
Mathematical modeling of transport phenomena during 
alloy solidification 

C Beckermann 
Department of Mechanical Engineering, The University of Iowa, Iowa City I A 52242 

R Viskanta 
School of Mechanical Engineering, Purdue University, West Lafayette IN 47907 

Mathematical modeling of mass, momentum, heat, and species transport phenomena occurring 
during solidification of metal alloys is reviewed. Emphasis is placed on the incorporation of the 
effects of the solid structure and the interactions between the solid and liquid phases on a 
microscopic scale into a (macroscopic) model of the transport phenomena occurring at the system 
scale. Both columnar and equiaxed growth structures, as well as laminar convection of liquid and 
solid crystals are considered. The macroscopic conservation equations are introduced via a volume 
averaging approach and commonly made simplifications are examined. Basic constitutive 
relations for the phase interactions occurring in alloy solidification are presented. Recent progress 
in including nucleation, microsegregation, undercooling and other microscopic phenomena in the 
macroscopic equations is reviewed. The specific areas where future theoretical and experimental 
research is needed are identified. 
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( dispersive flux or transpose of a tensor 
r due to phase change 
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A fluctuating component 
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I. INTRODUCTION 

Modeling of solidification processes is a rapidly expanding 
field and research activities have grown at an exponential 
rate. These efforts are not only aimed at improving 
traditional solidification processes such as casting of steel 
and non-ferrous alloys, but are continually stimulated by the 
development of new materials for which solidification 
constitutes the most effective and efficient manufacturing 
route. Recent examples include casting of metal-matrix 
composites (Rohatgi, 1988), production of materials with 
unique microstructures via solidification of undercooled 
melts (Sahm et al., 1986), and melt-textured growth of high-
temperature superconducting crystals (Murphy et al., 1988). 
This paper focuses mainly on casting of metal alloys. 
Additional interest in solidification modeling has come from 
geologists who are concerned with magmatic crystallization 
(Huppert, 1990). Much of the recent progress has been made 
possible by the development of new numerical techniques 
and the widened availability of powerful computers (Voller 
et al., 1991). Nevertheless, it is still impossible to 
accurately predict the casting and the final solid properties of 
common iron alloys, a material known to mankind for 
millennia. 

Solidification is a multi-disciplinary field encompassing 
material science and metallurgy, thermodynamics, fluid and 
solid mechanics, heat and mass transfer and other disciplines. 
One of the most challenging problems in solidification 
modeling is the complex interactions between physical 
phenomena occurring on different length scales ranging from 
atomic rearrangements, over single crystal-melt interactions, 
to heat extraction at the system level. This is illustrated in 
Fig 1. For example, it is not at all clear how to combine the 
known effects of convection on the growth of a single 
crystal (Glicksman et al., 1986) with the influence of 
macroscopic fluid motion on the evolution of crystal 
aggregates (i.e., "mushy zones") (Viskanta and Beckermann, 
1987; Huppert, 1990) in a single model. The situation is 
even worse when different engineering disciplines are 
involved: no models are available that capture the fracture 
and break-off of microscopically small parts of a crystal due 
to solid stresses together with the ensuing solid (and induced 
liquid) motion and macroscopic transport. Another example 
is provided by the macrosegregation in continuous casting of 
steel caused by the deformation of the solid crystal skeleton 
formed during solidification (Lesoult, 1991). 

While modeling of certain solidification processes and 
phenomena on a single scale and within a single discipline 
has matured to a considerable level of sophistication, a new 

direction in solidification modeling research has emerged in 
the past five years that is concerned with the coupling of 
microscopic and macroscopic models. The aim of this 
research is to couple models of the basic nucleation and 
crystal growth mechanisms at the microscopic scale with 
macroscopic heat flow calculations in order to better predict 
the latent heat evolution and microstructural features on the 

HG 1. Illustration of physical scales and phenomena in dendritic 

solidification, (a) system (macroscopic) scale: mass, momentum, heat and 

species transport phenomena, cooling rate,.latent heat evolution, grain 

patterns, macrosegregation, porosity, volume change; (b) grain scale: 

columnar and equiaxed crystals, local heat and species transfer, interfacial 

drag, spacings, coarsening; (c) interfacial scale: interface instabilities, 

capillarity, local equilibrium, dendrite tip undercooling and movement; (d) 

atomic scale: nucleation, interface structure (faceted, non faceted), atomic 

attachment kinetics. 
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system scale. This subject has been reviewed by Rappaz and 
Stefanescu (1988) and Rappaz (1989) and is also discussed in 
a recent textbook (Kurz and Fisher, 1989). The latest 
developments can be found in conference proceedings (Voller 
et al., 1991; Sekhar and Dantzig, 1991). Micro-macroscopic 
modeling is a new approach that does more justice to the 
coupled nature of solidification itself and also fosters multi-
disciplinary research. 

The purpose of this article is not to repeat the many 
reviews that have appeared in the literature on various 
aspects of alloy solidification, but to focus, from a thermal 
scientist's point of view, on recent attempts to create 
comprehensive macroscopic models of transport phenomena 
occurring during solidification of metal alloys that include 
more of the interactions with processes occurring on a 
microscopic scale. This approach is somewhat different from 
the micro-macroscopic work described by Rappaz (1989), in 
that more emphasis is placed on how the microscopic 
phenomena affect the macroscopic transport processes. The 
only (but important) coupling in the micro-macroscopic 
approach is through the latent heat evolution. The present 
paper makes no attempt at surveying the entire field. For 
example, important phenomena such as mold filling, 
turbulent convection and porosity formation are not 
considered. Many of the mathematical concepts may appear 
preliminary and can presently not be supported by 
experimental measurements. Furthermore, no applications of 
the models and results of calculations are presented. 
However, an account is provided of the many basic modeling 
issues left to be resolved. 

The following section briefly introduces the basic 
physical phenomena occurring in alloy solidification. A 
general overview of important mathematical modeling 
developments is provided in Sec III. The fundamental model 
equations are derived in Sec IV. Section V reviews limiting 
forms of the conservation equations that are valid for 
stationary solid phases and minimize the need for special 
models (or constitutive relations) incorporating microscopic 
phenomena, but still provide good predictive capabilities for 
many macroscopic aspects of solidification. The inclusion of 
microscopic phenomena such as nucleation, micro-
segregation, undercooling, and other phase interactions and 
non-equilibrium effects is discussed in Sec VI. A concluding 
discussion is presented in Sec VII. 

II. BASIC ASPECTS OF ALLOY 
SOLIDIFICATION 

Solidification of alloys differs in many respects from phase-
change of pure substances and readers unfamiliar with the 
subject are referred to Kurz and Fisher (1989). Here, only a 
few basic concepts are introduced that are particularly 
relevant to the following discussion. 

A typical equilibrium phase diagram for a fictitious 
eutectic-forming binary system X-Y (at constant pressure) is 
shown in Fig 2. Nucleation of small solid crystals occurs at 

a temperature slightly below the liquidus temperature of an 
alloy of a given initial composition. As opposed to pure 
substances, liquid and solid can coexist in equilibrium over a 
range of temperatures up to the eutectic point. As the 
temperature of the solid-liquid interface is lowered, the 
compositions of the solid and liquid at the interface 
continually change. As indicated by the solidus line in Fig 
2, on the left side of the eutectic point the solubility of 
species Y is much lower in the solid. This rejection of 
species causes the concentration in the liquid at the interface 
to increase along the liquidus line up to the eutectic 
composition. At the eutectic point two solid phases (a and 
P) of different composition form simultaneously and 
isothermally, such that the average composition is equal to 
the eutectic composition. In most practical casting processes 
the condition of phase equilibrium at the solid-liquid 
interface is met. Deviations from the phase diagram due to 
capillarity (i.e., curved interfaces), pressure, and kinetic (at 
high solidification rates) effects are discussed in textbooks 
(Flemings, 1974; Kurz and Fisher, 1989). 

The formation of solid is basically governed by the 
temperature and species concentration gradients on each side 
of the solid-liquid interface. However, the shape of the 
interface is a much more complicated issue that also 
involves stability and interface curvature considerations, 
among others. Interesting accounts of recent research in this 
area can be found in Langer (1989) and Pines et al. (1990). 
Generally, alloy solidification is characterized by the 
presence of a large variety of microscopically complex 
interfacial structures. The macroscopic region over which 
solid-liquid interfaces exist is usually referred to as the 
mushy zone. It is of utmost importance in solidification 
modeling to take into account these interfacial structures, 
because they ultimately determine the final microstructure 
and, hence, many mechanical properties of the solidified 
alloy. Microstructure formation is strongly influenced by the 
alloy composition, the growth rate and the local temperature 
gradient. Fortunately, this can usually be reduced to the 
study of two classes of microstructure corresponding to 
eutectic and dendritic (off-eutectic) alloys (Kurz and Fisher, 
1989). Each of these classes can be further subdivided into 
columnar (constrained) and equiaxed (unconstrained) 
structures. This is illustrated in Fig 3. In columnar growth 

liquid 

5a& 

eutectic point 

X ^ai Cii Concentration «— Y 

FIG 2. Typical phase diagram for a binary alloy systems X-Y. 
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the solid is attached to a cooled wall and the speed of the 
crystal front is constrained by the movement of the 
isotherms. In equiaxed growth, on the other hand, the 
crystals grow radially into an undercooled melt and the latent 
heat is removed through the liquid (at least until 
impingement of the crystals). 

Owing to the low mass diffusivity relative to the 
thermal diffusivity of metal alloys, solidification on a 
microscopic scale and, hence, microstructure formation is 
mainly controlled by the species (i.e., solute) concentration 
gradients on each side of the solid-liquid interface. On the 
liquid side of the interface, most of the solute is rejected 
laterally, in a direction perpendicular to the heat flow (e.g., 
between the dendrite arms or eutectic lamellae). However, it 
is important to realize that solute gradients must also exist 
in the liquid in front of the dendrite tip or the eutectic front 
for the solid to grow in a direction parallel to the heat flow. 
Furthermore, for equiaxed crystals completely surrounded by 
melt, the average interfacial temperature must be above the 
liquid temperature away from the crystal, in order to remove 
the latent (and sensible) heat (in columnar growth, the heat 
can be removed through the solid). In summary, there 
always exists a concentration gradient in the liquid through 
which the solute rejected during solidification is removed. 
Consequently, the interfacial concentration must be higher 
than the liquid concentration away from the interface. The 
difference between the concentration at the interface and 
some bulk value in the liquid is usually referred to as the 
solutal or constitutional undercooling (see Kurz and Fisher, 
1989). The term "undercooling" stems from the practice to 
convert the two concentrations to temperatures via the 
liquidus line of the phase diagram. Thus, the melt is 
undercooled (i.e., it is in a metastable state) if the actual 
temperature at a point in 

y 
m 

columnar dendritic columnar eutectic 

equiaxed dendritic equiaxed eutectic 
HG 3. Microstructures in alloy solidification. 

the liquid is below the liquidus temperature corresponding 
to the liquid concentration at that point. The actual 
temperature difference between the interface and some bulk 
value in the liquid is referred to as the thermal undercooling. 
Again, thermal undercooling plays usually only a minor role 
in microstructure formation, because of the high value of the 
thermal diffusivity of most metal alloys. Since the solute 
gradients in the liquid are confined to a very small region 
near the solid-liquid interface, convective influences on the 
solute transport have traditionally been neglected (Kurz and 
Fisher, 1989). A review of the influence of convection on 
microstructure formation is provided by Glicksman et al. 
(1986). Convection alters the microscopic concentration (and 
temperature) profiles and, hence, the shape of dendrites. In 
the limit of very slow cooling, convection may cause 
degeneration of an equiaxed dendritic crystal to a spheroid 
(Flemings, 1991). Spheroidal or "globulitic" crystals can 
also be found in highly inoculated castings where the small 
nuclei have no chance to develop a dendritic structure before 
they impinge upon each other. 

Species inhomogeneities in the solid on a microscopic 
scale also have an important effect on the solidification 
phenomena. As the temperature is lowered, the concentration 
in the solid at the interface continually changes along the 
solidus line of Fig 2, and a microscopic concentration 
profile develops in the solid. This effect is termed 
microsegregation. The profile can change during 
solidification due to species diffusion (i.e., "back-diffusion"); 
however, owing to the small solid mass diffusivity of most 
metal alloys (the Fe-C system is an important exception), 
microsegregation usually persists in the solidified alloy. 
Sometimes, heat-treatment is applied to homogenize the 
microscopic solute variations. Microsegregation also 
influences the relative amounts of interdendritic precipitates 
(e.g., the eutectic phases). For a more complete description 
of microsegregation the reader is referred to textbooks 
(Flemings, 1974; Kurz and Fisher, 1989). 

The above outlined microscopic phenomena manifest 
themselves in many interesting ways on a macroscopic (i.e., 
system) scale. Figure 4 illustrates the various structural 
zones that can develop in a casting (for simplicity, the 
process of filling of the mold that accompanies many 
casting processes is not shown). The nuclei that first appear 
at or near the cooled wall quickly develop into an outer 
equiaxed zone. Later, only those crystals survive that can 
grow parallel to the heat flow direction, leading to the 
formation of a columnar mushy zone. Once the superheat in 
the bulk liquid is dissipated, the melt ahead of the columnar 
dendrite tips becomes undercooled allowing equiaxed crystals 
to grow. The origin of the equiaxed crystals is not entirely 
clear, but most sources cite detachment of dendrite arms due 
to convection as the primary reason (Steube and Hcllawell, 
1992). Another theory claims that the equiaxed crystals 
simply grow from nuclei that were floating in the melt from 
the very beginning (Ohno, 1987). Obviously, equiaxed 
crystals are free to move in the melt until they pack and 
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form the inner equiaxed zone. A finely grained equiaxed 
structure is often desirable in a casting and can be promoted 
through the use of inculants and electromagnetic stirring. A 
fully columnar structure can also be obtained, if the 
solidification and convection conditions are carefully 
controlled (Ohno, 1987). 

The segregation of the chemical components at a solid-
liquid interface during solidification also manifests itself on 
a macroscopic scale. Movement of either the liquid or the 
solid phase can induce compositional inhomogeneities on 
the system scale via advection, which is termed macro-
segregation. A typical macrosegregation pattern of an alloy 
ingot is shown in Fig 5 (Flemings, 1974). Melt convection 
and solid movement, and their effects on macrosegregation, 
are discussed separately in the following. Generally, melt 

flow can be caused by (i) external forces such as imposed 
pressure gradients, rotation-translation of the mold or 
magnetic fields (forced convection), (ii) residual flow due to 
filling of the mold, (iii) density changes due to solidification 
as well as due to temperature and compositional changes 
within a phase, (iv) surface tension gradients at a free surface 
arising from temperature and/or concentration gradients 
(thermo-diffusocapillary flows), (v) the action of gravity on 
a density gradient (buoyancy driven flows), and (vi) drag 
forces from solid motion (see below). In the absence of 
external forces, buoyancy driven flows are often dominant (at 
least on earth). In addition, they are hard to quantify, 
influence and control. In alloys, density changes are due to 
both temperature and concentration so that the buoyancy 
driven flows are often called thermo-solutal or double-
diffusive convection. Depending on the orientation relative 
to gravity, the thermal and solutal buoyancy forces either 
oppose or augment each other. For example, during 
solidification from the side the downward buoyancy force due 
to the horizontal temperature gradient is opposed or 
augmented by solutal buoyancy forces, depending on 

V-segregates 

A-segregates 

bottom 
negative cone 
of segregation 

^?//^////////////////////A 
HG 4. Development of structural zones in a casting (after Kurz and Fisher, 
1989). (a) initial stage; (b) mediate stage; (c) final stage. 

FIG 5. Macrosegregation pattern in a casting (after Flemings, 1974). 
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whether the lighter or the heavier component is rejected 
during solidification. Due to the much lower mass 
diffusivity relative to the thermal diffusivity of metal alloy 
melts, the liquid retains its composition. This may induce 
solutal layering in the liquid region, hydrodynamically stable 
stratifications or the formation of solutal plumes. Solutal 
layering has been shown to cause strong irregularities in the 
advance of a columnar dendritic growth front and even 
remelting (Beckermann and Viskanta, 1988). Solutal plumes 
are known to be responsible for channel segregates or 
freckles (Copley et al., 1970; Sample and Hellawell, 1984), 
which are shown as "+" signs in Fig 5. Convection of the 
melt in columnar dendritic solidification continues to be a 
very active research area, and detailed descriptions of the 
transport phenomena are available (Huppert, 1990; Incropera 
and Viskanta, 1992). Much less information is available on 
melt convection during equiaxed dendritic and eutectic 
solidification (e.g., Kato and Cahoon, 1985). 

Movement of the solid phase, typically in the form of 
equiaxed crystals, can cause particularly severe macro-
segregation (deGroh III and Laxmanan, 1988a). In addition, 
it is fundamental to the formation of equiaxed zones, the 
grain size distribution within equiaxed regions, and the 
columnar to equiaxed transition (Ohno, 1987). Free equiaxed 
crystals can move relative to the liquid due to the density 
difference between the solid and liquid phases in a 
gravitational field. Solid stresses (as in continuous casting), 
centrifugal forces, drag forces from melt convection, and 
other mechanical disturbances (Durand, 1992) can also 
induce solid motion. The settling of equiaxed crystals is 
known to be the cause of the bottom cone of negative 
segregation shown in Fig 5. The "kishing" of graphite 
flakes and the floating of various solid phases are important 
solid motion driven macrosegregation effects during 
solidification of Fe-C alloys (Flemings, 1974; Stefanescu et 
al., 1986). Extensive macrosegregation due to sedimentation 
has also been observed in solidification of undercooled Pb-
Sn eutectic alloys (deGroh III and Laxmanan, 1988b). The 
crystals may be transported into a melt of different 
temperature and/or composition and may partially remelt. 
This causes the release of liquid that has the same 
composition as the remelted part of the crystal. This 
"history" effect has received very little research attention. 

III. OVERVIEW OF MATHEMATICAL 
MODELS 

The vast majority of alloy solidification models neglect melt 
convection, solid movement, and species redistribution on a 
macroscopic scale. Therefore, the only conservation equation 
that needs to be solved on the system scale is the heat 
diffusion equation: 

The above equation is intended to be valid in the pure solid 
and liquid regions, as well as in the mushy zone where solid 
and liquid coexist. The so-called single-domain approach 
propagated by Eq (1) brings a significant advantage in a 
numerical solution, because a fixed grid can be used and 
there is no need to explicitly track the boundaries between 
the regions (Voller and Prakash, 1987). All thermophysical 
properties are some kind of mixture quantities that depend on 
the phase volume fractions. The last term on the right hand 
side of Eq (1) accounts for the latent heat release upon 
solidification. It is interesting to examine the origin and 
validity of Eq (1) more closely. The solid volume fraction, 
es, actually represents an average value for a small volume 
element within the mushy zone. Hence, it varies 
continuously between 0 and 1. This volume element must 
be much larger than the microstructures and much smaller 
than the system for the solid fraction to be meaningful. 
Under typical solidification conditions, the system and 
interfacial structures are of the order of 10° to 10"1 m and 
10"4 to 10"5 m, respectively, so that the size of the volume 
element can be around 10~2 to 10~3 m: about the size of a 
typical computational element. For example, in equiaxed 
solidification the volume element should contain several and 
not just a single crystal. Considering that an equiaxed crystal 
can have a diameter greater than 10"3 m, one wonders how 
meaningful a 100 by 100 computational grid in a square 
domain of 5 cm by 5 cm is (such a grid may be necessary to 
numerically resolve certain flow structures in more detailed 
models). Furthermore, it is shown in the following sections 
that Eq (1) assumes that the average temperatures of the 
solid and liquid in the volume element are the same; in other 
words, local thermal equilibrium is assumed. This opens the 
question how latent heat can be removed from equiaxed 
crystals which are completely surrounded by a melt that has 
the same average temperature as the crystal. In addition, if 
the average phase temperatures in the volume element are 
not the same as the solid-liquid interface temperature (as 
would be the case for thermal undercooling), the temperature 
T in Eq (1) should not be used in phase diagram relations. 

One may regard the above issue as academic, because of 
the high thermal diffusivity of metal alloys. However, there 
are other microscopic phenomena that have a direct bearing 
on the utility of Eq (1). It was mentioned in Sec II that 
solidification on a microscopic scale (i.e., within the 
volume element) is governed by solute gradients and that the 
solid and liquid have different compositions in the mushy 
zone. On the other hand, it is well known that the phase 
enthalpies are strong functions of concentration (Poirier and 
Nandapurkar, 1988). It is seldom mentioned in the derivation 
of Eq (1) that the concentration dependencies are completely 
neglected. It has recently been shown for Pb-Sn alloys that 
predictions based on Eq (1) can differ by more than 10% 
from predictions based on an energy equation that includes 
the concentration dependencies (Schneider and Beckermann, 
1991). Furthermore, the quantity L in Eq (1), representing 
the latent heat of fusion, is actually a difference in the 
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enthalpies between the solid and liquid phases averaged over 
the entire volume element (see Sec V. 1). If one neglects, for 
example, the presence of a microscopic solute profile in the 
solid and evaluates the solid enthalpy at the interfacial 
concentration, an error of up to 2% is possible (Schneider 
and Beckermann, 1991). These issues were also investigated 
by Poirier et al. (1991). Other questions arise with regard to 
the thermophysical properties in Eq (1). The heat capacitance 
(pc) is exactly given by the sum of the phase capacitances 
times the phase volume fractions. However, the mixture 
thermal conductivity k depends on the microstructure. A 
simple average of the phase thermal conductivities weighted 
by the volume fractions is only exact if the solid dendrites 
are cylinders of constant diameter growing in the direction of 
the heat flow. For equiaxed growth, for example, the 
mixture conductivity could be quite different (see Sec VI.2). 
This issue may be important considering that the solid and 
liquid thermal conductivities of many metals differ by more 
than a factor of two. 

The solid volume fraction es in Eq (1) must be 
calculated through a separate, "microscopic" model. These 
models are generally based on idealized solutions of the 
solute diffusion equations on a microscopic scale (Kurz and 
Fisher, 1989). For complete mixing of solute in the liquid, 
one can derive the well-known Lever rule and Scheil 
equation, which correspond, respectively, to the important 
limiting cases of complete mixing of solute within the solid 
on a microscopic scale and no solute diffusion in the solid at 
all. More sophisticated solid fraction models that take into 
account microscopic phenomena such as nucleation, 
undercooling of the melt, finite rate solute diffusion in the 
solid, coarsening, impingement and other microstructural 
dependencies have recently been reviewed by Rappaz (1989). 
They all contain one or more of the following ingredients: 

a nucleation model for the number density of equiaxed 
grains or columnar crystals; these models are often fully 
empirical and do not explicitly consider the actual 
physical phenomena leading to the formation and 
survival of grains; the grains are assumed to be remain 
stationary 
models for the shape of the grain (e.g., spherical) and 
the solid-liquid interfaces (e.g., the secondary dendrite 
arms, the dendrite tip, etc.); these models may include 
coarsening and impingement of interfaces 
direct or approximate solutions of the solute diffusion 
equation in the various microscopic geometries defined 
above; often, diffusion is assumed to be quasi-steady, 
limiting the models to low solidification rates; at the 
interface scale (see Fig 1), this results in so-called 
kinetic laws for the growth of the eutectic fronts or 
dendrite tips in an undercooled melt; for the solid, this 
results in predictions of microsegregation. 

Micro-macroscopic models have been developed for a 
large variety of alloys and solidification modes and have 
provided predictions of cooling curves, recalescence, growth 

rates, grain sizes, microscopic solute profiles, and the solid 
fraction evolution. Impressive agreements with experimental 
measurements have been reported (Thevoz et al., 1989; 
Stefanescu et al., 1990; Goettsch and Dantzig, 1991). 
However, in the case of discrepancies, it is often not clear 
which particular model element is at fault, indicating a lack 
of systematic sensitivity and parametric studies. In addition, 
there remain at least three major areas where considerable 
additional research is needed: 

the influence of melt convection and the transport of 
small nuclei and equiaxed grains in the melt on the 
origin-survival of grains as well as on the their shape 
and growth 
the extension of the models to moderate and high 
solidification rates and the introduction of atomic 
attachment kinetics (see Fig 1) 
the modeling of mixed columnar-equiaxed structures, 
including the columnar to equiaxed transition (CET) in 
castings (Flood and Hunt, 1987). 

In view of the limited utility of Eq (1), solidification 
models have been proposed that relax the assumption of a 
quiescent melt, but still allow for no solid transport. In 
addition to adding advective terms to the energy equation, 
one must solve a momentum and continuity equation for 
flow of the liquid in the mushy zone and the pure liquid 
region. Furthermore, convection causes redistribution of 
species on a macroscopic scale (i.e., macrosegregation), 
necessitating the solution of a species conservation equation. 
Finally, convection invalidates the above mentioned 
microscopic solid fraction models. Convection not only 
modifies the microscopic solute profiles, but also causes net 
flow of solute out of/into the volume element. The 
microscopic models used with Eq (1) all assume that solute 
transport on a microscopic scale is by diffusion only and 
that the mixture composition in the volume element 
remains constant (Kurz and Fisher, 1989; Rappaz, 1989). 
Modeling of alloy solidification with convection started with 
the work of Flemings and co-workers (1967, 1968a, and 
1968b). They treated the mushy zone as a variable porosity 
porous medium and calculated macrosegregation due to flow 
driven by the solidification contraction only. The effect of 
gravity was first included by Mehrabian et al. (1970), who 
used Darcy's law to model the flow in the porous mushy 
zone. Temperature gradients were prescribed and the mixture 
concentration was assumed constant in the volume element. 
Ridder et al. (1978) also solved an energy equation, while 
Fujii et al. (1979) solved the coupled mass, momentum, 
energy, and species conservation equations for the mushy 
zone; however, convection in the pure liquid region was not 
considered. Szekely and Jassal (1978) and Ridder et al. 
(1978) solved for the first time the complete set of 
conservation equations for both the mushy and pure liquid 
zones. Mainly because the momentum equations for the 
mushy zone (Darcy's law) and the pure liquid region (Navier-
Stokes equations) are of a different form, these researchers 
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utilized a multiple-domain approach, in which the transport 
equations for each region are written separately and coupled 
through certain interface conditions. Therefore, a numerical 
solution requires explicit tracking of the boundaries between 
each region and discretization of the equations on highly 
irregular domains. 

More recently, macroscopic conservation equations have 
been derived that, like Eq (1), are equally valid in the mushy, 
solid and liquid regions and, hence, can be solved using a 
single-domain numerical solution procedure and a fixed grid. 
In one approach, mixture theory is utilized and the mushy 
zone is assumed to have certain macroscopic properties 
(Hills et al., 1983; Prantil and Dawson, 1983; Bennon and 
Incropera, 1987). In particular, Bennon and Incropera (1987) 
succeeded in casting their model equations into forms that 
are easily solved using standard numerical procedures 
(Patankar, 1982). Another approach is motivated by general 
theories of flow through porous media and of other multi-
phase systems (Gray, 1975; Hassanizadeh and Gray, 1979a; 
Gray, 1983; Drew, 1983) and utilizes a formal volume 
averaging procedure (Beckermann, 1987; Beckermann and 
Viskanta, 1988; Ganesan and Poirier, 1990). The main 
difference between these approaches is that in volume 
averaging the macroscopic equations are rigorously derived 
from microscopic (exact) equations, while mixture theory 
assumes the validity of certain continuum relations on a 
macroscopic scale. Essentially, a formal averaging procedure 
shows how the various terms in the macroscopic equations 
arise and how the resulting macroscopic variables are related 
to the microscopic ones (Drew, 1983). According to 
Hassanizadeh and Gray (1990), the main disadvantage of 
mixture theory is that little connection is made with the 
microscopic reality. For example, virtually no mixture 
theory includes the interfacial area per volume and other 
interfacial properties. In solidification, this would imply the 
absence of important effects in the macroscopic equations, 
such as interfacial tension due to curvature, thermal and 
solutal undercooling, etc. If done carefully, both approaches 
yield the same macroscopic equations (Prescott et al., 1991). 
In order to simplify the solution of the conservation 
equations, thermal equilibrium between the phases is 
assumed [to yield an energy equation analogous to Eq (1)] 
and approximate relations are used for the macroscopic 
transport coefficients (Bennon and Incropera, 1987; 
Beckermann and Viskanta, 1988). Complications with the 
determination of the solid volume fraction are circumvented 
by assuming that within the small volume element the 
liquid is solutally well mixed and species diffusion in the 
solid is either complete or absent (Voller et al., 1989). The 
relevant equations governing alloy solidification with 
convection in the melt are provided in Sec V, together with 
a critical assessment of the assumptions made in their 
derivation and future research needs. Numerical solutions of 
the equations have yielded significant advances in 
understanding and simulating the effects of convection on 
alloy solidification. Physical phenomena predicted include 
development of an irregular liquidus front, remelting of 

solid, development of flow channels in the mushy zone, and 
the establishment of certain macrosegregation patterns in the 
final solid (Prescott and Incropera, 1991). Recent reviews are 
available (Viskanta, 1990; Incropera and Viskanta, 1992; 
Huppert, 1990) and are not repeated here. Detailed 
comparisons with experiments are virtually nonexistent. 

A relative new topic is the modeling of combined liquid 
and solid convection in alloy solidification, as may be 
present in coupled columnar and equiaxed growth. Several 
studies have addressed this problem by using averaged 
mixture equations and neglecting undercooling and grain 
growth kinetics. Because only a single (mixture) momentum 
equation is solved, some a priori assumption must be made 
about the relationship between the liquid and solid 
velocities. Voller et al. (1989) investigated the limiting case 
where the solid and liquid velocities are equal, which is valid 
for a highly dispersed solid phase. The viscosity of the 
mixture was enhanced with increasing solid fraction to 
simulate the formation of a coherent and rigid solid 
structure. When compared to a fully columnar structure, a 
more uniform macrosegregation pattern was predicted. A 
hybrid model was developed by Oldenburg and Spera (1992), 
where for a solid fraction below 0.5, the equal phase 
velocity/enhanced viscosity concept was utilized, while for 
ê >0.5 a zero solid velocity model was used. The transition 
was accomplished through the use of certain switching 
functions. Flood et al. (1991) and Voller (1992), on the 
other hand, introduced the concept of a consolidation factor 
that specifies the relationship between the liquid and solid 
velocities. This factor is a simple linear function of the solid 
fraction and varies from unity for es—>0 (equal phase 
velocities) to zero at some given value of es corresponding 
to a stationary solid. Prescott et al. (1992) switched from a 
zero solid velocity model with melt flow to an equal phase 
velocity model (with the viscosity equal to that of the liquid) 
for solid fractions below 0.01. In order to model 
recalescence, they introduced a solid fraction model that 
accounts for undercooling by specifying a certain decay rate 
of the undercooling from a maximum value. The 
undercooling model was calibrated using experimental data 
and produced fair agreement with temperature measurements 
for solidification of a Pb-Sn alloy. In general, the validity of 
the previous models cannot be established, due to a lack of 
suitable experimental data. 

A different approach to the modeling of coupled 
columnar and equiaxed solidification is provided by the use 
of a so-called two-phase model (Ni and Beckermann, 1990, 
1991; Prakash 1990a, 1990b). Separate volume averaged 
conservation equations are utilized for the solid and liquid 
phases. Therefore, no assumption about the relationship 
between the liquid and solid velocities needs to be made, and 
phenomena such as floating or settling of free solid grains 
can be modeled. In addition, the two-phase model 
distinguishes between the interfacial and bulk concentrations 
and temperatures, allowing for the prediction of liquid 
undercooling, microsegregation and other effects on a 
microscopic scale. Another key ingredient is the use of a 
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transport equation for the number density of grains, which 
allows for the inclusion of nucleation and the calculation of 
the local dimension of grains (Ni and Beckermann, 1990 and 
1991). Prakash (1990a and 1990b) neglected the size 
influence of the grains on the transport and solidification 
phenomena. Beckermann and Ni (1992) presented results for 
the macrosegregation pattern and final grain size distribution 
in equiaxed solidification of an Al-Cu alloy. It can be said 
that modeling of coupled columnar and equiaxed 
solidification with convection has only begun. The purpose 
of Sec VI is to review the many basic research issues that 
need to be addressed in modeling of solidification with 
combined melt convection and solid phase transport. 

IV. BASIC MACROSCOPIC MODEL 
EQUATIONS 

This section summarizes the derivations of the macroscopic 
transport equations. We basically follow the approach taken 
by other researchers in modeling of a variety of multi-phase 
systems (Ishii, 1975; Hassanizadeh and Gray, 1979a; Drew, 
1983). It is important to note that the present model draws 
from analyses of both porous-media type systems (e.g., 
Hassanizadeh and Gray, 1980) and dispersed two-phase flows 
(e.g., Drew, 1983), in order to cover both columnar and 
equiaxed growth over the entire range of solid fractions. 
Traditionally, the literature in these two areas has evolved 
independently of each other, but in solidification such a 
division would be artificial. It will soon become apparent 
that solidification modeling has similar pitfalls to those 
occurring in other multi-phase models; however, the present 
approach helps to put the model equations on firmer 
theoretical grounds and clarifies any assumptions and 
simplifications made. Besides volume averaging, one could 
utilize a number of other averaging procedures to derive 
macroscopic equations (Drew, 1983). The presence of 
relatively slow moving or stationary, geometrically complex 
solid structures, however, makes volume averaging 
particularly appealing from a physical point of view. Most 
of the following derivations are directly extracted from the 
above mentioned literature and Ni and Beckermann (1990 and 
1991). The equations are simplified as much as possible and 
the reader is referred to the original literature for a more 
rigorous and detailed treatment. 

IV.l Volume averaging 

The macroscopic conservation equations for each phase are 
obtained by averaging the microscopic (exact) equations over 
a volume V0. This averaging volume must be much smaller 
than the system and large compared to the characteristic size 
of the interfacial structures. Each phase k in V0 occupies a 
volume Vk and is bounded by the interfacial area Ak. The 
term nk is the outwardly directed unit normal vector on the 
interface Ak, and wk is the velocity of the interface Ak. For 
completeness, all averaging operators and theorems are given 
below. 

The definition of the volume average of some quantity 
W in phase k is 

<«Ffe> = ^ - jXtVkdV. (2) 
Vo v0 

where Xk is a phase function, being equal to unity in phase 
k and zero otherwise. The intrinsic volume average is defined 
as 

<Wk>k = ±- \vXkWkdV . (3) 

For ¥^=1, we obtain from Eq (2) the definition of the 
volume fraction ek as 

Sk = VkIV0 . (4) 

In addition, it follows that 

S,e* = l , (5) 

k 

and 

<Wk> = ek<Wk>
k . (6) 

The fluctuating component of Wk is defined as 

Yk = (Yk-<Yk>
k)Xk, (7) 

and the average of the product of two quantities Wk and &k 

is given by 

<Vk<Dk>
k = <Wk>

k <®k>
k + <Wk0k>

k . (8) 

Finally, we have the following averaging theorems relating 
the average of a derivative to the derivative of the average 
(Whitaker, 1967; Slattery, 1967) 

dWk d<Yk> 1 , 

<V n> = V<Wk> + ±- j VknkdA , (10) 

V0 Ak 

and 

<VVk> = ekV<Wk>
k + r r J 4knkdA . (11) 

Vo Ak 

From a comparison of Eqs (10) and (11), we also obtain 
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r j - J < n>knkdA = - <Vk>k Vek , 
Vo Ak 

and for ¥&=!, we have 

— jnkdA=- Vek . 
Vo Ak 

(12) 

(13) 

The microscopic (exact) mass, momentum, energy and 
species conservation equations for a phase k are summarized 
in Table 1. The energy equation is written in terms of the 
enthalpy, while the species conservation equation is intended 
to be representative of each chemical species present. For 
simplicity, viscous heat dissipation, compression work, 
as well as volumetric energy and species sources are not 
included. While this seems appropriate for most practical 
solidification systems, any of the above assumptions could 
easily be relaxed. 

By integrating the microscopic equations over the 
averaging volume V0 [and making use of Eqs (2) to (11)], 
one obtains the corresponding macroscopic equations for 
phase k and interfacial balances. These equations are also 
summarized in Table 1. They are valid in every region of the 
multi-phase system (including the pure solid and liquid 
regions). Due to the averaging process, integrals over the 

interfacial area arise in the equations that account for the 
interactions of phase k with the other phase(s). For 
simplicity, it is assumed that the correlation b^tw^en the 
fluctuating components of pk and "Pfc, i.e., <pkx¥]l>, is 
zero, and <pk>k is simply denoted by pk- Alternatively, one 
could define density weighted variables (Drew, 1983; 
Hassanizadeh and Gray, 1979a); however, the resulting form 
of the equations is virtually identical. In Table 1, the term 
M{ is the interfacial momentum source due to surface 
tension. No other interfacial sources are assumed to be 
present. 

IV.2 Basic constitutive relations 

The integrals representing the interfacial transfer terms as 
well as several macroscopic fluxes need to be related to 
macroscopic (averaged) variables and parameters through so-
called constitutive relations. Without making reference to a 
specific solidification system, one can specify the basic 
forms of most of these relations, which is demonstrated in 
this section. All assumptions will be clearly identified. The 
solid phases are treated as pseudo-fluids. 

Surface tension and pressure relations 

It has become customary to separate various parts of the 
interfacial stress Mk given in Table 1 as (Hassanizadeh and 
Gray, 1979b; Sha et al., 1984) 

TABLE 1. Summary of microscopic and macroscopic monservation equations 

Microscopic conservation equations Macroscopic conservation equations Interfacial balances Dispereive fluxes 

Mass 
<>Plc 

gj(%P/fc) + V<ekPk<vk>
k) = rk S/*-o 

Momentum —( pkvk ) + V • ( pkvkvk ) = 

-Vpk + V-Tk+bk 

Energy — ( pkhk ) + V • ( pkhkvk ) = 

-V-gk 

Species Yt(PkCk)+V'(PkCkVk) = 

•f, ( ekpk<n>k) + V • ( E«pk <vk>
k<vk>

k) = 

- V(Ek<Pk>k) +V-(<Tk> + <Tk>) + Mk + ek<bk>
k 

j ^ ( ekpk<hk>
k)+ V-( ekpk<hk>

k<vk>
k) = 

- V - (<qk> + <q'k>)+ Qk 

57( ekpk<Ck>
k )+V-(ekPk <Ck>

k<vk>
k ) = 

-V-(<Jk> + <j'k>)+ h 

S ^ t + ^ i - o 

2J2*-° 

X/*-o 

f A A 

<?k>=-<Pkvkvk> 

<tk>" <PkhkVk> 

<Jk> = <PkCk"k> 

Total interfacial transfers Interfacial transfers due to phase change Interfacial stresses and other transfers 

Momentum 

Energy 

Mk =Mk+Mk 

Qk = Qk+Qk 

r l 

Mk=--n- I pkvk( vk-wk)-nkdA 
Ak 

r l r 
Qk—~ J Pkl>k(vk-wk)'nkdA 

A t. 

X 1 f 
Mk — I ( lk-pkl) -nkdA 

Q i - tl«- "k dA 

Specie; 3k=h+h k=~~V~0 J Pkck(vk-wk)-"kdA i k - \ \ n : n , dA 
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Mk =F~ j(?k- PkI>nicdA 
Vo Ak 

= +pkiVek + MTk, (14) 

where mk is the dissipative part of the interfacial stress and 
Pki is the average interfacial pressure of phase k. The first 
term on the right hand side of Eq (14) can be interpreted as a 
buoyant force due to the average interfacial pressure pki. The 
term Mk contains the dissipative interfacial forces due to 
viscous and form drag and unbalanced pressure distributions 
leading to lift and virtual mass (acceleration) effects, and is 
modeled below. 

The differences in the interfacial pressures between the 
phases as well as the interfacial momentum source M; are 
due to surface tension. One can show that the two are 
balanced (Ishii, 1975; Drew, 1983), such that 

l,PkiVek-Mi = 0. (15) 
k 

Substitution of Eqs (14) and (15) into the interfacial 
momentum balance (see Table 1) yields 

Y ( M [ + A 4 ) : = 0 . (16) 

k 

Next, a relationship between the average interfacial pressure 
Pki and the intrinsic average pressure <pk>

k needs to be 
found. Usually, instantaneous microscopic pressure 
equilibrium in all phases is assumed, which simply yields 

<Pk>k = Pki • (17) 

This is a good assumption for the liquid phase(s). If there is 
significant contact between (equiaxed) crystals or if the solid 
forms a continuous structure (e.g., in columnar growth), an 
additional pressure can be transmitted through the solid. At 
the present time, we assume that the natural state of the 
solid phase, in the absence of liquid pressure, is stress free. 
This assumption is often made in porous-media-type flows 
(Hassanizadeh and Gray, 1980). In dispersed flows, an 
intergranular stress or contact pressure is sometimes 
introduced to account for an extra solid pressure (Drew, 
1983; Ding and Gidaspow, 1990). This stress is very small 
before the equiaxed crystals pack and form a (stationary) bed. 
Since we do not consider stresses and deformations in 
columnar structures and packings of equiaxed crystals, a 
solid momentum equation is not needed in regions where a 
"rigid" solid structure exists. Obviously, this topic needs 
more attention if one desires to model solid deformations. 
With Eqs (14) and (17), the macroscopic momentum 
equation (see Table 1) for all phases can now be written as 

^(e/cPk <vk>k ) + V-(£*pk <vk>
k<vk>

k) 

= - ek V (<Pk>k) + V- (<rk> + <rk>) 

+ Mr
k + Mk + ek<bk>

k . (18) 

Interfacial transfers due to phase change 

The exact expressions for the interfacial transfers of mass, 
momentum, heat, and species due to phase change are 
provided in Table 1. Physically, these terms represent 
advection of an interfacial quantity of phase k due to the 
relative motion of the solid-liquid interface. In view of the 
mean value theorem for integrals, the terms can be modeled 
as the product of the interfacial area concentration, AkIV0, 
and a mean interfacial flux. Hence, the interfacial mass 
transfer rate due to phase change becomes 

rk = Ak/V0pkwnk (19) 

where wnk is defined as the average interface velocity of 
phase k, relative to the velocity of phase k at the interface, 
normal to the interface and in a direction outward of phase k. 
In other words, wnk represents the normal interface velocity 
solely due to phase change. The interfacial area concentration 
AkIV0 characterizes first-order geometrical effects and is 
discussed in Sec VI. Similarly, the interfacial momentum, 
heat, and species transfers due to phase change can be 
modeled, respectively, as 

Mr
k = vkirk, (20) 

Qrk = hkirk, (21) 

and 

jr
k = Ckirk. (22) 

where the overbar together with the subscript i denote an 
average over the interfacial area Ak in V0. 

The difference in the interfacial velocities ~vki between 
two adjacent phases is solely due to the density difference 
between the phases. In solidification, the volume change 
upon phase change is relatively small (as opposed to liquid-
vapor or solid-vapor systems), so that the interfacial 
velocities are about equal. Consequently, the interfacial 
momentum transfers due to phase change Mk are 
approximately balanced and the interfacial momentum 
balance, Eq (16), reduces to 
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2Mk = 0 . 
k 

(23) 

It is important to realize that in rapid solidification processes 
the interfacial momentum transfers due to phase change can 
be large and will not balance each other. On the other hand, 
for small rk, Mk may be neglected completely. 

The interfacial enthalpies and concentrations appearing 
in Eqs (21) and (22) are obtained from thermodynamic 
relations, which are discussed in Sec IV.3. 

Interfacial stress and heat and species transfers 

The exact expressions for the interfacial stress mk heat 
transfer Qfc and species transfer fk are given by Eq (14) and 
in Table 1. Physically, these terms represent the transport 
phenomena between the phases within V0 by convection 
and/or diffusion. The interfacial transfers are due to 
microscopic velocity, temperature, and species concentration 
gradients on each side of the solid-liquid interface Ak. 
Similarly to the interfacial transfers due to phase change, 
they can generally be modeled as the product of the 
interfacial area concentration A^IVQ and a mean interfacial 
flux. It can be assumed that the mean interfacial flux is, in 
turn, directly proportional to the difference between the 
interfacial average and the intrinsic volume average of a 
quantity of_phase k, i.e., *Fki~ <1rk>k-1° other words, the 
difference Wki - <*Pfc>* is assumed to be the driving force 
for the interfacial fluxes. Mathematically, this can be 
expressed as 

Md
k = &)Rk(yki-<vk>k), 

* o 
(24) 

Qk = &)-ATki-<Tk>k) 
Vo A 

= (^)hk(Tki-<Tk>k), 
v o 

(25) 

and 

A =&)Pkqf{cki Vo A 

Ak, 

•<ck>
k) 

(7f)pkhmk(Cki-<Ck>
k), 

v o 
(26) 

where Rk is a resistance coefficient and h and hm are average 
convective heat and mass transfer coefficients, respectively. 
The meanings of the various diffusion lengths, A are 
illustrated in Fig 6. The region shown in Fig 6 represents an 
infinitesimally small section of the interfaces depicted in Fig 

3 and is drawn, for simplicity, as a straight line. In general, 
these lengths (or the heat and mass transfer coefficients) and 
Rk are complicated functions of the solid microstructure, 
volume fractions, interface velocities and curvatures, time, 
heat and mass transfer, and melt flow conditions in the 
averaging volume. Although Eqs (24) to (26) are not directly 
usable at this point, we have succeeded in expressing the 
interfacial transfers in terms of macroscopic variables and 
parameters. The coefficients (and Ak/V0) must generally be 
obtained from microscopic models and experimental 
measurements, which is discussed in Sees V and VI. 

Macroscopic shear stresses and heat and species fluxes 

The viscous stress <xk>, heat flux <qk>, and species flux 
<jk> represent interactions within a phase (i.e., of a phase 
with itself). Constitutive relations for these macroscopic 
fluxes can be obtained under the following simplifying 
assumptions: 

(1) The viscous stresses are proportional to the rates of 
deformation. The contribution to the viscous stresses 
due to displacement gradients (arising from density 
differences and phase change) are negligibly small 
(Drew, 1983). The solid phase is viewed as a pseudo-
fluid (see Sec VI.2 for a discussion). 

(a) interfacial heat transfer 

<<:;>-« 

(b) interfacial species transfer 

FIG 6. Illustration of the diffusion lengths: (a) interfacial heat transfer and 
(b) interfacial species transfer (Ni and Beckermann, 1990). 
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(2) The microscopic heat and species diffusion fluxes are 
given by Fourier's and Fick's laws, respectively. Other 
diffusional fluxes (e.g., the Soret and Dufour effects, 
Bird et al„ 1960) are usually not important in 
conventional solidification processes (Poirier et al., 
1991). 

(3) The fluctuating components of the viscosity, thermal 
conductivity, and species diffusion coefficient of phase k 
are negligibly small. This assumption is generally 
invoked in volume averaging (Hassanizadeh and Gray, 
1979a and 1979b), but its accuracy has not been 
established. In solidification, it can be expected to be 
good because of small variations of these 
thermophysical properties on a microscopic scale. 

The following relations can now be written, 

<n> = fik <Vv* + (Vvjfe) > , (27) 

<Qk> = ~ kk- <V2> , (28) 

<Jk> = -Dk-pk <VCk> . (29) 

Using the averaging theorems given by Eqs (10) and (11), 
the above equations can be rewritten as 

<*k> = lik { V (ek<Vk>k) + [V {ek<vk>k)i 

+ TT jvknkdA+— jnkvkdA} , (30) 
Vo Ak

 V° Ak 

<Qk> = ~kk- [ek V<Tk>
k + T- JTknk dA] , 

V° Ak 

(31) 

<jk> = - Dk-pk [e* V<C*>* +7T jCknkdA]. 
Vo Ak 

(32) 

Again, the integrals appearing in Eqs (30) to (32) need to be 
related to macroscopic variables. In view of the averaging 
theorem given by Eq (12), Eq (30) may be expressed as 

<*k> = Mk { V (ek<vk>
k) + [V(ek<vk>

k) ] ' 

-vki(Ve)k-(Vek)Vki} , (33) 

where /!# is an effective viscosity. A similar model has been 
proposed by Ishii (1975). The integrals in Eqs (31) and (32) 
are typically modeled by introducing (stagnant) effective 
thermal conductivities and mass diffusivities as 

<qk> = -kk-ekV<Tk>
k (34) 

and 

<Jk> = -D*k- pkekV<Ck>
k . (35) 

The material coefficients Hk, kk and Dk are generally 
different from their microscopic counterparts and depend, for 
example, on the microstructure. This is discussed in more 
detail in Sees V and VI. 

One also needs to model the macroscopic dispersive 
stresses, heat and species fluxes given in Table 1. 
Traditionally, this has been accomplished through the use of 
increased viscosities, thermal conductivities, and mass 
diffusivities. For multi-phase flows, this is an area of 
considerable research and controversy. Only models of 
limited validity are available and it is not clear how the 
dispersive fluxes can be modeled in solidification systems. It 
is, however, important to realize that the dispersive fluxes in 
the pure liquid region are non-zero if the flow is turbulent. 

IV.3 Thermodynamic relations 

Interfacial temperatures and concentrations 

Under the assumption of thermodynamic equilibrium, the 
temperatures of the phases at any point on an interface are 
the same, so that we can write 

Tki = Ti . (36) 

This temperature is, in turn, related to the interfacial species 
concentrations through the equilibrium phase diagram, i.e., 

Cki = g(Ti), (37) 

where gk is, for example, the equation describing the 
liquidus or solidus lines. The above equations can be 
modified to account for deviations from the phase diagram 
due to kinetic, curvature, or pressure effects (Flemings, 
1974; Kurz and Fisher, 1989). 

The above local conditions need to be related to the 
average interfacial temperatures and concenttations for use in 
the interfacial balances. For this purpose, Tki and Ck\ are 
regarded as simple (i.e., non-weighted) averages over the 
interfaces in the averaging volume. Then, we can write 
immediately 

Tki = Ti (38) 

Downloaded 15 Nov 2010 to 128.255.19.162. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



14 Beckermann and Viskanta: Modeling transport during alloy solidification Appl Mech Rev vol 46, no 1, January 1993 

However, Eq (37) holds on an average basis only if T\ is 
uniform on Ak, because the function gk may be nonlinear. 
An isothermal interface is usually a good assumption for 
dendrite tips (Kurz and Fisher, 1989). However, for strongly 
varying interfacial curvatures and/or for highly directional 
heat and species fluxes at the interface (which may be caused 
by convection), Tt will be nonuniform. This problem can be 
overcome by linearizing the function gk so that 

Cki = 8k(Ti), (39) 

where the superscript J indicates a linearized phase diagram. 
Note that Eqs (38) and (39) are generally not valid for the 
volume averaged temperatures and concentrations, <Tk>

k 

and <Ck>k. 

Enthalpies and densities 

Neglecting the influence of pressure, the local enthalpy and 
density of phase k can be obtained from appropriate state 
functions, i.e., 

hk = hk (Tk, Ck) (40) 

and 

Pk = Pk(Tk,Ck), (41) 

where Ck stands for the concentration of each species 
present. Again, Eqs (40) and (41) are local conditions that 
need to be expressed in terms of average quantities for use in 
the macroscopic equations. Unless the microscopic 
temperature and concentration profiles in the averaging 
volume are known (e.g., if they are uniform), the state 
functions need to be linearized in both temperature and 
species concentration. Note that this is equivalent to 
introducing constant specific heats and coefficients of 
expansion. Then, 

<hk>
k = 777 J Xkhk (Tk, Ck)dV 

fc v0 

= hk* (<Tk>
k, <Ck>

k) , (42) 

<Pk>
k = y~ jXkPk(Tk,Ck)dV 

= Pk'(<Tk>k,<Ck>
k) , (43) 

and also 

hi =hk*(fkhCki) , (44) 

Pki = Pic (Tki, Cki) , (45) 

where the superscript Jt indicates that these functions are 
linearized in all variables. Also note that the difference 
between the interfacial liquid and solid enthalpies, but not 
the volume averaged ones, is equal to the latent heat of 
fusion, unless the temperatures and concentrations in both 
phases are uniform. 

V. A MODEL FOR COLUMNAR 
SOLIDIFICATION 

In this section, a macroscopic model is reviewed that is 
limited to columnar solidification, with the solid rigid and 
fixed to a cooled wall. In addition, a number of other 
simplifying assumptions with regard to processes on a 
microscopic scale are made to reduce the equations to forms 
that can theoretically be solved; these are discussed below. 
Nevertheless, several challenging modeling issues remain 
that need research attention. The model (Schneider, 1991) is 
basically a generalized version of the models used by Bennon 
and Incropera (1987), Beckermann and Viskanta (1988), 
Voller et al. (1989) and others to predict convection and 
macrosegregation during columnar solidification of binary 
alloys. The approach taken is the same as the one 
exemplified by Eq (1), except that liquid convection is 
included. We consider a binary alloy with a phase diagram 
corresponding to the one shown in Fig 2. The phase diagram 
reveals that at most three phases are present during 
solidification: liquid (b=£), a-phase solid (k=a), and /3-phase 
solid (k=p). The main assumptions can be summarized as 
follows: 

(1) The solid phases are rigid and stationary (as in purely 
columnar growth) so that va - vp = 0. 

(2) All phases in the averaging volume are in thermal 
equilibrium so that <Tj>J = <Ta>

a = <Tp>P = Tji = 
T ai = Tpi = Ti = T. This assumption can be justified 

by the high thermal diffusivity of metal alloys and the 
presence of creeping flow in the columnar mushy zone. 
Its validity is also discussed in connection with Eq (1). 

(3) The liquid in the averaging volume is solutally well 
mixed so that <C j>* = Cji. This is typically a good 
assumption for the liquid within the interdendritic 
meshwork, but produces errors at the dendrite tips due to 
solutal undercooling (Flood and Hunt, 1987; Huppert, 
1990). The main drawback of this assumption is that a 
kinetic law for the movement of the dendrite tips cannot 
be included (Rappaz, 1989). 

(4) Species diffusion in the solid phases (a and p) within 
the averaging volume is either complete (so that <Ca>

a 

= Cai and <C/3>/5 = C>) or absent (i.e., Da = Dp = 0). 
This assumption basically covers two important 
limiting cases as discussed below. 
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(5) All dispersion fluxes are neglected. Therefore, the model 
is limited to creeping flow in the mushy zone and 
laminar flow in the pure liquid region. The important 
effects of turbulent melt flow cannot be addressed with 
such a model. 

Note that modeling of equiaxed solidification would be 
meaningless with this model, because of the neglect of 
undercooling of the liquid (and, of course, the assumption of 
a stationary solid). 

V.l Conservation equations 

In order to avoid modeling of the interfacial transfer terms, 
the conservation equations for each phase can be added up to 
obtain the so-called mixture equations, where terms 
accounting for the interfacial transfers have cancelled out due 
to the interfacial balance requirements. The liquid 
momentum equation needs to be considered separately, 
because we want to account for interfacial momentum 
transfer due to friction of the liquid in the mushy zone. 
Similarly, the solid mass and species conservation equations 
are considered separately, because of assumption (4). In the 
following, useful forms of the various conservation 
equations are developed. All equations are taken directly from 
SecIV. 

+ V- {ejpj<Cj>*<v4>*) 

= ™ V- ( < / > + <ja> + <jp>) (49) 

Due to the small mass diffusivity of solid alloys, we can 
safely assume that </a

>=<.//j>=0- Note that this assumption 
does not rule out the possibility of species diffusion in the 
solid on a microscopic scale, i.e., within the averaging 
volume. The macroscopic species diffusion flux in the liquid 
is given by Eq (35) with k=J. The inclusion of finite rate 
macroscopic species diffusion in the liquid, <jj>, is 
important for the prediction of double-diffusive convection 
phenomena (see Sec II), and does not preclude the 
assumption of a solutally well-mixed liquid on a 
microscopic scale. In addition, we will assume, for 
simplicity, that DJ=DJ, Because Eq (49) is used to calculate 
the liquid concentration, it is expanded and written as 

d<C >a 

= V- (ejfyjD^<Cj>^)- eapa £ 

-£pPp 
3<Cg>/> 

dt + (<C^~<Ca>
a)^-t(eaPa) 

Mass conservation 

By adding up the phase mass conservation equations given 
in Table 1, and making use of the interfacial mass balance, 
we obtain the mixture mass conservation equation 

to (£;PJ) + V- (ejpjKv^) = - Yt (£aPa + eppp) • 
dt 

(46) 

In addition the individual mass conservation equations for 
the solid phases, i.e., 

dt 
\£aPa ) — * a 

and 

^( f i f lP^) = J> 

(47) 

(48) 

will be needed in the derivation of the solid species 
conservation equations. 

+ (<C^~<Cp>P)^(eppl}) 
dt' 

(50) 

The last two terms on the right hand side of Eq (50) 
represent sources of species upon solidification due to the 
different compositions of the solid and liquid phases. Note 
that the concentration differences in these terms are volume 
averaged and not interfacial concentrations. Equation (50) 
could equally well be derived by starting from the liquid 
species concentration equation [instead of Eq (49)], and 
eliminating the interfacial transfer terms by substitution 
from the interfacial species balance and the solid species 
conservation equations (see Table 1). From this point of 
view, Eq (50) can also be regarded as a liquid, instead of a 
mixture, species conservation equation. The same can be 
said of the mass conservation equation, Eq (46). 

Assuming negligible macroscopic species diffusion 
fluxes in the solid and utilizing Eqs (22), (26), (47), and 
(48), the solid species conservation equations for the two 
solid phases become 

* W V 
d<Ca>

a 

dt 

Species (solute) conservation 

The mixture species equation is given by 

•A« N PaPa^ 
•• (Cai - <C«>«) lft (eaPa) + ( ^ ) ^ ] (51) 

T, (ejP^Cj^ + £aP<x<Ca>
a + EfsP^C^tS) 

dt 
and 
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a<c,)>/» 

= (Cpt - <Cp>P) [ | (epPp) + ( ^ ) efy . (52) 

The above two equations allow for the calculation of the 
average solid concentrations as a function of the interfacial 
values, provided the last terms on the right hand sides can be 
related to known parameters. For simplicity, we will 
consider two limiting cases, i.e., 

An 

—^ oo 

and 

(53) 

(54) 

The first case, Eq (53), is approached for a very finely 
dispersed solid microstructure, where the interfacial area 
concentrations are large (and, hence, the diffusion lengths are 
small). Substitution of Eq (53) into Eqs (51) and (52) will 
force the average solid concentrations to be equal to the 
corresponding interfacial values, implying solutally well 
mixed solid phases on a microscopic scale. The second case, 
Eq (54), is true for negligibly small solid mass diffusivities 
and microstructures that have a small surface area to volume 
ratio. Then, the solid will have "layers" of different 
composition that reflect the interfacial concentrations at 
various instants of time during solidification. The above two 
cases have been known to metallurgists for many years (see 
Flemings, 1974), but volume averaging provides a clear 
understanding of the parameters involved. A model with 
finite rate solid diffusion on a microscopic scale is presented 
in Sec VI. A different one has been developed by Poirier et 
al. (1991). Whether Eq (53) or (54) is more realistic depends 
on the alloy and the solidification conditions. For example, 
in the Fe-C system the solid mass diffusivities are relatively 
large and Eq (53) is generally a better approximation. For 
diffusion-dominated solidification of a Pb-Sn alloy it has 
been found that predictions of the liquidus isotherm 
positions differ by less than 3% between the two limiting 
cases (Schneider and Beckermann, 1991). However, the local 
solid fractions and the volume of eutectic phase in the final 
solid (an important metallurgical parameter) can be quite 
different, depending on the initial concentrations (Poirier et 
al., 1991). Voller et al. (1989) found for solidification of a 
NH4CI-H2O solution with convection that the predictions 
are quite similar; however, this probably needs more 
investigation for metal alloys. 

The presence of a microscopic concentration profile in 
the solid phase for the model specified in Eq (54) causes 

special problems during remelting of solid (Rappaz and 
Voller, 1990; Poirier et al., 1991). Remelting can occur due 
to advection of liquid of different temperature and 
composition in the mushy zone or due to solutal layering in 
the pure liquid region (Beckermann and Viskanta, 1988). The 
changes in the average solid concentration during remelting 
depend on the (microscopic) concentration profile "frozen" in 
the solid at earlier times. One method to handle remelting 
would be to record the microscopic concentration profile by 
"remembering" the interfacial solid concentrations at all 
times. During remelting one would simply back up along 
this record. However, this recording process would be an 
extremely time and space consuming task. In addition, it 
may be argued that remelting is not the exact reverse of 
solidification, because various parts of the solid can remelt 
at different rates. One way of circumventing this problem 
may be to assume that the solid that melts has a 
composition equal to the average solid concentration before 
remelting, i.e., <Ca>

a, <C/3>^=constant during remelting 
(Schneider, 1991). This statement can readily be incorporated 
into the solution of Eqs (51) and (52) together with Eq (54). 
More realistic modeling of remelting in the presence of 
microscopic solute profiles in the solid would first require 
careful experimentation. Since the solid is assumed to be 
solutally well mixed on a microscopic scale when using Eq 
(53), no such problem exists during modeling of remelting. 

Energy conservation 

The mixture energy equation is given by 

jiejtpf&j?* + £apa<ha>
a+ eppp<h0>P+ 

+ V' {eJtpj<h4>'t<Vjt>'t) 

= - V- (<qj> + <qa> + <qp>) (55) 

Because of assumption (2) and in analogy with Eq (1), it is 

of advantage to use the temperature T as the dependent 

variable in Eq (55) [however, this is not necessary as shown 

by Bennon and Incropera (1987)]. Assuming an equation of 

the form of Eq (42) can be specified, the differential of the 

average enthalpy of a phase is 

d<^J-^ dT + 
d<hk>k 

<ck> 
d<Ck>

k 
d<Ck>

k. 

(56) 

Substituting Eqs (34) and (56) into Eq (55), yields after a 

few steps 

[ ejpj 
d<h/>A 

dT 

d<ha>
a 

<c*>A <C„>° 
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a</i/}>^ 
+ £PPP~ST 

d<h,>J 

+ SjtP* g r 

d<hj>J 

+ E'P*d<Cj>* 

d<h„>a 

+ £apad<Ca>°< 

<C( 

ar 
dt 

<Vj>'VT 

<CJP* 

d<Cf>* 

dt 

d<Ca><* 

dt 

appearing in the last two terms on the right-hand-side of Eq 
(57) are generally not equal to the latent heats of fusion, 
unless all phases are solutally (and thermally) well mixed 
within V0 (see Sec IV.3). The latent heat of fusion of the a-

phase and /?-phase solids can be quite different (Poirier and 
Nandapurkar, 1988). 

In a numerical solution, the last term on the left-hand-
side of Eq (57) would require a relatively complicated 
discretization procedure (Patankar, 1982). On the other hand, 
time derivatives are much easier to discretize than advective 
terms. The advective term involving the liquid concentration 
can be eliminated by solving the mixture species 
conservation equation, Eq (50), for this term, multiplying it 
by (3</!^>^/3<C^>-^)r, and substituting it into Eq (57). All 
macroscopic species diffusion terms can, again, be safely 
neglected in the energy equation. The result is 

d<Cg>\ 

dt [ SJPJ 
d<h*>* 

dT + eaPa 

<Cj>J 

d<ha>
a 

dT 

+ e'P'd^P <V;>-'-V<C;>'' 

= V- [ (erf* + eak*a + epkp)VT] 

+ [<h^-<ha>
a] 

d(eapa) 

dt 

+ [ < * ^ - < * ^ ^ (57) 

Note that the interdiffusive and Dufour heat fluxes (Bird et 
al., 1960) have been neglected in the first terms on the the 
right-hand-side of Eq (57), since the Lewis number of metal 
alloys is very large (- lO 4) . The volume fraction weighted 
sum of the effective phase thermal conductivities can be 
termed a "mixture" thermal conductivity. Its value depends 
on the microstructure. While many theoretical and empirical 
formulae for the mixture thermal conductivity are available 
for porous-media type systems, it is not clear how it can be 
calculated for the wide variety of microstructures present in 
the system considered here. It would be useful to conduct 
experiments to directly measure the mixture thermal 
conductivity as a function of the volume fractions; however, 
no such data has yet been reported in the literature. Due to 
the directional nature of columnar dendritic structures, one 
would expect the effective thermal conductivity to be 
anisotropic. As a first approximation, the effective phase 
thermal conductivities may be taken equal to their 
microscopic counterparts, i.e., kk = kk- In addition, it 
should be mentioned that very little data is available for the 
temperature and concentration dependencies of the phase 
thermal conductivities of practical metal alloys. The above 
discussion also applies to the mass diffusivities. Note that 
the differences in the average solid and liquid enthalpies 

d<h^ 
+ eppi)—^- 1 ^ J dt 

<Cp>> fi 

<Vj>*VT 

= V-[(ejkj + eak*a + epkp)VT] 

d<ht>* d<C^ 

dt 

d<ha>
a 

SaPad<Ca>
a 

d<h^ 

"~evpn<c^ 

d<Ca><* 

dt 

d<Cn>\ 
dt ' 

d<h^ 
+ d<Cj>" dt dt 

+ £ppf> —j j f~ - (<CJ>/S - <c«>a^t
 ( £apa ) 

-(<Cj>^<Cp>P)jt(eppp)} 
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+ [<h^-<H^i^ (58) + <yj>'t ljt(£aPa+ SpPp)] 

Although lengthy, Eq (58) can easily be discretized 
using standard numerical discretization procedures (e.g, 
Patankar, 1982). In addition, Eq (58) is written in a form 
that is consistent with the mass [Eq (46)] and species [Eq 
(50)] conservation equations. Special care should be taken to 
discretize the unsteady terms involving (3T/3t) consistently 
so that Eq (58) can be solved for the temperature in all 
regions of the domain (i.e., solid, liquid and mush) (see also 
Sec V.2). 

Momentum conservation 

For a stationary and rigid solid phase and neglecting the 
interfacial momentum transfer due to density changes upon 
phase-change (i.e.,"v̂ ,- « vsi = 0), the liquid momentum 
equation, Eq (18), becomes 

- (Aj/V0) R;<vj>J + Ejpjg (60) 

dt 
(&tpjt <**>*) + V-( ejp^v^ <VX>*) 

<=-e/ty<pj>J 

+ V- { At* [ V(£,<v,>^) + (V(e, <vj>'))] } 

- (AJ/V0) R^vj^ + Sjpjg (59) 

where (i) Eq (24) (with T^/=0) has been substituted for the 
interfacial drag term AQ, (ii) Eq (33) (with v„-0) has been 
substituted for the macroscopic shear stress, and (iii) the 
body force has been assumed to be due to gravity only. 
Equation (59) can be written in the same form as the species 
and energy conservation equations by expanding various 
terms and utilizing the continuity equation. Generally, one 
has the choice of choosing the volume averaged (or 
"superficial") velocity <v^>=Sj<v/e>yt or the intrinsic 
volume averaged (or "pore") velocity <vj>* as the dependent 
variable (Voller et al., 1989). The choice depends on the 
numerical discretization procedure to be used, but the overall 
discretization effort is approximately the same (Schneider, 
1991). Here, we choose the pore velocity <v*>* as the 
dependent variable and rewrite Eq (59) as 

ejpj <V
df + ejpj <VJ>*V<VJ>* 

= -eJV<p;>'e 

+ V{EJ fij [V<v,>^ + (V<v,>-<n 

+ lfi [<V;>JVe; + Ve,<v,>->]} 

The effective liquid viscosity fij is often taken to be 
equal to the actual liquid viscosity (Neale and Nader, 1974; 
Ganesan and Poirier, 1990; Prescott et al., 1991). However, 
it is well known in the porous media literature that \i4 

depends on the solid structure (e.g., Lundgren, 1972). This 
can be visualized by considering the extreme case of the 
liquid being contained in small pockets formed by the 
dendritic meshwork. No shear stress can be transferred by 
such a liquid on a macroscopic scale, so that fij should 
vanish. Accurate specification of fij is also important near 
the mush/liquid interface (i.e., for ê —>1), where velocity 
gradients can be large (Larson and Higdon, 1986; Sahraoui 
and Kaviany, 1991). Due to the absence of a general theory 
or experimental measurements for columnar dendrites, one 
has little choice but to take jXj= fij. 

The main problem with Eq (60) is the complete 
specification of the interfacial drag in terms of known 
parameters. This requires consideration of the flow on a 
microscopic scale. The directional nature of the columnar 
dendritic structure causes the resistance coefficient Rj to be 
anisotropic. Poirier (1987) recently discussed a variety of 
models for interdendritic flow in columnar alloys. Typically, 
the mushy zone is viewed as porous medium and the 
resistance coefficient Rj is identified with a permeability. 
This can be written as 

Md
4 = - (AJ/VO) Rj<v;>j = - ejfijK (2) <vj>* 

(61) 

(2) where K is a symmetric permeability tensor. The 
permeability contains the interfacial area concentration 
implicitly. Models for the permeability can rigorously be 
derived by considering laminar, fully developed flow through 
capillary fissures or tube bundles (Bird et al., 1960). 
Accordingly, a component of the permeability is given by 

K = 

3 

Ck(Aj/V0)
2 (62) 

where Ck (~ 5) is sometimes called Kozeny's constant. The 
interfacial area concentration Aj/V0 can, in turn, be related 
to a hydraulic radius, r/,, through 

Aj/V0 = Ejlrh (63) 

and r\x may be related to the primary and secondary dendrite 
arm spacings (Poirier, 1987). Although models of the above 
form provide insight into the basic dependencies of the 
permeability, they still need "calibration" through 
experiments (sec Poirier, 1987 and references therein for a 
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compilation of such measurements). While numerous data 
are available for small and intermediate liquid fractions, no 
measurements of the permeability have been reported for 
liquid fractions approaching unity. This represents a serious 
deficiency, because the flow in the dendrite tip region can be 
expected to have a crucial influence on the growth of 
microstructures and the transport of heat and species by 
convection. A modification to the above permeability model 
for high liquid fractions is discussed in Sec VI. 1. Ganesan et 
al. (1992) recently presented a study of the permeability 
parallel to the primary dendrite arms for solid fractions 
below 0.35, for which there are no experimental data 
available. In a promising approach, they combined 
descriptions of real microstructures taken from quenched 
solidification experiments with direct numerical simulations 
of the microscopic flow. The effect of anisotropy in the 
permeability of the mushy region during solidification of a 
binary mixture (NH4CI-H2O) was examined numerically by 
introducing the principal permeability ratio R (Yoo and 
Viskanta, 1992). A small R was found to promote not only 
the growth of the secondary layer but also result in a large 
concentration difference between the mushy and the pure 
liquid region. Also, severe remelting was found to occur due 
to the liquidus temperature depression by higher 
concentration and the earlier development of thermal 
convection in the upper layer. 

An area where accurate permeability data is of particular 
importance is in the prediction of channel segregates in 
castings. Several studies have recently been reported where 
the formation of channel segregates has been simulated 
(Prescott and Incropera, 1991; Felicelli et al., 1991). The 
evolution of the permeability in such channels should be the 
subject of more investigation, particularly because the 
dendritic structure in the channels can be expected to be quite 
different from that in an uneroded mushy zone. 

Since Eq (61) assumes a linear relationship between the 
interfacial drag and the velocity, it is only valid for creeping 
flow (i.e., for a Reynolds number based on the hydraulic 
radius of less than unity). Ganesan and Poirier (1990) 
include a second-order resistance term in Eq (61) that is 
proportional to the square of the velocity. This term only 
exists for anisotropic solid structures. On the other hand, 
Beckermann and Viskanta (1988) include a velocity square 
term to account for possible inertia (or "kinetic") effects on 
the interfacial stress. Their term is usually called 
Forchheimer's extension to Darcy's law and also exists for 
isotropic solid structures. In the porous-media literature, 
there has been an extensive discussion on the significance of 
such higher-order terms (Cvetkovic, 1986; Hassanizadeh and 
Gray, 1987; Barak, 1987; Hassanizadeh and Gray, 1988). At 
the present time, there is not sufficient experimental data to 
support the inclusion of velocity square terms in modeling 
of interfacial drag in mushy zones. 

V.2 Calculation of the solid fraction 

A main source of uncertainty and confusion in the use of the 
model presented in Sec V has been the calculation of the 
solid volume fractions, ea and ep. There are no equations 
that contain the volume fractions as the main dependent 
variable. Furthermore, in the mushy zone the energy and 
species conservation equations are intimately linked through 
the phase diagram relations and state functions given in Sec 
IV.3. Note that in the absence of convection and 
macroscopic solute diffusion, the species conservation 
equations and phase diagram relations can easily be 
combined to yield the well-known Lever rule or Scheil 
equation (Kurz and Fisher, 1989), which are explicit 
relations for the solid fraction. This is, however, not 
advisable in the presence of macroscopic solute transport 
(due to convection and diffusion). 

Much research has recently been devoted to the 
development of efficient and fast algorithms to affect the 
coupling between the equations and "recover" the volume 
fractions (Prakash and Voller, 1989; Voller, 1990; Voller et 
al., 1990). One relatively general iterative procedure 
involves the following steps before the eutectic point in 
reached: (i) assume that the temperatures and concentrations 
(and, therefore, enthalpies) are known in the energy equation, 
Eq (58), and solve it for the solid fraction, ea or ep, (ii) 
solve the species conservation equations, Eqs (50) to (52) for 
the various average concentrations, taking the most recent 
values for the volume fractions and interfacial concentrations 
(or temperature), (iii) update the temperature from the phase 
diagram relations and go back to step (i). During the eutectic 
reaction, the a- and j3-phases form simultaneously. Then, 
both the temperature and liquid concentration are at fixed 
values given by the phase diagram, so that the total solid 
fraction es=ea+Ep can be determined from the energy 
equation and ea or ep from the liquid species conservation 
equation. In practice, there are many important details to this 
procedure to affect fast convergence, and the reader is referred 
to a recent review (Voller et al., 1990) that covers both 
finite difference and finite element methods. 

VI. PROGRESS TOWARDS A COMPREHEN-
SIVE MODEL FOR COLUMNAR AND 
EQUIAXED SOLIDIFICATION 

This section addresses modeling of solidification systems 
where columnar and equiaxed microstructures exist 
simultaneously. A combined columnar and equiaxed solid 
structure can be found in many casting processes (Flemings, 
1974) and also occurs in magmatic systems (Loper and 
Roberts, 1978). The system considered is similar to the one 
shown in Fig 4. We also relax all assumptions made in Sec 
V regarding the microscopic processes. In other words, all 
phase interactions occurring on a microscopic scale are 
explicitly considered and separate conservation equations are 
utilized for each phase. This allows, for example, for the 
inclusion of nucleation, microsegregation, thermal and 
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solutal undercooling and solid movement. As mentioned in 
Sec II, all of these effects have a pronounced influence on 
the compositional and structural properties of a solidified 
alloy and should be included in a comprehensive model. 
Furthermore, the model provides a more general macroscopic 
framework than Eq (1) for the inclusion of microscopic 
processes. 

The following discussion should not be viewed as a 
complete and final theory, but rather as an overview of the 
progress (or lack thereof) that has been made and of the 
various modeling aspects that need to be addressed both 
theoretically and experimentally. For conciseness, only one 
solid (k=s) and one liquid (fc= )̂ phase are considered. The 
macroscopic conservation equations for each phase can be 
found in Table 1 and are not repeated here. As is evident 
from Sec IV, a two-phase model requires specification of the 
interfacial drag and heat and mass transfer coefficients (or 
diffusion lengths), the interfacial area (A^A^Aj) per unit 
volume (VG), and the macroscopic viscosities, thermal 
conductivities, and mass diffusivities for each phase. Each of 
these quantities is addressed in the following sections. 

VI.l Interfacial transfers 

Interfacial drag 

It is customary to model the dissipative part of the 
interfacial stress, Mjc, of the solid phase for moving solid 
particles (e.g., small equiaxed crystals) and of the liquid 
phase for flow through a fixed solid structure (e.g., columnar 
crystals or packings of equiaxed crystals) (Hassanizadeh and 
Gray, 1980; Drew, 1983). The interfacial drag needs to be 
modeled for one phase only, because the one for the other 
phase can be obtained from the interfacial momentum 
balance, Eq (23) (neglecting Af#). In solidification of alloys, 
there is a transition between moving and fixed solid 
structures. For example, with increasing solid volume 
fraction, equiaxed crystals will interact, pack, and eventually 
form a continuous solid structure. It is, therefore, desirable 
to obtain a correlation for the resistance coefficient Rk as a 
function of the liquid volume fraction, covering small nuclei 
in the melt (ê —>1) as well as low permeability dendritic 
meshworks (e*<0.5). Agarwal and O'Neill (1988) recently 
presented such a generalized drag coefficient model, and 
compared available theories for multi-particle systems. For 
an isotropic medium composed of spherical particles, the 
resistance coefficient Rk can be identified with a generalized 
drag coefficient, Q)g, such that the interfacial drag is given 
by 

Md
s=~pj CDIA<Vj>J-<Vs>s\ {<v4>*- <vs>

s) 

(64) 

where ds is a mean particle length (diameter for spherical 
particles) of the solid phase that can be related to the 
interfacial area concentration, Sv = Ai/V0, as 

ds = 6es/Sv (65) 

The drag coefficient, CDe, is calculated as a function of a 

particle Reynolds number via 

CDe = 24/(2 Re CkEes) (66) 

where C/;eis a generalized Kozeny coefficient and the 

particle Reynolds number Re is given by 

Re = esps I <vj>J - <vs>
s I dslnjt (67) 

Since equiaxed crystals can generally be expected to have a 
small particle Reynolds number, inertia terms are not 
included in the expression for the drag coefficient. 

For the packed bed regime (e^<0.5), Ck.e can be 
obtained by comparison with the Blake-Kozeny equation (see 
Sec VI and Bird et al., 1960), to give 

C t e « 5 (68) 

It is easily shown that Eqs (64) to (68), together with the 
interfacial momentum balance given by Eq (23), are 
mathematically identical to the permeability model given by 
Eqs (61) and (62). The Blake-Kozeny equation has also been 
found to work well for packings of equiaxed crystals 
(Murakami and Okamoto, 1984). 

For the free particle regime (e^>0.5), Agarwal and 
O'Neill (1988) recommend the following expression 

Ck£~2 1 - e / l - 1.83(l-e,)J ( 6 9 ) 

For comparison, the well-known Richardson and Zaki 
(1954) model gives 

1 er1-65 

Cks = \ ^ (70) 

In the limit of Sj-^l, Eqs (64) to (67) and (69) reduce to 
Stokes' law for a single particle (see Bird et al., 1960). At 
£*=0.5, according to Eqs (68) and (69), there is a small 
discontinuity in the generalized Kozeny coefficient Q e that 
causes the drag coefficient and, hence, the pressure drop to 
increase in the transition from the free particle to the packed 
bed regime (Andersson, 1961). 

The above drag coefficient model, like the permeability 
model, needs experimental calibration, in order to relate the 
characteristic length scale ds to (known) microstructural 
parameters. Presently, it is not at all clear how the multiple 
length scales present, for example, in equiaxed dendritic 
growth (i.e., the grain diameter, the dendrite tip radius, and 
the dendrite arm spacings) can be incorporated into the above 
correlation framework (which was originally developed for 
solid spheres). Nevertheless, West (1985), who proposed a 
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similar extension of the permeability model to high liquid 
fraction mushy zones, was able to obtain a good fit of the 
permeability data measured by Piwonka and Flemings 
(1966) over the entire liquid fraction range. Generally, little 
data is available for liquid fractions greater than 0.8. Some 
guidance may be obtained from studies of crystallization of 
various salt-water solutions (e.g., Ishii et al., 1977) and 
from the snow literature (e.g., List and Schemenauer, 1971) 
(snow crystals can be dendritic). Drag coefficient 
measurements during settling of various models of equiaxed 
dendrites and dendrite fragments have recently been performed 
by Zakhem et al. (1992) and correlated by Ahuja et al. 
(1992). 

Interfacial heat and species transfer 

(a) Liquid side. The inclusion of thermal (T^KT^) and, 
particularly, solutal (C^<Cj>*) undercooling in the liquid 
is necessary for the prediction of microstructure formation in 
alloy solidification (Rappaz, 1989). As already mentioned, 
equiaxed growth would be impossible without undercooling 
of the liquid. Similarly, the phenomenon of recalescence 
commonly observed in castings is directly related to 
undercooling. In the interdendritic region the interfacial area 
concentration, Sv=AilV0, is so large that the liquid can 
safely be assumed to be thermally and solutally well mixed 
(i.e., the undercoolings vanish). The crucial areas are the 
dendrite tips and eutectic growth fronts in both columnar and 
equiaxed growth. According to Eqs (25) and (26), modeling 
of undercooling requires specification of the interfacial heat 
and mass transfer coefficients (or diffusion lengths) and the 
interfacial area concentration (see below). 

In the limiting case of diffusion dominated heat and 
species transfer in the liquid and assuming some idealized 
geometry, the temperature and solute gradients at the 
solid/liquid interface and, hence, the diffusion lengths, J^ 
and /^ , can be evaluated by solving the (exact) diffusion 
equations on a microscopic scale. Most analyses assume a 
quasi-steady state, which limits them to low growth rates. In 
the simplest of all cases, a spherical grain growing into.an 
infinite liquid, the diffusion lengths are given by Jj = JJj = 
ds/2. Models for dendrite tips are typically based on the 
Ivantsov solution for an isolated paraboloid (see Kurz and 
Fisher, 1989). This solution needs to be supplemented by an 
interface stability criterion in order to yield unique 
relationships. It is beyond the scope of this review to 
provide any details of the diffusion models that are available 
for a wide variety of (idealized) microstructures and the reader 
is referred to Kurz and Fisher (1989) and Thevoz and Rappaz 
(1991) for an up-to-date account. Rappaz (1989) reviewed, in 
addition, a number of models for multiple crystals, that take 
into account the finite extent of the liquid region around each 
crystal and impingement. As discussed in Sec III. these 
models have provided for quite realistic predictions of 
undercooling phenomena and microstructure formation on 
the system scale for purely diffusional transport. 

The diffusional theories are of little use when 
convection is present. Nonetheless, convective heat and 
mass transfer coefficients have rarely been measured. Some 
data is available for equiaxed crystals grown from aqueous 
solutions (e.g., Palermo and Grove, 1964; Hayakawa and 
Matsuoka, 1973), which is relevant to industrial crystallizers 
used in the chemical industry (these crystals are not 
dendritic). While generalized correlations for heat and mass 
transfer coefficients that cover the entire liquid fraction range 
exist (Agarwal, 1988), they need to be adapted to the 
microstructures present in alloy solidification. Heat and 
mass transfer coefficients should be measured particularly for 
equiaxed crystals and columnar dendrite tips. Promising 
experimental methods include the use of transparent model 
alloys and optical diagnostic techniques (McCay et al., 
1991) and Magnetic Resonance Imaging (Georgiadis, 1991). 
It should be noted that measurements at single dendrite tips 
[see Glicksman et al. (1986)] would not be directly useful, 
because of interference of the thermal and solutal fields from 
adjacent crystals and because the averaging volume contains 
several crystals. This issue is presently the main roadblock 
towards modeling of solidification with thermal and solutal 
undercooling. Besides dendritic growth, more research 
attention is also required for eutectic growth fronts with 
convection. 

(b) Solid side. Modeling of finite rate solute diffusion in the 
solid on a microscopic scale is important for the prediction 
of microsegregation in the solidified alloy. In addition, both 
the interfacial heat and species transfer rates on the solid side 
of the solid/liquid interface influence the phase-change rates 
via the interfacial energy and solute balances (see Table 1 
and below). Because heat and species transfer are analogous, 
the following discussion focuses on solute diffusion only . 

Modeling of microsegregation is an extensive and active 
research area (see, for example, Yeum et al., 1989; Battle 
and Pehlke, 1990) and it is not possible to provide a review 
here. For dendritic solidification, Ohnaka (1986) has 
presented an elegant model that gives good agreement with 
experimental measurements and fits well into the present 
modeling framework. Ohnaka simply assumes a parabolic 
solute profile in the dendrite, so that the diffusion length is 
given by 

where «=1, 2, or 3 for planar, cylindrical, or spherical 
geometries, respectively. Furthermore, Ohnaka assumes 
certain interface geometries. For example, for a square 
arrangement of the dendrite arms on a cross-sectional view of 
the averaging volume, we can write immediately 

ds = X es (72) 

and [compare to Eq (65)] 
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Sv = AilV0 = AejX , (73) 

where A is a mean dendrite arm spacing. Equations (71) to 
(73) constitute a complete model for the interfacial solute 
transfer rate on the solid side, fs, given by Eq (26). Upon 
making a number of other simplifying assumptions (which 
have no direct relevance to the present discussion), Ohnaka 
(1986) is able to obtain an analytical solution for the solid 
fraction variation with local temperature in the mushy zone 
that accounts for finite rate solute diffusion in the solid. 
More importantly, Ohnaka found that the solution is not too 
sensitive to the assumed dendrite shape and growth mode. 
The major discrepancy with experimental data occurs for 
£,j>0.9. This may be attributed to the neglect of dendrite arm 
coarsening (i.e., X was assumed constant) and the reduction 
in the interfacial area due to impingement and merging of 
solid/liquid interfaces (this is discussed in the next section), 
as well as to the assumption of a time-independent, 
parabolic solute profile. While the above model can certainly 
be improved upon, it illustrates the basic procedures (and 
problems) for incorporating finite rate solute (and heat) 
diffusion in the solid on a microscopic scale into 
macroscopic conservation equations and interfacial balances. 
Note that this model of finite rate species diffusion in the 
solid on a microscopic scale can also be incorporated into 
the macroscopic solid species conservation equations 
presented in Sec V [i.e., Eqs (51) and (52)]. 

Topological relations 

The previous two subsections show that the interfacial 
area concentration, Sv = AilV0, is an important parameter in 
the modeling of the interfacial transfer terms. From a 
physical point of view, the interfacial area concentration 
contains the information regarding the geometry of the 
interfaces that is lost through the averaging process. This 
information plays an important part in the behavior of a 
solidifying system and must be restored through a 
constitutive relation. As noted by Boure (1987), the 
knowledge of the average motion of the interface alone (i.e., 
wns) does not suffice to determine the variation of the 
interfacial area concentration. This variation also depends on 
the geometry (topology) of the interface. 

The interfacial area concentration (as well as es) can be 
measured by quenching and sectioning the material at a 
preselected time during the solidification process. Sv is equal 
to twice the number of intersections of a random test line 
with the interface on a 2-D cross section, per unit length of 
the test line. Then, a mean characteristic length (diameter) of 
the solid microstructure can be calculated from (DeHoff and 
Rhines, 1968; Birdetal., 1960) 

ds = 6es/Sv (74) 

dependence of Sv on es is provided in Fig 7. In general, Sv 

is a function of the number of crystals per unit volume, n, 
according to (DeHoff and Rhines, 1968) 

1/3 
(75) 

The calculation of n is discussed in more detail in Sec VI. 3. 
For columnar dendritic growth, n can be viewed as the 
number density of primary arms, so that n ~1/Ai. The 
primary arm spacing, Al5 may, in turn, be related to the 
local solidification conditions (Kurz and Fisher, 1989). 
During solidification of a given averaging volume, Sv 

increases from zero, eventually reaches a maximum value 
and then decreases again to zero because of merging of the 
solid/liquid interfaces and impingement. This behavior may 
be modeled using the empirical relation given by Speich and 
Fisher (1966) 

Sv ~ es (1 - es) . (76) 

This relation cannot be used for e^O.02 and e^O.95, 
because dSvldes should be infinitely large at es=0 and 1. 
Furthermore, coarsening experiments at a constant solid 
fraction have shown that the interfacial area concentration 
decreases according to (Marsh et al., 1988) 

Sv~t 
1/3 

(77) 

where ta is the local "aging" time. At the present, it is not 
clear how the above descriptions can be incorporated into a 
single topological relation for a given metal alloy. 
Neglecting impingement, Eq (73) may give a reasonable 
estimate of Sv in a dendritic mushy zone, provided the mean 
dendrite arm spacing, 1, can be calculated in a meaningful 
way (that may include coarsening). 

S3 

I 

impingement of tips/grains 

structure becomes finer 
with Vtip* 0; dendrite 
arms develop; ~" 
equiaxed 
crystals 
can move 

structure coarsens 
with Vtip = 0; 

equiaxed crystals 
cannot move, 

n = const. 

end of nucleation; 
primary dendrite arm 
spacing established 

Solid volume fraction, £ s 1.0 

Much additional research is necessary before a topological 
relation for Sv can be specified. An illustration of the basic 

FIG 7. Illustration of the dependence of the interfacial area concentration on 

the solid volume fraction (Ni et al., 1991). 
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VI.2 Macroscopic transport coefficients 

Viscosities 

Much has been said about the (mixture) viscosity and 
rheology of suspensions and slurries (Rrieger, 1972; Jeffrey 
and Aarivos, 1976; Darby, 1986). However, the use of 
separate momentum equations in a two-phase model requires 
the specification of both the effective liquid and solid 
viscosities over the entire solid fraction range. A very 
approximate model is presented in the following, in order to 
illustrate the basic ideas and the problems encountered. 

For small (spherical) nuclei in the melt, such that 
es->0, we can write (Nunziato, 1983) 

fh = fij (£s->0) (78) 

and 

JU* = 3.5/1; (£s->0) . (79) 

The finite solid viscosity arises from collisions between the 
particles. The above form of Eq (79) arises from Einstein's 
theory for dilute suspensions of spheres. Einstein (1905) 
actually derived an expression for the suspension or mixture 
viscosity, /!„,, as 

Hm = (1 + 2.5 es) iijt . (80) 

For very small particles, we have <Vj>J = <vs>
s, so that 

V-m = £sH*s + ejiij . (81) 

Then, by substituting Eqs (80) and (78) into Eq (81) and 

solving for /is, we obtain Eq (79). 
In the other extreme, for flow through a rigid solid 

structure, such as a columnar mushy zone and packings of 
equiaxed crystals, we found in Sec V that 

\ix = fXj (rigid solid) (82) 

provides at least for a first approximation. Therefore, it is 
proposed to take Eqs (78) or (82) for all solid fractions and 
structures. Furthermore, for rigid solid structures we take 

/J*s - > °° (rigid solid). (83) 

This "forces" the macroscopic velocity gradients of the solid 
phase to vanish. If the rigid solid structure is attached to a 
wall, the solid velocity will then be uniformly equal to the 
velocity of the wall (which may be zero). For equiaxed 
solidification, we need a smooth transition between Eqs (79) 
and (82), because equiaxed crystals form a rigid solid 
structure only above a certain solid fraction, ec

s, which 
depends on the microstructure. Dendritic crystals will form a 

rigid structure once the dendrite arms interlock and the 
dendrite tip movement has ceased, such that the entire 
volume is occupied by an open solid structure. Depending 
on the solidification conditions, the corresponding value of 
es can vary from about 0.1 up to at most 0.6 (Rappaz and 
Thevoz, 1987). For granular (or globulitic) crystals, a value 
of approximately 0.6 has been reported for es (Murakami 
and Okamoto, 1984), which corresponds well to the 
maximum value of es for a random packing of spheres. The 
transition in the macroscopic solid viscosity may be 
achieved by using Krieger's (1972) model for the mixture 
viscosity of concentrated suspensions, i.e., 

—1 5e° 
lim = Hj[l-es/i$] ' S (84) 

substituting it into Eq (81) and solving for jxs. Note that Eq 
(84) together with Eq (81) reduces to Eq (79) for es->0 and 
to Eq (84) for es>ef. Obviously, this procedure is 
questionable, because for 0<es<£§, <vs>

s is generally not 
equal to <Vj>J. However, it does provide for a smooth 
transition between the two extreme values for fis in equiaxed 
solidification. Alternatively, one could assume that fj,s 

increases exponentially with es. A more complicated model, 
based on kinetic theory, has recently been proposed by Ding 
and Gidaspow (1990). 

Not covered by the above model is the non-Newtonian 
behavior that is exhibited by dense solid-liquid slurries (Soo, 
1989). The non-Newtonian nature is evident by the fact that 
a finite shear stress must be applied to settled equiaxed 
crystals before they can move. However, this phenomenon 
is probably not too important in common casting processes. 
In so-called semisolid forming processes (Flemings, 1991), 
the relative movement between the solid and liquid can be 
neglected, so that a variety of non-Newtonian mixture 
viscosity models apply (see Darby, 1986). 

Thermal conductivities and mass diffusivities 

The effective (macroscopic) thermal conductivities and 
mass diffusivities for each phase should be obtained from 
measurements. As a first approximation, one may be 
tempted to take these effective coefficients equal to their 
microscopic counterparts. The validity of this assumption 
will depend on the grain structure. For example, it is not at 
all clear how to model the macroscopic solid diffusivities for 
small equiaxed crystals completely surrounded by melt. 
Microstructural dependencies in columnar growth have 
already been discussed in Sec V. Despite the importance of 
these issues, no measurements of the effective thermal 
conductivities and mass diffusivities as a function of the 
mushy zone morphology have been reported. 

VI.3 Calculation of the solid fraction 

In the model presented in Sees VI. 1 and VI.2, the procedures 
for calculating the solid volume fraction, es, are quite 
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different from those discussed in Sec V.2. The difference is 
not only due to the fact that the solid fraction may be 
adverted with moving crystals, but also because the model 
of Sec VI accounts for thermal and solutal undercooling, and 
microscopic diffusion in the solid. In the absence of liquid 
and solid convection, the solid fraction models reviewed by 
Rappaz (1989) can be used [together with Eq (1)] to account 
for the above mentioned microscopic effects. However, with 
convection and in the framework of the single-domain 
equations of Sec VI, the solid fraction calculation procedures 
need to be reconsidered. 

Because we specified an explicit relation between the 
liquid and solid phase pressures (see Sec IV.2), the solid 
fraction can be calculated from the solid continuity equation, 
that is (see Table 1) 

pi 
Jt ( £sPs ) + V(£sPs<Vs>s) = $v Ps wns 

(85) 

The right hand side of Eq (85) accounts for the solid fraction 
variation due to phase change. It can be seen that during 
coarsening (when Sv decreases) at a constant solid fraction, 
the average velocity of the interface, wns, is equal to zero. 
The second term on the left hand side of Eq (85) accounts for 
the solid fraction variation due to advective transport of 
solid. 

The interfacial velocity wns is determined from the 
interfacial energy and species balances, which can now be 
written as (see Table 1 and the foregoing constitutive 
relations) 

AhPsWns = -*t (Ti - <7><0 + ̂  (Ti - <TS>
S) 

and 
(86) 

(CM - CsdPsWns = ^j2 (CM - <Cj>') 

| + V . ( < v s > ' « ) 

Sv ~ 

sc 
% - PsVs 

[*£«•«,>.. V(p.v„)] 

= n (88) 

The left hand side of Eq (88) shows that the number density 
of crystals is conserved so that the right hand side was set 
equal to the net generation rate of crystals, n. The net 
generation rate includes both the "birth" and "death" of 
crystals due to nucleation, dendrite arm remelting, 
agglomeration and other effects. Whereas nucleation has 
received considerable research attention (Flemings, 1974; 
Kurz and Fisher, 1989), it is not clear how to model the 
other modes of crystal generation in the presence of 
convection. It can be said that realistic modeling of grain 
structure formation in castings will depend to a large extent 
on resolving this issue (Steube and Hellawell, 1992). 
Equation (88) can, theoretically, be solved for the crystal 
density, n. Recall that n is an important parameter in the 
topological relation for the interfacial area concentration, Sv 

(see Sec VI. 1). 
Since there presently exist considerable uncertainties in 

the modeling of the interfacial transfer terms, special care 
must be taken in calculating the solid fraction. For limiting 
values of certain parameters in the interfacial transfer terms, 
the solid fraction should take the correct values 
corresponding, for example, to the cases of complete thermal 
equilibrium within V0, complete chemical equilibrium (i.e., 
no species concentration gradients) in the liquid phase and no 
species diffusion in the solid, or complete mixing of the 
species in both phases. Fortunately, this can be achieved 
through proper numerical solution procedures (Spalding, 
1983). 

VII. DISCUSSION AND CONCLUSIONS 

+ PsDs 
(Csi-<Cs>s) (87) 

where Ah = h^i - hs{ is the latent heat of fusion. Note that 
the terms in the parentheses on the right hand side of Eqs 
(86) and (87) are the thermal and solutal undercoolings, 
respectively. The intrinsic volume averaged temperatures and 
species concentrations (or enthalpies) are determined from 
the solution of the macroscopic conservation equations for 
each phase. Then, together with the phase diagram relations, 
the above interfacial balances can be solved simultaneously 
for the interfacial temperatures and species concentrations, as 
well as for wns. 

The calculation of the interfacial area concentration, Sv, 
in the presence of solid movement can be further illuminated 
by writing the solid fraction as es = nVsc, where Vsc is the 
solid volume of a single crystal. Substitution into Eq (85) 
yields after a few steps 

A mathematical modeling framework for alloy solidification 
is reviewed that attempts to take into account the many 
ways in which microscopic phenomena influence transport 
processes on a macroscopic scale. Both, the more simple 
model presented in Sec V and the complete two-phase model 
of Sec VI require considerable amounts of additional 
research. In this respect, modeling of nucleation and 
interfacial drag and heat and mass transfer in the presence of 
convection, as well as of dispersion (turbulence) and the 
macroscopic material coefficients should receive particular 
attention. Although these are very complicated issues, they 
do represent the next generation of problems in solidification 
modeling. The feasibility and success of comprehensive 
models is amply demonstrated by the micro-/macroscopic 
modeling efforts recently reported in the literature (Rappaz, 
1989; Stefanescu et al., 1990; Goettsch and Dantzig, 1991; 
Chang et al„ 1992; Loser and Herlach, 1992) and continued 
progress in modeling of other multi-phase systems. The 
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importance of closely coupled experimental and theoretical 
research cannot be overemphasized. Aside from the more 
fundamental aspects discussed here, numerous problems also 
exist in the numerical implementation of the equations and 
the practical application of the models to real solidification 
processes (Viskanta, 1991). Other shortcomings of present 
theories of transport phenomena in solidification and the 
need iot future generation models is briefly discussed in the 
following. 

Although the effects of microscopic phenomena are 
reflected in the present modeling framework, the equations 
cannot be utilized to predict microstructure formation. In 
other words, the constitutive relations rely to a large extent 
on an a prior knowledge of the structures and transport 
phenomena present on a microscopic scale. This problem 
can be linked to the lack of sufficient resolution provided by 
the volume averaging approach. As noted in Sec II, in order 
to predict the formation of microstructures, it is particularly 
important to account for the special growth conditions of 
dendrite tips and eutectic fronts. However, averaging 
volumes containing such tips or fronts always have multiple 
length scales. For example, for an averaging volume with 
several equiaxed dendritic crystals, one can identify at least 
three different microscopic length scales that are all much 
smaller than the averaging volume: (i) the overall radius of 
the crystal, (ii) the radius of the dendrite tips, and (iii) the 
secondary arm spacing. Consequently, the interfacial fluxes 
and the interface velocities are highly non-uniform in such 
averaging volumes. Obviously, these complicated micro-
scopic phenomena are not well characterized by the use of a 
single mean characteristic length, mean interfacial fluxes, 
and a single mean interfacial velocity for a given averaging 
volume. This leaves the question open how, for example, 
the mean length is related to the multiple lengths of the 
actual microstructure. 

In the micro-macroscopic models of Dustin and Kurz 
(1986) and Rappaz and Thevoz (1987) for equiaxed dendritic 
solidification, better resolution is obtained through the use 
of two separate volume fractions for the averaging volume: 
the fraction of grains in the liquid and the internal solid 
fraction within the grain. This way, one is able to 
distinguish between the different phenomena associated with 
the dendrite tip region and the interdendritic region. The total 
volume of the solid in the averaging volume is then simply 
equal to the product of the grain fraction and internal solid 
fraction. Such an analysis requires separate interfacial 
balances for the grain and the averaging volume. 

From a fundamental point of view, we are dealing with 
a heterogeneous multi-phase system having multiple and 
disparate length scales. In order to capture the effects of the 
heterogeneities, one could use multiple averaging volumes 
of different sizes or, more generally, spatial homogenization 
procedures (Bensoussan et al., 1978). Some progress in this 
direction has recently been made in the area of two-phase 
flow in heterogeneous porous media (Quintard and Whitaker, 
1988). Due to the dynamic nature of solidification, one may 
also have to resort to averaging volumes of non-constant 

size (Gray, 1983). Work is underway to apply these concepts 
to solidification (Wang and Beckermann, 1992). 
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