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Abstract: Photosynthesis is a process that indicates the productivity of crops. The estimation of this
variable can be achieved through methods based on mathematical models. Mathematical models are
usually classified as empirical, mechanistic, and hybrid. To mathematically model photosynthesis,
it is essential to know: the input/output variables and their units; the modeling to be used based
on its classification (empirical, mechanistic, or hybrid); existing measurement methods and their
invasiveness; the validation shapes and the plant species required for experimentation. Until now, a
collection of such information in a single reference has not been found in the literature, so the objective
of this manuscript is to analyze the most relevant mathematical models for the photosynthesis
estimation and discuss their formulation, complexity, validation, number of samples, units of the
input/output variables, and invasiveness in the estimation method. According to the state of the art
reviewed here, 67% of the photosynthesis measurement models are mechanistic, 13% are empirical
and 20% hybrid. These models estimate gross photosynthesis, net photosynthesis, photosynthesis
rate, biomass, or carbon assimilation. Therefore, this review provides an update on the state of
research and mathematical modeling of photosynthesis.

Keywords: empirical mathematical models; mechanistic mathematical models; semi-empirical or
semi-mechanistic mathematical models; net photosynthesis; photosynthetic rate

1. Introduction
1.1. Photosynthesis Process

Plants perform physiological functions that allow them to grow, develop, and repro-
duce. For their development and growth, plants require energy from sunlight, assimilated
carbon dioxide (CO2), hydrogen, mineral nutrients, oxygen (O2), and a suitable temperature
both in air and roots [1,2]. A fundamental physiological process for the vegetable kingdom
is photosynthesis. The photosynthesis process occurs in terrestrial and aquatic plants, algae,
and some types of bacteria that are essential for living species [3]. Photosynthesis is a
process by which plants convert light energy into chemical energy to obtain sugar as a final
product. On the other hand, another photosynthetic reaction is oxygenic, which is released
into the atmosphere as a waste, being useful for the biological process of respiration [4].

Chloroplasts (plant organelles located in the leaf) are active metabolic centers that
capture solar energy through chlorophyll (green pigment) and manufacture carbohydrates
(glucose molecules) through the process of photosynthesis [3]. The energy from light
absorbed by chlorophyll molecules in a leaf can take one of three ways: it can be used
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to drive photosynthesis; excess energy can be dissipated as heat, or it can be re-emitted
as light-chlorophyll fluorescence [5]. Glucose is one of the main molecules that serve
as an energy source for plants and animals. It is found in plant sap and in the human
bloodstream, where it is known as “blood sugar” [6,7]. Then, through photosynthesis,
plants produce glucose for their food and dispose of valuable oxygen for the respiration
of other living beings. Plants can capture carbon dioxide and release oxygen during the
day, but they undergo another change at night: they absorb oxygen and release carbon
dioxide [8].

Photosynthesis is divided into two phases: In the first phase, absorption and conver-
sion of energy happen; while in the second, the intake and assimilation of carbon occur.
Light energy is absorbed by photosensitive biomolecules and transformed into a stable bio-
chemical energy form. The constituent elements are taken from inorganic mineral sources
(water, H2O; carbon dioxide, CO2; nitrates, NO−3 ; sulfates, SO2−

4 , among others.) and are
incorporated into metabolizable organic biomolecules. Both phases are perfectly coordi-
nated and interrelated. Traditionally, these phases have been called the light phase and
the light-independent phase. The first phase is produced only by utilizing sunlight, which
will provide us with oxygen, ATP (adenosine triphosphate), and NADPH (nicotinamide
adenine dinucleotide phosphate). In the second phase (it can occur during the day and
also at night), the Calvin cycle is carried out where glucose is produced by using the ATP,
NADPH, and CO2 generated in the light phase [2,8].

The essential and predominant element in organic material is carbon. In photosyn-
thesis, carbon is taken from the air’s carbon dioxide (CO2). Generally, in terrestrial plants,
CO2 is incorporated from the atmosphere through stomata. Algae and aquatic plants take
it from the CO2 dissolved in the surrounding water. At night, when photosynthesis is not
active and, therefore, there is no demand for CO2 inside the leaf, the stomatal openings
are reduced preventing unnecessary water loss. In the morning, when the water supply is
abundant and solar radiation favors photosynthetic activity, the demand for CO2 inside the
leaf is big and the stomatal pores are wide open, reducing the stomatal resistance to the
diffusion of the CO2 [8].

Plants have developed three photosynthetic systems, C3, C4, and CAM (Crassulacean
acid metabolism), with different anatomical and chemical characteristics [9], the C3 type
being the most common [10,11]. The main difference between the types of photosynthesis
lies in the way CO2 is synthesized. The first step in the Calvin cycle is carbon dioxide
fixation by rubisco. Plants that use only this “standard” carbon fixation mechanism are
called C3 plants because of the three-carbon compound (3-PGA) that they produce during
this part of the photosynthetic process. In C4 plants, the light-dependent reactions and the
Calvin cycle are physically separated: the light-dependent reactions occur in the cells of the
mesophyll (spongy tissue in the center of the leaf) and the Calvin cycle occurs in special
cells around the veins of the leaf. These cells are called vascular bundle cells. Some plants
adapted to dry environments use the crassulaceae acid metabolism (CAM) pathway to
minimize photorespiration. Instead of separating the light-dependent reactions and the use
of CO2 in the Calvin cycle, the temporary separation of photosynthetic processes in CAM
plants causes carbon assimilation to take place at night. At night, they open their stomata so
that the CO2 diffuses into the leaves. This CO2 is fixed to oxaloacetate by PEP carboxylase
(the same step that C4 plants use), which is then converted into malate or another organic
acid [8]. The organic acid is stored inside vacuoles until the next day. During the day,
CAM plants do not open their stomata, but they can still carry out photosynthesis. Because
organic acids are transported out of vacuoles and broken down to release CO2, which
enters the Calvin cycle. This controlled cycle maintains a high concentration of CO2 around
rubisco [4]. The ability to represent the three photosynthetic types (C3, C4, and CAM) has
important implications for studying natural ecosystems and agroecosystems [12].

The described complex process of photosynthesis must work, integrally and efficiently,
in an environment where there is an enormous natural variability of factors that affect
the rate of photosynthesis. For instance, light, environment temperature, air humidity,
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availability of water, and mineral nutrients in the soil, among others. Carbon dioxide (CO2)
can also be considered as part of this list of relevant factors due to global climate change [13].
The photosynthesis rate of a leaf is conditioned by one of more than 50 individual reactions,
each presenting its response to each environmental variable. This photosynthetic rate can
widely vary between days and also throughout seasons, due to environmental factors such
as light and temperature. It can also vary in the longer term during the coming decades as a
response to increasing atmospheric CO2 levels. The increase in CO2 and other greenhouse
gases in the atmosphere can cause global climate change. As can be understood, each of
the aforementioned environmental factors affects the photosynthesis rate in a different way,
depending on the time scale [8].

Photosynthesis is important for many reasons. From humanity’s point of view, it
produces food and oxygen; therefore, it is often studied in its end products. However, these
are secondary aspects of an integral process. The most important aspects are capturing and
transforming light [14]. A critical component of crop production is the ability to produce
more biomass [15].

Photosynthesis at the ecosystem scale, also known as the gross primary productivity
(GPP), is the first step of CO2 entering the biosphere from the atmosphere. Over the
past century, with the increasing carbon release from landcover change and fossil fuel
burning, the CO2 accumulation rate on land, in the ocean and in the atmosphere has
continuously increased. The increment of CO2 in Earth’s atmosphere is the major cause of
global climate change. A major contribution to this high variability comes from GPP, as the
photosynthesis process is vulnerable to droughts, heatwaves, floods, frost, and other types
of disturbances. An accurate estimation of GPP will not only provide information about
the ecosystem response to these extreme events but also help to predict the future carbon
cycle dynamics [16].

For the agronomic sector the research about photosynthesis is useful in many aspects,
such as: determining the state of crops or of certain plants; indicating crop production;
helping in crop-health control; helping with the optimization of natural resources; detecting
genetic alterations in plants to know how plants react to stressful situations; and serving as
a predictive indicator of biomass accumulation in green plants [17–22].

Methods for Inferring Photosynthesis

Many of the methods for inferring photosynthesis are invasive; they physically or
chemically interfere with the plant, altering its natural process during measurement. Non-
invasive methods do not alter the plant’s natural process since there is no contact with the
specimen [23,24].

Millan et al. [25] presented a review of the advantages and disadvantages of the meth-
ods used for photosynthesis estimation. Table 1 shows the classification of these methods.
CO2 exchange is the most used method for constructing commercial and experimental
equipment [26,27]. It is possible to measure photosynthesis at the level of individual leaves,
whole plants, plant canopies, and even forests [28,29].

Table 1. Classification of the methods used for photosynthesis estimation and their general description.

Methods Used for
Photosynthesis Estimation Description

Destructive
Involves cutting a whole plant or only a portion of it to estimate the photosynthetic activity
based on the accumulation of dry matter in the plant, from the point of germination until it is
cut [25].

Manometric Consists of direct measurement of oxygen (O2) pressure or carbon dioxide (CO2) in an isolated
chamber with photosynthetic organisms [30].

Electrochemical Uses electrochemical electrodes to measure O2, CO2, or pH in aqueous solutions of the sample
to detect variations that depend on photosynthetic activity [30].
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Table 1. Cont.

Methods Used for
Photosynthesis Estimation Description

Gas exchange
Consists of isolating the sample for analysis in a closed chamber to quantify the CO2
concentration [29,31]. Concentrated CO2 gas is detected by an infrared gas sensor (called IRGA
for Infra-Red Gas Analysis sensors) [32]

Carbon isotopes

Uses carbon isotopes such as 11C, 12C, and 14C to produce incorporated CO2 with radioactivity.
This methodology is applied to analyze samples in isolated and illuminated chambers to
produce a maximum fixation of radioactive CO2 during photosynthesis [33,34]. The main
disadvantage is that it is destructive as it fixes a radioactive compound onto the sample; and its
precision depends on lighting conditions.

Acoustic waves

Based on the principle of sound wave distortion in the medium in which waves propagate. The
technique involves placing an acoustic transmitter on the seabed area where you want to
monitor photosynthetic activity. The disadvantage is that it dependent on water conditions and
sensitive to environmental disturbances [35].

Fluorescence

Way in which a certain amount of light energy absorbed by chlorophylls is dissipated. The
fluorescence emission can be analyzed and quantified, which provides information on the
electron transport rate, the quantum yield and the existence of photoinhibition of
photosynthesis. Indeed, fluorescence is used in various ways, and it has different applications.
The interested reader is referred to reference [5,8,24].

Mathematical modeling Equation or a set of equations that represent a system’s behavior. There is a correspondence
between the model variables and the observable quantities [36].

As can be noticed from previous Table 1 Photosynthesis is a complex process that
involves several and distinct variables; hence, it cannot be directly measured, if not through
a mathematical model. Then, photosynthesis can be inferred by integrating and measuring
these variables of interest. Hence, it is possible to generate a mathematical model if the
contributions of the variables of interest of a physical, chemical, or biological process,
among others, are known [36,37]. It should be noted that all invasive or non-invasive
methods that are used to infer photosynthesis apply some type of mathematical model.
Therefore, the invasiveness or non-invasiveness when developing any method to estimate
photosynthesis depends on the technique used to measure the variables of interest; for
this reason, the present document focuses on studying and comparing the most relevant
mathematical models reported in the literature. Authors like Zufferey [38], Polerecky [39],
Millan [25], Espinosa [40], Magney [41], Aziz & Dianursanti [42], and Kitić [43], demonstrate
the use of some photosynthesis measurement methods.

1.2. Mathematical Modeling

Any branch of science, as it progresses from qualitative to quantitative, is likely to
reach the point where the use of mathematics to connect experiment and theory is essential.

Mathematical modeling consists of the following steps [44]:

1. Definitions;
2. Systems analysis;
3. Modeling;
4. Simulation;
5. Validation.

Mathematical models can be classified into mechanistic (white box), empirical (black
box), and hybrid (gray box). These, in turn, have sub-classifications, as shown in Figure 1 [36].
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Figure 1. Classification of mathematical models. The diagram shows the three main classifications
of the white box, black box and gray box models, and their sub-classifications of the white box
or mechanistic, and black box or empirical models. Mechanistic and empirical models can be
deterministic or stochastic; and in turn, they can be continuous or discrete.

Empirical models, also called black box models, mainly described a system’s responses
by using mathematical or statistical equations without any scientific content, restrictions,
or scientific principle. Depending on particular goals, this may be the best type of model
to build [44]. Its construction is based only on experimental data and does not explain
dynamic mechanisms; this refers to the fact that the system’s process is unknown [40].
Estimating an unknown function from the observations of its values is a problem. The
basic advice in this aspect is to estimate models of different complexity and evaluate them
using validation data. A good way to restrict certain classes of models’ flexibility is to use
a regularized fit criterion. A key issue is finding a sufficiently flexible parameterization
model. Another key is to find a suitable “close approach “to the model structure [45].
Researchers usually employ methods for predicting physiological parameters by using
intelligent algorithms, such as Support Vector Machines (SVM), Back-Propagation Neural
Network (BPNN), Artificial Neural Network (ANN), Deep Neural Network (DNN), and
the combination of Wide and Deep Neural Network (WDNN) [46].

Mechanistic models, also called white box models, provide a degree of understanding
or explanation of the modeled phenomena. The term “understanding” implies a causal
relationship between quantities and mechanisms (processes). A well-built mechanistic
model is transparent and open to modifications and extensions, more or less without limits.
A mechanistic model is based on our ideas about how the system works, the important
elements, and how they are related [44]. These models allow knowing the input or output
variables and the variables involved during the modeling process [40,47]. Mechanistic
models are more research-oriented than application-oriented, although this is changing
as our mechanistic models become more reliable. Evaluation of such models is essential,
although it is often, and inevitably, rather subjective. Conventional mechanistic models are
complex, and unfriendly [44].

Figure 1 shows that both mechanistic and empirical models can be deterministic or
stochastic. Determinists make definite quantitative predictions (plant dry-matter or animal
intake) without any associated probability distribution. This can be acceptable in many
cases; however, it may not be satisfactory for quite changeful quantities or processes (e.g.,
rain or the migration of diseases, pests, or predators). On the other hand, stochastic models
include a random element as a part of the model so that the predictions have a distribution.
One problem with stochastic models is that they can be technically difficult to build and
complex to test or falsify [44].
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In turn, the deterministic and stochastic models can be continuous or discrete. A
mathematical model that describes the relationship between continuous signals in time
is called time-continuous. Differential equations are frequently used to describe such
relationships. A model that directly relates the values of the signals at the sampling times
is called a discrete or sampled time model. Such a model is typically described by differential
equations [48].

The continuous models are classified as dynamic since they predict how quantities
vary with time, so a dynamic model is generally presented as a set of ordinary differential
equations with time (t), the independent variable. On the other hand, the continuous
models can also be static; they do not contain time as a variable and do not make time-
dependent predictions [44].

Finally, dynamic models can be grouped or distributed. Partial differential equations
mathematically describe many physical phenomena. The events in the system are, so
to speak, scattered over the spatial variables. This description is called the distributed
parameter model. If a finite number of changing variables describes the events, we speak
of grouped models. These models are usually expressed by ordinary differential equa-
tions [48].

An intermediate model is classified as the semi-empirical or semi-mechanistic model
between the black box and white box models. These models are also called gray box or
hybrid models; they consist of a combination of empirical and mechanistic models [40].

The practical use of a mathematical model classification lies in understanding “where
you are” in the mathematical model space and what types of models might apply to the
problem. To understand the nature of mathematical models, they can be defined by the
chronological order in which the model’s constituents usually appear. Usually, a system is
given first, then there is a question regarding that system, and only then is a mathematical
model developed. This process is denoted as SQM, where S is a system, Q is a question
relative to S, and M is a set of mathematical states M = (σ1, σ2, . . . , Σn) which can be used
to answer Q. Based on this definition, it is natural to classify mathematical models in an
SQM space [36]. Figure 2 shows an approach to visualize this SQM space of mathematical
models based on the white box and black box models classification. At the black box, at the
beginning of the spectrum, models can perform reliable predictions based on data. At the
white box end of the spectrum, mathematical models can be applied to the design, testing,
and optimization of computer processes before they are physically carried out. On each of
the S, Q, and M axes in Figure 2b, the mathematical models are classified based on a series
of criteria compiled from various classification attempts in the literature [36].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 31 
 

Figure 1 shows that both mechanistic and empirical models can be deterministic or 
stochastic. Determinists make definite quantitative predictions (plant dry-matter or ani-
mal intake) without any associated probability distribution. This can be acceptable in 
many cases; however, it may not be satisfactory for quite changeful quantities or processes 
(e.g., rain or the migration of diseases, pests, or predators). On the other hand, stochastic 
models include a random element as a part of the model so that the predictions have a 
distribution. One problem with stochastic models is that they can be technically difficult 
to build and complex to test or falsify [44]. 

In turn, the deterministic and stochastic models can be continuous or discrete. A 
mathematical model that describes the relationship between continuous signals in time is 
called time-continuous. Differential equations are frequently used to describe such rela-
tionships. A model that directly relates the values of the signals at the sampling times is 
called a discrete or sampled time model. Such a model is typically described by differential 
equations [48]. 

The continuous models are classified as dynamic since they predict how quantities 
vary with time, so a dynamic model is generally presented as a set of ordinary differential 
equations with time (t), the independent variable. On the other hand, the continuous mod-
els can also be static; they do not contain time as a variable and do not make time-depend-
ent predictions [44]. 

Finally, dynamic models can be grouped or distributed. Partial differential equations 
mathematically describe many physical phenomena. The events in the system are, so to 
speak, scattered over the spatial variables. This description is called the distributed pa-
rameter model. If a finite number of changing variables describes the events, we speak of 
grouped models. These models are usually expressed by ordinary differential equations 
[48]. 

An intermediate model is classified as the semi-empirical or semi-mechanistic model 
between the black box and white box models. These models are also called gray box or 
hybrid models; they consist of a combination of empirical and mechanistic models [40]. 

The practical use of a mathematical model classification lies in understanding “where 
you are” in the mathematical model space and what types of models might apply to the 
problem. To understand the nature of mathematical models, they can be defined by the 
chronological order in which the model’s constituents usually appear. Usually, a system 
is given first, then there is a question regarding that system, and only then is a mathemat-
ical model developed. This process is denoted as SQM, where S is a system, Q is a question 
relative to S, and M is a set of mathematical states M = (σ1, σ2, …, Σn) which can be used 
to answer Q. Based on this definition, it is natural to classify mathematical models in an 
SQM space [36]. Figure 2 shows an approach to visualize this SQM space of mathematical 
models based on the white box and black box models classification. At the black box, at 
the beginning of the spectrum, models can perform reliable predictions based on data. At 
the white box end of the spectrum, mathematical models can be applied to the design, 
testing, and optimization of computer processes before they are physically carried out. On 
each of the S, Q, and M axes in Figure 2b, the mathematical models are classified based on 
a series of criteria compiled from various classification attempts in the literature [36]. 

 
(a) (b) 

Figure 2. The three dimensions of an SQM mathematical model, where the (S) systems are ranked at
the top of the bar; immediately below the bar, there is a list of objectives that the mathematical models
in each of the segments can have (which is Q); at the lower end are the corresponding mathematical
structures (M) ranging from algebraic equations (Aes) to differential equations (Des). (a) Classification
of mathematical models between black and white box models. (b) Classification of mathematical
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There are different mathematical models related to biochemical, physical, and agroe-
cological variables that estimate photosynthesis at the leaf, plant, or group of plant levels.
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Therefore, the study of mathematical modeling focused on the photosynthetic process
becomes important in the agricultural sector. Since it is a direct indicator of a plant’s
health. It also makes it possible to assess the consequences of global climate change on
crop growth, since the high concentration of CO2, the increase in temperature and altered
rainfall patterns can have serious effects on crop production in the near future [44].

However, to the best of the authors’ knowledge, a study on the diversity of mathemat-
ical modeling in the field of scientific research has not been approached nor focused on: the
mathematical formulation, the complexity of the model, the validation, the type of crop (at
the leaf, plant or canopy level), the analysis of the diversity of variables used with their
respective units, as well as the invasiveness in their measurements. Hence, this manuscript
presents a selective review of mathematical modeling to estimate photosynthesis.

In the literature, there is a review of the mathematical modeling of photosynthesis
developed by Susanne Von Caemmerer. However, here only several models derived from
the C3 model by Farquhar, von Caemmerer, and Berry are discussed and compared. The
models described and reviewed here describe the assimilation rates of CO2 in a steady state
and provide a set of hypotheses collected in a quantitative way that can be used as research
tools to interpret experiments both in the field and in the laboratory. Additionally, it also
provides tools for reflective experiments [49]. Conversely, the present paper provides a new
vision of the state of the art in mathematical models with certain specifications. This infor-
mation can be used to develop new mathematical models to estimate photosynthesis with
new variables related to the plant’s habitat and with greater relevance to be implemented
in electronic systems during the development of photosynthesis estimation equipment.

The objective of this manuscript is to present mathematical models with different
characteristics to estimate photosynthesis; discuss its formulation, complexity, validation,
applications, and invasiveness in the estimation method; show that the units corresponding
to photosynthesis depend on the measurable biochemical, physical, and agroecological
variables used for the estimation; analyze the relevance of the behavior trend in the pho-
tosynthetic process and prioritize over the specific magnitude itself. Therefore, in the
authors’ opinion, this study provides a great opportunity to contribute to the mathematical-
modeling knowledge to estimate photosynthesis.

The content of this work is organized in the following sections. Section 2 describes
the criteria for the selection of mathematical models according to their classification and
characteristics. In Section 3, a critical review of the white box, black box, and gray box
models is given. Finally, conclusions are reported in the last section of this manuscript.

2. Techniques

Over the years, various mathematical models have been developed and introduced for
photosynthesis estimation. The review of these models is based on an exhaustive search and
analysis of the reported literature, it focuses on their mathematical formulation, validation,
input variables, as well as the type of cultivation at the leaf, plant, or canopy level. As a
result, an updated list of the most relevant mathematical evaluation models was obtained,
and possible areas of opportunity was detected. The research was conducted in the main
databases (Science Direct, Web of Science, IEEE, Google Scholar, Scielo, ResearchGate),
scientific organizations such as the American Society of Agricultural and Biological Engi-
neers ASABE, and specialized journals such as Bioresource Technology Reports, Ecological
Modeling, Metabolic Engineering, Biotechnology and Bioengineering, Environmental and
Experimental Botany, Bioresource Technology, Journal of American Society Hortaliza Sci-
ence, Aquatic Botany, European Journal of Agronomy, Agricultural Systems, Wageningen
Journal of Life, Journal of Plankton Research, Limnology and Oceanography, Biological
Theory, Agricultural and Forest Meteorology, Computers and electronics in agriculture,
Journal of Theoretical Biology, Annals of Botany, Photosynthesis Research, Experimental
Marine Biology and Ecology, Marine Biology, Progress in Oceanography, and Plant Cell and
Environment, among others. The research approach adopted for this study was comparing
mathematical models to estimate photosynthesis with a variety of input variables devel-
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oped over time. This approach allows us to contribute to the knowledge of the different
existing methodologies for estimating photosynthesis.

The selection criteria were:

(a) The models had to estimate gross photosynthesis, net photosynthesis, photosynthetic
rate, biomass, or carbon assimilation. Wohlfahrt & Gu [50] reviewed the photosynthe-
sis background and the associated terminology; they showed that different definitions
and names are used for photosynthesis in literature. Then, as the understanding of
photosynthesis has deepened, the terminologies and definitions of photosynthesis
have also evolved [51]. In this work, Gross photosynthesis is defined as the total
energy that plants fix during the photosynthesis process, while net photosynthesis
is the total fixation of CO2 [52]. The photosynthetic rate refers to the amount of CO2
absorbed by a plant per unit of leaf area and unit of time. Biomass results from the
net accumulation of assimilated CO2 throughout the growth cycle [53]. Lastly, carbon
assimilation is the amount of CO2 stored in the plant. These terms are related to
photosynthesis since plants can capture CO2 from the atmosphere and metabolize it
through the photosynthetic process to obtain sugars and other compounds that are
required for the normal development of their life cycle [26,54]. Then, the series of
definitions described above refers to the estimation of photosynthesis.

(b) The articles had to have a validation method to check if the different models used in
the existing literature yielded similar results among other accredited models or with a
photosynthesis measurement device on the market. This is important because one of
the steps for modeling development is validation [55,56]. Validation is defined as the
comparison of the model predictions with the observed values of the actual process to
determine if the model fits its purpose; the validation results are a necessary step in
the acceptance of the model [57–59]. Validation can also be defined as a demonstration
that a model has acceptable predictive accuracy in that domain within a specific
application. The quantitative precision of the predictions is often referred to as the
“validity” of the model. Generally, it refers to the ability of a model to accurately
predict the results of a particular experimental or observational scenario [44].

In this review, a series of papers related to the topic of mathematical modeling were
analyzed for inclusion. During data extraction, some studies were excluded because they
did not present the information required in the criteria established for selection. These
excluded models have the following issues:

- They did not estimate gross photosynthesis, net photosynthesis, photosynthetic rate,
biomass, or carbon assimilation; instead, they modeled chlorophyll, fluorescence, or
stomatal conductance, among others.

- The information was related to the measurement methodology [40,41] and not to the
mathematical modeling.

- Some articles did not present the mathematical formulation for photosynthesis [60,61].
- Some models estimated crop growth [62–65], which is not the focus of this review.
- Some articles use previously developed models to carry out experiments different

from those originally proposed [66–69], but they do not propose any new model.
- Some authors present a mathematical formulation of the model; however, they do not

present validation or results obtained [70].
- Some authors expose models to estimate photosynthesis only for the Calvin cycle [71,72],

which is only one section of all the photosynthetic processes.
- Some authors used repeated or similar models to those presented in this manuscript [73–76].
- Some models are developed based on soft computing [77,78]. These models were

excluded because they are not analytical models, that is, they are not models that
present explicit algebraic expressions.

Finally, a total of 39 reported papers were selected and reviewed, being essential for
conducting this review. In addition to these criteria, the type of cultivation, the mathemati-
cal formulation, as well as the validation of the modeling were considered.
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The information retrieved was analyzed to determine their corresponding classifica-
tion, according to the previously described types of mathematical modeling: white box,
black box, or gray box.

3. Discussion

Models in the literature reported the use of input variables such as light (photosyn-
thetically active radiation (PAR) µmol m−2 s−1, average amount of energy incident per
unit, area per unit time on a surface (Irradiance) W/m2), CO2 in the atmosphere or the
leaf, oxygen in the leaf or the atmosphere, chlorophyll concentration, chlorophyll fluores-
cence, energy composition, source concentration energy, stomatal conductance, ambient
temperature, leaf’s temperature, time in hours, the vapor pressure in the leaf, nitrogen,
and phosphorus; however, others focus on the physical characteristics of the plant, such as
leaf’s area index, stem diameter, plant height, leaf’s mass per area, leaf’s age, or population
density.

Regarding the models’ validation, several researchers use the Farquhar model as a
basis [79,80], since they were the pioneers in estimating photosynthesis. Unfortunately,
the parameters in the Farquhar model are difficult to estimate [81], since they use several
biochemical reactions and thus use invasive techniques for plants. Another disadvantage is
that it involves a long and complex mathematical calculation, which is not favorable for
implementation in measurement systems. Therefore, some other models are validated with
commercial devices or even with previously approved models developed by other authors.

Another difference between the models is the terminology and the definition in the
output variable, since some authors present the result not as photosynthesis, but rather as
carbon assimilation, net photosynthetic rate, net photosynthesis, photosynthetic rate, gross
photosynthetic rate, or as biomass; because all these variables represent or are related to
the estimation of photosynthesis.

The equations of the models to estimate photosynthesis can be seen in Table 2. The
equation number for each model is referenced with its corresponding author. Based on this,
it can be determined that mechanistic models are complex, require a lot of construction
time, are difficult to parameterize, are very unfriendly to use, and tend to be more research-
oriented than application-oriented. On the other hand, deterministic models are simpler
to implement, but nevertheless must be adjusted to obtain accurate results. The latter is
difficult to achieve because some black box-based models are designed to apply various
transformations to the input data, and debugging these models, at any stage, is not an easy
task. As for the gray box models, they have an interesting approach, as new models are
needed that merge the white box and black box approaches to make it easier to interpret
models. The abbreviations lists used to express the models’ equations.

Table 2. Model equations for estimating photosynthesis.

Equation Author Mechanistic Mathematical Models

(1) Farquhar [79] A = VCmax
C−Γ∗

C+KC(1−O/KO)
− Rd

(2) Marshall [82] Pn =
αI(Pmax−θPn)

(1−θ)αI+(Pmax−θPn)
− Rd

(3) Kano [83] Ppot = Pmax

(
I

Pmax
E1+I

)(
C1−Cc

1
Ec
+(C1−Cc)

)
f (T1)

(4) C.Pahl-Wostl [84] P(t) = P∗(t)
1+ψ(t)

(5) Lieth [85] Pm(T, a) = Pm, T, a· f 1(T)· f 2(a)
(6) Jones [86] Pg = D·LFmax ·PGRED(T)

K ln (1−m)LFmax+Qe ·KPPFD
(1−m)LFmax+Qe ·K·PPFD·exp(−K·LAI)

(7) Hahn [87] Pn = 36, 000 ·44 h· (k1[RUBP]− k2[RUBP]2 − 3k5[TP]))



Appl. Sci. 2022, 12, 5537 10 of 30

Table 2. Cont.

Equation Author Mechanistic Mathematical Models

(8) Pachepsky [88]

P = αIτC
αI+τC − R(Acock, 1991)

P = αI√
1+ α2 I2

(τC)2

− R(Harley ∧ Tenhunen, 1991)

P = 2αI

1+ αI
τC +

√
(1+ αI

τC )
2− 4αI

τC θ
− R (Evans ∧ Farquhar, 1991)

(9) Chen [89]
An =

(
1− 0.5Obs

τCbs

)
min

{
Wc, Wj

}
− Rd

Wc =
Vcm(Cbs)

Cbs+Kc(1+ Kc
Ko )

, Wj =
JCbs

Cbs+Obs/τ , J = αIP

(1+α2 I2
P/J2

m)
1/2

(10) Nikolov [90]
A = min

{
WC, WJ , WP

}
WC =

Vcmax(Ci−Γ)
Ci+Kc(1+O/Ko)

, Wp = Vcmax
2 , WJ =

J(Ci−Γ)
4.5(Ci+2Γ)

(11) Kull [91] A =
(

1− Γ∗
Ci

)
·
[
msat nsat + αm1(1− rr)Io

(
e−ka n3 Nsat − e−ka n3 Np

)]

(12) Chen [92]

A = min
{

Ac, Aj

}
A = 1.27

2(gn−gmin)

(
a

1
2

2
(

g2
n − g2

min
)
+ c

1
2
(

gn − g2
min
)
− 2agn+b

4a d

+
2agmin+b

4a e
1
2 + b2−4ac

8a
3
2

ln 2agn+b+2a
1
2 d

2agmin+b+2a
1
2 e

)
where Aj:

a = (2.3Γ + Ca)
2,

b = 0.4(4.3Γ− Ca)J + 2(2.3Γ + Ca)Rd
c = (0.2J − Rd)

2

where Ac:
a = (K + Ca)

2,
b = 2(2Γ + k− Ca)Vm + 2(Ca + k)Rd

c = (Vm − Rd)
2

for both:
d =

(
ag2

n + bgn + c
)1/2

e =
(
ag2

min + bgmin + c
)1/2

(13) Han [93] P = αEφ

(14) Rubio [94] P =
kp ·r∗m·a∗

ks+a∗ = Pm ·X∗e
k+X∗e

Pm = kp·r∗·m
(15) Ye [95] P(I) = α

I−βI
I+γI (I − Ic)

(16) Ye [96] Pn = αp
I−βp I
I+γp I I − Rlight

(17) Polerecky [39] P(I) = Pmax[1− exp(−I/Ea)]

(18) Bernacchi [97] A =
(

1− I∗
C

)(
C·Vcmax

C+KC(1+O/KO)

)
− Rd

(19) Yin [98]

C3 plants
A = (Cc−Γ∗)X1

Cc+X2
− Rd

for the limited Rubisco part:
X1: Vcmax, X2: KmC (1 + O/KmO):

for the limited transport part
X1 : J/4, X2 = 2 Γ∗

C4 plants
A = (Cc−γ∗Obs)X1

Cc+X2Obs+X3
− Rd

γ∗: 0.5/Sc/o, X2: KmC/KmO, X3 = KmC
(20) Torres [99] Pg = D τCP(T)

K ln
[

εK·IO+(1−m)τC
αK·IOexp(−K·L)+(1−m)τC

]
(21) Johnson [100] Pl,g =

(
1
2θ

)
[αIl + Pm − {(αIl + Pm)

2 − 4θ·αIl ·Pm}1/2]

(22) Egea [101]
A = min

{
Ac, Aj

}
− Rd

Ac =
Vcmax(Ci−Γ)

Ci+Kc(1+ O
Ko )

, Aj =
J(Ci−Γ)

4(Ci+2Γ)



Appl. Sci. 2022, 12, 5537 11 of 30

Table 2. Cont.

Equation Author Mechanistic Mathematical Models

(23) Lombardozzi [102]
An = (Ca − Cs)(gb/1.4) = (Cs − Ci)(gb/1.6)

An = (Ca − Cs)(gb/1.4)(FAO3) = (Cs − Ci)(gb/1.6)(FAO3)

FAO3 = 1.0421− 0.2399 ∗ CUO, CUO = ∑
(

KO3
gs

)
[O3]

(24) García-Camacho [103] P(t) = kp ·r∗ ·m·a∗(t)
ks+a∗(t) = Pm ·x∗(t)

k(t)+x∗(t)

(25) Janka [104]

Pnl = Pgmax

(
1− exp

(
−∝l ·IPPF

Pgmax

))
− Rd

Pgmax = Pnlmax + Rd

Pnlmax =
PnCO2+Pmm−

√
(PnCO2+Pmm)

2−(4θ·PnCO2 ·Pmm)
2θ

(26) Liu [105]

An = a0·ln
(

LMA
VPD·RDINC + a1

)
(

1− exp
(
−(b0VDP+b1)·PAR

(a0 ln( LMA
VPD∗RDINC )+a0)

))
− Rd

PARi = PARt·exp
(
−ki· RCLAIi

sin(ψ)

)
K = f (d0ψ + d1CLA + d2)·RDINC(e0+CLA+e1)

Empirical mathematical models

(27) Hozumi & Kirita [106]
Pg = b0

a0(1−α)K [1− e−K(1−α)F(z)]−
b0(1−m)

a2
0 I0(1−α)K2 ∗ ln (1−m)+a0 I0K

(1−m)+a0 I0Ke−K(1−α)F(z)

(28) Wetzel [107] Pij = Pmax(t)
[
PARvp/

(
I′R + PARvp

)]
(29) Pimienta de la Torre

[108]
B = a + bD + c

(
D2 + H

)
, B = a + bD + cD2 + d

(
HD2),

B = a + bD2 + c
(

HD2), B = a + bD + cH, B = a + Db + Hc

(30) Romdhonah [109]

Pn = α0 + α1 I + α2 T + α3C + α4 VPD
(Linear model (G-model))

Pn = β0 + β1 I + β2 T + β3C + β4 VPD + β5 I·T + β6 I·C + β7 I·VDP + β8T·C
++ β9T ·VDP + β10C·VDP
(Linear interaction model (I-model))

Pn = γ0 + γ1 I + γ2 T + γ3C + γ4 VPD + γ5 I2 + γ6 T2 + γ7 C2 + γ8 VDPI2

(Linear squared model (S-model))
Pn = δ0 + δ1 I + δ2 T + δ3C + δ4 VPD + δ5 I·T + δ6 I·C + δ7 I·VDP + δ8T·C

++ δ9T ·VDP + δ10C·VDP + δ11 I2 + δ12 T2 + δ13 C2

+δ14 VDPI2

(Linear interaction-squared model (IS-model))
(31) Shimada [110] Pn = Pnmax· f (PPFD)· f (Ta)· f (VPD)· f (SWC)· f (Ts)· f (age)− Rd

Gray box mathematical models
(32) Kolber [111] POB

2 (E) = σPS2·ΦRC·qp(E)·φC(E) f ·nPS2·E

(33) Jansen [112]
Fi,d = Fx,i,d

(
1− exp

(
−εi,d·Ra,i,d/Fx,i,d

))
Fi,d = Fx f1

(
Ti,d
)
, εi,d = εx f2

(
Ti,d
)

Functions f1 and f2 differ by crop, and by crop history

(34) Sau [113] PCARB = EUR · IPAR/PLTPOP · FC02
IPAR = PAR · [1 − exp(-EXT · IAF)]

(35) Costache [114] RO2 = RO2(Iav)·RO2 (T)· RO2(pH)· RO2 (DO2)
(36) Ippoliti [115] PO2 = PO2(I)·PO2 (T)· PO2(pH)· PO2 (DO2)

(37) Perin [116]
P = θ·σ·ΦP·I
φP = 1

v
F′m−F′

F′m

(38) Liu [117] An = (a0·ln
(

LMA
VPD.RDINC

)
+ a1)·

[
1− exp

[
− (a2·VPD+a3)·PAR

a0·ln( LMA
VPD−RDINC +a1)

]]
− a4 ·e(a5· Tair)

(39) Sánchez [118] PO2 = PO2(I)·PO2 (T)· PO2(pH)· PO2 (DO2)− RO2(I)

Complex functions are not detailed and are written as f (main variables).
Table 3 describes the main characteristics of the selected models. Models are classified

according to their type: mechanistic, empirical, and gray box. Table 3 is ordered similarly
to Table 2, where it can be found: the author with the equation number for each model;
measurable input variables in plants and their environment, with their respective units;
as well as the model corresponding to the estimation of photosynthesis and its units;
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the number of plants (samples); the validation method used for the modeling; and the
coefficient of determination (R2).

Table 3. Major features of the models for estimating photosynthesis.

Equation [Ref] Input Variables Estimated Variable No. of
Samples

Validation
Method R2

Mechanistic mathematical models

(1) [79]

Ambient temperature [◦C]
CO2 concentration in the leaf [mbar]

Light intensity[
µEm−1s−2][µmolphotonsm−2s−1]

Oxygen concentration in the leaf [mbar]

CO2 assimilation[
µmolm−2s−1] - Gas exchange -

(2) [82] CO2 in the atmosphere at [bar]
Irradiance

[
Wm−2] Net photosynthetic

rate[
gCO2m−2h−1

] - Rectangular
hyperbolic model -

(3) [83]
Ambient temperature [◦C]

Concentration in the leaf
[
gm−3]

Photosynthetically active irradiation
[
Wm−2]

Photosynthetic
potential rate[

gmm−2s−1] 60 Simulation -

(4) [84] Light intensity
[
µEm−1s−2]

Time [min]
Photosynthesis rate
[Relative Units (bel)] -

Gas exchange
system

LI-COR 6000
(First generation)

-

(5) [85]

Photosynthetically active radiation PAR[
µmolm−2s−1]

Leaf’s age [days]
Leaf’s temperature [◦C]

Maximum net
photosynthesis rate[

mgm−2s−1] 15

Gas exchange
system
LI-COR

6000(First
generation)

0.95

(6) [86]

Ambient temperature [◦C]
Foliar area index

[
molphoton/m2 − d

]
CO2 in the atmosphere [Ppm]

Light (photosynthetic photon flux
density, PPFD) [PAR]

Photosynthetic rate[
gCHO2/m−2 − d

] 264 Previous research
and simulation -

(7) [87]
CO2 concentration in the leaf [No information]

Ribulose bisphosphate [No information]
Triose phosphate [No information]

Net photosynthetic
rate[

mg CO2dm−2hr−1] - Simulation -

(8) [88]

Leaf’s Breathing
[
µmolCO2m−2s−1]

Light
[
µmolphotonsm−2s−1]

CO2 in the atmostphere
[
µll−1

]
Ambient temperature constant [◦C]

Photosynthetic rate[
µmolCO2m−2s−1] - Analysis of the

models by F-test -

(9) [89]

Ambient temperature [◦C]
Oxygen in the atmosphere [mbar]

CO2 in the leaf [Ppm]
Irradience

[
µmolm−2s−1]

Rubisco
[
µmolmol−1

]
Net photosynthesis[

µmolm−2s−1] -

Photosynthesis
measurement

model
experiment by

Collatz

0.95

(10) [90]
CO2 in the leaf [µmol/mol]

Oxygen in the leaf [Pa]
Leaf’s temperature [◦C]

Photosynthetic rate[
µmolm−2s−1] -

Gas exchange
system

Li-COR 6200
(Second

generation)

0.64

(11) [91]

CO2 in the leaf [Ppm]
Light

[
mmol m−2]

Nitrogen
[
mmol m−2]

Chlorophyll
[
mmol m−2]

Net photosynthesis[
µmolm−2s−1] -

Gas exchange
system

Li-COR 6200
-

(12) [92]

CO2 in the atmosphere [µmol/mol]
Oxygen in the leaf [Pa]

Ambient temperature [◦C]
Stomatal conductance

[
mms−1]

Light
[
µmolm−2s−1]

Net foliar
photosynthesis rate[

µmolm−2s−1] - FvCB model 0.72

(13) [93]
Chlorophyll

[
m2(mgCHla)−1

]
Oxygen in the leaf

[
molO2eEinstein−1]

Irradiance
[
Einsteinm−2S−1

] Photosynthetic rate[
molO2(mgCH1a)−1S−1

] -

Empirical
function based
on the Poisson

distribution

-
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Table 3. Cont.

Equation [Ref] Input Variables Estimated Variable No. of
Samples

Validation
Method R2

(14) [94]

Irradiance
[
µEm−1s−2]

Energy Composition
[
molcel−1s−1

]
Concentration of power supplies

activated
[
molcel−1

]
Photosynthesis[

molcel−1s−1
] -

J. Neal Phillips, Jr.
and Jack Myers

Growth Rate
Model

-

(15) [95] PAR irradiance
[
µmolm−2s−1]

Ambient temperature [◦C]
Net photosynthesis[
µmolCO2m−2s−1] -

Non-rectangular
and Rectangular
hyperbolic model

Binomial
regression

method

-

(16) [96]
Nonphotorespiratory mitochondrial CO2

release in light
[
µmolCO2m−2s−1]

Light intensity
[
µmol photons m−2s−1]

Net photosynthetic
rate[

µmolCO2m−2s−1] - Simulation 0.99

(17) [39] Light intensity
[
µmolphotonsm−2s−1]

O2 on the leaf [mM]

Gross rate of
photosynthesis[
mmolm−3s−1]

2 of
microbial
1 of corals

Comparison
between the

same simulated
and

implemented
model

0.95

(18) [97]

CO2 in the atmosphere
[
µmolmol−1

]
Oxygen in the atmosphere

[
mmolmol−1

]
Ambient temperature [◦C]

Photosynthesis[
µmolm−2s−1] - FvCB model -

(19) [98]
CO2 in the leaf

[
µmolCO2m−2s−1]

Oxygen in the leaf [µ bar]
Stomatal conductance

Net photosynthesis
rate[

µmolCO2m−2s−1] - FvCB model -

(20) [99]

CO2 in the atmosphere[
µmolCO2mol−1

]
Leaf’s temperature [◦C]

Light
[
µmolfotonesm−2s−1]

Foliar Area Index
[
m2hojam−2suelo

]
CO2 conductance in the leaf[

µmolCO2m−2leafs−1]
Light flux density in foilage[
µmolphotonsm−2soilm−1]

Plant population density [m2]

Rate of gross
photosynthesis[
gCH2Om−2g−1] - Simulation -

(21) [100]

Irradiance
[
µmolfotonesm−2s−1]

Ambient temperature [◦C]
CO2 in the atmosphere[

µmolCO2mol−1
]

Nitrogen

Photosynthetic rate[
µmolCO2m−2s−1] -

Photosynthesis
measurement

model by
Johnson

-

(22) [101]

CO2 in the leaf
[
µmolmol−1

]
CO2 in the atmosphere

[
µmolmol−1

]
Oxigen in the leaf [Pa]

Leaf’s temperature [◦C]
Light

[
µmolm−2s−1]

Photosynthetic rate[
µmolm−2s−1] - FvCB model -

(23) [102]

CO2 concentration in the atmosphere[
µmolCO2mol−1

]
CO2 concentration on the leaf surface[

µmolCO2mol−1
]

Internal CO2 concentration in the leaf[
µmolCO2mol−1

]
Stomatal conductance

[
molH2Om−2s−1]

Light
[
µmolfotonesm−2s−1]

Ambient temperature [◦C]
Oxygen in the leaf

[
mmolm−2]

Carbon assimilation[
µmolCO2m−2s−1] 5

Gas exchange
system

LI-COR 6400
(Third

generation)

-
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Table 3. Cont.

Equation [Ref] Input Variables Estimated Variable No. of
Samples

Validation
Method R2

(24) [103]

Oxygen in the leaf
[
mgO2Cell−1s−1

]
Disappearance of PSU activated[

µmolPSUCell−1s−1
]

Total concentration of PSUs [PSU Cell−1]
Time [s]

Photosynthesis rate[
mgO2Cell−1s−1

] -

Mathematical
modeling
previously

developed by
García-Camacho

-

(25) [104]
Leaf’s temperature [◦C]

Light
[
µmolm−2s−1]

CO2 concentration in the leaf
[
µmolmol−1

] Photosynthesis rate[
µmolm−2s−1] 80

Biochemical
model of

photosynthesis
-

(26) [105]

Radiation [PAR]
CO2 in the leaf

[
µmolm−2s−1]

Leaf’s temperature [◦C]
Pressure steam [KPa]

Leaf’s mass per area [gm−2]

Photosynthetic net
rate[

µmolm−2s−1] 5

Gas exchange
system

LI-COR 6400
(Third

generation)
andJackknife

technique

0.85

Empirical mathematical models

(27) [106] Light intensity [Klux]
Height [m]

Total gross
photosynthesis[

mgCO2/dm2landareahr
] 5 species
Plot (Q 15, 20 m
× 20 m)

Monsi Saeki’s
mathematical

model
0.60

(28) [107] Ambient temperature [◦C]
Irradiation

[
µEm−1s−2] Photosynthesis[

mgCgC−1hora−1
] -

Euler’s simple
digital

integration
method,
rectangle

hyperbolic
method

-

(29) [108] Stem diameter [cm]
◦H: Heigh [m]

Biomass
[Kg] 663

Comparison
between the
same models

0.99

(30) [109]

Photosynthetically active radiation
[
Wm−1]

Air temperature [◦C]

CO2 concentration
[
µmolmol−1

]
Vapor pressure déficit [KPa]

Net photosynthetic
rate[

µmols−1 per plant
] - Test data

0.82
(G-model)

0.91
(I-model)

0.90
(S-model)

0.92
(IS-model)

(31) [110]

Photosynthetic photon flux density[
µmolm−2s−1]

Air temperature [◦C]
Soil temperature [◦C]

Vapor pressure deficit [Kpa]
Soil water content [unitless]

Age [Year]

Photosynthetic rate[
µmolCO2m−2s−1] - Simulation 0.86

Gray box mathematical models

(32) [111]
Irradiance

[
µEm−1s−2]

Fluorescence
[
mgC(mgCHl)−1h−1

] Rate of gross
photosysthesis[

molCHl(molO2)
−1
] 61

“Pump and
probe technique”

Forometry
0.86

(33) [112]
Ambient temperature [◦C]

Radiation
[
J−2
m S−1

]
Time [ hours = i, day = d]

Photosynthesis gross[
kgCO2ha−1hora−1] -

Integration
model according

to
Euler

0.96

(34) [113]

Radiation
[
gMJ−1

]
CO2 in the atmosphere

Plants surface [plant m−2]
Ambient temperature [◦C]

Potential biomass
accumulation per

plant
[g planta−1 d−1]

- Simulation
model

No infor-
mation

(35) [114]

Irradiance
[
µEm−2s−1]

Temperature [◦C]
pH [unitless]

Dissolved oxygen concentration
[mg

l

] Photosynthesis rate[
mol O2

g biomass

] -

Data obtained by
simultaneous

modifications of
variables

0.74
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Table 3. Cont.

Equation [Ref] Input Variables Estimated Variable No. of
Samples

Validation
Method R2

(36) [115]

Irradiance
[
µEm−2s−1]

Temperature [◦C]
pH [unitless]

Dissolved oxygen concentration
[mg

l

]
Net photosynthesis

rate[
mg O2

g biomass·h

] -

Experimental
data assembly

from an
industrial-scale
outdoor tubular
photobioreactor

(T-PBRs)

0.89

(37) [116] Light
[
µmolfotonesm−2s−1]

Fluorescence [chl]
Photosynthesis[

gO2/gchlh
] - Hyperbolic

model 0.85

(38) [117]

Leaf mass per area
[
gm−2]

Photosynthetically active radiation[
µmolm−2s−1]

Air temperature [◦C]
Vapor pressure defcit [KPa]

Net photosynthetic
rate[

µmolm−2s−1] 5 trees
Gas exchange

systemLI-
6400XT

0.87

(39) [118]

Irradiance
[
µEm−2s−1]

Temperature [◦C]
pH [unitless]

Dissolved oxygen
[mg

l

]
Net photosynthesis

rate[
mg O2

g biomass·h

] -

Data obtained by
simultaneous

modifications of
variables

0.60

(33) [112]
Ambient temperature [◦C]

Radiation
[
J−2
m S−1

]
Time [ hours = i, day = d]

Photosynthesis gross[
kgCO2ha−1hora−1] -

Integration
model according

to
Euler

0.96

(34) [113]

Radiation
[
gMJ−1

]
CO2 in the atmosphere

Plants surface [plant m−2]
Ambient temperature [◦C]

Potential biomass
accumulation per

plant
[g planta−1 d−1]

- Simulation
model

No infor-
mation

(35) [114]

Irradiance
[
µEm−2s−1]

Temperature [◦C]
pH [unitless]

Dissolved oxygen concentration
[mg

l

] Photosynthesis rate[
mol O2

g biomass

] -

Data obtained by
simultaneous

modifications of
variables

0.74

(36) [115]

Irradiance
[
µEm−2s−1]

Temperature [◦C]
pH [unitless]

Dissolved oxygen concentration
[mg

l

]
Net photosynthesis

rate[
mg O2

g biomass·h

] -

Experimental
data assembly

from an
industrial-scale
outdoor tubular
photobioreactor

(T-PBRs)

0.89

(37) [116] Light
[
µmolfotonesm−2s−1]

Fluorescence [chl]
Photosynthesis[

gO2/gchlh
] - Hyperbolic

model 0.85

(38) [117]

Leaf mass per area
[
gm−2]

Photosynthetically active radiation[
µmolm−2s−1]

Air temperature [◦C]
Vapor pressure defcit [KPa]

Net photosynthetic
rate[

µmolm−2s−1] 5 trees
Gas exchange

system
LI-6400XT

0.87

(39) [118]

Irradiance
[
µEm−2s−1]

Temperature [◦C]
pH [unitless]

Dissolved oxygen
[mg

l

]
Net photosynthesis

rate[
mg O2

g biomass·h

] -

Data obtained by
simultaneous

modifications of
variables

0.60

For each model, the equation number (Equation) is reported in Table 2. The symbol (-) means no information.

All the investigations based on the study of mathematical modeling require extensive
knowledge of the photosynthesis process in order to determine the types of variables that
must be measured, as well as a knowledge of how these variables interrelate to obtain a
reasonable photosynthesis estimation.

Most of the mathematical models included in this review are validated with accred-
ited models of other authors, or by comparing them with some device for measuring
photosynthesis (mainly gas exchange), some others were only simulated.

The percentage analysis of the revised mathematical models shows that 20% are gray
box models, 13% are black box, and 67% are white box.

It can be observed in Figure 3 that after the year 2000, the white box models had a
considerable increase, separating themselves from the other types of models. The construc-
tion of the white box models is based on previous knowledge and physical intuition [45].
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Besides this, white box models are more complex to model and implement in electronic
systems compared with black box models [2]. On the other hand, the empirical models
(black box) have been moderately developed, probably because no previous physical infor-
mation is available and they are based on experimental data, trying to follow the white box.
However, this does not mean that the obtained results with the black box models are not
reliable, since the application of this type of model in the estimation of photosynthesis has
been successful, and it is also more flexible to implement in electronic systems compared
to with white box models. [47]. Unlike white box models, black box models can solve
problems by estimating an unknown function, which serves as a good guide for a linear and
nonlinear dynamic system. Regarding hybrid models (gray box), the first investigations
began in 1991, two decades after the other types of models. Recently, interest in gray box
models has increased, as it offers the possibility of combining a white box model with a
black box model. In other words, it is possible to have previous information available
on some processes, but at the same time, several parameters are determined from the
observed data.
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number of published articles focused on mathematical models to estimate photosynthesis over time,
classified by decades from 1970 to 2022.

The models based on white box are as good as the models based on black box, and
their performance depends on the domain of the application and the input data, so it is
necessary to analyze them to select the best one to apply to the given problem and the best
one to show the obtained results. To this end, it is essential to understand the input data, as
well as the best way to display the output data, the careful formulation of the objectives is
paramount and determines the scope of the built model. It is important to mention that in
the last two years (2021–2022) the development of gray box and black box models has been
the subject of interest, while white box models remain outdated.

In this review, it is demonstrated, with considerable evidence, that photosynthesis
can be estimated through different mathematical models. These models have various
characteristics, without standardizing any specific equation or variables. Among the
articles on validated mathematical models with trends in mathematical behaviors are
Marshall [82], validated with a rectangular hyperbolic model; Han [93] validated with an
empirical function based on the Poisson distribution; [107] validated with Euler’s simple
digital integration method, rectangle hyperbolic method Perin [116] validated with the
hyperbolic model and Jansen [112] with the integration model according to Euler.

It is important to note that all the measurable variables used in the classification of
the revised mathematical models (empirical, mechanistic, or hybrid) have diversified units,
so it is impossible to standardize the units for estimating photosynthesis. Therefore, the
approach is oriented towards the analysis and comparison of the behavior trend in the
photosynthetic process, regardless of the specific magnitude of the reported measurement.
Then, the photosynthesis estimation units depend on the type of variables in the input,
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since it was found that there are different mathematical models related to biochemical,
physical, and agroecological variables [14,119]. Figure 4 shows the input variables used in
the reviewed mathematical models, classified according to type [120–122].
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Figure 4. Input variables used in the reviewed mathematical models, classified by biochemical,
physical, and agroecological type.

To implement the mathematical model in an electronic system, it is necessary to con-
sider the physical method of measuring each variable [121,123,124]. Regarding the physical
method of measurement, the biochemical, physical, and agroecological variables can be
sub-classified as invasive or non-invasive. Invasive measurements interfere physically or
chemically with the plant; on the contrary, non-invasive measurements do not alter the
natural process of the plant because, in general, there is no contact with the studied body.
Invasive measurement methods have the following disadvantages: they affect the behavior
of plants, they can be destructive, depending on the laboratory, and require a space with
adequate facilities. Therefore, it is not in situ and the measurement is not immediate,
causing a delay. In contrast, non-invasive methods have the characteristic that they can be
in situ, in vivo, and non-destructive.

According to the mathematical models reviewed, Figure 5 shows the diversity of
variables that have been used to estimate photosynthesis, as well as the classification of
whether they are invasive or non-invasive, when measured in plants. It also presents the
percentage of the number of times a certain variable is used to build the mathematical
model, reinforcing the idea that it is not possible to standardize the units of photosyn-
thesis estimation. According to Figure 5, light (photosynthetically active radiation (PAR)
µmol m−2 s−1; average amount of incident energy per unit area per unit time on a surface
(Irradiance) W/m2) is the most used variable for estimating photosynthesis in mathematical
models since it is required in 25% of the models, followed by ambient temperature with
14%. In general, the advantage of involving biochemical variables in the models is that
photosynthesis is more reliable, since they are directly related to the photosynthetic process.
However, since the information on the biochemical variables is obtained by a completely
invasive process, and the type of equation to be implemented requires digital elements of a
better quality, the implementation price is quite high. On the other hand, involving physical
variables is less invasive since it depends on the method used for the measurement, as is
the case of the leaf’s area index and leaf’s temperature variables. Finally, agroecological
variables are those found in the atmosphere; these variables are completely non-invasive.
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based on their measurement; as well as the equivalent percentage to the number of times that the
models use these variables.

Another relevant finding is that there are other important variables for estimating
photosynthesis that have not been used in previous models since they interfere in this
metabolic process thus opening a niche of opportunity for future models, variables such
as, minerals, processed sap (glucose), relative humidity of the air and relative humidity of
the leaf.

Table 4 shows the statistics of the number of input variables used in the mathematical
models. It is emphasized that 31% of the models require only 2 input variables, and 5%
used 7 input variables for the estimation of photosynthesis. Thus, it is shown that it is not
necessary to measure all the possible input variables to obtain a photosynthesis output
value. In addition, Table 4 also shows that statistics on the number of input variables used
by each mathematical model are observed according to their classification. Based on this
Table, it was concluded that black box models tend to use only 2 input variables; although
the estimation process is unknown, the expected result is not affected since there are even
white box models that also use only two input variables to estimate the photosynthesis.
These statistics confirm once again that regardless of the number of input variables and the
type of modeling, it does not influence the expected photosynthesis estimation.

Table 4. Reported input variables in mathematical models for estimating photosynthesis. The table
shows the representation of the percentage equivalent to the number of input variables used by the
reviewed mathematical models for white, black, or gray box models.

Mathematical Models

Number of Input
Variables

White Box
Models

Black Box
Models Gray Box Models Percentage Equivalent to the Number

of Input Variables Used by Models

7 8% - - 5%
5 15% 20% - 13%
4 23% 20% 50% 28%
3 31% - 13% 23%
2 23% 60% 38% 31%
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Murchie [125] established that photosynthesis is perhaps the most studied physiologi-
cal process in plant science since it supports plant productivity. However, it is notoriously
sensitive to small dynamic changes in environmental conditions; this means that quantify-
ing nature on different time scales is not easy. For this reason, most of the mathematical
models reviewed in this article measure variables in steady state, that is, in controlled
environments. It is important and convenient to measure the properties of a plant under
steady-state conditions, but this does not always allow accurately prediction of how the
plant will respond in a complex field environment [125–130]. For the analysis of physiologi-
cal processes, it is important to take into account that plants are living beings, so each plant
has a different photosynthetic response [11,131]. This is due to factors such as the age of the
plant, its nutrition, the type of plant, its habitat, whether it is aquatic or terrestrial [132,133],
and the climate in which it is found, as well as the type of species [134–137].

In the revised models, plants of different species were used to carry out the photo-
synthesis estimation validations, classified for both aqueous and terrestrial environments
(Figure 6).

Figure 6. Plant species used in the mathematical models classified by aqueous and terrestrial
environments. Refs. [39,72–74,76,79–111].

As mentioned by Gómez [138], most of the studies on photosynthetic activity in
different species have been carried out on individual leaves, without considering that
due to various factors, what happens in one leaf may not be what is happening in the
other leaves of the same plant and the crop in general [139–141]. For this reason, another
important aspect to consider in the analysis and validation of a mathematical model for
estimating photosynthesis is the number of plants required for the experimental part of the
model, since it is more significant to experiment with a complete crop than to do so with
just one plant per species [11]. In this review, the number of plants used in each article was
sought; however, not all the articles specified this information, leaving in doubt whether it
is a significant piece of data to evaluate the reliability of the model.

Various principles and methods have been proposed to select the best model for a
system among the various existing models [88,142–145]. These quality criteria, which can
be used separately or in some combination, are as follows:

i. To have the minimum number of model parameters with a reasonable error.
ii. To have the simplest form with minimal error.
iii. To be based on physical, chemical, and biological laws as much as possible.
iv. To have the minimum deviation between the predicted and empirical values.
v. To have the minimum output variance.
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According to Gutiérrez [146], another useful statistic to measure the global quality of a
model is the coefficient of determination (R2) since it measures the proportion or percentage
of variability in the experimental data. To interpret these coefficients, it is true that 0 ≤ R2 ≤ 1,
values close to 1 are desirable. In general, for prediction purposes, an adjusted coefficient of
determination of at least 70% is recommended. Although the coefficient of determination is
an important factor to consider for the validation of the models, only some authors showed
this evidence in the literature review.

As we have seen so far, the estimation of photosynthesis is not an easy process to
measure, as many factors can modify the final results, in other words, it is not possible to
use the same model for all types of plants.

Years after the publication of Farquhar, Von Caemmerer and Berry’s landmark C3
photosynthesis model, photosynthesis modeling remains an active field of research. These
models have allowed the formulation and testing of new hypotheses, which has led to their
refinement [147].

4. Conclusions

This article summarizes current mathematical models in the context of the photo-
synthetic process in plants. For this, an extensive review of the current state of the art
was carried out. In addition to highlighting their advantages and limitations, this review
demonstrates that mathematical models consider both, qualitative and quantitative vari-
ables. Among the qualitative variables, there is the validation method, the type of crop
to carry out the tests, the mathematical model, and the input variables and estimated
variables with their respective units. Conversely, the quantitative variables reported are the
number of input variables, the number of samples to carry out the tests, the coefficient of
determination, and the percentage equivalent to the number of published articles focused
on mathematical models to estimate photosynthesis according to its classification.

The reader can compare the existing types of models according to their mathematical
complexity, the input variables required for the models, and the units used to estimate
photosynthesis. Based on the state-of-the-art, there is no evidence of a comparison between
mathematical models.

This review shows various models, from simple to very complex, that relate mathe-
matics to the photosynthetic process.

This review presents the diversity of mathematical models for photosynthesis esti-
mation from previously published research, focused on the mathematical formulation,
complexity, validation, applications, and the analysis of the diversity of the variables with
their respective units, as well as the invasiveness required for its measurement. Once
these input variables have been analyzed, we conclude that the most commonly used
non-invasive variables are light, ambient temperature, carbon dioxide found in the atmo-
sphere, and the leaf’s temperature. On the other hand, the vast majority of variables used to
estimate photosynthesis are invasive for the plant, causing stress. Among the most common
invasive input variables to measure photosynthesis are carbon dioxide concentration in the
leaf, oxygen in the leaf, the leaf’s temperature, and pressure steam, remembering at this
point that the terms “invasive” or “non-invasive” depend on the techniques necessary to
acquire the variables of the model [96].

Regarding the mathematical modeling described, we have inferred that some models
require a wide variety of input variables, which makes them more complex, thus hindering
their future application in electronic systems. Therefore, it would also be useful to develop
simpler mathematical models for easy implementation.

This review supports the idea that an estimate of photosynthesis can be obtained
with different mathematical equations and different measurable input variables without
standardizing. This idea may be significant for future research given that, based on the
research carried out in this review, it can be argued that photosynthesis units are determined
based on the input variables measured.
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Mathematical models provide an essential contribution to the understanding of both,
mathematical and biological fields. Deepening the knowledge of mathematical modeling
to estimate photosynthesis allows us to understand that there are different methodologies
to obtain the same result, or at least a similar result. In biological systems, it is not
always necessary to have specific definitive values, but the tendencies of the system
are also important. This information can be used to develop new mathematical models
to estimate photosynthesis with new variables related to the plant’s habitat and with
greater relevance to be implemented in electronic systems during the development of
photosynthesis estimation equipment.

Finally, as was described in this article, the photosynthesis process is not easy to
estimate since there are important factors that alter said estimation, such as the type of
species; the physical, chemical and agroecological characteristics of the species, as well as
their control; the number of plants needed (samples); and the measurement at leaf, plant or
canopy level.
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Abbreviations
a Leaf’s age Equation (5)
a* Total concentration of PSUs Equations (14) and (24)

A
CO2 assimilation Equation (1); Photosynthetic rate Equations: (10), (12), (19) and (22);
Photosynthesis Equation (18); Net photosynthesis Equation (11)

Ac
Assimilation rate limited by activation and kinetic properties of the Rubisco enzyme
Equations (12) and (22)

Aj Net photosynthesis rate limited by light Equations (12) and (22)

An
CO2 assimilation Equation (23);
Photosynthetic rate Equations (26) and (38); Photosynthesis Equation (9)

age Age of plant Equation (31)
B Biomass Equation (29)

C
Carbon dioxide in the leaf Equations: (1), (10), (19), (25) and (30); Carbon dioxide
from the atmosphere Equations (2), (6), (8), (18), (20), (21) and (34)

C1 CO2 Concentration in the leaf Equation (3)
Ca CO2 in the atmosphere Equations (12) and (23)
Cbs CO2 concentration Equation (9)
Cc CO2 partial pressure at the Rubisco carboxylate sites Equation (19)
Cc CO2 offset point Equation (3)

Ci
CO2 partial pressures Equations (10) and (11); Internal CO2 concentration
in the leaf Equation (23); Carbon dioxide from the atmosphere Equation (22)

Cl Chlorophyll Equation (13)
CLA Cumulative leaf area of entire crown Equation (26)
Cs CO2 concentration on the leaf surface Equation (23)
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CUO Accumulated absorption O3 Equation (23)
D Conversion coefficient Pg Equations (6) and (20); Stem diameter Equation (29)
DO2 Dissolved oxygen concentration Equations (35), (36) and (38)
E Irradiance Equations (13) and (32)
E1 Light utilization efficiency Equation (3)
Ea Start of photosynthesis saturation Equation (17)
Ec CO2 utilization efficiency Equation (3)
EUR Radiation use efficiency Equation (34)
EXT Extinction coefficient of PAR inside the cover Equation (34)
f PS2 fraction Equation (32)
F′ Fluorescence Equation (37)
f (I, T) Function of light and temperature in the respiration of the micro algae Equation (37)
f (age) Age function Equation (31)
f (PPFD) Photosynthetic photon flux density function Equation (31)
f(SWC) Soil water content function Equation (31)
f(T1) Temperature function Equation (3)
f(Ta) Air temperature function Equation (31)
f(Ts) Soil temperature function Equation (31)
f(VPD) vapor pressure deficit function Equation (31)

F(z)
Cumulative density leaf area between the surface of the canopy and
height z Equation (27)

f1(T) Absolute Maximum mathematical function due to leaf’s temperature Equation (5)
f2 (a) Function that describes the pattern for the age of the leaf Equation (5)
FAO3 Response relationship treatment to control photosynthesis Equation (23)

FC02
Relative dimensionless factor that estimates the effect on the growth of the
concentration of CO2 in the air Equation (34)

Fi,d Photosynthesis gross Equation (33)
F’m Fluorescence flux Equation (37)
gb Conductance of the boundary layer of the leaf Equation (23)
gmin Minimum stomatal conductance Equation (12)
gn Stomatal conductance Equation (12)
gs Stomatal conductance Equation (23)
H Heigh Equation (29)
i Serial number Equation (26)
I Light intensity or irradiance Equations (2), (15), (16), (17), (30), (36) and (39)
I* CO2 photosynthetic compensation point Equation (18)
i,d Time, day Equation (33)
IAF Leaf’s area index Equation (34)
Iav Irradiance Equation (35)
Ic Irradiance concentration Equation (15)
Il Irradiance Equation (21)

Io
Light flux density in foliage Equation (20); Light intensity Equation (27);
Quanta absorbed by the light Equation (11)

Ip PAR incidence Equation (9)
IPAR Radiation Equation (34)
IPPF Photosynthetic photon flux Equation (25)
I’R PAR intensity of half-saturation Equation (28)
J Potential rate of full-chain electron transport Equations (10), (12) and (22)

J (CO2, I)
Maximum photosynthesis rate with Cbs saturation at a given
irradiance Equation (9)

Jm Electron transport potential rate Equation (9)

k
Represents the fractional rate of photosynthesis vs.
irradiance Equations (12) and (13)

K
Constant rate of photoclimatory changes in cellular chlorophyll
Equations (24) and (26)

K (I) Light extinction coefficient Equations (6), (20) and (27)
K (O) Function of enzymatic kinetics Equation (12)
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K1 [RuBP] Carbon fixed by photosynthesis Equation (7)
K2 [RuBP]2 Carbon used by photorespiration Equation (7)
K5 [TP] Carbon used by dark respiration Equation (7)
Ka PPFD extinction on chlorophyll Equation (11)
Kc Michaelis constant for carboxylation Equations (1), (9), (10), (18) and (22)
KmC Rubisco constant for CO2 Equation (19)
KmO Rubisco constant for O2 Equation (19)
Ko Michaelis constant for oxygenation Equations (1), (9), (10), (18) and (22)
KO3 Leaf resistance ratio for O3 Equation (23)
kp, ks Constan Equations (14) and (24)
L Foliar area index Equation (20)
LAI Foliar area index Equation (6)
LFmax Maximum leaf photosynthesis rate Equation (6)
LMA Leaf’s mass per area Equations (26) and (38)
m Leaf light transmission coefficient Equations (6), (20) and (27)
msat Rate of light saturated carboxylation Equation (11)
Np Leaf nitrogen content Equation (11)
nsat Leaf nitrogen content Equation (11)

O
Oxygen from the atmosphere Equations (9) and (18),
Oxygen in the leaf Equations (1), (10), (12), (13), (17), (19), (22) and (24)

O(O) O2 partial pressures Equation (10)
O3 Oxygen in the leaf Equation (23)
Obs O2 concentration in the bundle-sheath cell Equations (9) and (19)
P Photosynthetic rate Equations (8), (13), (14), (15), (17), (24) and (37)
P* Photosynthesis rate without photoinhibition Equation (4)
P(T) Photosynthesis reduction factor Equation (20)
PAR Radiation Equations (26), (34) and (38)
PARt PAR incident on top of crown Equation (26)
PARvp PAR intensity reaching the epidermis of the leaf Equation (28)
PCARB Potential biomass accumulation per plant Equation (34)
Pg Total gross photosynthesis Equations (6), (20) and (27)
Pgmax Maximum gross photosynthesis Equation (25)
PGRED(T) Function to modify Pg, below suboptimal temperatures Equation (6)
pH Degree of acidity or alkalinity of the plant Equations (35), (36) and (39)
Pij Photosynthesis Equation (28)
P l,g Photosynthetic rate Equation (21)
PLTPOP Plant density per unit area Equation (34)
Pm Maximum photosynthesis rate Equation (14)
Pm (O) Oxygen release rate Equation (24)

Pm (T, a)
Maximum net photosynthesis rate per unit of leaf area over all PPFD levels,
temperature and ages Equation (5)

Pm (T, C, N) Photosynthetic value with saturation of Il Equation (21)

Pmax

Maximum photosynthetic rate Equations (2) and (3); Specific velocity
coefficient for photosynthesis calculated by a saturated speed-dependent
hyperbolic function of light and is a function of temperature Equations (17) and (28)

Pmm Maximum endogenous photosynthesis capacity Equation (25)
Pn Net photosynthetic rate Equations (2), (7), (16), (30) and (31)
PnCO2 Net photosynthesis rate limited by CO2 Equation (25)
Pnl Photosynthesis rate Equation (25)
Pn1max Maximum net photosynthesis Equation (25)
Pnmax Maximum net photosynthesis Equation (31)
PO2 Net photosynthesis rate Equations (36) and (39)

PO2 (DO2)
Net photosynthesis rate in function of dissolved oxygen concentration
Equations (36) and (39)

PO2 (I) Net photosynthesis rate in function of irradiance Equations (36) and (39)
PO2 (pH) Net photosynthesis rate in function of pH Equations (36) and (39)
PO2(T) Net photosynthesis rate in function of temperature Equations (36) and (39)
POB

2 Rate of gross photosynthesis Equation (32)
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PPFD Flux density of photosynthetic photon Equations (6) and (31)
Ppot Photosynthetic potential rate Equation (3)
Qe Leaf’s quantum efficiency Equation (6)

qp
Photochemical cooling, a measure of the fraction of open reaction centers
under ambient photon precipitation rates. Equation (32)

R Leaf’s breathing Equation (8)
r*m Disappearance of PSU activated Equations (14) and (24)
Ra Radiation Equation (33)
RCLAI Relative area of the accumulated leaf Equation (26)
Rd Dark respiration Equations (1), (2), (9), (25), (26) and (31)
Rd (C) Respiratory CO2 released Equation (18)
Rd (I) Leaf respiration in light or day Equations (12) and (22)
RDINC Relative depth in the crown Equations (26) and (38)
Rlight Nonphotorespiratory mitochondrial CO2 release in light Equation (16)
RO2 Photosynthesis rate Equation (35)
RO2(DO2) Photosynthesis rate in function of dissolved oxygen concentration Equation (35)
RO2(I) Leaf respiration in light or day Equation (39)
RO2(Iav) Photosynthesis rate in function of irradiance Equation (35)
RO2(pH) Photosynthesis rate in function of pH Equation (35)
RO2(T) Photosynthesis rate in function of temperature Equation (35)
RuBP Ribulose bisphosphate Equation (7)
Sc/o Relative CO2/O2 specificity factor for Rubisco Equation (19)
SWC Soil water content Equation (31)
t Time Equations (4) and (24), Temperature Equation (28)

T
Leaf’s temperature Equations (5), (10), (20) and (22), Ambient temperature
Equations (6), (15), (18), (21), (23), (30), (33), (34), (35), (36) and (39)

T1 Ambient temperature Equation (3)
Ta Ambient temperature Equation (31)
Tair Ambient temperature Equation (38)
TS soil temperature Equation (31)
TP Triose phosphate Equation (7)
v Stoichiometric factor Equation (37)
Vcm Maximum saturated CO2 carboxylation rate Equation (9)
Vcmax Maximum carboxylation rate Equations (1), (10), (18), (19) and (22)
Vm Maximum carboxylation rate Equation (12)
VPD Pressure steam Equation (26); Vapor pressure deficit Equations (30), (31) and (38)
Wc Minimum carboxylation rates limited by Rubisco activity Equation (9)

WC
Assimilation rate limited by activation and kinetic properties of
the Rubisco enzyme Equation (10)

Wj RuBP regeneration Equation (9)

WJ
Rate limited by the regeneration capacity of Ribulose bisphosphate
(RuBP) Equation (10)

Wp Capacity of utilization of the products of photosynthesis Equation (10)
x Maximum per crop Equation (33)
x* Functional activation fraction PSUs Equation (24)

Xe
* PSU steady state fraction functions activated under continuous

illumination Equation (14)
z Height Equation (27)
α Quantum efficiency Equations (2), (9), (11) and (21)
α (Cl) Specific absorption of Chlorophyll Equation (13)
α (I) Light utilization efficiency Equations (8), (20) and (27)
∝l Photochemical efficacy of the leaf in the absence of oxygen Equation (25)

Γ
CO2 compensation point in the absence of dark breathing
Equations (10), (12) and (22)

Γ*

Compensation point in the absence of dark Equations (1) and (19);
CO2 partial pressure for the compensation of oxygenation and carboxylation
reactions Equation (11)

ε Radiation use efficiency Equation (33)
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nPS2 Relationship between PS2 reaction centers and chlorophyll Equation (32)
θ Curvature factor dimensionless 0 > θ < 1 Equations (8), (21) and (37)
θ(C) Relationship between physical and total resistance to CO2 diffusion Equation (2)

θ(C, I)
Degree of curvature of the CO2 response of net light-saturated
photosynthesis Equation (25)

σ Model Parameter Equation (37)
σPS2 Functional absorption of PS2 Equation (32)
τ Leaf conductance to CO2 transfer Equations (8), (9) and (20)
φ Quantum performance of oxygen evolution Equation (13)
φC Irradiance-dependent parameters Equation (32)
Φp Light intensity Equation (37)
ΦRC Quantum performance on the PS2 Equation (32)
ψ Solar elevation angle Equation (26)
Ψ Light inhibition function Equation (4)
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