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Abstract The novel coronavirus disease (COVID-19) caused by a new strain of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains the current global health
challenge. In this paper, an epidemic model based on system of ordinary differential equations
is formulated by taking into account the transmission routes from symptomatic, asymptomatic
and hospitalized individuals. The model is fitted to the corresponding cumulative number of
hospitalized individuals (active cases) reported by the Nigeria Centre for Disease Control
(NCDC), and parameterized using the least squares method. The basic reproduction number
which measures the potential spread of COVID-19 in the population is computed using the
next generation operator method. Further, Lyapunov function is constructed to investigate the
stability of the model around a disease-free equilibrium point. It is shown that the model has
a globally asymptotically stable disease-free equilibrium if the basic reproduction number
of the novel coronavirus transmission is less than one. Sensitivities of the model to changes
in parameters are explored, and safe regions at certain threshold values of the parameters
are derived. It is revealed further that the basic reproduction number can be brought to
a value less than one in Nigeria, if the current effective transmission rate of the disease
can be reduced by 50%. Otherwise, the number of active cases may get up to 2.5% of
the total estimated population. In addition, two time-dependent control variables, namely
preventive and management measures, are considered to mitigate the damaging effects of the
disease using Pontryagin’s maximum principle. The most cost-effective control measure is
determined through cost-effectiveness analysis. Numerical simulations of the overall system
are implemented in MatLab� for demonstration of the theoretical results.

1 Introduction

It is no longer news that the current global threat to human existence is the novel coronavirus
disease (COVID-19), which is caused by a new strain of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The disease was first reported to the World Health Organization
(WHO) in late December, 2019 in Wuhan, Hubei Province, China [1,2]. COVID-19 has
been declared as a pandemic (global epidemic) affecting over 200 countries and territories
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around the world. The disease is responsible for the current global socioeconomic disruptions
affecting lives and livelihoods. As of July 15, 2020, there were 13,690,115 confirmed cases
of COVID-19, including 5,071,482 active cases and 587,235 deaths worldwide [3].

Dry cough, fever and fatigue (tiredness) are the most common symptoms of the novel
coronavirus disease. However, other symptoms include shivering (chills), pains, sore throat,
difficulty in breathing, headache, skin rashes, runny nose, taste loss, diarrhea and fingers or
toes dislocation [2,4]. COVID-19 primarily spreads when an infected person expels respira-
tory droplets via coughing or sneezing. Some reports have shown that infected person with
no symptoms can also transmit the virus [5–7]. There is no specific cure yet for COVID-19
due to its novelty. However, efforts are in place to develop vaccines and antivirals to cure
the disease. Existing management of cases is targeted at relieving symptoms of the disease
while the immune system of infected person fights the virus. It should be mentioned that
older people and persons with underlying health conditions such as lung disease, asthma,
cancer, diabetes, liver disease and other immunocompromised conditions are at higher risk
of having complications from COVID-19 [4]. The novel coronavirus disease can be pre-
vented by adhering to measures, including regular hand washing or use of alcohol-based
sanitizer, maintaining social distancing, avoiding crowded places, use of face masks, and use
of hand gloves with personal protective clothing by healthcare workers while giving care to
COVID-19 patients [2,4].

On the 27th of February 2020, one person with immediate travel history was diagnosed
of COVID-19 in Lagos State. This marked the first confirmed case of the novel coronavirus
to be reported in Nigeria [8]. As of July 15, 2020, the cumulative number of confirmed
cases has risen to 34,259 as reported by the Nigeria Centre for Disease Control (NCDC).
Of the confirmed cases, 13,999 individuals have recovered while 760 deaths were recorded,
bringing the total number of currently infected cases being managed at isolation centres or
health facilities (active cases) to 19,500. It is important to note that all 36 states including the
Federal Capital Territory of the country have reported cases of COVID-19, with Kogi and
Cross River States having the least, 5 confirmed cases each, and Lagos State recording the
highest number with 12,941 confirmed cases as at July 15, 2020 [8].

Mathematical modelling continues to play significant role in demystifying complex sys-
tems whose behaviors or properties can be observed. Most recently, a number of models
fitted to real data of COVID-19 transmission have been developed to identify factors driving
the disease at different population levels [9–18]. For examples, in [9], the authors analyzed
COVID-19 spread dynamics with environmental influence using the reported cases in Ghana.
Chen et al. [10] developed a Reservior-People transmission network model to assess the trans-
missibility of SARS-CoV-2 by estimating the number of secondary infections that result from
introducing a single infected reservoir or person into an otherwise susceptible population.
A mathematical model for assessing the impacts of non-pharmaceutical interventions on the
transmission dynamics of the novel coronavirus pandemic in Nigeria was presented in [11] by
using the available cumulative COVID-19 mortality data. Jia et al. [12] presented a dynamical
model of COVID-19 by taking into account the impact of policy intervention and meteo-
rological factors based on officially published data from China. Authors in [13] proposed a
conceptual mathematical framework to explore the role of government and individual behav-
ioral reaction on the outbreak of COVID-19 using South Africa reported cases. In addition,
Nabi [14] proposed and calibrated a deterministic compartmental model for describing the
transmission dynamics of the novel coronavirus disease based on the publicly available epi-
demiological data for Brazil, Russia, India and Bangladesh. Ullah and Khan [17] formulated
a mathematical model for COVID-19 with non-pharmaceutical interventions by considering
real infected cases of Pakistan to estimate parameters, and also analyzed the corresponding
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optimal control model using optimal control theory. In another development, Srivastav et al.
[16] applied optimal control theory to analyze a mathematical model for COVID-19 model
using real data from Italy and Spain.

This study is motivated by the ongoing community spread of the novel coronavirus disease
in the most populous African nation – Nigeria with a view to flattening the infection curve. To
achieve this aim, a new nonlinear deterministic epidemic model for COVID-19 incorporating
transmission routes from three infectious classes, including symptomatic infectious humans,
asymptomatic infectious humans and hospitalized individuals, is parameterized and analyzed
based on the cumulative number of reported active cases. The behavior of the model over a
long period of time is qualitatively and quantitatively investigated. Sensitivities to changes
in the parameters of the model with respect to the epidemiological threshold are evaluated
to provide insights into formulation of policies required to curb the spread of the disease.
Moreover, optimal control theory is applied to the epidemiology of COVID-19 transmission
in order to assess the optimal levels of time-dependent prevention and management measures
that will significantly minimize the number of infectious humans in the population. The cost-
effective intervention strategy capable of flattening the virus infection curve over a definite
time horizon is suggested.

2 Model formulation

In this section, an epidemic model which focuses only on the dynamics of COVID-19 outbreak
in the absence of demographic effects (natural births and deaths) is considered (see, e.g.
[19,20]). Thus, the host population is stratified into seven mutually exclusive epidemiological
classes: susceptible class S(t) (those who are prone to contract COVID-19 infection), exposed
class E(t) (those who have been infected, but are not infectious), symptomatic infectious
class I (t) (those who exhibit COVID-19 symptoms and are capable of spreading the disease),
asymptomatic infectious class A(t) (those who are not symptomatic, but are infectious),
hospitalized class H(t) (infectious individuals who are admitted to healthcare facility due to
virus infection (active cases)), recovery class R(t) (those who have been recovered from the
disease), and death class D(t) (those who have died as a result of COVID-19 infection).

It is pertinent to mention that over 800 healthcare workers have tested positive for
COVID-19 in Nigeria due to inadequate protective equipment [21]. This necessitates the
transmission route from hospitalized class as appeared in [20]. It is also important to state
that the remains of persons (i.e., symptomatic infectious and hospitalized individuals) sus-
pected or confirmed to have died due to COVID-19 are carefully handled in accordance
with the recommended standard procedure [8]. Further, incidence of death due to the pres-
ence of the virus in asymptomatic individuals is unknown, thus the disease-induced death
rate for asymptomatic class is neglected. Figure 1 shows a flowchart depicting the trans-
mission dynamics of COVID-19 in the total host population size N , which is given by
N = S(t) + E(t) + I (t) + A(t) + H(t) + R(t) + D(t). Consequently, the following system
of nonlinear differential equations is obtained.

dS

dt
= −βS(I + ε1A + ε2H)

N − D
dE

dt
= βS(I + ε1A + ε2H)

N − D
− αE
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Fig. 1 A flowchart of
COVID-19 model with
λ = βS(I + ε1A+ ε2H)/N − D

Table 1 The parameters of the COVID-19 model (1)

Parameter Description

β Effective transmission coefficient

ε1 Modification parameter for a reduced transmission from asymptomatic humans

ε2 Modification parameter for a more reduced transmission from hospitalized class

α Rate of disease progression from exposed class

l1 Proportion of exposed with symptoms after the incubation period

1 − l1 Proportion of exposed without symptoms after the incubation period

h1 Hospitalization rate for symptomatic class

h2 Hospitalization rate for asymptomatic class after confirmation

r1 Recovery rate for symptomatic class

r2 Recovery rate for asymptomatic class

γ Recovery rate for hospitalized class

δ1 Disease-induced mortality rate for symptomatic class

δ2 Disease-induced mortality rate for hospitalized class

d I

dt
= l1αE − (h1 + r1 + δ1)I

d A

dt
= (1 − l1)αE − (h2 + r2)A

dH

dt
= h1 I + h2A − (γ + δ2)H

dR

dt
= r1 I + r2A + γ H

dD

dt
= δ1 I + δ2H. (1)

Table 1 provides the detailed descriptions of the parameters of the COVID-19 model (1).
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3 Theoretical analysis of the model

It should be mentioned that the parameters of the formulated model (1) are non-negative
since the model describes disease outbreak in human population. Therefore, it is suffices to
state that solutions of the model (1) are non-negative.

3.1 Basic reproduction number

The potential spread of disease outbreak in a population can be determined by finding an
epidemiological threshold known as the basic reproduction number. In the context of the
novel coronavirus, the basic reproduction number, denoted by R0, can be defined as the
average number of secondary cases produced by one COVID-19 infected person during the
course of infectiousness in a wholly susceptible population. To obtain R0 for the COVID-19
model (1), the next generation operator technique is employed following the notations in [22].
Matrices F and V evaluated at the disease-free equilibrium (N , 0, 0, 0, 0, 0, 0) are given,
respectively, by

F =

⎛
⎜⎜⎝

0 β βε1 βε2

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

and

V =

⎛
⎜⎜⎝

α 0 0 0
−l1α h1 + r1 + δ1 0 0

−(1 − l1)α 0 h2 + r2 0
0 −h1 −h2 γ + δ2

⎞
⎟⎟⎠ .

The spectral radius of FV−1, given by R0 = ρ(FV−1), is obtained as

R0 = βl1
k1

+ βε1(1 − l1)

k2
+ βε2(l1h1k2 + (1 − l1)h2k1)

k1k2k3
, (2)

where, k1 = h1 + r1 + δ1, k2 = h2 + r2 and k3 = γ + δ2.
Thus, the following local stability result is claimed in the sense of [22].

Theorem 1 The disease-free equilibrium (DFE) of the COVID-19 model (1) is locally
asymptotically stable if the basic reproduction number, R0 < 1, and unstable if R0 > 1.

The implication of Theorem 1 from epidemiological viewpoint is that a small number of
infected individuals present in a population will not cause an outbreak as long as R0 < 1. It
must be emphasized that this result depends on the initial sizes of infected individuals in the
population. Hence, to rule out this dependency, a global stability result becomes necessary.

3.2 Global asymptotic stability of DFE

The global asymptotic stability of the COVID-19 free equilibrium, given by (N , 0, 0, 0, 0, 0, 0),
is explored as follows.

Theorem 2 The disease-free equilibrium (DFE) of the COVID-19 model (1) is globally
asymptotically stable if R0 ≤ 1.
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Proof The following continuously differentiable and positive definite linear Lyapunov func-
tion is carefully constructed for the COVID-19 model (1) (see, e.g., [23,24]).

F = f1E + f2 I + f3A + f4H, (3)

where, f1 = [l1k2k3 + ε1(1 − l1)k1k3 + ε2(l1h1k2 + (1 − l1)h2k1)]/k1k2k3, f2 = [k3 +
ε2h1]/k1k3, f3 = [ε1k3 + ε2h2]/k2k3 and f4 = ε2/k3.

The time derivative of (3) along the solution path of the COVID-19 model (1) is given by

Ḟ = f1 Ė + f2 İ + f3 Ȧ + f4 Ḣ ,

= f1

(
βS(I + ε1A + ε2H)

N − D
− αE

)
+ f2(l1αE − k1 I ) + f3((1 − l1)αE − k2A)

+ f4(h1 I + h2A − k3H),

= f1

(
βS(I + ε1A + ε2H)

N − D

)
− I − ε1A − ε2H,

≤ f1β(I + ε1A + ε2H) − (I + ε1A + ε2H); (since S ≤ N − D),

= (I + ε1A + ε2H)( f1β − 1),

= (I + ε1A + ε2H)

(
βl1
k1

+ βε1(1 − l1)

k2
+ βε2(l1h1k2 + (1 − l1)h2k1)

k1k2k3
− 1

)
,

= (I + ε1A + ε2H)(R0 − 1). (4)

It follows that Ḟ ≤ 0 if R0 < 1 with equality, Ḟ = 0, if and only if E = 0, I = 0, A = 0
and H = 0. Therefore, it can be concluded from the LaSalle’s Invariance Principle [25] that
the DFE is globally asymptotically stable whenever R0 ≤ 1. ��
The implication of Theorem 2 from the epidemiological viewpoint is that COVID-19 can be
effectively controlled in the population if R0 < 1 regardless of the initial sizes of the infected
individuals. This theoretical result will be graphically illustrated later.

4 Parameter estimation and model fitting

This section is devoted to the estimation of parameters of the COVID-19 model (1) based
on the reported data of cases in Nigeria [8]. In particular, the formulated model is parame-
terized to assess the burden of COVID-19 in terms of the number of individuals currently
infected (active cases) in Nigeria. In this study, the values for parameters such as effective
transmission coefficient (β), modification parameter (ε2), and hospitalization rates (h1 and
h2) are estimated, while the values of other parameters are chosen from the well-established
literature as appeared in Table 2. The estimation of parameters is carried out using the least
squares method implemented in Excel Solver [26] with a view to minimizing summation of
squared errors given by

∑
(Y (t, p) − Xreal)

2 subject to the COVID-19 model (1), where
Xreal is the real reported data, and Y (t, p) represents the solution of the model corresponding
to the number of active cases over time t with the set of estimated parameters, denoted by p.

Moreover, initial conditions for the exposed humans, symptomatic and asymptomatic
infectious individuals are estimated to account for the possibility that the actual number of
cases is most likely much higher than reported in Nigeria as in other parts of the world,
due to limited testing and the possible presence of COVID-19 infected individuals with
no symptoms [27]. In order to accommodate the foregoing possibility, the estimations of
parameters and initial conditions for the model fitting are allowed to commence from March
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Fig. 2 Fitting of the COVID-19 model (1) with the available cumulative number of active cases from March
10 to July 15, 2020

Table 2 Values of parameters and initial conditions

Parameter Range Value Source

β 0–1 0.38974 Fitted

ε1 0.5 day−1 [10]

ε2 0–1 0.24278 Fitted

α 1
5.2 day−1 [29]

l1 0–1 0.5 [10]

h1 0.2–0.5 0.33604 day−1 Fitted

h2 0.1–0.25 0.19466 day−1 Fitted

r1 = r2 0.0333–0.3333 1
7 day−1 [11,30]

γ 0.0333–0.3333 1
15 day−1 [10,15]

δ1 = δ2 0.001–0.1 0.015 day−1 [16,31]

10, 2020, exactly a day after the second COVID-19 confirmed case was reported by NCDC
[8], so that H(0) = 2. Keeping in mind that the total population of Nigeria is estimated at
N = 200 million people [28], and that no report of recovery and deaths due to the disease
was made as at March 10, 2020 (i.e., R(0) = D(0) = 0), then it is easy to determine the
initial susceptible population as S(0) = N − (E(0)+ A(0)+ I (0)+ H(0)+ R(0)+ D(0)).

The model is fitted to the real data along with the following initial conditions: E(0) = 880,
A(0) = 330, I (0) = 190, so that S(0) = 199, 998, 600. The model fitting with reported
active cases is depicted in Fig. 2. Consequently, the value of the basic reproduction number
using the parameter values in Table 2 isR0 = 1.412, which still exceeds the novel coronavirus
pandemic threshold of one.

4.1 Sensitivity of the model to parameters

It is important to explore how sensitive the COVID-19 model (1) is to changes in each of
its parameters in order to suggest intervention strategies that will help in bringing down the
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Fig. 3 COVID-19 model sensitivities to its associated parameters

infection trajectory. In other words, carrying out sensitivity analysis will help in providing
insights into what should be done or avoided to prevent the outbreak of the novel coronavirus
[32]. Thus, as defined in [33], a relative change in the basic reproduction number, R0, when
each parameter changes is measured using the following

ϒR0
p = ∂R0

∂p
× p

R0
,

where, ϒ
R0
p is the sensitivity index of a differentiable R0 with respect to any parameter,

p. Consequently, the sensitivity indexes for the model (1) are graphically shown in Fig. 3.
It can be observed that of all the positive indices, the effective transmission coefficient, β,
is the highest, and therefore the most sensitive parameter. This means that an increase (or
a decrease) of the value of β will increase (or decrease) R0 by 100%. However, of all the
negative indices shown in Fig. 3, the recovery rate for the hospitalized class (active cases),
denoted by γ , is the most sensitive parameter. This means that an increase (or a decrease) of
the value of γ will decrease (or increase) R0 by 42.1%.

In addition, contour plots of R0 as a function of other parameters are shown in Fig. 4
to demonstrate how changes in these parameters affect the basic reproduction number, R0.
Figure 4a shows a decrease in R0 with increasing recovery rates for both symptomatic and
asymptomatic individuals. This spontaneous recovery from infection is due to the body’s
innate immune response which is capable of inhibiting virus replication, promoting virus
clearance, and triggering a prolonged adaptive immune response against reinfection [34].
Moreover, it can be confirmed, as shown in Fig. 4b, that the basic reproduction number
can be brought lower than the threshold of one if efforts are geared towards lowering the
transmission rate while simultaneously improving on the management of active cases.

In Fig. 5a, the effects of effective transmission coefficient at different values are illustrated.
It is projected that the cumulative number of active cases in Nigeria, given the current infection
trajectory with β = 0.38974, may get up to 5×106 (equivalently, 2.5% of the total estimated
population) unless drastic measures are taken to bring the basic reproduction number below
one. As shown in Fig. 5b, the cumulative number of active cases reduces with increasing
value of recovery rate for hospitalized individuals from γ = 1/15 day−1 to 1/5 day−1. In
particular, if it takes 5 days or less to effectively manage infected individuals, the risk of
infection transmission from the hospitalized class will reduce significantly. This indicates
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Fig. 4 2-D contour plots of the basic reproduction number R0
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Fig. 5 Projections with varying effects of parameters: a Effective transmission coefficient at values of β =
[0.42 (R0 = 1.521 > 1), 0.38974 (R0 = 1.412 > 1), 0.36 (R0 = 1.304 > 1) and 0.19487 (R0 =
0.706 < 1)]. b Recovery rate for hospitalized individuals at values of γ = [0.06667 (R0 = 1.412 >

1), 0.1 (R0 = 1.2 > 1), and 0.2 (R0 = 0.959 < 1)]

that the longer it takes to effectively manage COVID-19 patient, the heavier the burden of
the disease on the healthcare facility and the population at large.

More explicitly, Fig. 6 reveals how the potential spread of the novel coronavirus in the
population is affected by the model parameters in order to influence effective policies that
can guide against the burden of the disease transmission. The blue rectangular box in Fig. 6a
indicates a safe region where the effective transmission coefficient, β, is below a value
of 0.27613, so that the key epidemiological threshold, R0, is less than one. Above this
region, the basic reproduction number which determines the spread potential of the disease
increases as the rate of transmission increases through effective contact between susceptible
and infectious individuals in the population. Hence, to stay in the safe region, measures such
as strict social distancing and maintenance of good personal hygiene are strongly advised.
This result is consistent with previous findings in the literature [9,11,13,15,17]. Furthermore,
the potential spread of the diseases decreases with increase in the recovery rate as shown in
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(a)

(b) (c)

Fig. 6 Relationship between COVID-19 epidemiological threshold and parameters

Fig. 6b. The safe region of R0 < 1 in this case is attained at recovery rate above the value
of 0.1727. Hence, given the high infectiousness of the novel coronavirus disease, treatment
regime which ensures recovery within a short period of 5 days is strongly advised. In Fig. 6c,
the effects of the modification parameters, ε1 and ε2, respectively for virus transmission
from asymptomatic (black solid line) and hospitalized (blue solid line) individuals on the
basic reproduction number are shown. The red rectangular box is the safe region where ε2

is below a value of 0.1. Above this value, R0 will increase up to 3.6828 which may lead
to a more serious pandemic situation. Hence, strict usage of personal protective equipment
when attending to the hospitalized COVID-19 individuals is strongly advised to avoid further
spread of the disease.
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Fig. 7 Convergence of solution trajectories for a symptomatic humans, b asymptomatic humans and c hospi-
talized humans at different initial sizes in line with Theorem 2. Parameter values used are as given in Table 2
except for β = 0.19487 and ε = 0.12, so that R0 = 0.522 < 1

To validate the global stability result (Theorem 2), Fig. 7 illustrates the convergence to
the COVID-19-free equilibrium irrespective of the initial sizes of the infectious individuals
in the population.

5 Optimal control model and analysis

In the light of the sensitivity analysis result, optimal control theory is applied to the COVID-
19 model (1), as applied to other infectious diseases models (e.g., [33,35–39]) in order to
mitigate the spread of COVID-19 in the population optimally. This is done by introducing two
time-dependent control variables u1(t) and u2(t), which are described in details as follows.

(i) u1(t) denotes the preventive strategy targeted at inhibiting the virus transmission from
symptomatic, asymptomatic and hospitalized humans. This can be achieved through
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public heath advocacy for social distancing, good personal hygiene, wearing face masks
in public places, and provision of protective gear for healthcare workers. Noting that
u1(t) = 1 implies the strategy is effective for protection against infection, whileu1(t) = 0
implies strategy failure.

(ii) u2(t) represents control variable to step up the management of hospitalized individuals
with a view to ensuring prompt recovery and preventing deaths due to complications.
This can be achieved through prompt provision of supplemental oxygen or mechanical
ventilation for hospitalized individuals with severe COVID-19. If u2(t) = 1, then the
control is effective in managing the disease, while u2(t) = 0 means the absence of
control.

Consequently, the optimal control model with the two aforementioned time-dependent vari-
ables is given by the following differential equations

dS

dt
= −(1 − u1(t))

βS(I + ε1A + ε2H)

N − D
dE

dt
= (1 − u1(t))

βS(I + ε1A + ε2H)

N − D
− αE

d I

dt
= l1αE − (h1 + r1 + δ1)I

d A

dt
= (1 − l1)αE − (h2 + r2)A

dH

dt
= h1 I + h2A − (γ + u2(t) + δ2)H

dR

dt
= r1 I + r2A + (γ + u2(t))H

dD

dt
= δ1 I + δ2H.

(5)

The aim of introducing the two control variables is to seek the optimal solution required to
minimize the numbers of symptomatic, asymptomatic and hospitalized individuals respon-
sible for spreading the novel coronavirus in the population at minimum cost. Hence, the
objective functional for this control problem is given by

J(u1, u2) = min
0≤u1,u2≤1

∫ T f

0

(
w1 I + w2A + w3H + 1

2
[w4u

2
1(t) + w5u

2
2(t)]

)
dt, (6)

where, constants wi , i = 1, 2, ..., 5 are positive weights required to balance the corre-
sponding terms in the objective functional. Following other literature on COVID-19 control
problems [9,16,17,40,41], quadratic costs on the controls are chosen, where 1/2w4u2

1(t) is
the total cost of implementing the preventive measure, and 1/2w5u2

2(t) is the total cost of
managing active cases over the time interval [0, T f ].

Precisely, the optimal control double u∗ = (u∗
1, u

∗
2) is sought such that

J(u∗
1, u

∗
2) = min {J(u1, u2) : u1, u2 ∈ U} , (7)

where, U is the non-empty control set defined by
U = {

(u1, u2) : (u1(t), u2(t)) are measurable with 0 ≤ u1, u2 ≤ 1 for t ∈ [0, T f ]
}
. Thus,

to determine the necessary conditions that the optimal control double (u∗
1, u

∗
2) must satisfy,

Pontryagin’s maximum principle [42], which transforms the control problem (7) subject
to the model (5) into a problem of minimizing pointwise a Hamiltonian H, is used. This
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Hamiltonian is given by

H = w1 I + w2A + w3H + 1

2
[w4u

2
1(t) + w5u

2
2(t)]

+λ1

[
−(1 − u1(t))

βS(I + ε1A + ε2H)

N − D

]

+λ2

[
(1 − u1(t))

βS(I + ε1A + ε2H)

N − D
− αE

]

+λ3[l1αE − (h1 + r1 + δ1)I ] + λ4[(1 − l1)αE − (h2 + r2)A]
+λ5[h1 I + h2A − (γ + u2(t) + δ2)H ]
+λ6[r1 I + r2A + (γ + u2(t))H ] + λ7[δ1 I + δ2H ], (8)

where, λi , i = 1, 2, 3, ..., 7, represent the adjoint variables associated with the state variables
of the model (5). The standard existence result for minimizing control problem as appeared
in [43,44] is adapted as follows.

Theorem 3 Given that (u∗
1, u

∗
2) minimizes the objective functional (6) subject to the corre-

sponding state system (5), then the adjoint variablesλi , i = 1, 2, 3, ..., 7, satisfy the following
system

dλ1

dt
= β(1 − u1(t))(I + ε1A + ε2H)[λ2 − λ1]

N − D
dλ2

dt
= α(λ2 − l1λ3 − (1 − l1)λ4)

dλ3

dt
= βS(1 − u1(t))[λ2 − λ1]

N − D
+ δ1(λ3 − λ7) + h1(λ3 − λ5) + r1(λ3 − λ6) − w1

dλ4

dt
= ε1βS(1 − u1(t))[λ2 − λ1]

N − D
+ h2(λ4 − λ5) + r2(λ4 − λ6) − w2

dλ5

dt
= ε2βS(1 − u1(t))[λ2 − λ1]

N − D
+ δ2(λ5 − λ7) + (γ + u2(t))(λ5 − λ6) − w3

dλ6

dt
= 0

dλ7

dt
= β(1 − u1(t))S(I + ε1A + ε2H)[λ1 − λ2]

(N − D)2

(9)

with the terminal (transversality) conditions

λi (T f ) = 0, i = 1, 2, 3, ..., 7. (10)

Further, the optimal control double (u∗
1, u

∗
2) is given as follows

u∗
1 = max

{
0, min

{
1,

βS(I + ε1A + ε2H)[λ2 − λ1]
w4(N − D)

}}
,

u∗
2 = max

{
0, min

{
1,

H [λ5 − λ6]
w5

}}
. (11)

Proof The existence of the optimal control double (u1, u2) is based on the a priori bounded-
ness of the state variables of model (5), convexity and boundedness of the Langragian of the
control problem. The system of ordinary differential equations (9) governing the adjoint vari-
ables is derived by differentiating the Hamiltonian H. Further, the control characterizations
in (11) are derived by solving, on the interior of the control set U , the partial differentials

123



  938 Page 14 of 20 Eur. Phys. J. Plus         (2020) 135:938 

of the Hamiltonian H with respect to each of the controls u1 and u2. Hence, by standard
arguments involving control bounds, it follows that

u∗
1 =

⎧⎨
⎩

0 if τ ∗
1 ≤ 0,

τ ∗
1 if 0 < τ ∗

1 < 1,

1 if τ ∗
1 ≥ 1,

and

u∗
2 =

⎧⎨
⎩

0 if τ ∗
2 ≤ 0,

τ ∗
2 if 0 < τ ∗

2 < 1,

1 if τ ∗
2 ≥ 1,

where,

τ ∗
1 = βS(I + ε1A + ε2H)[λ2 − λ1]

w4(N − D)

and

τ ∗
2 = H [λ5 − λ6]

w5
.

This ends the proof. ��
5.1 Simulations of the control probem

Forward and backward Runge-Kutta method of order four implemented in MATLAB is
used to solve the resulting optimality system which consists of systems (5) and (9) with the
characterizations (11) within the time interval of [0, 100] days. The weight constants used
for balancing the terms in the objective functional (6) are chosen to ensure that no term
dominates the other. Thus, equal weight constant for minimizing the infectious classes is
chosen, so that w1 = w2 = w3 = 1. On the other hand, the weight constants for measuring
efforts or costs required to implement the controls are comparatively different. This results
in values for w4 = 50 and w5 = 100. Details of the numerical procedure for simulating the
obtained optimality system are contained in [45].

Figure 8 demonstrates how single preventive measure, u1(t), affects the spread of the
novel coronavirus in the population. As shown in Fig. 8a, to minimize the objective func-
tional (6), the optimal control u1(t) is maintained at maximum level of 100% for about 93
days before relaxing to the minimum in final time. As expected, the sizes of COVID-19
infectious individuals are reduced when control is in place. Further, in Fig. 9a, b, the effects
of single management control, u2(t), are shown in minimizing the number of virus infection
in the population, but not as much as when only preventive strategy is applied. More impor-
tantly, Fig. 10 shows the significance of combining the two optimal controls in bringing down
the total number of infectious humans to zero. It is observed that optimal solution is attained
when preventive measure is strictly adhered to at maximum level of 100% for 45 days, while
the management control of the hospitalized individuals is at maximum level of 100% for 32
days. It can be seen that combination of the two controls is significantly more effective in
curbing the spread of the virus than when each control is singly applied.

5.2 Cost-effectiveness analysis

It is important to determine the most cost-effective optimal control measure among the single
and combined implementation of the two given control measures in order to optimally miti-
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Fig. 8 Control profile (u1(t)) and its effects on the COVID-19 dynamics

gate the spread of COVID-19 at the lowest cost possible. Hence, cost-effectiveness analysis is
explored using the incremental cost effectiveness ratio (ICER) [9,24,46–48]. To avoid dissi-
pation of available limited resources, ICER is used to compare any two competing measures
for controlling the spread of disease or related problems. The ICER formula is given by

ICER = Change in total costs between control measures

Change in total number of infection averted by control measures
. (12)

The total cost for each of the single implementation and combined effort of the control mea-
sures is derivable from the objective functional 6, while the infection averted is obtained by
calculating the difference between infectious individuals without and with control measures.
Let C1, C2 and C12 represent single implementation of the preventive measure u1(t), single
implementation of the management control u2(t) and combined effort of the two measures,
respectively. In what follows, Table 3 summarizes the ICER for each and combination of the
control variables u1(t) and u2(t) in an increasing order of the total infection averted.

Using (12), the ICER for C1, C2 and C12 shown in Table 3 are calculated, respectively, as
follows.

ICER(C1) = 4.7351 × 104

3.5062 × 106 = 0.0135,
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Fig. 9 Control profile (u2(t)) and its effects on the COVID-19 dynamics

Table 3 ICER in the order of COVID-19 cases averted by control measures

Control measures Total infection averted Total costs ICER

C1 3.5062 × 106 4.7351 × 104 0.0135

C2 3.7311 × 106 8.2886 × 104 0.1580

C12 3.8848 × 106 5.0064 × 104 −0.2136

ICER(C2) = (8.2886 − 4.7351) × 104

(3.7311 − 3.5062) × 106 = 0.1580,

ICER(C12) = (5.0064 − 8.2886) × 104

(3.8848 − 3.7311) × 106 = −0.2136.

Comparing C1 and C2, it is seen that ICER(C1) is less than ICER(C2). This means that C2

is more costly and less effective than C1. In other words, C1 dominates C2. Thus, single
implementation of management control is removed from the list. As a consequence, C1 and
C12 are assessed in Table 4 using similar procedure.

It is revealed in Table 4 that C1 is dominated by C12 since ICER(C1) is greater than
ICER(C12). This implies that C12 is less costly and more effective than C1. Hence, single
implementation of preventive measure is excluded from the list. This shows that combined
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Fig. 10 Combined effects of optimal controls u1(t), u2(t) on the COVID-19 dynamics

Table 4 Comparison between C1 and C12

Control measures Total infection averted Total costs ICER

C1 3.5062 × 106 4.7351 × 104 0.0135

C12 3.8848 × 106 5.0064 × 104 0.0072

effort of the two control measures is the most cost-effective intervention capable of dimin-
ishing the burden of the novel coronavirus optimally in the host population.

6 Conclusion

This study presented a mathematical analysis of transmission dynamics of the novel coro-
navirus (COVID-19) pandemic with a view to providing further insights into the disease
transmission, and to explore possible prevention and control measures capable of curbing
the rising tide of the disease spread in the population. A deterministic mathematical model
was formulated by subdividing the host population into susceptible, exposed, symptomatic
infectious, asymptomatic infectious, hospitalized, recovered and dead classes. The nonlin-
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ear model has been developed by considering transmission routes from symptomatic infec-
tious humans, asymptomatic infectious humans and hospitalized individuals. The theoretical
analysis carried out, based on Lyapunov stability, showed that the model has a globally
asymptotically stable disease-free equilibrium if the basic reproduction number of the novel
coronavirus transmission is less than one. This is an indication that COVID-19 outbreak
can be effectively controlled in the population irrespective of the number of the infectious
individuals initially introduced into the completely susceptible population.

In particular, the formulated model was fitted to the reported data of cumulative number
of hospitalized individuals (active cases) due to COVID-19 in Nigeria, and estimates for
parameters such as, effective transmission coefficients (β), modification parameter for the
transmission of virus infection from active cases (ε2), hospitalization rates for both symp-
tomatic and asymptomatic individuals (h1 and h2) were determined using the least squares
method. Sensitivity analysis of the fitted model was performed to find the parameters that
drive the spread of the virus infection mostly in the population. It was revealed that β is the
most sensitive parameter, followed by ε2 and the recovery rate for active cases denoted by γ .
In addition, given the high infectiousness of the novel coronavirus disease, safe regions where
virus infection dies out at certain threshold values of the model parameters were derived in
order to facilitate and strengthen formulation of effective policies that can help to avoid a
more serious pandemic situation. Further insights into the projection of the disease trans-
mission indicated that the cumulative number of active cases in Nigeria, given the current
infection trajectory, may get up to 2.5% of the total estimated population of 200 million,
unless drastic measures are taken to bring the basic reproduction number below one. It was
shown by simulations that the basic reproduction number can be brought to a value less than
one in Nigeria, if the current effective transmission rate of the disease can be reduced by
50%.

Moreover, the model was extended to include time-dependent optimal control variables
(preventive and management measures) to examine their impacts in minimizing the burden of
COVID-19 in the population using Pontryagin’s maximum principle. The optimal preventive
measure was shown to be better than management control in reducing the burden of the
disease, but the combined effort of the two controls has significant effect in reducing the
number of infectious individuals in the population. This result was further supported by
carrying out the cost-effectiveness analysis, and it was therefore established that the combined
implementation of the two control measures is the most cost-effective when compared with
the single implementation of each control measure.

In view of the above, it can be concluded that flattening of the novel coronavirus infec-
tion curve largely depends on two key parameters, namely effective transmission coefficient
and recovery rate. Efforts geared toward lowering the transmission rate and improving on the
treatment regime for quick recovery of cases are required to ensure virus-free region and effec-
tively overcome the spread of the novel coronavirus in the host population. To achieve this
optimally, it is recommended that adherence to the combination of preventive and manage-
ment control measures should be strict. These measures include continued public advocacy
for social distancing, good personal hygiene, wearing face masks in public places, provi-
sion of protective gear for healthcare workers caring for people with COVID-19 infection. If
strict adherence is practiced, transmission routes from symptomatic, asymptomatic and hos-
pitalized individuals will be effectively hindered, and availability of supplemental oxygen
or mechanical ventilation for hospitalized individuals with severe COVID-19. In addition,
given the ongoing community spread of the virus in Nigeria and almost all the countries of
world, the need to scale up the testing capacity for detection and prompt treatment of asymp-
tomatic individuals cannot be overemphasized in order to nip the transmission of the novel
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coronavirus in the bud. It is also pertinent to advise that healthcare facilities should not only
be increased, but well equipped to accommodate the increasing spate of cases and effectively
manage patients who may develop complications due the novel coronavirus infection.
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