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Abstract 

Using mathematical models to simulate dynamic biological processes has a long history. 

Over the past couple of decades or so, quantitative approaches have also made their way 

into cancer research. An increasing number of mathematical, physical, computational and 

engineering techniques have been applied to various aspects of tumor growth, with the 

ultimate goal of understanding the response of the cancer population to clinical 

intervention. So-called in silico trials that predict patient-specific response to various 

dose schedules or treatment combinations and sequencing are on the way to becoming an 

invaluable tool to optimize patient care. Herein we describe fundamentals of 

mathematical modeling of tumor growth and tumor-host interactions, and summarize 

some of the seminal and most prominent approaches. 
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Introduction 

Mathematical modeling is a powerful tool to test hypotheses, confirm experiments, and 

simulate the dynamics of complex systems. In addition to helping understand the 

mechanistic underpinnings of dynamical systems, mathematical models simulate 

complex systems in a relatively fast time without the enormous costs of laboratory 

experiments and the corresponding biological variations. In particular for oncology, such 

models can be calibrated using experimental or clinical data [1-3], and competing 

hypotheses of tumor progression can be evaluated and treatment options thoroughly 

analyzed before clinical intervention [4-8]. Techniques for quantitative modeling are 

plentiful, and an increasing number of theoretical approaches are successfully applied to 

cancer biology. Differential equation models and individual-based cell models paved the 

way into quantitative cancer biology about two decades ago. Herein we will give an 

introduction on how such models are derived and how they can be utilized to simulate 

tumor growth and treatment response. We will then discuss a number of different models 

and discuss their confirmative and predictive power for cancer biology. 

 

Ordinary differential equation models of tumor growth 

The number of cancer cells in a tumor is difficult to estimate due to constant changes in 

time. Tumor cells may proliferate, rest in a quiescent state, or die. Describing the number 

of tumor cells as a function of time is therefore remarkably challenging. It is, however, 

straightforward to formalize what changes in cell number are expected as time changes. 

The number of living cells only changes when cells proliferate or die: 

difference in live cell number over time interval  =  number of cells created and died over time interval 
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How many and how often cells proliferate and how many cells die is dependent 

on the considered time difference, i.e., dt (where d stands for difference and t stands for 

time).  Let us assume the cell cycle length of an arbitrary cancer cell is 24 hours. Then, 

over the course of one day, the probability that the cell divides is close to 100%. Without 

knowing at what position in the cell cycle a cell currently is, we can assume that the 

probability of this cell to divide within the time frame of one hour is 1/24. Not knowing 

the exact number of cells in a tumor population, the above example can be directly 

translated to the population level. For a population of unsynchronized cells with a cell 

cycle length of 24 hours we can assume that all cells divide once if dt=24 hrs. Similarly, 

if dt=1hr, only a fraction of cells in the population (about 1/24) is expected to divide. One 

reasons similarly for cell death. We therefore must introduce the time difference as well 

as two parameters into the above equation: 

difference in number of cells

dt
= +a (number of cellls) − b (number of cells),

 

where α and β are respectively understood as the fraction of dividing and dying 

cells each dt, and hence denote the per capita growth and death rates of the total cell 

population.  It is obvious that the cell number must increase after a proliferative event and 

decrease after a cell death event. Let us introduce variable c as number of cells. The 

difference in cell number then becomes dc, and the above equation can be written as: 

dc

dt
= αc − βc.

  (1) 
 

Such equation is called an ordinary differential equation (ODE).  

Let us assume that at time t=0, i.e., the starting point of an experiment, we have one 

million cells, i.e. c=106. Population growth dynamics can follow one of three fates: (i) if 
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α = β, then dc/dt = 0. In this case the number of cells in the population does not change 

and the population exhibits a state of tumor dormancy. It is of note that either α = β = 0, 

that is all cells in the population are in state of cellular dormancy or quiescence, or α = β	  

>0	  in	  which	  case	  cell	  proliferation	  is	  balanced	  by	  cell	  death	  [9,10].	  If	  (ii)	  α > β,	  then	  

dc/dt > 0 and the	   cell	   population	   will	   continuously	   grow	   with	   greater	   α-β	   rates	  

yielding	   faster	   growth.	   On	   the	   other	   hand,	   the	   population	   will	   monotonically	  

decrease	  if	  (iii)	  α < β	  and	  thus	  dc/dt < 0 (figure	  1). 

 

 

Figure 1.  Growth dynamics of cell population c over time t for different relative rates of 

cell proliferation α and cell death β;	   c = 106 cells at time t=0. 

 

 Eqn. (1) can be reduced to a one-parameter problem. The terms αc-βc can be 

combined into the single term (α-β)c, and we introduce the single parameter, λ, λ=α-β,	  

which	   is	   called	   the	   net	   population	   growth	   rate. The differential equation describing 

cell population change over time is then  

dc

dt
= λc.

  (2) 
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As before, if λ<0, λ=0, or λ>0 the population decreases, remains at a constant 

size, or increases respectively. Experimental data from in vitro or in vivo population 

studies can then be used to parameterize such model (figure 2). 

 

 

Figure 2. A) Mock population growth comparable to in vitro experimental data with 5% 

standard error bars (black dots) and calculated trend line (red).  B) Mathematical model 

results of population growth for different parameters of λ.  

 

Dynamic tumor growth rates 

Defining a constant per capita growth rate to model tumor growth yields exponentially 

growing cell populations and neglects carrying capacity constraints. Solid tumors initially 

grow rapidly, but growth decelerates as tumors grow bigger [11-14]. Therefore, the per 

capita rate of tumor growth should depend on the tumor size c and not remain constant 

[15] 

dc

dt
= f (c)⋅ c. 

A classic example of a per capita rate of tumor growth dependent on tumor size relative 

to the host carrying capacity K is given by the logistic model  [16] 
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= λc
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increases. If tumor volume, or population size c << K, then 1−
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approximately exponential as is yielded by eqn. (2) above. As the population grows and 

approaches the carrying capacity K, however, 1−
c

K

# 

$ 
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& 

' 
( →0  and population growth is 

impeded. Figure 3 shows the evolution of population size as well as the growth rate 

dependent on population size relative to K for different parameters λ.  

 

 

Figure 3. Population growth limited by carrying capacity K. A) Population size as a 

function of time using eqn. (2). B) Corresponding dynamic per capita growth rates. 

 

Numerous dynamic growth rate functions with applicability to tumor growth have 

been discussed [14,15]. The so-called Gompertz curve [17] has been shown to be 

applicable to biological growth that decelerates with population size [18], and therefore 
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to observed tumor growth slowdown with tumor size [11,12,19,20]. The growth rate is 

the negative logarithm of the current population size divided by the carrying capacity: 

dc

dt
= −λc log

c

K

$ 

% 
& 

' 

( 
) .  (4) 

Despite a more rapid growth rate fall-off, population growth mimics that observed 

with eqn. (3) and given in figures 3 (fig. 4).   

 

 

Figure 4. Gompertz population growth limited by carrying capacity K. A) Population 

size as a function of time using eqn. (4). B) Corresponding dynamic per capita growth 

rates. 

 

In a pathological setting, the carrying capacity itself can be non-constant. Increase 

in cell mass and physical pressure may yield deformation and expansion of basement 

membranes thereby increasing the spatial carrying capacity dependent on tumor size. 

Tumor growth, however, can also stall in absence of necessary growth factors and 

nutrients provided by the host vasculature. During vascular dormancy the diffusion of 

oxygen and nutrients into the tumor interior is limited resulting in a balance of cell 

proliferation and cell death [9]. The carrying capacity then defines the maximum tumor 

size that can be supported by vascular supply. Through release of pro- and anti-
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angiogenic factors the tumor population interacts with the host vasculature thus giving a 

carrying capacity K that changes in time. Through diffusion-consumption arguments 

Hahnfeldt and colleagues derived that vasculature inhibition is relative to the (tumor 

volume)2/3 [21]. Instead of being constant, changes in K are expressed by 
dK

dt
: 

    

dK

dt
= φc

stimulationary capacity of the tumor 
upon inducable vasculature

− ϕKc 2 / 3,

endogenous inhibtion of 
previously generated vasculature   

 (5)
 

where ϕ and φ are constant positive rates of angiogenesis stimulation and inhibition, 

respectively. Initially tumor growth is accelerated due to abundant stimulation but as the 

tumor grows the inhibitory effects will outweigh the stimulator yielding a plateau 

vascular supply and tumor size (fig. 5). 

 

 

Figure 5. Tumor evolution with a dynamic carrying capacity. A) Evolution of tumor 

size c (solid plot) and carrying capacity K (dotted) with λ=0.192, ϕ=5.85, and 

φ=0.00873, parameters fitted to Lewis lung carcinoma growing in C57BL/6 mice in 

Hahnfeldt et al. [21] (the shaded area corresponds to the plot reported in that paper). B) 

Corresponding dynamic per capita growth rates.  
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Modeling tumor treatment 

Tumor treatment can follow two different strategies. A gross reduction in tumor volume 

can be inflicted by inducing cell death in proliferating cancer cells, or by decreasing the 

tumor support via reduction of carrying capacity. The effects of both forms of cancer 

treatment can be readily included in differential equation models. Let us consider the 

modified Hahnfeldt model [21] (eqns. (4) & (5)): 

    

dc

dt
= −λc log

c

K

$ 

% 
& 

' 

( 
) − ξc

anti- tumor
treatment

dK

dt
= φc −ϕKc 2 / 3 − υKg t( )

anti-angiogenic
treatment
   

. 

 

In the simplest case, anti-tumor treatment induces a continuous tumor cell kill 

with strength 0≤ξ≤1, conceivable as chemotherapy or immunotherapy. Figure 6 shows 

the response of the tumor to such cell kill with different strengths after the tumor has 

grown for 40 days (c.f. Figure 5). Hahnfeldt and colleagues [21] modeled the inhibition 

of angiogenesis due to administered anti-angiogenic agents to be proportional to the 

concentration of the drug g(t), which includes partially cleared drug concentrations from 

previous administrations  

g t( ) = a t'( )exp −clr t − t'( )( )dt'
0

t

∫ ,  

where a(t’) and clr(t-t’) are the rates at which the inhibitor concentration is administered 

and its clearance rate, respectively. Figure 7 shows two different simulations of anti-

angiogenic treatments with TNP-470 and Endostatin and a remarkable good fit with 

experimental data for the chosen parameter sets.  
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Figure 6. Anti-tumor treatment for different strength cell kill ξ. Anti-tumor treatment 

continuously applied after day 40 of tumor growth (c.f. figure 5A). 

 

 

Figure 7. Different anti-angiogenesis treatments applied at the beginning of tumor 

growth. A) TNP-470, with υ=1.3 and clr=10.1 (q.o.d.: every other day). B) Endostatin, 

with υ=0.66 and clr=1.7.  Continuous curves are model results; horizontal lines with 

vertical error bars are experimental data. Reproduced from Hahnfeldt et al. [21] 

(permission pending) 

 

Partial differential equation models of tumor growth 

Although ordinary differential equation models have proven to be a useful tool to 

simulate the evolution of total tumor cell number over time, the most apparent 
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shortcoming of this approach is the lack of spatial consideration. Patients do not die 

because of the total number of cancer cells in their body but because the primary tumors 

locally invade the tissue and spread (metastasize) to distant sites of the body to establish 

secondary tumors. It is these metastatic masses that are the main cause of death in cancer 

patients. Cancer invasion and metastatic spread are two crucial and inherently spatial 

processes, which can be simulated using partial differential equation (PDE) models. In 

such models, a population n at spatial positions (x), (x,y), or (x,y,z) in one, two, or three-

dimensional space, respectively, is often described as a density, or fraction of maximum 

available volume at this position, and thus scaled between 0%-100%, or 0-1. The variable 

n is no longer only dependent on changes in time t, but also on variations in considered 

spatial dimensions. The equation for n therefore involves the partial derivatives of its 

independent variables. Omitting the considered spatial domain, the partial derivative of n 

with respect to time t is written as 
∂n

∂t
. 

 

Invasion of tissue is a key aspect of the growth and spread of cancer and is vital 

for successful metastasization. The process of invasion consists largely of three 

components: (i) the cancer cells secrete various matrix degrading enzymes (MDEs); (ii) 

the MDEs destroy the surrounding tissue or extracellular matrix (ECM); (iii) the cancer 

cells actively spread into the surrounding tissue through proliferation and migration.  

 

Perhaps the first spatial model of cancer invasion was developed by Gatenby and 

Gawlinski [22] (inspired by previous work of Gatenby [23]). This model considered the 

effect of excess H+ ions in degrading the local tissue, allowing the cancer cells to diffuse 
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and proliferate into the space created. The system of partial differential equations used to 

model the spatio-temporal evolution of cancer cells (or neoplastic tissue), c, H+ ions, m, 

and extracellular matrix (or normal host tissue), v, is as follows: 

∂c

∂t
=∇⋅ D

C
1− v( )∇c( )

nonlinear diffusion  

+ ρc 1− c( )

logistic growth 

,

∂m

∂t
= ∇

2
m

diffusion

+ δ c−m( )

production & decay 

,

∂v

∂t
= v 1− v( )

logistic growth

− γmv

degradation
,

 

where Dc is the (constant) diffusion coefficient, ρ  the (constant) cancer cell proliferation 

rate, δ the (constant) H+ ions production rate (also taken to be equal to the decay rate) and 

γ the (constant) extracellular matrix degradation rate. As can be seen from the above 

equations, the cancer cells proliferate and undergo nonlinear diffusion (dependent on the 

density of normal tissue – high density of normal tissue giving lower diffusion, low 

density of normal tissue giving higher diffusion) and secrete H+ ions, which diffuse and 

degrade the normal tissue. The H+ ions also undergo linear decay and the normal tissue is 

assumed to have logistic growth in order to attain its healthy state in the absence of 

cancer cells (in the model of Gatenby and Gawlinski, the production and decay of H+ ions 

is assumed to have the same rate for algebraic simplicity). For details on the 

mathematical formulation of diffusion, the population-level description of random cell 

migration, we refer the interested reader to partial differential equation textbooks. 

Through a combination of computational simulation and mathematical analysis 

(travelling wave theory) of the aforementioned system of partial differential equations, 

Gatenby and Gawlinski predicted the existence of a hypocellular gap at the interface 
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between the normal and cancerous tissue [22]. This was subsequently observed in 

hematoxylin-eosin (H&E) stained micrographs of invading cancers (Fig. 8).  

 

 

Fig. 8. Simulation results and experimental confirmation of the cancer invasion. A) 

Computational results. Tumor (red triangles) secretes H+ ions (blue circles) that diffuse 

and degrade the extracellular matrix or healthy tissue (green squares). Simulations reveal 

a gap between the advancing tumor front and the receding tissue (white arrows). B) 

Hematoxylin-eosin (H&E) stained micrograph of the tumor-host interface reveals 

hypocellular gap (white arrows) as predicted by simulations. Modified from Gatenby & 

Gawlinski [22] (permission pending) 

 

Subsequent PDE models developed this idea and examined the interplay between 

cancer cells, c, degrading enzymes, m, and tissue, v, using reaction-diffusion-taxis 

models, where the process of haptotaxis (i.e. directed cell migration in response to 

gradients of extracellular matrix density or gradients of adhesive molecules in the 

extracellular matrix) played a key role in the cancer cell migration. The model of 

Perumpanani et al. [24] was the first to do this. Once again through a combination of 

computational simulations and travelling wave analysis, predictions were made of the 
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speed and depth of penetration of cancer cells into the host tissue. The role of haptotaxis 

was especially studied in the paper of Anderson et al. [25], where a 2-dimensional setting 

was first used and the influence of the tissue (extracellular matrix) was explicitly 

explored:  

    

∂c

∂t
= D

c
∇2
c

diffusion   

− γ∇⋅ c∇v( )

haptotaxis     

∂m

∂t
= ∇2

m

diffusion

+ αc

production
− βm

decay

∂v

∂t
= − ηmv

degradation
.

 

In this continuum model, cell proliferation was not included in order to focus solely on 

the role of cancer cell migration in invasion. However, later in that paper 

{Anderson:2000jf}, cancer cell proliferation was included in the discrete version of the 

model (see next section). The effect of variable oxygenation and cancer cell adhesion was 

included in the work of Anderson [26].  

 

Other continuum approaches (i.e. various PDE models) include that of Chaplain 

and Lolas [27] and Andasari et al. [28] (investigating in more detail the effects of the 

degrading enzymes, specifically the urokinase plasminogen system), Frieboes et al. [29] 

(focusing on cell-cell adhesion and a moving boundary approach), and Gerisch and 

Chaplain [30] and Chaplain et al. [31] (using a continuum model incorporating cell-cell 

adhesion via a non-local integral term).   

 



 16 

Discrete models of tumor growth 

In addition to being the first 2-dimensional continuum model of cancer invasion focusing 

on the role of haptotaxis, the paper of Anderson et al. [25] was also the first to consider a 

discrete model of cancer cell invasion (now also including proliferation at a discrete 

level), derived from the continuum PDE model. The computational simulation results of 

this model explored the observation that individual cancer cells can migrate beyond a 

“visible margin” of cancerous tissue, which was “detectable” by surgeons. This was 

perhaps the first paper to explore the issue of stochastic events and probability in invasion 

models. Figure 9 shows a sample result of a computation simulation of the discrete model 

in a 2-dimensional domain. The individual cancer cells are secreting degrading enzymes 

and proliferating and migrating into the space created (through diffusion and haptotaxis). 

As can be seen from the figure, because of the stochastic nature of the discrete model 

individual cancer cells possess mathematically the ability to penetrate the normal tissue at 

a greater depth than would be predicted usual a deterministic PDE model.  

 

Figure 9. Specimen simulation result from the discrete invasion model of Anderson 

et al. [25]. The figure shows that individual cancer cells can penetrate the normal tissue 

at great depth. (permission pending)  
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Other discrete models of invasion have subsequently been developed using a 

variety of techniques such as the Potts Model [32,33], cellular automata and agent-based 

models [34-36], hybrid continuum-discrete approaches [26,37] and individual, force-

based models [38,39]. One advantage discrete models have over continuum models, is 

that events at the level of single cells can be considered. Using discrete models, important 

events such as mutations can be taken into account as well as different phenotypic 

properties. The introduction of discrete models have also led to the development of so-

called “multiscale models”, where intracellular events can be modeled using systems of 

ordinary differential equations and these can then be linked to cellular level parameters 

[35,38]. 

 

Hybrid continuum-discrete models have also been developed over the past 15 

years or so to model another very important event in solid tumor growth and development 

– that of (tumor-induced) angiogenesis. The seminal paper of Anderson and Chaplain 

[38] initially considered a system of PDEs describing the spatio-temporal interactions of 

(tip) endothelial cells, n, extracellular matrix (represented by fibronectin), v and tumor 

angiogenic factor (TAF), a, as follows:    

∂n

∂t
= D

n
∇

2
n

random walk

−∇⋅ χ a( )n∇a( )
chemotaxis  

−∇⋅ ρn∇v( )

haptotaxis  

∂v

∂t
= βn

production
− γnv

uptake

∂a

∂t
= −ηna

uptake
.

 

The endothelial cells perform a random walk as well as directed migration via 

chemotaxis in response to TAF gradients (e.g. VEGF) and haptotaxis, which is directed 
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migration in response to fibronectin gradients in the extracellular matrix [40,41]. The 

computational simulation results from the discrete version of the model that incorporated 

cellular-automata-like rules, such as capillary branching and anastomosis were able to 

reproduce branched, connected capillaries networks as observed in experimental papers 

(c.f. [42,43]), as can be seen from Figure 10.   

 

Such discrete models have now been developed to include the effects of blood 

flow within the capillaries and there currently exist several complementary models in the 

literature focusing on various aspects of tumor-induced angiogenesis and vascular tumor 

growth [42-51]. 

 

 

Figure 10. Specimen simulation result from the discrete angiogenesis model of 

Anderson and Chaplain [52]. Individual capillaries (emanating from a parent vessel 

located on the left-hand vertical axis) respond chemotactically and haptotactically to 

gradients of TAF and fibronectin to form a branched, connected capillary network that 
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can connect with the solid tumor (located along the right-hand vertical axis). (permission 

pending)  

 

Additionally, these discrete angiogenesis models have been adapted and 

developed to model other systems where the development of blood vessels plays a critical 

role, such as wound healing [53,54] and retinal development [55]. 

 

Discussion 

An increasing variety of mathematical models have made their way into cancer research 

over the past couple of decades. Herein we have illustrated how simple quantitative 

models are developed and compared with experimental data, and showed how they can 

be used to simulate complex biological processes and interactions. We have chosen 

seminal papers as examples, and for simplicity have had to leave out a large body of 

excellent mathematical modeling literature. The interested reader is referred to recent 

review articles and books that give a more inclusive overview of the state-of-the-art in 

cancer modeling [56-59].  
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