented herein.  This is consistent with the fact 

that PCr recovery rates in mammalian muscle (e.g., Vicini and Kushmerick, 2000) are >10-fold 

higher than rates in crustacean muscle (Thébault et al., 1987).  The rates of mitochondrial ATP 

production per cell volume were converted to rates of flux per mitochondrial surface area using a 

mitochondrial SA:V of 6.81 and the mitochondrial fractional area data for small and large levator 

fibers (Boyle et al. 2003).  A Kmmito value for ADP of 20 µM was used, which is within the range 

for fast skeletal muscle (Meyer et al., 1984).   

 

AK dissociation constants are obtained from Smith and Morrison (1969), VmAKrev is taken from 

Zammitt and Newsholme (1976) and VmAKfor is calculated from the AK Haldane relationship 

from Smith and Morrison (1969) using an equilibrium constant for AK of 39 (Teague and 

Dobson, 1999).  Values for Vmmyo and Kmmyo for the Myosin ATPase reaction are the same as in 

Hubley et al. (1997) for white and red fibers corresponding to our white and dark fibers 

respectively.  The basal reaction rate constants are computed by equating the basal rate of ATP 

consumption and the AK reaction rate of ATP production in the bulk with the oxidative 

phosphorylation reaction rate for ATP production in the mitochondrial surface.  Kmbas is initially 

set to 10
-15

 mol/µm
3
, and Vmbas is determined so that the concentrations of the metabolites do not 

change over time. 

 

 

                                                 
♦ Data from small prawn anaerobic tail muscle that would not be expected to have large fibers (Thébault et al., 

1987) and from isolated dogfish white muscle, which resynthesizes phosphocreatine (PCr) using only aerobic 

metabolism and has a mitochondrial fractional area of about 0.01 (Curtin et al. 1997) yielded very similar estimates 

for Vmmito. 
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7.3.5 Solution Procedure 

 

The system of species continuity equations (equation 7.10) are solved by coupling with the 

boundary conditions (equation 7.11 and 7.12) and initial condition (equation 7.13) for the 

different fiber types – white small, white large, and dark fibers, using a commercially available 

finite element computer code FEMLAB (Comsol, Inc., Burlington, MA).   The model 

calculations yield temporally and spatially resolved concentrations of AP, Arg, ATP, ADP, and 

Pi during a contraction-recovery cycle.  The concentration of AP is spatially averaged as shown 

in equation 7.14 to compare with experimental data on white muscle fiber. 

 

The solution of the partial differential equation using FEMLAB needed careful meshing and 

appropriate use of time steps.  The number of mesh points used for the simulations was 120.  

Further mesh points close to the mitochondrial boundary were refined to prevent steep changes 

around this region.  During the period of contraction, with a frequency of 5 Hz and 50 % duty, 

the muscle contracted every 0.1 s and contraction was turned off for the next 0.1 s, during the 

entire contractile phase of 7s.  Time steps much smaller than 0.1s (e.g. 0.01s) had to be chosen to 

capture this effect.  However, during muscle recovery period a larger time step was chosen. The 

mesh dimensions and time steps used in computations are mentioned below each of the result 

figures.  

 

7.4 Results 

 

 

Experimental results from Dr Kinsey’s studies on white small (juvenile) and large (adult) 

anaerobic fibers and dark aerobic fibers of blue crab have shown that stimulation of these fibers 

gave rise to similar burst exercise responses.  The frequency of swimming leg movement is seen 

to be higher in the juvenile animals, while the duration of swimming was greater in the adult 

animals.  During exercise all these fibers had similar AP depletion (Figure 7.3; Kinsey et al., 

2005), glycogen depletion (Boyle et al., 2003), and lactate accumulation (Johnson et al., 2004) 

indicating that the metabolic effects of exercise on the muscle are independent of fiber size.  To 

note here the experimental results reported are for only the white anaerobic fibers as these fibers 

are ‘metabolically giant’.   
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The time course of relative changes in AP and Pi concentrations in the small and large white 

fibers are obtained using NMR (Figure 7.3, Dr Kinsey’s laboratory).  It can be seen that a rapid 

depletion of AP and corresponding increase in Pi is observed in the small and large fibers during 

contraction, and this is followed by a slow recovery that is complete in about 60 min.  Despite 

the large differences in body mass and fiber size between the small and large animals, the rate of 

recovery of AP (Figure 7.3) is seen to be essentially the same for both muscle fiber groups. 

 

In this study, the reaction-diffusion mathematical model is used to understand this size-

independent post-contractile AP resynthesis in the white anaerobic fibers of blue crab.  The 

similarity in the rate of recovery of AP is presumably due to anaerobic contributions to recovery 

in the large fibers (Boyle et al., 2003; Johnson et al., 2004).  The mathematical model allows 

testing whether the need for this anaerobic recovery in the large fibers arises from diffusive 

constraints on the metabolites in these fibers.  The space and time resolved concentrations of the 

high energy metabolites simulated in the aerobic model for the small and large white fibers are 

shown in Figure 7.4 and Figure 7.5, respectively.  As can be seen from the model computations, 

the rate of recovery is somewhat faster in the small than in the large fibers, and there are no 

significant intracellular gradients in metabolite concentrations in the small fiber, as expected 

(Figure 7.4).  However, in large fibers, there are mild gradients of metabolites, indicating that the 

diffusive flux is fast relative to the mitochondrial ATP production (Figure 7.5).  This result 

seems to be inconsistent with the fact that intracellular diffusive flux is not limiting (no 

significant spatial gradients) aerobic metabolism in the large fibers during post-contractile 

recovery, even though metabolite diffusion in these fibers are modeled over a large diffusion 

distance of 300 µm.  Thus, it is believed that the relatively small differences in gradients between 

the small and large fibers result most exclusively due to differences in mitochondrial density.   

 

The model results are volume-averaged over the spatial co-ordinate to obtain a comparison 

between the experimentally observed and simulated recovery rates of AP.  The observed and 

modeled AP recovery data for the small white fibers are shown in Figure 7.6(A).  The model 

seems to explain the experimental data very well.  However, for large fibers, as seen in Figure 

7.6 (B), the model simulated aerobic metabolism alone does not seem to account for the 
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relatively high observed rate of post-contractile AP recovery.  Thus, anaerobic metabolism 

appears to be a necessity to account for AP recovery in these large fibers. 

 

So now that we know that the recovery in the large fibers is not substantially constrained by 

diffusion, then how close are these fibers to being limited by intracellular diffusive flux?  Figure 

7.7 shows the effect of incremental increase in the rate of the mitochondrial boundary reaction.  

It can be seen that doubling the Vmmito leads to the formation of only slightly steeper 

concentration gradients, which means that there is a minimally increased control of aerobic flux 

by intracellular diffusion.  However, the concentration gradients grow more substantial as Vmmito 

is increased further by 100 times.   

 

 

 

 
 

Figure 7. 3 Relative changes in AP and Pi concentrations in small (filled symbols) and large (open symbols) 

light levator fibers during a contraction-recovery cycle.  [N ≥ 5 for every point]. (Experimental results from 

Dr Kinsey’s Laboratory, University of North Carolina, Wilmington) 
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Figure 7. 4 Model output for small light levator fibers using parameters in Appendix G assuming a uniform 

distribution of mitochondria.  The temporally- and spatially-resolved concentrations of AP, Pi, ATP and ADP 

during a contraction-recovery cycle are shown (Arg is not shown, but its concentration changes in reciprocal 

fashion to that of AP).  [Vmmtio = 1.9e-17 mmoles/micron
2
.s: 5 Hz frequency with 50% duty, 7s Stimulation, 

Mesh points: 120 pts, Time Step- 0:0.1:7, 8:1:99, 100:100:8000s] 
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Figure 7. 5 Model output for large light levator fibers using parameters in Appendix G assuming only 

subsarcolemmal mitochondria.  The temporally- and spatially-resolved concentrations of AP, Pi, ATP and 

ADP during a contraction-recovery cycle are shown (Arg is not shown, but its concentration changes in 

reciprocal fashion to that of AP).  Arrows indicate the mild spatial gradients seen in the concentration 3-

dimensional profiles.  [Vmmtio = 1.67e-15 mmoles/micron
2
.s: 5 Hz frequency with 50% duty, 7s Stimulation, 

Mesh points: 120 pts, Time Step - 0:0.1:7, 8:1:99, 100:100:8000s]  
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Figure 7. 6 Measured AP recovery (symbols) compared to the volume averaged model of AP recovery (solid 

line) in small (top) and large (bottom) fibers.  The measured AP data has been normalized to a resting 

concentration of 34.3 mM to coincide with that of the model.  In the model, the myosin ATPase was activated 

long enough to cause a decrease in AP that was comparable to the measured data.  The dotted line indicates 

the resting concentration. [Small: Vmmtio = 1.9e-17 mmoles/micron
2
.s, 5 Hz frequency with 50% duty, 5.7s 

Stimulation; Large: Vmmtio = 1.67e-15 mmoles/micron
2
.s, 5 Hz frequency with 50% duty, 4s Stimulation] 
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It is clear that the metabolic recovery rate is directly proportional to the Vmmito.  It is also seen 

(Figure 7.7) that only when unrealistically high rates of Vmmito are used the steeper concentration 

gradients are observed, indicating that diffusion is limiting the rate of recovery in these muscle 

cells.  As can be seen from the averaged plots the mitochondrial reaction rate used in the model 

fits the data well (Figure 7.6) and is considerably below the reaction rate which would lead to 

substantial diffusion limitations to aerobic flux in large fibers (Figure 7.7).    

 

In the model computations for large white fibers the mitochondria were assumed to be 

distributed in the periphery of the fiber (subsarcolemmal).  In order to assess the impact of this 

reorganization of mitochondria on muscle function as the animal grows from juvenile to adult, 

we also ran our model for uniform distribution of mitochondria in these fibers similar to that seen 

in small white fibers from juvenile crabs.  The average λ/2 value was computed by using a 

similar relationship between the mitochondrial fractional area and mean area/mitochondrion and 

obtained to be 3.4 µm.  This value is slightly higher from that obtained from small fibers (see 

Appendix G) but nearly two orders of magnitude less than that used for subsarcolemmal 

distribution used in the large fibers.  Despite the large difference in diffusion distances of 

metabolites, the rate of metabolic recovery, assuming a uniform distribution of mitochondria in 

large fibers, was almost identical to that shown in Figure 7.5 (slightly higher), and no 

concentration gradients were observed (data not shown).  So this result is consistent with the fact 

that there exists very limited control of metabolic flux by intracellular diffusion. 

 

The model also computes the concentration profiles of metabolites in the dark aerobic fibers of 

the blue crab as shown in Figure 7.8.  These fibers being aerobic rely on the supply of ATP by 

oxidative phosphorylation at the mitochondrial surface, and sustain long time burst exercise 

contractions.  The model is run for a stimulation phase of 30s at 1 Hz frequency and 50% duty 

cycle.  Mitochondrial clusters at the periphery of the segments of dark fibers seem to give rise to 

significant ATP production rates which are higher than the rates of diffusive flux.  This can be 

observed as spatial gradients seen in the 3-dimensional concentration plots of ATP, ADP, and 

AP.  After exercise burst, these dark fibers follow aerobic recovery.  As can be seen from the 

recovery rates, the metabolites recover in less than 4 minutes, as compared to more than 100 

minutes in the white anaerobic fibers.   
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Thus the principal finding of this study includes -  

1. Model predicted rate of aerobic metabolism is insufficient to account for the relatively high 

rate of metabolite recovery in the large fibers, which is consistent with the hypothesis that 

anaerobic metabolism contributes to AP recovery to a greater extent. 

2. Intracellular diffusive flux do not appear to limit metabolic recovery in large fibers, despite 

the fact that diffusion occurs over hundreds of microns.  The fiber seems to have aerobic 

capacity that is considerably below the magnitude that would lead to substantial diffusion 

limitations (Figure 7.7). 

3. Complete metabolite recovery in aerobic dark fibers occurs in a few minutes. 

 

7.5 Discussion 

 

 

In the previous work by Kinsey and coworkers they have discussed the fiber size-dependence of 

post-exercise glycogen depletion (Boyle et al., 2003) and lactate production (Johnson et al., 

2004) in crustacean muscle and have attributed this observed pattern to (a) long intracellular 

diffusion distances and/or (b) low SA:V of the large levator anaerobic fibers.  While all these 

studies have shown that the post-contractile recovery is accelerated by anaerobic metabolism, the 

present study to our knowledge is the first quantitative demonstration in crustacean muscle of a 

metabolic recovery process (AP resynthesis) that is faster in large fibers as a result of anaerobic 

contributions.  The model is used in light of experimental observations to explain the changes in 

metabolic capacity and organization associated with increasing cell size. 
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Figure 7. 7 The effect of increasing the rate of mitochondrial ATP production in large fibers on the temporal 

and spatial profiles of AP (left panels) and ATP (right panels) concentration.  All parameters are the same as 

in Figure 7.5, except that the Vmmito has been increased over the value used in Figure 7.5 by 2-fold (A), 10-fold 

and (B), and 100-fold (C).  [Vmmtio = 1.67e-15 mmoles/micron
2
.s: 5 Hz frequency with 50% duty, 7s 

Stimulation, Mesh points: 120 pts, Time Step - 0:0.1:7, 8:1:99, 100:100:8000s]  
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Figure 7. 8 Model output for dark levator fibers using parameters in Appendix G.  The temporally- and 

spatially-resolved concentrations of AP, Pi, ATP and ADP during a contraction-recovery cycle are shown 

(Arg is not shown, but its concentration changes in reciprocal fashion to that of AP).  Mild spatial gradients 

are seen in the concentration 3-dimensional profiles.  [Vmmtio = 4.315e-14 mmoles/micron
2
.s: 1 Hz frequency 

with 50% duty, 30s Stimulation, Mesh points: 120 pts, Time Step - 0:0.01:30, 31:1:99, 100:50:600s]  

 

 

The patterns of metabolite recovery reported previously in the literature (Boyle et al., 2003; 

Johnson et al., 2004) and herein are clearly related to fiber size.  Experimental studies have 

shown that AP and Arg, the key diffusing species (Ellington and Kinsey, 1998), can traverse the 

distance λ/2 in small fibers in less than 30 ms, while needing 16,000 times longer (near 8 min) to 

cover the distance modeled for large fibers (Kinsey and Moerland, 2002).  Therefore, it was 

surprising that our model results did not indicate a limitation of aerobic flux by intracellular 

metabolite diffusion.  So from the model findings, it is apparent that kinetic expressions alone 

(no diffusion component) would have been nearly sufficient to simulate differences between the 

small and large fibers (Figures 7.4 and 7.5).  This result of ours is in odds with the previous 

reaction-diffusion mathematical model studies in burst anaerobic muscle which have shown 
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substantial concentration gradients for high energy phosphate metabolites.  Hubley et al., 1997 

have shown spatial gradients for PCr and free energy of ATP hydrolysis in fish white muscle 

during contraction.  Mainwood and Rakusan, 1982 have likewise found dramatic concentration 

gradients for AP and free energy of ATP hydrolysis in blue crab light levator muscle.  However, 

to be noted here, both these models assume high rates of steady state ATP demand and perfect 

buffering of high-energy phosphate concentrations at the mitochondrial membrane.  This means 

that the rate of ATP supply at the mitochondria is always relatively high compared to the rates of 

diffusive flux.  In contrast, the present model uses a simple kinetic expression for the 

mitochondrial boundary reaction producing ATP at reasonable rates (instead of constant supply 

at the mitochondrial surface).  Furthermore, no additional ATP demand (as in previous models) 

was applied during the recovery beyond the thermodynamic drive to restore the resting steady-

state metabolite concentrations (Basal ATPase rate).   

 

However, it could also be argued here that we have underestimated the Vmmito and post-

contractile ATP demand, and hence have eventually misjudged the effects of diffusion.  It should 

be noted, however, that the model results for AP recovery paralleled our observations in the 

small fibers (Figure 7.6), which rely exclusively on aerobic metabolism for recovery (Boyle et 

al., 2003; Johnson et al., 2004), and the low Vmmito values were consistent with observations that 

complete aerobic recovery from exercise in blue crabs occurs over many hours (Booth and 

McMahon, 1985; Milligan et al., 1989; Henry et al., 1994; Boyle et al. 2003; Johnson et al., 

2004).  Our results on varying Vmmito (Figure 7.7) are also consistent with the generalized 

analysis of diffusion limitation described by Weisz (1973), which relates the observed rate of the 

catalytic process to rates of diffusive flux.  Applying this approach to the present case we can 

conclude that even if Vmmito and post-contractile ATPase rates were underestimated, the observed 

rate of AP recovery is simply too slow to be limited by diffusive flux (Weisz, 1973).        

 

As can be seen the findings in the present study are somewhat paradoxical.  If it is assumed that a 

relatively rapid post-contractile recovery in burst muscle is beneficial, which is apparently the 

case since large fibers use anaerobic metabolism to speed up recovery, and if intracellular 

diffusive flux does not limit recovery, then why do the large fibers not simply increase the 

mitochondrial density to accelerate recovery rather than relying on anaerobic processes that put 
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them further in oxygen debt?  It is clear from our model study on varying the maximal reaction 

rate (Vmmtio) of the mitochondria (Figure 7.7), that doubling the mitochondrial density would lead 

to a near doubling of recovery rate, with only mild limitations by diffusion.  So, we propose that 

in blue crabs the low SA:V associated with large fiber size is more important in limiting aerobic 

metabolism and/or driving metabolic design than is intracellular metabolite diffusion.  The most 

compelling evidence in support of this argument is the dramatic shift in the distribution of 

mitochondria towards the periphery of the fiber as the light levator muscle fibers grow (Boyle et 

al., 2003) into large ones.  This distributional change places more mitochondria at the 

sarcolemmal membrane near the source of O2 at the expense of increased intracellular diffusion 

distances.  In our model analysis, there was a very slight advantage associated with a uniform, 

instead of subsarcolemmal, distribution of mitochondria in the large fibers (data not shown). 

However, the fact that the developmental shift in mitochondria occurs anyway indicating that O2 

flux (which was not included in the model) drives mitochondrial distribution more than 

intracellular diffusive flux.  This view has been suggested previously to explain mitochondrial 

clustering at the sarcolemma in non-giant mammalian (Mainwood and Rakusan, 1982) and 

crustacean muscle (Stokes and Josephson, 1992).   

 

In addition to the above argument, the partial pressure of oxygen (PO2) in crustacean blood 

(including blue crabs) is low (Gannon and Wheatly, 1995; Forgue et al., 2001) which leads to 

shallow PO2 gradients across the sarcolemma.  These shallow oxygen gradients when coupled to 

low SA:V of large fibers would lead to low rates of O2 flux into the muscle fiber.  Additionally, 

the lack of myoglobin (Mb) in the light levator muscle amplifies this effect, since Mb-less fibers 

require a higher extracellular PO2 to support a given rate of O2 consumption compared to 

muscles with Mb (Groebe and Thews, 1990).  To add here, recent observations in isolated 

Xenopus laevis skeletal muscle fibers, which are also relatively large and lack Mb, that low 

intracellular PO2 limits the rate of NAD(P)H oxidation by the electron transport system during 

steady-state contraction (Hogan et al., 2004).  Further, the modeled differences between the 

recovery rate in small and large fibers are modest, due to the relatively small differences in their 

oxidative potentials (Figure 7.4 and 7.5; Appendix G note the Vmmito), but the measured 

differences in post-contractile lactate production among these size classes are dramatic; far 

greater than would be necessary to accelerate AP resynthesis by the relatively small amount 
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indicated in Figure 7.6 (Johnson et al. 2004).  If fiber SA:V limits aerobic metabolism then the 

size-dependence of aerobic recovery may be much more substantial  than shown in Figures 7.4, 

7.5 and 7.6, which would explain the strong size-dependence of post-contractile lactate 

production.       

 

What then are the potential advantages associated with large muscle fibers?  Rome and 

Lindsbelt, 1998 have proposed that burst contractile muscle composed of relatively few large 

fibers may yield a greater percentage of total muscle volume that is devoted to myofibrils, and 

therefore improve contractile force, compared to muscle with a much larger number of small 

fibers.  Johnston et al. (2003; 2004) have also proposed that in certain cold-water fish groups 

white muscle fibers attain a size that is just below that which would be diffusion-limited in order 

to minimize sarcolemmal surface area over which ionic gradients must be maintained, thus 

lowering metabolic rates.  A similar argument could be made for blue crab anaerobic fibers, with 

the additional consideration that a low mitochondrial content may also constitute an energy 

saving strategy to avoid the costs of mitochondrial biogenesis and the maintenance of 

electrochemical gradients across the inner membrane.  Forgue et al. (2001) have made 

complimentary arguments that the low blood PO2 in crustaceans limits resting metabolic rate to 

reduce costs during periods of inactivity.  These proposed energy saving measures are linked; if 

the capacity to produce ATP is strategically lowered, then there is no negative consequence to 

the low SA:V associated with large fibers.  Similarly, if SA:V is lowered, then there is no further 

consequence to lowering aerobic capacity, since O2 flux would limit mitochondrial respiration in 

large fibers anyways.  It should be noted that even the small fibers in the present study are 

relatively large and have a low mitochondrial content compared to anaerobic fibers from most 

animals, thus benefiting from this putative energy saving strategy.   

 

The implication of the above is that the benefits of a rapid aerobic recovery following a burst 

contraction are outweighed by long-term energetic savings.  Blue crabs have large chelipeds and 

highly effective defensive behavior, and they also have the capacity to rapidly bury themselves 

to avoid predators.  These characteristics may obviate the need for additional high-force 

contractions following an initial bout of burst swimming, and may explain why the juvenile 

crabs do not also employ anaerobic metabolism to accelerate recovery.  Large fibers might be 
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particularly important in reducing metabolic costs in cases where anaerobic muscle constitutes a 

large fraction of the total body mass and is used infrequently, but must maintain a polarized 

sarcolemma at all times.  Examples may include lobster abdominal muscle that is used for tail-

flip escape maneuvers, or fish white muscle in species that infrequently undergo burst 

swimming.  At present, however, the benefits of large fiber size, if any, in crustaceans and other 

groups are not known. 

 

7.6 Future Recommendations  

 

 

This present work primarily deals with improving on the previous work by Hubley et al., 1997, 

utilizing a simple geometrical arrangement of the region surrounding a single mitochondrion, 

and incorporating the detailed description of reactions at the mitochondrial surface and in the 

sarcoplasmic region near the mitochondrion (the myofibril).  This model is used to explain the 

possible reasons for recruitment of anaerobic recovery processes in large adult white fibers of 

blue crab.  The most important conclusion is that intracellular diffusive flux of metabolites even 

over the modeled large diffusion distances does not seem to restrict high energy phosphate 

recovery during post-exercise period.  This is because of the low ATP demand-ATP supply 

region this muscle fiber is in.  So we propose the possible reason for anaerobic recovery in these 

large fibers is attributed to the mitochondrial distribution and low SA:V of the muscle fiber 

limiting oxygen flux into the fiber, and consequently ATP production by oxidative 

phosphorylation. 

 

Therefore, in order to quantify the experimental results for the large white fibers the simple 

mitochondria ADP dependent ATP production needs to be modified.  We think this can be done 

by incorporating the effects of extracellular O2 concentration along with the ADP dependence on 

mitochondrial ATP production reaction.  An oxygen flux balance accounting for its diffusion and 

consumption by various enzyme catalyzed processes in the Tri-carboxylic acid (TCA) cycle and 

Electron Transport Chain (ETC) in the mitochondria, as proposed actively in the works of 

Korzeniewski, 2003 and Beard, 2005 needs to be obtained. 
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The subsequent models would utilize the reaction kinetics from these developed models, but 

should incorporate the entire muscle fiber (with a one-dimensional radial coordinate system) 

including a multi-domain (myofibril) system with sarcoplasmic reticulum (SR) barriers.  This SR 

has been believed to impose considerable restrictions to metabolite transport (Kinsey and 

Moerland, 2002).  This could be further extended to a 2-dimensional system (axial and radial) to 

account for anisotropic diffusion, mitochondrial distribution, and variation of SR barrier 

properties.   

 

While in the current study with anaerobic blue crab giant muscle fibers, intracellular diffusive 

fluxes of high-energy phosphate metabolites did not appear to exert substantial control over the 

rate of aerobic metabolism, there may be several other cell types where diffusion is limiting.  

These cell types likely include systems with relatively high rates of ATP production and distant 

sites of ATP utilization, such as in some muscle fibers with a higher aerobic capacity than 

examined here (Meyer et al. 1984; Stokes and Josephson, 1992; Vendelin et al., 2000; Saks et 

al., 2003; Suarez, 2003) or in the flagellum of spermatozoa, which has been the subject of many 

reaction-diffusion analyses (e.g., Nevo and Rikmenspoel, 1969; Tombes and Shapiro, 1985; Van 

Dorsten et al., 1997; Ellington and Kinsey, 1998).  Even in cases where neither intracellular 

metabolite diffusion nor sarcolemmal O2 flux limit aerobic metabolism per se, the interaction 

between the two, i.e. the diffusive processes and ATP demand, has certainly shaped the evolution 

of cellular design.  The model developed in this study can be extended for these cell types.  

Moreover, it is believed that in certain muscle types the presence of myoglobin, a small 

intracellular oxygen-binding heme protein, accelerates oxygen delivery to the mitochondria.  The 

current model could be extended for these muscle types to incorporate measurements of 

myoglobin and oxygen consumption rate in the muscle fibers.  This can be done by using the 

facilitated diffusion mechanism and using suitable boundary conditions and reaction kinetics 

proposed before for CK in skeletal muscle systems (Meyer et al., 1984). 

 

Summarizing, the complete reaction-diffusion analysis provides insight into the role of cellular 

structure in energy metabolism of muscle.  Practical motivations of this project come from the 

interest in utilizing the model for quantitative evaluation of metabolic pathways and regulatory 

mechanisms under normal and abnormal condition of the muscle, and in turn, offer a logical 
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basis for assessing the progress of disease processes, thus evaluating possible treatments.  To be 

also noted here, the model approach developed has broader impact and significance, as it 

provides a general applicable framework that could be extended for the analysis of complex 

spatial and temporal process in other cells and tissues.     
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CHAPTER 8 

 

 

SUMMARY 

 

 

 

 

Ex vivo engineering of living tissue is a rapidly developing area with vast potential to impact 

significantly a wide-range of biomedical applications (Martin et al., 2004).  Bioreactor cultures 

have been shown to be essential for improving the functional properties of these tissue 

engineered constructs.  However, the major obstacles to the generation of functional tissues in 

these reactors for wide-spread clinical use is the limited understanding of the regulatory role of 

specific physicochemical culture parameters on tissue development.  Not only is the cellular 

environment within and around the constructs ill defined, in addition, the complex cellular 

responses to this environment are not fully understood.  In this context, computational methods 

can serve as a valuable tool to facilitate better understanding of the micro and macro 

environmental changes of biochemical factors as well as reveal the fundamental mechanisms of 

cell function in a 3-dimensional environment in culture units. This study has the potential to 

improve tissue engineered functional constructs.  

 

In this context, in the present work, a general modeling framework for hematopoietic cell tissue 

engineering, human mesenchymal stem cell tissue engineering and cartilage tissue engineering 

was proposed and subsequently elaborated.  The aim of this approach was to provide an 

integration of interactions between the biochemical factors and the cell behavior, which are 

believed to affect each other in a mutual iterative way.  This chapter summarizes the findings of 

all the previous chapters of the work presented in this dissertation. 
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Chapters 2, 3 and 4 of this dissertation focused on the study of hematopoietic cell expansion in 

bioreactors.  Chapter 2 provided a detailed biological background towards the understanding of 

hematopoiesis process, discussed the various culture systems currently being used for expansion 

of these types of cells, and also the various environmental factors that have been found to be 

important for these cell types in different culture systems.  In the model study developed in this 

work ex vivo cell expansion in perfusion reactor systems are considered.  The later part of 

Chapter 2 summarized the various mathematical models that have been developed in literature to 

describe hematopoietic process in vivo in the bone marrow and ex vivo in bioreactors.  The 

mathematical approach used for the study of cell growth characteristics and environmental 

changes in this dissertation, is the method of volume averaging.  This approach has been 

carefully outlined with a simple example at the end of Chapter 2. 

 

Chapter 3 discusses the dynamic mathematical model developed in the present study to 

understand the expansion of granulocyte progenitors in the hematopoietic process in a 3-

dimensional perfusion bioreactor system.  Molar balances describing oxygen consumption and 

cell growth were written to describe the physiological process in the reactor.  The method of 

volume averaging (Whitaker, 1999) was used to compute the effective reaction and transport 

terms accounting for the effects of the local 3-dimensional geometry.  All the model parameters 

were obtained from literature.  Spatial and temporal variations of oxygen concentration and 

granulocyte progenitor cell density are obtained in the bioreactor.  The maximum cell volume 

fraction reached when oxygen is depleted in the cell layer at 15 days is nearly 0.63, 

corresponding to a cell density of 2.25 *10
8
 cells/ml.  The model results illustrate the effects of 

oxygen mass transfer restrictions in the matrix to the growth of these cells.  Moreover, the 

substrate inhibition kinetics used for cell growth has been shown to lead to complex effects with 

respect to the roles of oxygen concentration and its supply by convection and diffusion on cell 

growth.  

 

Additionally, the model provides quantitative estimates of the oxygen consumption for growth 

and for metabolism, and this information on oxygen consumption and cell growth was further 

used to estimate the roles of key bioreactor design parameters, including flow rates and liquid 

depth, and to optimize the reactor performance.  Variation in the height of the liquid layer above 
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the cell matrix where nutrient supply is introduced affected the relative and absolute amounts of 

oxygen supply by hydrodynamic flow and by diffusion across a gas permeable FEP membrane.  

However, due to high mass transfer restrictions of the FEP membrane, the delivery of oxygen by 

hydrodynamic flow always exceeded that by membrane transport, thus leading to larger growth 

rates at higher liquid layer heights.  A maximum growth rate occurs at a specific flow rate.  

Lower residence times, i.e. higher flow rates, supplied larger amounts of oxygen to the cell layer 

of the bioreactor.  Larger amounts of the oxygen were then available for cell growth and 

metabolic consumption, which produced a larger number of progenitor cells.  However, an 

optimal growth rate at a specific flow rate was found whereby at lower flows the growth was 

transport limited by oxygen supply and at higher flows the growth was limited by kinetic 

inhibition.  The spatial pattern of delivery by convection was also found to play a significant role 

increasing the rate of cell growth.  The model results clearly indicate that variation of the oxygen 

concentration in the inlet feed with time may lead to enhanced cell growth.   

 

In order to rationally optimize ex vivo expansion of hematopoietic cells, there was a need to 

improve our understanding of the complex dynamics of hematopoiesis by incorporating other 

important reactor input biochemical factors such as glucose and lactate.  Additionally, as 

mentioned these culture systems are different from other culture systems in terms of multiple 

cells coexisting in the culture at the same time which makes it essential to go beyond modeling a 

single cell type.  The model incorporates the effects of local 3-dimensional geometry by deriving 

the effective diffusivities and effective rate expressions used for solving the effect of oxygen 

delivery to the cells.  However, the volume averaged expressions do not include the effect of the 

local 3-dimensional cell-cell interactions and ECM environment, an important factor in the 3-

dimensional structure that affects cell proliferation.   

 

The model in Chapter 3 was improved in Chapter 4 by addition of glucose and lactate to the 

material balances along with oxygen.  The idea of co-existence of more than one cell type in 

culture was studied by the use of a simple two cell-group model.  The cell types were separated 

on the basis of large differences in their metabolic lactate production rates.  The dynamic model 

was developed for a well-mixed system.  This was done by spatially averaging the 

concentrations of the various reacting species in the reactor components of the perfusion 
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bioreactor.  The model showed that reactor systems can sustain larger cell growth rates, while 

maintaining the glucose and oxygen concentration high enough and also facilitate efficient 

removal of lactate. 

 

As a first step towards model improvement, the dynamic model developed in Chapter 4 should 

be extended to study growth and metabolism in the perfusion reactor (Chapter 3) by 

incorporating the effects of mass transport due to diffusion and flow and computing the spatial 

distribution of the nutrients and products.  The model also needs to be improved to account for 

the existence of a complete lineage of hematopoietic cells or multi-lineages in cultures.  The 

major obstacle to this model extension is the limited availability of experimental data on 

metabolic and growth kinetics for cells in this hematopoietic process.  Moreover, in future for the 

determination of improved delivery of nutrients and better mass transfer conditions in the 

perfusion bioreactor system, the model needs to be analyzed for different matrix geometries to 

study the formers effect on cell growth.  Finally, in order to completely model a 3-dimensional 

system, analyzing the variation in diffusion coefficient of metabolites due to restrictions and/or 

consumption due to cell growth is not enough.  It is essential to account for the local 3-

dimensional cell-cell and cell-ECM interactions.  In order to address the effects of cell-ECM 

interactions a systematic model describing ECM production by the cells and change in the cell 

microenvironment due to presence of ECM needs to be developed.  To do so the current model 

hints at the necessity of systematic quantitative information of ECM formation by various cell 

types in culture.  The information obtained from experiments, used suitably in these models 

would help to improve our understanding of hematopoietic cell growth in ex vivo culture 

systems.    

 

In a broader sense, the developed transport-reaction model framework is very general, and could 

be easily applied for any cell type, by using suitable kinetic parameters, to describe cell growth, 

nutrient depletion and product formation in 2-dimensional or 3-dimensional ex vivo culture 

systems.  This was illustrated in the study in Chapter 5.  In this study, experimental results on 

hMSC metabolism and growth were available for cell cultures in 3-dimensional PET matrices 

placed in two different culture units – the perfusion bioreactor system and the static culture 

system.  Mathematical models describing the transport and consumption of oxygen for 
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experimentally determined cell growth were written for the two culture systems.  The model 

simulations on spatial and temporal oxygen distribution were used to address the role of oxygen 

distribution on cell growth and metabolic processes.  Thus, this combination of model and 

experimental result analysis in our study demonstrates the effects of perfusion conditions on 

intrinsic cellular events and the significant role of perfusion culture environment to sustain the 

development of engineered tissue constructs.   

 

The next major application of mathematical modeling in tissue engineering was illustrated by 

studying the development of cartilage constructs in reactors described in Chapter 6 of this 

dissertation.  The limited repair capacity of the articular cartilage along with its simple tissue 

structure, and available experimental data enabled the development of a detailed structured 

computational model for this tissue engineering application.  The study developed a dynamic 

mathematical model of cartilage tissue formation in a hollow fiber bioreactor unit and compared 

the model results with available experimental data obtained by in situ NMR experiments 

(reported in the work of Potter et al., 1998).  In this approach, the volume averaging method was 

combined with elements of a moving boundary approach in order to account for the radial 

growth of cells from the surface of the hollow fibers.  Model simulations of cell and extracellular 

matrix formation as well as changes in the NMR spin-lattice relaxation time constant and water 

diffusion coefficient with time were compared to experimental results in hollow fiber bioreactor 

over four weeks of culture.  Although several of the model parameters were fit to the 

experimental data, the model trends showed good agreement with the data.  A model sensitivity 

analysis was performed to indicate the important key parameters effecting cell behavior in the 

reactor.  The model was successfully utilized to establish relationships between the 

environmental factors, such as nutrients, within and around the constructs to the processes 

occurring at the cellular level, such as chondrocyte cell maturation, proliferation and ECM 

synthesis.   

 

These tissue engineering model development applications have considered the cellular metabolic 

and growth processes in terms of net kinetic expressions linked to changes in macroscopic 

environmental parameters.  In order to understand and incorporate a complete model framework 

understanding of processes at the cellular level is necessary.  To do so, muscle cell was chosen to 
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study metabolic processes in terms of production, transport, conversion and utilization of 

metabolite species.  It is known that in a muscle cell many cellular compartments, chemical 

species, enzymes, biochemical reactions, metabolic pathways, and control mechanisms interact 

with each other simultaneously to maintain homeostasis of the most important energy delivering 

metabolite, ATP.  The proposed reaction-diffusion model of phosphorous metabolites involved 

in various metabolic pathways in the muscle described in Chapter 7 was shown to provide a 

suitable framework for the study of diffusion, reaction and metabolic organization on the control 

of muscle metabolism.  In this study of crustacean blue crabs the model results suggest that in the 

interaction between mitochondrial ATP production rates, ATP consumption rates and diffusion 

distances yield a system that is not particularly close to being limited by intracellular metabolite 

diffusion. We concluded that the fiber SA:V and oxygen flux exert more control than 

intracellular diffusive flux over the developmental changes in metabolic organization and 

metabolic fluxes that characterize these muscles.  This metabolic study is intended to answer the 

basic questions on the role of metabolite spatial and temporal distribution due to transport and 

reaction on cell structure, and vice versa, and the current model is a first step towards this overall 

goal.   
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APPENDIX A: LIST OF PARAMETERS USED IN CHAPTER 3 

 

 

 

 

Cellular parameters 
Cell diameter = 10 µm (Chow et. al., 2001) 

Specific cell volume, Vg = 2.8*10
-9

 cm
3
/cell  

[Chow et al., 2001] 

 

 Metabolic parameters: 
Specific oxygen uptake rate, Qmm = 4.5*10

-14
 mol/cell/hr = 1.25*10

-17
 mol/cell/s  

Dimensionless oxygen consumption rate, Qm = Qm/(Vg*Co) = 0.021158 1/s 

Km = 1.055*10
-8

 mol/cm
3 

  
[Chow et al., 2001] 

 

Growth parameters: 
 kk = 1.264*10

-11
 mol/cm

3
.s 

 K1 = 2.78*10
-15

 (mol/cm
3
)

2 

 
KI = 5.1*10

5
 cm

3
/mol 

 p = kk/Co = 5.9905*10
-5

 

 q = K1/Co
2
 = 0.062442 

 r = 1/(KI*Co) = 9.2928 (Heaven et. al. 2000) 

 Yield coefficient, Y = mass of cells produced/ mass of oxygen consumed = 0.45 

  [Bailey et al. 1986] 

 

Initial cell seeding density, do = 2*10
4
 cells/ml 

 

Substrate parameters 
Effective oxygen permeability = 3.20*10

-14
 mol/cm/s/mm Hg  

Henry’s coefficient for oxygen, kh = 0.95 atm.L/mmol 

Oxygen diffusion coefficient in medium (liquid layer), Dβ  = 3.29*10
-5

 cm
2
/s  

Oxygen diffusion coefficient in the matrix (cell layer), Dγ = 1.59*10
-5

 cm
2
/s 

[Chow et al., 2001] 
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Averaging volume parameters 
Radius of the averaging volume, R = 50 µm 

Mass transfer coefficient at the interface of the cell and liquid region in the  

averaging volume, P = 0.004 cm/s 

α = (Dγ/L P) = 3.18 

Equilibrium coefficient, Keq  = 1 

k = (Keq Dγ/Dβ) = 0.48328 

[Galban et al. 1999] 

 

Reactor Parameters 
Matrix thickness, 2l = 0.12 cm 

Liquid layer thickness, T =0.6 cm 

Reactor Length, L = 10 cm 

Reactor Width, w = 2.5 cm 

 

Membrane characteristics 

FEP membrane 

Thickness = 25 µm 

Length = 10 cm 

Membrane permeability (Perm) = 1.343 *10
-5

 cm/s 
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APPENDIX B: LIST OF PARAMETERS USED IN CHAPTER 4 
 

 

 

 

Reactor Parameters 
 

Tissue Culture Flask System – 
Number of tissue culture system = N = 24 

Volume of liquid layer in one tissue flask, Vc1 = 2 cm
3
 

Total Volume of liquid layer, Vl = N * 2 cm
3
 = 48 cm

3
 

Matrix Diameter, dia = 1.4 cm 

Matrix thickness, l = 0.1 cm 

Total Cross-sectional Area of cell layer, A = N*(22/7)*(dia/2)
2
 

Liquid layer thickness, T = Vl / A = 1.299 cm 

Volume of cell layer, Vc = l*A 

Flow Rate, F = 0 

Average velocity, vavg = 0 

 

 

Well-mixed Reactor -  
Matrix thickness, 2l = 0.12 cm 

Liquid layer thickness, T =0.6 cm 

Reactor Length, L = 10 cm 

Reactor Width, w = 2.5 cm 

Cross-sectional Area of flow, A = L*w  

Volume of cell layer, Vc = l*L*w 

Volume of other containers used in experiments = Vreservoir + Vcell-collector 

=100/2+350/2 cm
3
 

Volume of liquid layer, Vl = T*L*w + Vreservoir + Vcell-collector 

Residence time of flow, t = 3600s  

Flow Rate, F = Vl/ t 

Average velocity, vavg = F/A 
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Mass Transfer Coefficients for transport of oxygen, glucose and 

lactate across the liquid layer to the cell layer 
 

Oxygen diffusivity in the liquid layer, Dlo =3.29e-5 cm
2
/s 

Glucose diffusivity in the liquid layer, Dlglu =0.6e-05 cm
2
/s 

Lactate diffusivity in the liquid layer, Dllac =1.45e-05 cm
2
/s 

 

Tissue Culture Flask System – 
Oxygen, kmo = Dlo/T  

Glucose, kmglu = Dlglu/T 

Lactate, kmlac = Dllac/T 

 

Well-mixed Reactor -  
Oxygen, kmo = 1.165*(Dlo

(2/3)
)*(vavg/(L*T))

(1/3)
  

Glucose, kmglu = Dlglu/T 

Lactate, kmlac = Dllac/T 

 

Membrane characteristics 
FEP membrane 

Thickness = 25 µm 

Length = 10 cm 

Membrane permeability (kmem) = 1.343 *10
-5

 cm/s 

 

Initial Concentrations 
Oxygen concentration used for non-dimensionalizing, Co = 2.10*10

-7
 mmol/cm

3
  

         [Oxygen concentration in equilibrium with 20% gas phase oxygen] 

 

Tissue Culture Flask System – 
Initial lactate concentration, Clac

o
 = 2.36*10

-8
 mol/cm

3
  

[Equivalent to 2.125 mg/l; MW = 90] 

Initial glucose concentration, Cglu
o
 = 2.822*10

-6
 mol/cm

3
  

[Equivalent to 0.95 g/l; MW = 180] 

Initial oxygen concentration, Co2
o
 = 0.25  

[Dissolved oxygen concentration in equilibrium with 5% gas phase oxygen]   

 

Well-mixed Reactor -  
Initial glucose concentration, Cglu

o
 = 5.07*10

-6
 mol/cm

3
  

[Equivalent to 0.913 g/l; MW = 90] 

Initial oxygen concentration, Co2
o
 = 0.25  

[Dissolved oxygen concentration in equilibrium with 5% gas phase oxygen]   

Initial lactate concentration, Clac
o
 = 2.822*10

-6
 mol/cm

3
  

[Equivalent to 0.0254 g/l; MW = 180] 
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These numbers (glucose and lactate) are also used to non-dimensionalized the respective 

concentrations in the reactor cell and liquid layers. 

 

Non-dimensional dissolved oxygen concentration supplied by the media by flow, Co2
in

 = 1  

[Dissolved oxygen concentration in equilibrium with 20% gas phase oxygen]   

 

Non-dimensional dissolved oxygen concentration in the gas phase, Co2
g
 = 1  

[Dissolved oxygen concentration in equilibrium with 20% gas phase oxygen]   

 

Cellular parameters 
Cell diameter = 10 µm (Chow et. al., 2001) 

Specific cell volume, Vg = 2.8*10
-9

 cm
3
/cell  

(Chow et al., 2001) 

 

Metabolic parameters -  
Aerobic Metabolism 

Specific oxygen uptake rate, Qmm = 4.5*10
-14

 mol/cell/hr = 1.25*10
-17

 mol/cell/s  

Dimensionless oxygen consumption rate, Qm = Qm/(Vg*Co) = 0.021158 1/s 

Km = 1.055*10
-8

 mol/cm
3 

  
(Chow et al., 2001) 

 
Anaerobic Metabolism 

 kglu = 0.022 1/h 

 Kglu = 0.028*10
-6

 mol/cm
3
 

 

Metabolic rate of progenitor cells (group 1), α = 8.06*10
2
 1/s  

Metabolic rate of post-progenitor cells (group 2), β = 7.52*10
-3

 1/s 

 [Computed by linear fit to experimental data shown in Table 4.2 from Yan et al., 2001] 

 

Growth parameters for cell group 1 
 Oxygen - 

 kk = 1.264*10
-11

 mol/cm
3
.s 

 K1 = 2.78*10
-15

 (mol/cm
3
)

2 

 
KI = 5.1*10

5
 cm

3
/mol 

 p = kk/Co = 5.9905*10
-5

 1/s 

 q = K1/Co
2
 = 0.062442 

 r = 1/(KI*Co) = 9.2928  

[Heaven et. al. 2000] 

 

 Glucose -  

 Ks = 0.89*10
-6

 mol/cm
3
 

 µm = 1.3 

 KP = 0.779*10
-6

 mol/cm
3
 

 Initial cell seeding number, do = 0.35*10
5
 cells 

Initial cell volume fraction, εγ1 = 3.27*10
-5

 



 224

Growth parameters for cell group 2 
 Differentiation rate coefficient of cell group 1 to cell group 2, φd

2
 = 4*10

-6
 1/s  

Initial cell number, do = 0.15*10
5
 cells 

Initial cell volume fraction, εγ2 = 1.44*10
-5

 

 

Yield Coefficients 
Ycell/o2 = mol of cells produced/ mol of oxygen consumed = 0.45 

 [Bailey et. al. 1986] 

 

Ylac/o2 = mol of lactate produced/mol of oxygen consumed = 1 

 [Collins et al., 1998] 

[At earlier stages of culture maximum number of progenitors present] 

 

Ylac/glu = mol of lactate produced/mol of glucose consumed = 1.4 

 [Heidemann et al., 1998] 

 

Yglu/o2 = mol of glucose consumed/mol of oxygen = Yglu/lac*Ylac/o*(Co2
o
/Cglu

o
)  

 

Ylac/cell = (0.65*100)*4.4*10
-12

 mol/cell  

Computed yield = [Ylac/cell / (Vg * Clac
o
)] = 7.08*10

2
 mol/mol / cell vol fraction 

 

Ycell/glu = 10*0.062*10
12

 cell/µmol  

Computed Yield = [(Ycell/glu * Vg * Cglu
o
)]  

 [RPMI 8226 cell, Truskey et al., 1990] 
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APPENDIX C: LIST OF PARAMETERS USED IN CHAPTER 5 

 

 

 

 

Cellular parameters 
Specific cell volume, Vg = 2.8*10

-9
 cm

3
/cell  

[Chow et. al., 2001] 

 

 Metabolic parameters 
    Static  

              Dimensionless specific oxygen consumption rate, Qm = 0.002588 1/s 

  [From experimental data reported in this paper] 

              Saturation constant, Km = 1.105265*10
-8

 mol/cm
3
 (= 0.05*Co) 

             [Peng and Palsson, 1996; Chow et al., 2001a] 

 Perfusion 

          Dimensionless specific oxygen consumption rate, Qm (1/s) 

= -3.6198E-16*t
2
 + 6.6040E-10*t + 2.3413E-03 

[From experimental data reported in this paper] 

Saturation constant, Km = 1.105265*10
-8

 mol/cm
3
 (= 0.05*Co) 

    [Peng and Palsson, 1996; Chow et al., 2001a] 

 

Growth parameters 
  Static 

 Cell growth rate, m = 3.87454*10
-7

 1/s 

 Initial cell volume fraction, εγo = 9.65*10
-3

 

[From experimental data reported in this paper] 

 

  Perfusion 

Cell growth rate, m = 1.18*10
-6

 1/s 

 Initial cell volume fraction, εγo = 1.53*10
-3

 

[From experimental data reported in this paper] 

 

Substrate parameters 
Henry’s coefficient for oxygen, kh = 0.95 atm.L/mmol 

Co = 2.10*10
-7

 mmol/cm
3
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[Oxygen concentration in equilibrium with 20% gas phase oxygen] 

Oxygen diffusion coefficient in medium (liquid layer), Dβ  = 3.29*10
-5

 cm
2
/s  

Oxygen diffusion coefficient through cells in the matrix (in cell layer), Dγ = 1.59*10
-5

 cm
2
/s 

[Chow et. al., 2001] 

 

Averaging volume parameters 
Radius of the averaging volume, R = 50 µm 

Mass transfer coefficient at the interface of the cell and liquid region in the averaging 

volume, P = 0.004 cm/s 

α = (Dγ/L P) = 3.18 

Equilibrium coefficient, Keq = 1 

k = (Keq Dγ/Dβ) = 0.48328 

[Pathi et. al., 2005] 

 

Reactor Parameters 
Static 

Matrix thickness, 2 l = 0.12 cm 

Liquid layer thickness, T =0.6 cm 

Reactor Length, L = 10 cm 

Reactor Width, w = 2.5 cm 

 

Perfusion 

Matrix thickness, 2 l = 0.12 cm 

Liquid layer thickness, T =0.6 cm 

Reactor Length, L = 10 cm 

Reactor Width, w = 2.5 cm 

Flow rate/ chamber = 0.1 ml/min = 1.67*10
-3

 cm
3
 /s 

Average velocity, vavg = 1.11*10
-3

 cm /s 

 

Membrane characteristics 

FEP membrane 

Thickness = 130 µm 

Length = 10 cm 

Membrane permeability (Perm) = 1.343 *10
-5

 cm/s 
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APPENDIX D: EXPERIMENTAL DATA [POTTER ET AL., 1998] 

USED FOR MODEL VALIDATION IN CHAPTER 6 
 

 

 

Week 0 1 2 3 4 

Wet Wt (mg)   241+/-6 311+/-7 328+/-3 

Dry Wt (mg)   37+/-2 62+/-5 70+/-4 

Water Content 

(%) 

  85+/-1 80+/-1 79+/-1 

Total Cell No. 

(10^6) 

30  75+/-4 92+/-5 88+/7 

Cell Area (µm
2
) 

4πRc
2
 

139.68  148 160 188 

Cell Radius (µm) 

Rc 

3.335  3.43 3.57 3.87 

Cell Volume 

(µm
3
) 

Vc=(4/3)πRc
3
 

155.3  169 190.5 242.66 

Cell Volume 

Fraction 

(εc=Vc/V) 

0.02123  0.0232154 0.0260953 0.0332368 

Total GAG (mg)   16.6+/-1.8 21.1+/-2.1 22.6+/-1.8 

Total Collagen 

(mg) 

  2.1+/-0.3 3.2+/-0.3 4.6+/-0.4 

Avg. MT  0.45+/-1 0.60+/-0.01 0.62+/-

0.002 

 

0.71+/-0.01 

 

Avg. T1 (s)  2.9+/-0.3 2.7+/-1 2.5+/-0.1 2.1+/-0.1 

Avg. T2 (ms)  60+/-4 48+/-2 38+/-2 35+/-5 

Avg. D  0.75 0.82 0.80 0.43 
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APPENDIX E: LIST OF PARAMETERS USED FOR MODEL 

DEVELOPMENT IN CHAPTER 6 
 

 

 

 

Reactor Parameters 
Flow rate = ~5ml/min – 14 ml/min (increased gradually in 10 days) 

 

Bioreactor Dimensions: 
Inner diameter, T = 4*10

-3
 m 

Height, H = 60*10
-3

 m 

Total Bioreactor Volume, BV = π*(T/2)
2
*H = 7.54*10

-7
 m

3 

 

Capillary Dimensions: 
Number of hollow/capillary fibers, fnum = 6 

Capillary Inner diameter, d0 = 330*10
-6

 m 

Capillary fiber wall thickness, wt0 = 150*10
-6

 m 

Capillary fiber radius, r0 = d0/2 + wt0 = 3.15*10
-4

 m 

Capillary fiber volume, fV = π*(r0)
2
*H = 1.87*10

-8
 m

3
 

Volume around a single fiber, BVf = BV/fnum = 1.26*10
-7

 m
3
 

Radius of the volume around single fiber, Tbf = (BVf/πH)
1/2

 = 8.18*10
-4

 m 

Volume available for tissue formation, BVtf = BVf- fV = 1.073*10
-7

 m
3
 

Radius of the available volume for cell growth, Tb = Tbf-r0 = 6.53*10
-4

 m 

 

Transport Parameters 
Water self diffusion coefficient, Dl = 2.25*10

-9
 m

2
/s 

Water diffusion coefficient in cellular phase, Dcw =Dl = 2.25*10
-9

 m
2
/s                                         

Oxygen diffusion coefficient in aqueous medium, DlOxy=3.29*10
-9

 m
2
/s                                         

[Horner et al., 1998; Chow et al, 2000] 

Oxygen diffusion coefficient through cells, DcOxy=1.50*10
-9

 m
2
/s 

[Chow et al, 2000; Obradovic, 2000] 

Equilibrium coefficient of water between the cell ‘c’ and the ECM ‘e’ phases of the averaging 

volume, Keq
w
 = 1 

Equilibrium coefficient of oxygen between the cell ‘c’ and the ECM ‘e’ phases of the averaging 

volume, Keq = oxygen solubility in lipids or membranes / oxygen solubility in water 

 = 4.387 [Chow et. al., 2001] 
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Averaging volume parameters 
Volume of averaging volume or unit cell, V  

= (BVtf*fnum)/Maximum cell number at 4 weeks) 

= 7.316 * 10
-15

 m
3
 

Radius of the averaging volume, R = 1.203 * 10
-5

 m 

Mass transfer coefficient at the interface of the cell and ECM phases in the averaging 

volume, P = 1*10
-5

 m/s  

[Galban and Locke, 1999] 

 

Cellular parameters 
Cell Metabolic parameters: 
Specific oxygen uptake rate, kc = 1.86*10

-2
 1/s  

[Obradovic et. al., 2000; ratio of Qmax /Km, the Michaelis-Menten parameters] 

Mass transfer coefficient, Km = 1*10
-3

 1/s
 

 

Cell Growth parameters: 
Overall cell Contois parameter, Kcont = 1.13*10

1
 

Overall cell growth coefficient, kg = 3.78 * 10
-7

 1/s 

Cell death coefficient, kcd = 1*10
-8

 1/s 

Initial cell seeding number, do = 3*10
7
 cells 

 

Cell proliferation parameters: 
Estimated cell mass at week 4, EstCellmass

4wk
  

  = Dry Wt. - (ECM+GAG) value at 4th week  

 = 0.07 - (0.0226 + 0.0046) g 

Maximum Available volume for cell growth, around a single fiber  

= ( ) HrTbf ⋅−⋅ 22 0π  

Maximum available volume for cell growth / Volume of an averaging volume 

= nmax (single fiber) 

= 
( )

3

22

4

03

R

rTbfH

⋅
−⋅⋅

 

Total number of averaging volumes, Total_n = nmax * fnum 

Total cell volume at week 4, Totalcellvol
4wk

 = [εc
4wk

]* (V * Total_n) 

Cell density, ρc = EstCellmass
4wk

 / Totalcellvol
4wk

   

 

Total Cell Mass production coefficients 
Overall Contois parameter, Kp = 3.045*10

7
/rhoc 

Cell mass formation coefficient, kp = 7.97143 * 10
-6

 1/s  

Total cell death coefficient, kpd = 1.2*10
-8

 1/s 

 

Cell ECM parameters: 
GAG – 

Specific fiber density = 0.54 cm
3
/g  
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[Baser et. al., 1998]  

Density of GAG fibers, ρf = 1.85185*10
6
 g/m

3
   

GAG production coefficient, kGAG = 2.52*10
-6

 1/s 

GAG saturation coefficient, εGAG
max  

   = 
VnTotalf ⋅⋅ _

 GAGmass4wk

ρ
= 0.019016 

Binding coefficient of water to GAG, Pg
w
 = (7/10)*9*10

-5
 

Binding coefficient of oxygen to GAG, Pg
o
 = (7/10)*4*10

-5
  

[Penke et. al., 1998; Letnam, 1951] 

 

 

COLLAGEN – 

Specific collagen density = 0.695 cm
3
/g  

[Baser et. al., 1998]  

Density of collagen, ρcol = 1.43885 * 10
6
 g/m

3
   

Overall ECM Collagen Saturation Constant, Kec = 4*10
7
 / ρcol 

ECM Collagen Production Coefficient, kem = 3.975*10
-6

 1/s 

Binding coefficient of water to collagen, Pcol
w
 = (3/10)*9*10

-5
 

Binding coefficient of oxygen to collagen, Pcol
o
 = (3/10)*4*10

-5
   

[Penke et. al., 1998; Letnam, 1951] 
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APPENDIX F: COMPUTAION OF AVERAGE RADII OF FREE 

SPACE FOR WATER DIFFUSION IN EX VIVO CARTILAGE 

CULTURE IN HFBR 
 

 

 

 

t = 10 ms 

Dl = 2.25 * 10
-9

 m
2
/s 

Water diffusion distance, tDlx ⋅= = 4.74*10
-6

 m = 4.74 µm 

 

Time: 0 s 

Cell volume per fiber – 

 Initial cell area = 139.68*10
-12

 m
2
 = 4πRc

2
 

 Radius of chondrocyte cell, Rc = 3.33*10
-6

 m 

 Volume of a single chondrocyte cell, Vc = (4/3)πRc
3
 = 154.74*10

-18
 m

3
 

 No. of cells = 30*10
6
 

Total volume occupied by cells, Vc
T
 = Vc*No. of cells = 4.64*10

-9
 m

3
 

 

Collagen volume per fiber – 

  Initial collagen volume fraction, εcol = 0.0001 = Vcol/V 

Vcol = 0.0001*(7.316*10
-15

 m
3
) = 7.316*10

-19
 m

3
 

Total volume occupied by collagen = Vcol
T
 = Vcol*No. of cells = 2.195*10

-11
 m

3
 

 

GAG volume per fiber – 

  Initial GAG volume fraction, εGAG = 0.0001 = VGAG/V 

VGAG = 0.0001*(7.316*10
-15

 m
3
) = 7.316*10

-19
 m

3
 

Total volume occupied by GAG = VGAG
T
 = VGAG*No. of cells = 2.195*10

-11
 m

3
 

 

Total available volume for tissue formation around a single fiber, V
T
  

= (BVf- fV)*fnum = 1.073*10
-7

 * 6 m
3
 

 

Volume of void phase, Vl = V
T
 – (Vc

T
 + Vcol

T
 + VGAG

T
) 

= (1.073*10
-7

 *6) – (4.64*10
-9

 + 2.915*10
-11

 + 2.915*10
-11

) ~ = 6.3912*10
-7

 m
3
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Representative volume of void phase, Vl
rep

 = (Vl / No. of cells) ~ = 2.13*10
-14

 m
3
 

 

Assuming spherical geometry, radii of free space available for water diffusion, Rfree-space  

                                         ~ = 1.719 * 10
-5 

m = 17.19 µm >> x (= 4.74 µm)  

 

Similarly calculations are done for free space radii from weeks 1 to 4 as shown below. 

Time 

(wk) 

No. of averaging volumes 

(N) 

Volume occupied by the tissue Vtissue 

= N*Volume of a single unit cell (V) 

1 5.24*10
7
 3.834*10

-7
 

2 7.10*10
7
 5.194*10

-7
 

3 8.45*10
7
 6.182*10

-7
 

4 9.29*10
7
 6.797*10

-7
 

 

Time 

(wk) 

Cell volume fraction 

εc 

Total Volume of cells (Vc
T
 = εc*N*V) 

(m
3
) 

1 5.24*10
7
 8.4531*10

-9
 

2 7.10*10
7
 1.2451*10

-8
 

3 8.45*10
7
 1.6908*10

-8
 

4 9.29*10
7
 2.1919*10

-8
 

 

Time 

(wk) 

Cell volume fraction 

εcol 

Total Volume of Collagen (Vcol
T
 = εcol*N*V) 

(m
3
) 

1 5.24*10
7
 2.5187*10

-10
 

2 7.10*10
7
 8.9343*10

-10
 

3 8.45*10
7
 1.9072*10

-10
 

4 9.29*10
7
 3.1400*10

-10
 

 

Time 

(wk) 

GAG volume fraction 

εGAG 

Total Volume of GAG (VGAG
T
 = εGAG*N*V) 

(m
3
) 

1 5.24*10
7
 2.9135*10

-9
 

2 7.10*10
7
 7.6877*10

-9
 

3 8.45*10
7
 1.2302*10

-8
 

4 9.29*10
7
 1.5700*10

-8
 

 

 

Time 

(wk) 

Volume of Void Phase 

Vl = Vtissue-(Vc
T 

+ Vcol
T 

+ VGAG
T
) 

(m
3
) 

Representative volume of 

void phase, Vl
rep

 = Vl/N 

(m
3
) 

Radii of free space 

available for water 

diffusion [Rfree-space] 

(µm) 

1 3.71782*10
-7

 7.09508*10
-15

 11.919 

2 4.98368*10
-7

 7.01927*10
-15

 11.876 

3 5.87083*10
-7

 6.94773*10
-15

 11.836 

4 6.38941*10
-7

 6.87773*10
-15

 11.796 
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APPENDIX G: LIST OF PARAMETERS USED IN CHAPTER 7  

 

 

 

 

Parameter type Parameter White 

Small Fiber 

White 

Large 

Fiber 

Dark Fiber Units 

Initial 

concentrations 
AP 34.3 34.3 15 mmoles/L 

 Arginine 0.47 0.47 1.58 mmoles/L 

 Pi 4.88 4.88 5 mmoles/L 

 ATP 8.6 8.6 3.7 mmoles/L 

 ADP 0.003 0.003 0.01 mmoles/L 

      
Diffusion DAP 2.20 x 10

-6 
1.00 x 10

-6 
1.00 x 10

-6
 cm

2
/s 

 DArg 2.79 x 10
-6 

1.27 x 10
-6 

1.27 x 10
-6

 cm
2
/s 

 DPi 3.56 x 10
-6 

1.62 x 10
-6 

1.62 x 10
-6

 cm
2
/s 

 DATP 1.54 x 10
-6 

0.70 x 10
-6 

0.70*10
-6

 cm
2
/s 

 DADP 1.75 x 10
-6 

0.79 x 10
-6 

0.79*10
-6

 cm
2
/s 

 λ/2 2.73 300 18 µm 

      
Mitochondrial 

boundary reaction 
Vmmito 1.9*10

-17
 1.67*10

-15
 4.315*10

-14
 mmoles/µm

2
/s 

 Kmmito 20 20 20 µmoles/L 

      
Basal ATPase Vmbas 11.75 11.75 182.7 µmoles/L/s 

 Kmbas 100 100 10 mmoles/L 

      
Arginine kinase 

reaction 
VmAKfor 611 611 331.8 mmoles/L/s 

 VmAKrev 39 39 21.15 mmoles/L/s 

 KATP 0.32 0.32 0.32 mmoles/L 

 KArg 0.75 0.75 0.75 mmoles/L 

 KAP 3.82 3.82 3.82 mmoles/L 

 KADP 0.40 0.40 0.40 mmoles/L 

 KiATP 0.34 0.34 0.34 mmoles/L 

 KiArg 0.81 0.81 0.81 mmoles/L 

 KiAP 0.26 0.26 0.26 mmoles/L 
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Parameter type Parameter White 

Small Fiber 

White 

Large 

Fiber 

Dark Fiber Units 

Arginine kinase 

reaction 
KiADP 0.024 0.024 0.024 mmoles/L 

 KIATP 2.43 2.43 2.43 mmoles/L 

 KIArg 3.45 3.45 3.45 mmoles/L 

      
Myosin ATPase Vmmyo 6.92 6.92 3.81 mmoles/L/s 

 Kmmyo 0.15 0.15 0.15 mmoles/L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 235

 

 

 

 

 

 

APPENDIX H: PERMISSION FROM JOHN WILEY & SONS, 

INC. 
 

 

 



 236

 

 

 

 

 

 

REFERENCES 
 

 

 

 

Abkowitz, J. L., Golinelli, D., Harrison, D. E., and Guttorp, P, “In vivo kinetics of murine 

hematopoietic stem cells”, Blood, Vol. 96(10), 3399 (2000) 

 

Aliev, M. K. and Saks, V., “Compartmentalized energy transfer in cardiomyocytes: use of 

mathematical modeling for analysis of in vivo regulation of respiration”,  Biophys. J., Vol. 73, 

428 (1997) 

 

Annabi, B., Lee, Y. T, Turcotte, S., Naud, E., Desrosiers, R. R., Champagne, M., Eliopoulos, N., 

Galipeau, J., and Beliveau, R., “Hypoxia promotes murine bone-marrow-derived stromal cell 

migration and tube formation”, Stem Cells, Vol. 21, 337 (2003) 

 

Baldwin, J., Gupta, A. and Iglesias, X., “Scaling of anaerobic energy metabolism during tail 

flipping behavior in the freshwater crayfish”, Cherax destructor. Mar. Freshwater Res., Vol. 

50,183 (1999) 

 

Baser P. J., R. Schneiderman, R. A. Bank, E. Wachtel, and A. Maroudas, “Mechanical Properties 

of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress 

Techniques”, Archives of Biochemistry, Vol. 351 (2), 207 (1998) 

 

Bailey, J. E., Ollis D. F., “Biochemical engineering fundamentals”, Second edition, 1986, 

McGraw-Hill Book Company 

 

Bailey, J., “Mathematical modeling and analysis in biochemical engineering: past 

accomplishments and future opportunities”, Biotechnology Progress, Vol. 14, 8 (1998) 

 

Beard, D. A., “Biophysical Model of Oxidative Phosphorylation”, PLOS Computational 

Biology, In Review (2005) 

 

Bhatia, M., Bonnet, D., Kapp, U., Wang J. C. Y., Murdoch, B., and Dick, J. E., “Quantitative 

analysis reveals expansion of human hematopoietic repopulation cells after short-term ex vivo 

culture”, J. Exp. Med., Vol. 186(4), 619 (1997) 

 

Booth, C. E. and McMahon, B. R., “Lactate dynamics during locomotor activity in the blue crab, 

Callinectes sapidus”, J. Exp. Biol., Vol. 118, 461 (1985) 



 237

Boyle, K. L., Dillaman, R. M. and Kinsey, S. T., “Mitochondrial distribution and glycogen 

dynamics suggest diffusion constraints in muscle fibers of the blue crab, Callinectes sapidus”, J. 

Exp. Zool., Vol. 297A, 1 (2003) 

 

Buckwalter, J.A., and Mankin, H.J., “Articular Cartilage. Part I: tissue design and chondrocyte-

matrix interactions”, J. Bone Joint Surgery, Vol. 79-A, 600 (1997) 

 

Bursac, P.M., L.E. Freed, R.J.Biron and G. Vunjak-Novakovic, “Mass Transfer Studies of Tissue 

Engineered Cartilage”, Tissue Engineering, Vol. 2, 141 (1996) 

 

Cabrita, G. J. M., Ferreira, B. S., Silva, C. L., Goncalves, R., Porada, G. A., and Cabral, J. M. S., 

“Hematopoietic stem cells: from the bone to the bioreactor”, TRENDS in Biotechnology, Vol. 

21(5), 233 (2003) 

 

Carbonell, R. G., Whitaker, S., “Heat and mass transport in porous media”, In: Bear J, 

Corapcioglu M Y, editors. Mechanics of Fluids in porous media. Brussels:Martinus Nijhoff. 

(1984) 

 

Chen, C. P., and Aplin, J. D., “Placental extracellular matrix: Gene expression, deposition by 

placental fibroblasts and the effect of oxygen”, Placenta, Vol. 24, 316 (2003) 

 

Chen, J. L., Li, Y., Zhang, R. L., Katakowski, M., Gautam, S. C., Xu, Y. X., Lu, M., Zhang, Z. 

G., Chopp, M., “Combination therapy of stroke in rats with a nitric oxide donor and human bone 

marrow stromal cells enhances angiogenesis and neurogenesis”, Brain Res, Vol. 1005, 21-28 

(2004) 

 

Chen, J. L., Zhang, Z. G., Li, Y., Wang, L., Xu, Y. X., Gautam, S. C., Lu, M., Zhu, Z., Chopp, 

M., “Intravenous administration of human bone marrow stromal cells induces angiogenesis in the 

ischemic boundary zone after stroke in rats”, Circ Res, Vol.  92, 692-699 (2003) 

 

Chow, D. C., Wenning, L. A., Miller, W. M., and Papoutsakis, E. T., “Modeling pO2 

distributions in the bone marrow hematopoietic compartment I. Krogh’s Model”, Biophysical 

Journal, Vol. 81(2), 675 (2001 a) 

 

Chow, D. C., Wenning, L. A., Miller, W. M., and Papoutsakis, E. T., “Modeling pO2 

distributions in the bone marrow hematopoietic compartment II. Modified Krogh’s Models”, 

Biophysical Journal, Vol. 81(2), 685 (2001 b) 

 

Cipolleschi, M. G., Sbarba, P. D., and Olivotto, M., “The role of hypoxia in the maintenance of 

hematopoietic stem cells”, Blood, Vol. 7, 2031 (1993) 

 

Collins, P. C., Nielsen, L. K., Wong, C. K., Papoutsakis, E. T., and Miller, W. M., “Real-time 

method for determining the colony-forming cell content of human hematopoietic cell cultures”, 

Biotechnology and Bioengineering, Vol. 55(4), 693 (1997) 

 



 238

Collins, P. C., Nielsen, L. K., Patel, S. D., Papoutsakis, E. T., and Miller, W. M., 

“Characterization of hematopoietic cell expansion, oxygen uptake, and glycolysis in a controlled, 

stirred tank bioreactor system”, Biotechnol. Prog., Vol. 14, 466 (1998) 

 

Contois, D. E., “Kinetics of Bacterial Growth: Relationship between Population Density and 

Specific Growth Rate of Continuous Cultures.  J. Gen. Microbiol., 21:40-50 (1959) 

 

Crow, M. T., and Kushmerick, M. J., “Chemical energetics of slow- and fast-twitch muscles of 

the mouse”, J. Gen. Physiol., Vol. 79, 147 (1982) 

 

Damas, N. M., Rodriguez, J. M., Carmona, M., Gonzalez, M., and Prieto, J., “Ex-vivo expansion 

and maturation of CD34-positive hematopoietic progenitors optimization of culture conditions”, 

Leukemia Research, Vol. 23, 1035 (1999) 

 

Danckwerts, P. V., “Continuous flow systems”, Chemical Engineering Science, Vol. 2, 1  (1953) 

 

de Graaf, R. A., van Kranenburg, A. and Nicolay, K., “In vivo 
31

P-NMR diffusion spectroscopy 

of ATP and phosphocreatine in rat skeletal muscle”, Biophys. J., Vol. 78, 1657 (2000) 

 

Dimicco MA, Sah RL., “Dependence of Cartilage Matrix Composition on Biosynthesis, 

Diffusion, and Reaction”, Transport in Porous Media, Vol. 50, 57 (2003) 

 

Duggan, O., Hyland, P., Annett, K., Freeburn, R., Barnett, C., Pawelec, G., and Barnett, Y., 

“Effects of a reduced oxygen tension culture system on human T cell clones as a function of in 

vitro age”,  Exp Gerontol, Vol. 39, 525 (2004) 

 

Ellington, W.R. and Kinsey, S.T., “Functional and evolutionary implications of the distribution 

of phosphagens in primitive-type spermatozoa”, Biol. Bull., Vol. 195, 264 (1998) 

 

Ellington, W.R., “Evolution and physiological roles of phosphagen systems”, Ann. Rev. 

Physiol., Vol. 63, 289 (2001)   

 

Ellis, S. J., M. Velayutham, S. Sendhil Velan, E. F. Peterson, J. L. Zweier, P. Kuppusamy, and R. 

G. Spencer, “EPR Oxygen Mapping (EPROM) of Engineered Cartilage Growth in a Hollow-

Fiber Bioreactor”, Magnetic Resonance in Medicine, Vol. 46, 819 (2001) 

 

Forgue, J., Legeay, A. and Massabuau, J. C., “Is the resting rate of oxygen consumption of 

locomotor muscles in crustaceans limited by the low blood oxygenation strategy?”, J. Exp. Biol., 

Vol. 204, 933 (2001) 

 

Freed, L. E., J. C. Marquis, G. Vunjak-Novakovic, J. Emmanual, A. G. Mikos, and R. Langer, 

“Composition of Cell-Polymer Cartilage Implants,” Biotechnology and Bioengineering, Vol. 43, 

605 (1994a) 

 

Freed, L. E., G. Vunjak-Novakovic, J. C. Marquis, and R. Langer, “Kinetics of Chondrocyte 

Growth in Cell-Polymer Implants,” Biotechnology and Bioengineering, Vol. 43, 597 (1994b) 



 239

 

Freed, L.E., G. Vunjak-Novakovic, “Tissue Culture Bioreactors,” Principles of Tissue 

Engineering., R.P.Lanza, R.Langer, and W.Chick, eds., 2
nd

 ed., Academic Press, San Diego, CA, 

143 (2000b) 

 

Galban, C.J., Locke, B. R.,. “Analysis of Cell Growth in a Polymer Scaffold Using a Moving 

Boundary Approach”, Biotechnology and Bioengineering, Vol. 56 (4), 422 (1997) 

 

Galban, C.J., Locke, B. R., “Effects of spatial variation of cells and nutrient and product 

concentrations coupled with product inhibition on cell growth in a polymer scaffold”, 

Biotechnology and Bioengineering, Vol. 64(6), 633 (1999 a) 

 

Galban, C.J., Locke, B. R., “Analysis of cell growth kinetics and substrate diffusion in a polymer 

scaffold”, Biotechnology and Bioengineering, Vol. 65(2), 121 (1999 b) 

 

Gannon, A. T. and Wheatly, M. G., “Physiological effects of a gill barnacle on host blue crabs 

during short-term exercise and recovery”, Mar. Behav. Physiol., Vol. 24, 215 (1995) 

 

Gebb, S. A.. and Jones, P. L., “Hypoxia and lung branching morphogenesis”, Adv Exp Med 

Biol, Vol. 543, 117-125 (2003) 

 

Green, J. E. F., Byrne, H. M., Walters, S. L., and Shakesheff, K. M., “Mathematical modeling in 

tissue engineering”, European Cells and Materials, Vol. 6, Suppl. 2, 38 (2003) 

 

Grayson, W. L., Ma, T., and Bunnel, B., “Human mesenchymal stem cells tissue development in 

3D PET matrices”, Biotechnol Prog, Vol. 20, 905 (2004) 

 

Grimshaw, M.J., R.M.Mason, “Bovine articular chondrocyte function in vitro depends upon 

oxygen tension”, Osteoarthritis and Cartilage, Vol. 8, 386 (2000) 

 

Groebe, K. and Thews, G., “Calculated intra- and extracellular gradients in heavily working red 

muscle”, Am. J. Physiol. Heart Circ. Physiol., Vol. 259, H84 (1990) 

 

Hascall, V.C., J.D.Sandy, and C.J.Handley, “Regulation of Proteoglycan Metabolism in Articular 

Cartilage”, Biology of the Snyovial Joint, C.W.Archer, ed., Ch 7, Harwood Academic 

Publishers, Amsterdam (1999) 

 

Heidemann, R., Lutkeyemeyer, D., Lehmann, J., “Effects of dissolved oxygen levels and role of 

extra- and intracellular amino acid concentrations upon metabolism of mammalian cell lines 

during batch and continuous cultures”, Cytotechnol., Vol. 26, 185 (1998) 

 

Head, G., and Baldwin, J., “Energy metabolism and the fate of lactate during recovery from 

exercise in the Australian freshwater crayfish, Cherax destructor.”  Aust. J. Mar. Freshw. Res., 

Vol. 37, 641 (1986) 

 



 240

Henry, R. P., Booth, C. E., Lallier, F. H. and Walsh, P. J., “Post-exercise lactate production and 

metabolism in three species of aquatic and terrestrial decapod crustaceans”. J. Exp. Biol., Vol. 

186, 215 (1994) 

 

Hevehan, D. L., Papoutsakis, E. T., and Miller, W. M., “Physiologically significant effects of pH 

and oxygen tension on granulopoiesis”, Experimental Hematology, Vol. 28, 267 (2000) 

 

Hevehan, D. L., Wenning, L. A., Miller, W. M., and Papoutsakis, E. T., “Dynamic model of ex 

vivo granulocytic kinetics to examine the effects of oxygen tension, pH, and interleukin-3”, 

Experimental Hematology, Vol. 28, 1016 (2000) 

 

Hogan, M. C., Stary, C. M., Balaban, R. S. and Combs, C. A., “NAD(P)H fluorescence imaging 

of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen 

availability”,  J. Appl. Physiol.  (2004) [e-pub ahead of print]. 

 

Horner, M., Miller, W. M., Ottino, J. M., and Papoutsakis E. T., “Transport in a grooved 

perfusion flat-bed bioreactor for cell therapy applications”, Biotechnol. Prog. Vol. 14, 689 

(1998) 

 

Horwitz, E. M., Prockop, D. J., Fitzpartick, L. A., Koo, W. W., Gordonm, P. L., Neel, M., 

Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E., and Brenner, M. K., “Transplantability and 

therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis 

imperfecta”, Nature Med, Vol. 5, 309-313 (1999) 

 

Hubley, M. J., Locke, B. R., and Moerland, T. S., “Reaction-diffusion analysis of effects of 

temperature on high-energy phosphate dynamics in goldfish skeletal muscle”, J. Exp. Biol., Vol. 

200, 975 (1997) 

 

Ishikawa, Y., and Ito, T., “Kinetics of hematopoietic stem cells in a hypoxic culture”. Eur J 

Haematol, Vol. 40, 126 (1998) 

 

Jeneson, J. A. L., Westerhoff, H. V., Brown, T. R., van Echteld, C. J. A. and Berger, R., “Quasi-

linear relationship between Gibbs free energy of ATP hydrolysis and power output in human 

forearm muscle”, Am. J. Physiol. Cell Physiol., Vol. 268, C1474 (1995) 

 

Jeneson, J. A. L., Wiseman, R. W., Westerhoff, H. V., and Kushmerick, M. J., “The signal 

transduction function for oxidative phosphorylation is at least second order in ADP”, J. Biol. 

Chem., Vol. 271(45), 27995 (1996) 

 

Jiang, B., Semenza, G. L., Bauer, C., Marti, H. H., “Hypoxia Inducible Factor 1 levels vary 

exponentially over a physiologically relevant range of O2 Tension”, Am J Phys., Vol. 271, 

C1172 – C 1180 (1996) 

 

Johnson, L. K., Dillaman, R. M., Gay, D. M., Blum, J. E. and Kinsey, S. T., “Metabolic 

influences of fiber size in aerobic and anaerobic muscles of the blue crab, Callinectes sapidus”,  

J. Exp. Biol., Vol.  207, 4045 (2004) 



 241

Johnston, I. A., Fernández, D. A., Calvo, J., Vieira, V. L. A., North, A. W., Abercromby, M. and 

Garland, T., Jr., “Reduction in muscle fiber number during the adaptive radiation of notothenioid 

fishes: a phylogenetic perspective”, J. Exp. Biol., Vol. 206, 2595 (2003) 

 

Johnston, I. A., Abercromby, M., Vieira, V. L. A., Sigursteindóttir, R. J., Kristjánsson, B. K., 

Sibthorpe, D. and Skúlason, S., “Rapid evolution of muscle fiber number in post-glacial 

populations of charr Salvelinus alpinus”,  J. Exp. Biol., Vol. 207, 4343 (2004) 

 

Kemp, G. J., Manners, D. N., Clark, J. F., Bastin, M. E. and Radda, G. K., “Theoretical modeling 

of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in 

muscle”,  Mol. Cell. Biochem., Vol. 184, 249 (1998) 

 

Kim JH, Ochoa JA, Whitaker S. 1987, “Diffusion in Anisotropic Porous Media”, Transport in 

porous Media, Vol. 2, 327 (1987) 

 

Kinsey, S. T. and Ellington, W. R., “
1
H- and 

31
P-Nuclear magnetic resonance studies of L-lactate 

transport in isolated muscle fibers from the spiny lobster, Panulirus argus”, J. Exp. Biol., Vol. 

199, 2225 (1996) 

 

Kinsey, S. T., Penke, B., Locke, B. R. and Moerland, T. S., “Diffusional anisotropy is induced by 

subcellular barriers in skeletal muscle”, NMR Biomed., Vol. 11, 1 (1999) 

 

Kinsey, S.T. and Moerland, T.S., “Metabolite diffusion in giant muscle fibers of the spiny 

lobster”, Panulirus argus”. J. Exp. Biol., Vol. 205, 3377 (2002) 

 

Kinsey, S. T., Pathi, P., Hardy, K. M., Jordan, A., and Locke, B. R., “Does Intracellular 

metabolite Diffusion Limit Post-Contractile Recovery in Burst Locomotor Muscle”, Journal of 

Experimental Biology, In Press (2005) 

 

Koller, M. R., Bender, J. G., Miller, W. M., and Papoutsakis, E. T., “Reduced oxygen tension 

increases hematopoiesis in long-term culture of human stem and progenitor cells from cord 

blood and bone marrow”, Exp. Hematol, Vol. 20, 264 (1992) 

 

Koller, M. R., Bender, J. G., Miller, W. M., and Papoutsakis, E. T., “Expansion of primitive 

human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell 

factor”, Bio/Technology, Vol. 11, 358 (1993a) 

 

Koller, M. R., Emerson, S. G., and Palsson, B., “Large-scale expansion of human stem and 

progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures”, Blood, 

Vol. 82(2), 378-384 (1993b) 

 

Koller, M. R., and Palsson B., “Tissue engineering: Reconstitution of human hematopoiesis ex 

vivo”, Biotechnology and Bioengineering, Vol. 42, 909 (1993c) 

 



 242

Koller, M. R., Manchel, I., Palsson, M. A., Maher, R. J., and Palsson, B., “Different measures of 

human hematopoietic cell culture performance are optimized under vastly different conditions”, 

Biotechnology and Bioengineering, Vol. 50, 505 (1996) 

 

Korzeniewski, B., “Regulation of oxidative phosphorylation in different muscles and various 

experimental conditions”, Biochem. J., Vol. 375, 799 (2003) 

 

Laluppa, J. A, Papoutsakis, E. T., and Miller, W. M., “Oxygen tension alters the effects of 

cytokines on the megakaryocyte, erythrocyte, and granulocyte lineages”, Experimental 

Hematology, Vol. 26, 835 (1998) 

 

Langer, R., Vacanti, J. P., “Tissue Engineering”, Science, 920-926 (1993) 

 

Lee, R. B., Urban, J. P. G., “Evidence for a negative Pasteur effect in articular cartilage”, 

Biochemical J., Vol. 321, 95 (1997) 

 

Letnam, M. C. 1951. Adsorption. McGraw-Hill, New York 

 

Li, Y., Ma, T., Kniss, D. A., Yang, S. T., and Lasky, L. C. “Human cord cell hematopoiesis in 

three-dimensional nonwoven fibrous matrices: In vitro simulation of the marrow 

microenvironment”, Journal of Hematotherapy & Stem Cell Research, Vol. 10, 355 (2001)  

 

Li, Y. J., Batra, N. N., You, L., Meier, S. C., Coe, I. A., Yellowley, C. E., Jacobs, C. R.,  

“Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation”, J 

Orthop Res,  Vol. 22, 1283 (2004) 

 

Locke, B. R., “Electro-transport in hydrophilic nanostructured materials”, Chapter 15, 527, 

Nano-Surface Chemistry, Marcel Dekker, Inc., New York  

 

Mahaffy, J. M., Belair, J., and Mackey, M. C., “Hematopoietic model with moving boundary 

conditions and state dependent delay: Applications in erythropoiesis”, J .Theor. Biol, Vol. 190, 

135 (1998) 

 

Mainwood, G.W., and Raukusan, K., “A model for intracellular energy transport”, Can. J. 

Physiol. Pharmacol., Vol. 60, 98 (1982) 

 

Malda, J., Rouwkema, J., Martens, D. E., Comte, E. P. Le, Kooy, F. K., Tramper, J., Blitterswijk, 

C. A. van, Riesle, J., “Oxygen Gradients in Tissue-Engineered PEGT/PBT Cartilaginous 

Constructs: Measurement and Modeling”, Biotechnology and Bioengineering, Vol. 86 (1),  9 

(2004) 

 

Mantalaris, A., Keng, P., Bourne, P., Chang, A. Y. C., and Wu, J. H. D., “Engineering a human 

bone marrow model: A case study on ex vivo erythropoiesis”, Biotechnol. Prog., Vol. 14, 126 

(1998) 

 



 243

Martin, I., B. Obradovic, L. E. Freed, G. Vunjak-Novakovic, “Method for Quantitative Analysis 

of Glycosaminoglycan Distribution in Cultured Natural and Engineering Cartilage,” Annals of 

Biomedical Engineering, Vol. 27, 656 (1999) 

 

Martin, I. B.., Wendt, D., and Heberer, M., “The Role of Bioreactors in Tissue Engineering”, 

Trends in Biotechnology, Vol. 22 (2), 80 (2004) 

 

McAdams, T., A, Miller, W., M., and Papoutsakis, E. T., “Hematopoietic cell culture therapies 

(Part I): cell culture considerations”, TIBTECH, 14 (1996) 

 

MacArthur, B. D., and Oreffo, R. O. C., “Concept Bridging the gap”, Nature, Vol. 433, 19 

(2005)   

 

Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., Kaplan, D., 

Langer, R., Vunjak-Novakovic, G., “Bone tissue engineering using human mesenchymal stem 

cells: Effects of scaffold material and medium flow”, Ann Biomed. Eng., Vol. 32, 112 (2004) 

 

Meyer, R. A., Sweeney, H. L. and Kushmerick, M. J., “A simple analysis of the 

‘phosphocreatine shuttle”, Am. J. Physiol., Vol. 246, C365 (1984) 

 

Meyer, R.A., “A linear model of muscle respiration explains monoexponential phosphocreatine 

changes”, Am. J. Physiol., Vol. 254, C548 (1988) 

 

Middleman, S., “An Introduction to mass and heat transfer: Principal of analysis and design”, 

John Wiley & Sons, Inc., (1998) 

 

Milligan C. L., Walsh P. J., Booth C. E. and McDonald D. L. (1989), “Intracellular acid-base 

regulation during recovery from locomotor activity in the blue crab, Callinectes sapidus”, 

Physiol. Zool., Vol. 62, 621 (1989) 

 

Mitchell, S. A., Poulsson, A. H. C., Davidson, M. R., Emmison, N., Shard, A. G., and Bradley, 

R. H., “Cellular attachment and spatial control of cells using micro-patterned ultra-violet/ozone 

treatment in serum enriched media”, Biomaterials, Vol. 25, 4079-4086 (2004) 

 

Mostafa, S. S., Miller, W. M., and Papoutsakis, E. T., “Oxygen tension influences the 

differentiation, maturation and apoptosis of human megakaryocytes”, British Journal of 

Haematology, Vol. 111, 879 (2000) 

 

Mow, V.C., W.C.Hayes (Eds.), “Basic Orthopaedic Biomechanics”, 2
nd

 ed., Lippincott-Raven 

Publishers, PA, 113-117 (1997) 

 

Nevo, A. C. and Rikmenspoel, R., “Diffusion of ATP in sperm flagella”, J. Theor. Biol. 26, 11 

(1970) 

 

Nielsen, L. K., “Bioreactors for hematopoietic cell culture”, Annu. Rev. Biomed. Eng., Vol. 1, 

129 (1999) 



 244

 

Nielsen, L. K., Papoutsakis, E. T., and Miller, W. M., “Modeling ex vivo hematopoiesis using 

chemical engineering metaphors”, Chemical Engineering Science, Vol. 53(10), 1913 (1988) 

 

NIST/SEMATECH e-Handbook of Statistical Methods, 

[http://www.itl.nist.gov/div898/handbook/, section 4.1.4.1] 

 

Nordin M, Frankel VH., “Basic Biomechanics of the Muscoskeletal System”, 2
nd

 ed. Lee & 

Febiger, PA, USA. 36 (1989) 

 

Obradovic, B., Carrier, R. L., G.Vunjak-Novakovic, and Freed, L. E., “Gas Exchange is 

Essential for Bioreactor Cultivation of Tissue Engineered Cartilage,” Biotechnology and 

Bioengineering, Vol. 63 (2), 197 (1999) 

 

Obradovic, B., Meldon, J. H., Freed, L. E., and G.Vunjak-Novakovic, “Glycosaminoglycan 

Deposition in Engineered Cartilage: Experiments and Mathematical Model,” AIChE. J., Vol. 

46(9), 1860 (2000) 

 

Ochoa, J., “Diffusion and reaction in heterogeneous media”, Ph.D. Dissertation, University 

California Davis, (1988) 

 

Oh, D. J., Koller, M. R., and Palsson, B. O., “Frequent harvesting from perfused bone marrow 

cultures results in increased overall cell and progenitor expansion”, Biotechnology and 

Bioengineering, Vol. 44, 609 (1994) 

 

Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson; S. M., Li, B. S., Pickel, J., McKay, 

R., Nadal-Ginard, B., Bodine, D. M., Leri, A., and Anversa, P., “Bone marrow cells regenerate 

infarcted myocardium”, Nature, Vol. 410, 701 (2001) 

 

Palsson, B. O., Paek, S. H., Schwartz, R. M., Palsson, M., Lee, G. M., Silver, S., and Emerson, S. 

G., “Expansion of human bone marrow progenitor cells in a high cell density continuous 

perfusion system”, Bio/Technology, Vol. 11, 368 (1993) 

 

Park, J. S., Chu, J. S. F., Cheng, C., Chen, F., Chen, D., Li, S., “Differential effects of equiaxial 

and uniaxial strain on mesenchymal stem cells”, Biotechnol Bioeng, Vol. 88, 359 (2004) 

 

Pate, E. and Cooke, R., “The inhibition of muscle contraction by adenosine 5’ (β, γ-imido) 

triphosphate and by pyrophosphate”, Biophys. J., Vol. 47, 773 (1985) 

 

Patel, S. D., Miller, W. M., Winter, J. N., and Papoutsakis, E. T., “Cell density-dependent 

proliferation in frequently-fed peripheral blood mononuclear cell cultures”, Cytotherapy, Vol. 

2(4), 267 (2000) 

 

Patel, S. D., Papoutsakis, E. T., Winter, J. N., and Miller, W. M., “The Lactate issue revisited: 

Novel feeding protocols to examine inhibition of cell proliferation and glucose metabolism in 

hematopoietic cell cultures”, Biotechnol. Prog., Vol. 16, 885 (2000) 



 245

 

Pathi, P., Ma, T., and Locke, B. R., “Role of nutrient supply on cell growth in bioreactor design 

for tissue engineering of hematopoietic cells”, Biotechnology and Bioengineering, Vol. 89, 743 

(2005 a) 

 

Pathi, P., Galban, C. J., Spencer, R. G., Locke, B. R., “Analysis of Tissue Growth and 

Extracellular Matrix Formation in a Hollow Fiber Bioreactor”, submitted Biotechnology and 

Bioengineering (June 2005 b) 

 

Peng, C. A., and Palsson, B. O., “Determination of specific oxygen uptake rates in human 

hematopoietic cultures and implications for bioreactor designs”, Annals of Biomedical 

Engineering, Vol. 24, 373 (1996 a) 

 

Peng, C. A., Koller, M. R., and Palsson, B., “Unilineage model of hematopoiesis predicts self-

renewal of stem and progenitor cells based on ex vivo growth data”, Biotechnology and 

Bioengineering, Vol. 52, 24 (1996 b) 

 

Penke, B., S. Kinsey, S. J. Gibbs, T. S. Moerland, and B. R. Locke, “Proton Diffusion and T1 

relaxation in Polyacrimide Gels: A Unified Approach Using Volume Averaging”, Journal of 

Magnetic Resonance, Vol. 132, 240 (1998) 

 

Petersen, E., Potter, K., Butler, J. J., Fishbein, K. W., Horton, W. E., Spencer, R. G., and  

McFarland, E. W., “Bioreactor and Probe System for Magnetic resonance Microimaging and 

Spectroscopy of Chondrocytes and Neocarilage”, Int. J. Imag. Sys. and Tech., Vol. 8, 285 (1997) 

 

Pisu, M., Lai, N., Coincotti, A., Delogu, F., and Cao, G., “A Simulation Model for the Growth of 

Engineered Cartilage on Polymeric Scaffolds”, International Journal of Chemical reactor 

Engineering, Vol. 1, Article A. 38 (2003) 

 

Potter, K., Butler, J. J., Adams, C., Fishbein, K. W., Mcfarland, E. W., Horton, W. E. and 

Spencer, R. G., “Cartilage formation in a Hollow Fiber Bioreactor Studied by Proton Magnetic 

Resonance Microscopy”, Matrix Biology, Vol. 17, 513 (1998) 

 

Potter, K., Butler, J. J., Horton, W. E., and Spencer, R. G., “Response of Engineered Cartilage 

Tissue to Biochemical Agents as Studied by Proton Magnetic Resonance Microscopy”, Arthritis 

& Rheumatism, Vol. 43 (7), 1580 (2000) 

 

Prockop, D. J., “Marrow stromal cells as stem cells for nonhematopoietic tissues”, Science, Vol.  

276, 71 (1997)  

 

Raimondi, M. T., Boschetti, F., Falcone, L., Fiore, G., B., Remuzzi, A., Marinoni, E.,  Marazzi, 

M., and Pietrabissa, R., “Mechanobiology of Engineered Cartilage Cultured under a Quantified 

Fluid Dynamic Environment”, Biomechan Model Mechanobiol, 69 (2002) 

 

Rome, L. C. and Lindstedt, S. L., “The quest for speed: muscles built for high-frequency 

contractions”. NIPS., Vol. 13, 261 (1998) 



 246

Rotem, A., Toner, M., Bhatia, S., Foy, B. D., Tompkins, R. G., and Yarmush, M. L., “Oxygen is 

a factor determining in vitro tissue assembly: Effect on attachment and spreading of 

hepatocytes”, Biotechnol Bioeng, Vol. 43, 654-660 (1994) 

 

Russel, B., Motlagh, D., and Ashley, W. W., “Form follows function: how muscle shape is 

regulated by work”, J. Appl. Physiol., Vol. 88, 1127 (2000)   

 

Ryan DJ, Carbonell RG, Whitaker S., “A Theory of Diffusion and Reaction in Porous Media”, 

AIChE Symposium Series, Vol.  71, 46 (1981) 

 

Saks, V., Kuznetsov, A., Andrienko, T., Usson, Y., Appaix, F., Guerrero, K., Kaambre, T., Sikk, 

P., Lemba, M. and Vendelin, M., “Heterogeneity of ADP diffusion and regulation of respiration 

in cardiac cells”, Biophys. J. 84, 3436 (2003) 

 

Saidel, G. M., DiBella II, J. A., Cabrera, M. E., “Metabolic system dynamics: lumped and 

distributed models”, Simulations in Biomedicine V, Transaction: Biomedicine and Health 

volume 6 (2003) 

 

Schwartz, R. M., Palsson, B. O., and Emerson, S. G., “Rapid medium perfusion rate significantly 

increases the productivity and longevity of human bone marrow cultures”, Proc. Natl. Acad. Sci. 

USA, Vol. 88, 6760 (1991) 

 

Sengers, B. G., Oomens, Cees W. J., and Baaijens, Frank P. T., “An Integrated Finite-Element 

Approach to Mechanics, Transport and Biosynthesis in Tissue Engineering”, Transactions of the 

ASME, Vol. 126, 82 (2004) 

 

Silva, C. L., Goncalves, R., Lemos, F., Lemos, M. A. N. D. A., Zanjani, E. D., Porada, G. A., 

and Gabral, J. M. S., “Modeling of ex vivo expansion/maintenance of hematopoietic stem cells”, 

Bioprocess and Biosystems engineering, Vol. 25, 365 (2003) 

 

Skalak, R., Fox, C. F., “Tissue engineering”, Ann Biomed Eng., Vol. 19, 529 (1991) 

 

Smith, C., “Hematopoietic stem cells and hematopoiesis”, Cancer Control, Vol. 10, 9 (2003) 

 

Smith, E. and Morrison J. F., “Kinetic studies on the arginine kinase reaction”, J. Biol. Chem., 

Vol. 244(15), 4224 (1969) 

 

Stokes, D. R. and Josephson, R. K., “Structural organization of two fast, rhythmically active 

crustacean muscles”, Cell Tiss. Res., Vol. 267, 571 (1992) 

 

Suarez, R.K., “Shaken and stirred: muscle structure and metabolism”, J. Exp. Biol., Vol. 206, 

2021 (2003) 

 

Sweeney, H. L., “The importance of the creatine kinase reaction: the concept of metabolic 

capacitance”, Medicine and Science in Sports and Exercise, Vol. 26 (1), 30 (1994) 

 



 247

Teague, W. E. and Dobson, G. P., “Thermodynamics of the arginine kinase reaction”, J. Biol. 

Chem., 274(32), 22459 (1999) 

 

Temenoff, J. S., Mikos, A. G., “Review: Tissue Engineering for Regeneration of Articular 

Cartilage”, Biomaterials, Vol. 21, 431 (2000) 

 

Terai, H., Hannouche, D., Ochoa, E., Yamano, Y., and Vacanti, J. P., “In vitro engineering of 

bone using a rotational oxygen-permeable bioreactor system”, Mat Sci Eng C-Bio, S 20, 3-8 Sp. 

Iss. SI (2002)  

 

Thébault, M. T., Raffin, J. P., and LeGall, J. Y., “In vivo 
31

P NMR in crustacean muscles: fatigue 

and recovery in the tail musculature from the prawn, Palaemon elegans. Biochem”. Biophys. 

Res. Comm, Vol. 145, 453 (1987) 

 

Tombes, R. M. and Shapiro, B. M., “Metabolite channeling: a phosphocreatine shuttle to mediate 

high energy phosphate transport between sperm mitochondrion and tail”, Cell, Vol. 41, 325 

(1985) 

 

Trinh, S. H., Arce, P., Locke, B. R., “Effective diffusivities of point-like molecules in isotropic 

porous media by Monte Carlo Simulation”, Transport in Porous Media, Vol. 38, 241-259 (2000) 

 

Truskey, G. A., Nicolakis, D.P., DiMasi, D., Haberman, A., “Kinetic studies and unstructured 

models of lymphocyte metabolism in fed-batch culture”, Biotechnology and Bioengineering, 

Vol. 36, 797 (1990) 

 

Tse, F. W., Govind, C. K., and Atwood, H. L., “Diverse fiber composition of swimming muscles 

in the blue crab, Callinectes sapidus”, Can. J. Zool., Vol. 61, 52 (1983) 

 

Tyler, S., and Sidell, B. D., “Changes in mitochondrial distribution and diffusion distances in 

muscle of goldfish upon acclimation to cold temperatures”,  J. Exp. Biol., Vol. 232, 1 (1984) 

 

Van Dorsten, F. A., Wyss, M., Walliman, T. and Nicolay, K., “Activation of sea urchin sperm 

motility is accompanied by an increase in the creatine kinase flux”, Biochem. J., Vol. 325, 411 

(1997) 

 

Varma, A., Morbidelli, M., and Wu, H., “Parametric Sensitivity in Chemical Systems”. Oxford 

University Press, New York, NY (1999)   

 

Vendelin, M., Kongas, O. and Saks, V., “Regulation of mitochondrial respiration in heart cells 

analyzed by reaction-diffusion model of energy transfer”, Am. J. Physiol. Cell Physiol., Vol. 

278, C747 (2000) 

 

Vicini, P. and Kushmerick, M., “Cellular energetics analysis by a mathematical model of energy 

balance: estimation of parameters in human skeletal muscle”, Am. J. Physiol. Cell Physiol., Vol. 

279, C213 (2000) 

 



 248

Vunjak-Novakovic, G., Freed, L. E., Biron, R. J., and Langer, R., “Effects of Mixing on the 

Composition and Morphology of Tissue-Engineered Cartilage”, AIChE J., Vol. 42, 860 (1996) 

 

Vunjak-Novakovic, G., Martin, G. I., Obradovic, B., Treppo, S., Grodzinsky, A. J., and Freed, L. 

E., “Bioreactor Cultivation Conditions Modulate the Composition and Mechanical Properties of 

Tissue-Engineered Cartilage”, J. Orthop. Res., Vol. 17, 130 (1999) 

 

Vunjak-Novakovic, G., Obradovic, B., Martin, G. I., and Freed, L. E., “Bioreactor Studies of 

Native and Tissue-Engineered Cartilage”, Biorheology, Vol. 39, 259 (2002) 

 

Walliman, T., Wyss, M., Brdiczka, D., Nicolay, K. and Eppenberger, H.M., “Intracellular 

compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and 

fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis”,  

Biochem. J., Vol. 281, 21 (1992) 

 

Weisz, P.B., “Diffusion and chemical transformation”, Science, Vol. 179, 433 (1973) 

 

Wang, T. Y., and Wu, J. H. D., “A continuous perfusion bioreactor for long-term bone marrow 

culture”, Annals New York Academy of Sciences, Vol. 665, 274 (1992) 

 

Wang, T. Y., Brennan, J., and Wu, J. H. D., “Multilineal hematopoiesis in a three-dimensional 

long-term bone marrow culture”, Experimental Hematology, Vol. 23, 26 (1995) 

 

Wastney, M. E., Yang, D. C., Andretta, D. F., Blumenthal, J., Hylton, J., Canolty, N., Collins, J. 

C., and Boston, R. C., “Distributing working versions of published mathematical models for 

biological systems via the Internet”, Adv Exp Med Biol., Vol. 445, 131 (1998) 

 

Whitaker S., “Diffusion and Dispersion in porous Media”, AIChE J, Vol.13, 420 (1967) 

 

Whitaker, S., “The method of volume averaging - Theory and applications of transport in porous 

media”, Kluwer Academic Publishers (1999) 

 

Wilkins, R. J., Browning, J. A., and Ellory, J. C., “Surviving in a Matrix: Membrane Transport in 

Articular Chondrocytes”, Journal of Membrane Biology, Vol. 177, 95 (2000) 

 

Williams, K. A., Saini, S., and Wick, T. M., “Computational Fluid Dynamics Modeling of 

Steady-State Momentum and Mass Transport in a Bioreactor for Cartilage Tissue Engineering”, 

Biotechnology Progress, Vol. 18, 951 (2002) 

 

Wilson, C. G., Bonssar, L. G., and Kohles, S. S., “Modeling the dynamic composition of 

engineered cartilage”, Archives of Biochemistry and Biophysics, Vol. 408, 246 (2002) 

 

Wood, B.D., Whitaker, S., “Diffusion and reaction in biofilms”, Chemical Engineering Science, 

Vol. 53, 397 (1994) 

 



 249

Wood, B. D., Whitaker, S., “Multi-species Diffusion and reaction in biofilms and cellular 

media”, Chemical Engineering Science, Vol. 55, 3397 (2000) 

 

Wood, B. D., Quintard, M., Whitaker, S., “Calculation of effective diffusivities for biofilms and 

tissues”, Biotechnology and Bioengineering, Vol. 77(5), 495 (2002) 

 

Yang H., Papoutsakis, E. T., Miller, W. M., “Model-based estimation of myeloid hematopoietic 

progenitor cells in ex vivo cultures for cell and gene therapies”. Biotechnology and 

Bioengineering, Vol. 72 (2), 144 (2000) 

 

Zammitt, V. A., and Newsholme, E. A., “The maximum activities of hexokinase, phosphorylase, 

phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine 

dehydrogenase, phophoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-

oxaloacetate transaminase, and arginine kinase in relation to carbohydrate utilization in muscles 

from marine invertebrates”, Biochem. J., Vol. 160, 447 (1976) 

 

Zhao, F., and Ma, T., “Perfusion bioreactor system for human mesenchymal stem cell tissue 

engineering: dynamic cell seeding and constructs development”, Biotechnol Bioeng., In early 

review (2005 a) 

 

Zhao, F., Pathi, P., Grayson, W., Xing, Q., Locke, B., R., Ma, T., “Effects of oxygen transport on 

3-dimensional human mesenchymal stem cell metabolic activity in perfusion and static cultures: 

experiments and mathematical model”, Biotechnology Progress, In print (2005 b) 

 

Zhou S, Cui Z, Urban JPG, “Factors Influencing the Oxygen Concentration Gradient from the 

Synovial Surface of Articular Cartilage to the Cartilage-Bone Interface”, Arthritis & 

Rheumatism, Vol. 50 (12) 3915 (2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 250

 

 

 

 

 

 

BIBLIOGRAPHICAL SKETCH 

 

 

 

 

Pragyansri Pathi was born November 29
th

, 1979 in Cuttack a small town in Orissa, India.  She 

completed her undergraduate study in Chemical Engineering at the Birla Institute of Technology 

& Science (BITS), Pilani, Rajasthan, India in 2001.  Upon graduation, she joined Dr Bruce R 

Locke for her doctoral degree program at Florida State University.  During her tenure she 

presented her work in annual regional meetings including the American Chemical Society 

(March 2003) and Tissue Engineering Society International (Dec 2003).  She participated in 

summer school programs organized by Mathematical Biosciences Institute, Columbus, Ohio 

(July-Aug 2004).  She also won the Graduate Student Seminar Presentation Contest (Spring 

2004).  She is looking forward to join Intel Corporation to work as a Senior Process Engineer 

after the completion of her doctorate degree.  If you have any questions you can contact the 

author at pragyan_pathi@yahoo.com. 

 

 

 

 


	The Florida State University
	DigiNole Commons
	6-28-2005

	Mathematical Modeling of Transport and Reaction in Cellular and Tissue Engineering
	Pragyansri Pathi
	Recommended Citation



