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Abstract

We describe in thigpaper a computer program for Mathematidéddelling and
Simulation of Robotic Dynamic Systems using Fuzzy Logic Techniqued-eaaudal
Theory. The computer progranombines Artificial Intelligence (Al) techniquesvith
mathematical methods awldn beconsidered an Intelligeftutoring Systen(ITS) for

the domain of modellingand simulation of robotic systems. Thd®main is quite
complex because robotic systeoa beviewed asnon-linear dynamical systems, and
it is a well knownfact thatevenvery simple non-linear dynamical systeo#sexhibit
"chaotic" behavior. The computer program simulates the reasoning of a human expert
in the process of teachifgpw to develop mathematical models Rdbotic Dynamic
SystemgRDS). The prograncontains the&knowledge ofthe human experts expressed
as fuzzy rules (in th&nowledgebase) for Mathematicalodelling and Simulation
(MMS) of robotic systems. ThdTS also containsknowledge about teaching
methodologiedor this domain (in theknowledgebase). ThdTS usesefficiently Al
techniques to teadddMS of RDS,and also to monitor the learning process of students
of this domain. Mathematicdfodelling and Simulation of Robotic Systemsviary
important because it cdrelp in the control of aactualsystem or in the design of a
new system using the results of the simulations.

1 Introduction

We describe in thipaper arintelligent Tutoring SysteniiTS) for thedomain
of Mathematical Modelling and Simulatio@MS) of Robotic Dynamic
Systems(RDS). Intelligent Tutoring Systemare very sophisticatedoftware
systems based oArtificial Intelligence (Al) techniques and CognitivBcience,
see Takeuchi and Otsuki [14]. An ITS can be used to teaphaiic domain of
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application because it simulaté® reasoning process laimanexperts ashey
teach theirdomain of expertise. In thisase, an ITSvas developed for the
domain of Dynamic Systems iRobotics using Fuzzy Logic techniques and
Fractal Theory. The study of Non-Line@ynamicalSystems in general igery
interesting because their behaviors can range from verplesiperiodic
solutions to thevery complicated "chaotic" behavior, see Devaney f8}. the
case of Robotic Systems in particulegalistic dynamic mathematical models
are alvays non-linear anthen the correspondingehaviors otthe Robots can
be quite complex, see Vukobratov[@’5]. For this reasonthe problem of
obtainingthe right mathemtical model representirtipe dynamicalbehavior of
RDS isvery important.Having a mathematical model tfe RDSenables the
simulation ofthe systemfor the prediction of futurédehavior and also for the
design of the "best" control possible for the robotic system.

An ITS is similar to an Expert System (ES) in that it contains the
knowledge about specific domain of applicatiotdowever, an ITS iglifferent
with respect to an ES in that it also contains knowledfeut teaching
methodologies and studemibdelling. This difference is velynportant because
a common mistake done by many researchers is to believe that a plain ES can be
used as a teaching/training tool fosecific domainHowever, iseasy to show
that a plain EScan not evaluate or monitor théearning process of their
students. Oncthis fact is recognized di'S can bebuild using as &undation
the knowledge of the correspondi&®. Inthis, the authors developd&efore
an ES for Automated Mathematicilodelling and Simulation of ¥hamical
Engineering Systems, see Castillo &nelin [8]. This ExpertSystem has been
used as a starting pointlmilding the ITSdescribed in thipaper. The method
for MMS is based on the use Bfizzy Logic techniques, see Badiru [2], to
select the appropriate mathdioal model for a given problem. Also, the
method for MMS uses the concept of the fraciahension,see Mandelbrot
[11], to classifythe components of théme seriegdata for theproblem).This
method for MMS is contained in the knowledge base oftBeand is thebasis
to obtain the matheatical modelsfor Robotic Systems. The method for
Simulation of a mathematical model is based on an algorithm developed by the
authors, se€astillo andMelin [7]. This algorithm enablethe selection of the
right parameters of thenodel by using heuristics frorthe experts of the
domain. Oncethe parameters are selected themerical simulations are
performed and then the dynamical behaviors are identified.

The ITS described in thipaper hashe goal of teaching graduate students
or engineers irthe task ofmodelling Robotic Systems and thgrerforming
numerical simulations othe models, tadentify the correspondinglynamical
behaviors forthe system. The process of teachihgs domain is difficult, and
one of the reasons for this it that it requires a strong background by the students
in differential equations and differenaguations. In thi$TS we areassuming
that the studenbasthe required prior knowledgmentioned above. Wén a
student uses thdntelligent Tutoring System, he or she enters in an
individualized learningprocess of thelomain ofRDS. ThelTS monitors the
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actual learningprocess of the students and alstores all the relevant
informationabout thelearningstatus of the students. this ITS, thelearning
process is considered as consisting of six phases:

1.- Acquiring the basic concepts and theory about RDS.

2.- Learningthe solution ofwell known dynamical systems ithe literature
(for robotic systems)

3.- Learning to obtain mathematical modfds given problems irthe area
of RDS.

4.- Learning to performthe right numerical simulationsfor a given
mathematical model of a robotic system

5.- Learning to identify dynamicélehaviors fronthe numerical simulations
of the models.

6.- Learning to exploré¢he futurebehavior ofthe system andhe possible
ways to control it.

The ITS givesthe theory for each phase and tlggves examples. At the
end of each phase, the studengii®n an examination to evaludies level of
understanding of the theory and also adapt thelevel of future teaching
according to the performance of the student.

The reasonwhy weconsider that aiiT S isjustified for this domainare the
following:

1.- There arenot manyexperts inDynamicalSystems Theory and Robotic
Systems, because both tifis areas of studyre relatively new in
Computer Science and Mathematics.

2.- The domain oDynamical Systems is a compleane, because of the
very different types of behaviors possible (they can range $iomple
periodic orbits tovery complicated chaotiorbits). Then to teacthis
domain becomes necessary to explain very clearly each logical or
numerical step done in the exploration of a given dynamical system.

We believe that afiT'S like ourscan help solvéoth problems. First ddll,
the ITScontains the knowledge of the experts in R@&hin the scope the
computer program). Also, tH&S hasthe ability to explain tothe user each of
the steps performed in the exploration of a given dynamical system.

2 Modelling and simulation of robotic systems

The adequate study of robotisystems starts witlthe development of
computer-oriented methods fbuilding the matheratical models of kinematics
anddynamics of spatiahctive mechanism3.herising state ofdevelopment of
robotic mechanism mathematical modelemw theway from the numerical-
iterative computer methods, to themeric-symbolicones, andinally, to the
forming of mathematical models in symboliorm, see Vukobratovic[16].



@% Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

Mathematical models afobot kinematics anddynamicsare not theultimate
goal, but tools for the synthesis of dynamic control of this mechanisms.

However, mathemtical modellingand simulationare very importanttasks
in achieving the utimate goal of "control" because they provideseful
information about the dynamical behavior of the robotic system.

In the lastseveral yearsmany papers have beegpublished, rendering an
important contribution to the development of computer methods for the
mathematical modelling ofobotic systems. Thenodelling methodsmay be
classified withrespect to théaws of mechanics othe basis of which motion
equations are formed. Onmay distinguish methods based on Lagrange,
Newton-Euler, D'Alembert, andther formalismsfor dynamic modelling of
interconnectedanultibody systemsThe dynamic model othe robotconsists of
the model of the mechanical part of tiedot (mechanism) anthe model of the
actuators that areriving the robotjoints. The model othe mechanicapart of
the robot is usually assumed, see Vukobratovic' [16], in the following form:

P =H(q) 9"+ h(q, q) (1)

where P = n x 1 vector afriving torques in thgoints, H = n x n inertia matrix
of the mechanism, h = n xvEector ofcentrifugal, coriolis, and gravity moments
(forces) around the axes of the joints.specific mathematical modébr a
particularrobot can be obtained bgpecifyingthe valuesfor P, H and h in
equation (1). But inany case theresulting model is a complex non-linear
dynamical system.

Various types ofactuators areapplied to driverobots: dc motors, ac
motors, hydraulic actuators,pneumaticactuatorsand soon. Themodels of
actuators are igeneral non-lineahut for the dc motoréwhich are still most
often applied for industrial robots) a linear state model may be used:

Xy=AiXi+gdu+fP, i=1,2 ..,n (2)

where: X =(qg, g ig;)" = 3 x 1 state vector of ith actuator model,
igj = rotor current of ith dc motor
u' = scalar input to ith actuator
P, = driving torque (load) in ith joint
Al =3 x 3 matrix, h f = 3 x 1 vectors

The connection between themodels (1) and (2) (through the state
coordinates g g', and drivingtorques P are evident. Certain constraints upon
the actuatorsnput u amplitude asvell as onthe allowable drivingtorques
should be also added to these models.

The ITS enablesthe modelling and simulation otthe dynamic models of
various robots of arbitrary type andstructure. ThelTS shows to the
user/student how to develop tldgnamic model in symboliéorm ( like in
equation 1 ) and then shows to the user/student how to pesiiouiations to
identify all the possible dynamical behaviors of the robotic system.
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3 Method for automated mathematical modelling

In this section a method fautomatednodellingdeveloped by the authors, see
Castillo and Melin [5,6], is describedbriefly. The problem ofachieving
automated mathematical modelling can be defined as follows:

Given: A data set(time series) with rdata points, D = {g..., dm}
wherediDR" i=1,..m, n=1,2....

Goal: From the data set Dgdiscover automaticallythe "best"
mathematical model for the time series.

This problem isnot a simple onehecause in theory there can beirgimite
number of mathematical models that carbb#d for a givendata set [13]. So
the problem lies in knowing which models to try for a data set and then to select
the "best" one. We can state the problem more formally in the following lines.
Let M be the space of mathatital models definetbr a givendata set D.
Let MA = {M 4, ...,Mq} be the set ohdmissible models thatre considered to
be appropriate for the geometry of the data set D. Aroblem is tofind
automatically the "best" model Mb for time series prediction.
We consider mathematical statistical models of the following form:

Y = F(X) +¢ (0,0)

where € (0,0) represents a 0-mean Gaussian noise-process with standard
deviationo. F(X) is a polynomiakquation in X, where the predictoariables
are in the vector:

X = (X1, Xo, ..., Xp)

We consider mathematical models"dgnamical systems" athe following
form:
dY/dt = F(Y)

where Y is a vector of variables of the form: Y = (¥, ..., Yp) and F(Y) is a
non-linear function of Y Otherkind of mathematical modelsre the discrete
"dynamical systems" of the following form:

Yi=F(X)

where X = (%_1, Y2, - Yt-p) and F(X) is a non-linear function of Xote
that in this case we have deterministic models expressatiffaential or
difference equations.

The mathematical modef®r continuousdynamical systemsan be one-
dimensional, two-dimensional or three-dimensional. ¥¥®w below some
sample models [12] that the intelligent system explores:

a) Logistic differential equation:
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b) Lotka Volterra two dimensional:
c) Lorenz three dimensional:
dY,/dt=aY¥y-aYq
The mathematical modefsr discretedynamical systemsan also be one,

two or threedimensional. Weshow below someample model§l2] that the
intelligent system explores:

a) Logistic difference equation:
Yipq = aYy(1-Yy)
b) Lotka Volterra two dimensional:
Yis1 = @Yy - bYpX;
X 141 = bYiX; - €%
¢) Henon map two dimensional:
Y1 =% ,
Xtr1 = 8- %"+ DYy
In all of the above matheatical models a, b andare parameters thaeed
to be estimated using the corresponding numerical methods.

The algorithm forautomated mathegtical modellingfor prediction can be
stated as follows:

STEP I Read the data set D ={dd,, ..., dm}.
STEP 2 Time Series Analysis of the set D to find the components.

STEP 3 Find the set ofAdmissiblemodels MA = {My, M, ..., Mg}, using
the qualitative values of the time series components.

STEP 4 Findthe "Best" mathenteal model Mb fromthe set MAusing the
measures of "goodness" of each of the models from the set MA.

4 Method for automated simulation of dynamical systems

In this section a method fautomatedsimulation developed previously by the
authors, seeCastillo andMelin [4,7], is describedbriefly. The problem of
performing an efficient simulatiofor a particularengineering system can be
better understood if we considesgecific mathematical modelet usconsider
the following model:
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X' = o(Y-X)
Y'=rX-Y-XZ 3)
Z'=XY - bz

where X, Y, Z,0, r, b0 R, andao, r and b are three parametevkich are
normally taken, because of thephysicalorigins, to be positive. The equations
are often studied fadifferent values of r in 0< ro«. This mathematical model
has been studied by Rasbd@@] to some extent, however there atél many
questions to be answer for thisodel with respect to itsvery complicated
dynamics for some ranges of parameter values.

If we consider simulating eq.(3), for example, the problem is of selecting the
appropriate parameteraluesfor o, r, b, so that the interestindynamical
behavior ofthe model can be dracted. Theproblem isnot aneasyone, since
we need to consider a three-dimensional search spateand there armany
possible dynamicabehaviors for this model. In this caske model consisting
of three simultaneous differentiaéquations, thebehaviors can rang&om
simple periodic orbits tovery complicated chaotiattractors. Once the
parameter valueare selected then tipgoblem becomes a numericale, since
then we need to iterate an appropriat@p to approximatehe solutions
numerically.

The problem of performingautomated simulation for a particular
engineering system is then fofding the "best" set of parametealues BP for
the matheratical model. The algorithifor selectinghe "best" set of parameter
values can be stated as follows:

Step1 Read the mathematical model M.
Step 2  Analyze the model M to "understand"” its complexity.

Step 3 Generate a set ofadmissible parameters AP usinghe initial
"understanding” of the modeThis set is generatedsing heuristics
(expressed as rules in the knowledge base) solding some
mathematical relations that will be defined later.

Step 4 Perform a selection of the "bes#t of parameteraluesBP. This set
is generatedising heuristics (expressed as rulegha knowledge
base).

Step 5 Perform thesimulations by solving numericallhe equations of the
mathematical model. At this timéhe different types ofdynamical
behaviors are identified.

We areconsidering in this algorithrthe "best" set of parametealues for
simulation,the ones thaénablethe correctidentification ofall the dynamical
behaviors for a particular mathematical model.
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5 Description of the intelligent tutoring system

We describe belowhe general architecture dhe ITS,and then we give a
detailed description for each of the modules, except for the Infeiemgiae

and the Numerical Module. The Inference Engine for the System is based on the
Prolog Programming Language, s&satko [3], and thenumerical module is

not our main concern in this paper.

5.1 Architecture of the intelligent tutoring system

The architecture of an ITS is very similar to that of an Expgstem(ES) for a
specific domain of applicatiotdowever, there are also somaimdifferences
between arnlTS and anES. One of the rain differences is irthe knowledge
base (KB), because for diS the KB needs to contain ExpeKnowledge
about teaching methodologies and not only Expert knowledge abaldrtreen

of application. The Knowledge Base of tff&S consists of three parts: Expert
Module, Teaching/Learning Module asdudent Module. For alTS thelast
two modulesare the ones thatnablesthe teaching of new students for the
domain and also enable monitoring of their learqminaress. We iV explain in
the next section how this is accomplish in our ITS for the domain of RDS.

5.2 Description of the knowledge base

The knowledge base of thé&S consists of three modules: tBxpert Module,

the Teaching/Learning Module arttie Student Module. The Expédvtodule
contains the knowledgabout thedomain ofRDS, i.e., the knowledge about
which numericalmethods can be used for thdentification of possible
behaviors of a dynamical system and activates the numerical module. The expert
module also hathe knowledge to generapoblems forthe user/student to
solve. The Teaching/Learning Module containe knowledge aboutaching
methodologies and the knowledge fdiagnosis of student'attributes. The
Student Module is a dathase of the student's performance history and a
catalog of student's attributes.

5.2.1 Description of the expert module

The Expert Module contains the knowledgieout the method for automated
mathematical modelling described in section three and also the knowliedge
the method for automatesimulation described in sectidour. Accordingly the
Expert Module isdivided in two submodules: 1) submodule auitomated
modelling and 2) submodule for automated simulation. Iridf@ving lines we
will describe briefly each of these modules.
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5.2.1.1 Submodule of automated modelling

Automated matheatical modellingconsists in the process ofodel discovery
described by steps 2 to 4 in thkgorithm of section 3Time SeriesAnalysis,
Model Selection and Best Model Selection. \d&scribebriefly each of this
steps in the following lines.

Our method fortime seriesanalysis consist in the use of thé&actal
dimension ofthe set of points D asraeasure of the geometricamplexity of
the time series. Weise thevalue ofthe fractaldimension to classifyhe time
series componentsver a set ofjualitative valuesOur classification scheme
was obtained by a combination @xpert knowledge andmathematical
modellingfor severalsamples oflata. Togive an idea of this scheme we show
in Table 1 some sample rules of this module.

Table 1.- Sample rules for time series analysis

IF THEN

Fractal_dimension(D)(0.8,1.2) Trend = linear, Time_series = smooth
Fractal_dimension(D)[1.2,1.5) Trend = non_linear, Time_series = cyclic
Fractal_dimension(D)[1.5,1.8) Time_series = erratic
Fractal_dimension(D)[1.2,1.4) Periodic_part = simple
Fractal_dimension(D)[1.4,1.6) Periodic_part = regular
Fractal_dimension(D)[1.6,1.7) Periodic_part = difficult
Fractal_dimension(D)[1.7,1.8) Periodic_part = very_difficult
Fractal_dimension(D)>1.8 Periodic_part = chaotic

Our method forselectingthe models consists of @et of fuzzy rules
(heuristics) that simulates the human expert decision process of model selection.
In ourapproach thgualitative values athetime series componengseviewed
as fuzzy sets (usingpe fractaldimension as a classification variable). We have
membership functiongor each of thequalitative values ofthe time series
components. Also, thqualitative values othe "Type_Model"variable are
considered as fuzzgets and wérave membership functiorfer each ofthis
values. To give and idea tiie way this Expert knowledge is structured, we
show in Table 2 some rules of thmedule.

The rules in Table 2 shotow this Expert Module selects the appropriate
models for a given engineering problem, using as informétiedimensionality
of the problem andhe qualitative values othe time seriescomponents. Each
rule of thisExpert Module contains piece of Knowledgabout theproblem of
model selection in engineering domains.
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Table 2.- Sample fuzzy rules for model selection

IF THEN

Dim Trend Periodic Type_Model

one non_linear simple logistic_differential_equation

two non_linear simple lotka_volterra_differential_equation
three non_linear regular lorenz_differential_equation

one non_linear simple logistic_difference_equation

two non_linear regular lotka_volterra_difference_equation

We have to mention here thtite role ofFuzzy Logic is very important
because it enablethe simulation of the expert reasoning process under
uncertainty forour problem. We came to a conclusion thhe rules, for
deciding which modelsare appropriate for ajiven time seriescan't be
categorical because tlm®mplexity of engineering modelling problems is very
high. Since it is welknown that Fuzzy Logic has been applsacessfully to
many engineering problems, see Badiru [2], amgr problem requirements
needed reasoning under uncertainty, we decided to use Fuzzy Logic techniques.

Our method for selecting the "best" model consists of comparing the Sum of
Squares of Errors (SSE) fall the models and selectinipe one thaminimizes
SSE.This criteria haghe advantage dfeen validfor all the types oimodels
that we consider for thetelligent system (statistical models and non-linear
dynamical systems models).

The reasonindpehind this criteria is thahe value ofthe SSE is aneasure
of how well a particular mathematical model fithke data(time series) for a
given problem.

5.2.1.2 Submodule for automated simulation

The knowledge for simulation of the Intelligent Tutoring System consist of a set
of rules (in Prolog) containing heuristics and mathematical knowlelget the
problem ofcomputersimulation of non-linear mathematical dynamical models,
in particular forengineering systems. To give an idedoW this knowledge is
contained in the KB we i show below someample rulesor several types of
dynamical systems:

1) Ueda and Akamatsu Modérlhis mathematical model of a sinusoidaiiyn-
linear electronic oscillator consist of two simultaneous differential equations:

X'=Y
Y' = a (1-X2)Y - X3 + Bcos(ft)
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where the parametessand are positive and < 1 andB < 25. Ueda [17] has
presented an extensive gallery of periodic and chaotic motions for this model. In
this casethe equilibria (X*,Y*) is stable if andonly if the realparts of the
eigenvalues are negative and this is equivalent to the rule:

IF a>0 THEN Equilibria = stable

where a is defined by the characteristic equaﬁgnf a\ + b =0, with a = rJ,
b=det] Where "trJ" is thdrace and detJ is the determinant of th&acobian
Matrix.

Another rule of the knowledge base is the following Fer 0):

IF a (1-X2) <0 THEN Equilibria = asimptotically_stable
Another rule is (fo3 = 0):
IF a (1-X2) =0 THEN Hopf_Bifurcation
which gives us the condition for a Hopf Bifurcation to occur.

2) Other Bi-dmensional ModelsSimilar bi-dimensionabutonomousmodels
can be written in the following manner:

X' = a f(X,Y)
Y'=Bg(X)Y)

In this case, the Equilibria (X*,Y*) is stable i f, + (gy - B) <0, where § and
gy are partial derivatives. In Al language we have the rule:

IF [af, + (gy -3) < 0] THEN Equilibria = stable
Also we have the following rule for a Hopf Bifurcation:
IF ag=(- gy)/fx THEN Hopf_Bifurcation

3) Firth's Model of a single-mode laséihe basic equationfor a single-mode
(unidirectional) homogeneously broadened laser lnigh-finesse cavitytuned
to resonancemay bewritten as asystem ofthree differential equations, see
Abraham & Firth [1]:

X =y, (X+ 2Cp)

P'= - (P-XD)

D'=-y(D+XP-1)

Here X is a scaled electriield (or Rabi frequency)y, is a constantiescribing
the decay of the cavity field and C is the cooperativity parameter.

In this casethe equilibria (X*, P*, D*) is stable if a, b, ¢c>0 and (ab-c)>0,
where a, b and c adefined bythe characteristic equation of tegstem. We
also have more complicated rules for other types of dynamical behaviors.
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4) OtherThree-dimensional Model#\ three-dimensional system of differential
equations can be written in the following form:

X' = af(X,Y,2)
Y'=Bg(X,Y,2)
Z' =yh(X,Y,2)

In this casethe Equilibria (X*,Y*,Z*) is stable if a, b, c > 0 and (ab - ¢) > 0,
where a, b and c are defined by the characteristic equation for the system:

A +ar2+br+c=0
In Al language we have the rule:
IF a,b,c>0 AND (ab-c) >0 THEN Equilibria = stable

otherrules follow inthe same mannefor all the types ofdynamical behaviors
possible for this class of mathematical models.

We have tonote here that the computer prograam obtain thesymbolic
derivatives for théunctions inthe conditions of the rule3his is criticalfor the
problem of simulation, since we require this derivatives to olkevalues of
the parameters, 3 andy.

5.2.2. Description of the teaching/learning module

The teaching expertise consists of knowledge fianning global teaching
sequences and local teaching methods. @labal teaching sequence is
determined according to the domain knowledge structure and the readiness.

In the planningprocess, the teaching expertise should select aeashing
objective which isnot too easynor too difficult for a learner. The degree of
how well a learner vill understand a teaching objective is evaluated by
"readiness". The readiness, see Takeuchi and Otsuki [14], is defined as follows:

readiness=(p+ (1 -p¢-a) f(d)

where "p" is themean value of understandinigvel of all prerequisite
knowledge of the teaching objective, "d" expressesdiffieulty level of the
teaching objective, which is defined bye course designer, "a" is togerall
understandindgevel of alearner and is equal to tineean value of understanding
level of all objectiveshroughout thdearner'pastlearningprocess, antf" is a
monotonically decreasing function ("c" is a constant, 0 < ¢ < 1).

The teaching/learning module selects a teaching objeativeh has the
readinesdalling within somefixed range. Then, thenodule selectshe local
teaching paradigm and a topic for generating appropriate messages. The
teaching paradigm is a style of actions such as praising a learner, asking a sub-
problem, giving counter-examplesexplaining apart of a problem solving
process, etc. Thieaching/learning module selectsappropriate paradigm and
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a topic according to both the studenodel and history of learning, such as
frequency ofthe sameerror occurrencesuccess/failuragecords ofteaching
paradigms, etc. The teaching/learning module also performs examinations on
the student to evaluate thevel of understanding for each of the topics of the
course on MMS of RDS.

5.2.3. Description of the student module

Usermodelling in thisITS is done bymeans of a technique developed by Diaz-
llarraza et al [10] that uses a record of the most res@ehtmost characteristic
errors. Students are categorized into thgemeral classes according to their
known experience: "novice", '®mdium" and "expert".besidesthe student's
learning characteristiche history of thdearningprocess, the moreommon
errorsmade, etc. are also taken into accolihis information isrecorded and
handled by dynamically creating and updating the "student Profile".

The "StudentProfile" is organizedaround two main knowledge bases:
"student-representation” and "session-history". The first one is a statlel
(updatedonly atthe end of a sessiomcluding both the student's background
with his/her general learning characteristics @nel knowledge acquired in
previous teaching sessiorise second one isdynamic mode(updatedduring
the session) representing the current teachmsk: the history of the
development of the current session with a record of the session protocol.

6 Validation of the intelligent tutoring system

The validation process for &nS can be divided itwo parts: (1)validating the
knowledge of thelomain("Expert Module") and 2)/alidating the knowledge
of teaching methodologies ("Teaching ModuleFor validating the Expert
Module, we performed an extensive comparison betwkenresults ofthis
module (computer program) arkde resultsgiven bythe realhumanexperts.
the results of the Expert Module were accuratapproximately 90 % of the
cases considered in thalidationprocessThis in fact can be consideredry
good for this domain, consideringhe complexity of the area of Robotic
Systems. With thisesults, thevalidation ofthe Domain Knowledgdor the ITS
was considered as appropriate @ar goals (at the moment). On the other
hand, to validate the knowledge of teaching (forlift®), we have testethis
computer program with severgdoups of students to see if tearningprocess
of the domain was enhanced as a result of usingntieiigent educational tool.
The results of the students wexkle to learrthe domain ofRDS (at acertain
level of difficulty) in less time thawithout the ITS Also, thequality of learning
of the domain seems to better,sincethe students caexplain ingreaterdetail
the concepts athis domain. Oftourse, we recognize thaven moreests are
needed to have a complete validatiortte ITS. However, wean conclude,
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for the moment, withthis results thathe ITScan be considered asfficient
educational tool for thdomain of Mathematical Modelling and Simulation for
Robotic Dynamic Systems.

7 Conclusions

We have developed an Intelligehatoring System for matheatical modelling
and simulation oRobotic Systemsising fuzzy logic and fractaheory. This
ITS teaches the methods of automated ma#itieal modellingand simulation
described in this paper. The idea in thégper is to show how Al techniques can
be applied tocapture thedynamics ofrobotic systems by using non-linear
mathematical models. The models repregensome extent) the robotgystem
and enablehe simulation ofthe system to explorall of its possibledynamical
behaviors. The ultimate goal inbotic systems is to finthe optimum "control"
for a specific application, and this can be achievednogellingthe system and
then performing simulations to explore gmedict its future behavior. The ITS
has the goal of teaching to the studentthsf domainhow to perform the tasks
of modellingand simulation oRDS. ThelTS also monitors the actuldarning
process for each of the studentsytil they achievethe desiredlevel of
understanding of the domain.

The importance ohaving anlTS for teaching students of this domain can
be seen from several points of view. First of all, fritta economical point of
view theimpact of thisITS in isreducing thecosts of instructiorgor training, if
in industrial setting), because of the moe#icient teachingmethod resulting
from the application of Al and educational techniques to this domain. Second of
all, from the educational point o¥iew the impact of thisITS is in the
contribution to the advance of the research in applications and methodologies of
Al in education.

Keywords:
Modelling, Simulation, Robot Dynamics, Knowledge-Based Systems

References

1. Abraham, E. and W. J. Firt1984). "Multiparameteuniversalroute to
chaos in a Fabry-Perot resonator" Optical Bistability, Vol. 2, pp. 119-126.

2. Badiru, A.B. (1992). "ExperSystems Applications in Engineering and
Manufacturing”, Prentice-Hall.

3. Bratko, I. (1990). "Prolog Programming for Artificial Intelligence”, Addison
Wesley.

4. Castillo, O. and P. Melir{1994a)."An Intelligent Systenfor Research and
Education of Non-LineaDynamicalSystems", Proceedings of IMACS'94,
Vol. 1, pp. 82-85, Georgia Institute of Technology.



@% Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

o

Castillo, O. and PMelin (1994b)."An Intelligent Systenfor Discovering
Mathematical Models fofinancial timeSeries Prediction”, Proceedings of
the IEEE Region 10's NinthAnnual International Conferenc@p. 217-221,
IEEE Computer Society of Singapore.

6. Castillo, O. and PMelin (1995a)."An Intelligent Systenfor Financial time
Series PredictiorCombining DynamicalSystems Theory, Fractal Theory
and Statistical methods", Proceedings of the IEEE/IAFE X2&3%erence
on Computational Intelligender financial Engineering (HER), pp. 151-
155.

7. Castillo, O. and P. Melin(1995b). "An Intelligent Systemfor the
Simulation of Non-LinearDynamical Economical Systems", Journal of
Systems,Analysis and Simulation, Vol.19, pp. 767-770, Gordon and
Breach Publishers.

8. Castillo, O. and PMelin (1996). "An intelligent systemfor automated
mathematical modellingnd simulation oflynamical engineering systems”,
Proceeding of AIENG'96, pp. 9-10, Computational Mechanics Publications.

9. Devaney, R,(1989). "An Introduction to ChaotidDynamical Systems",
Addison Wesley Publishing Company.

10. Diaz-llarraza, A., J.A. Elorriaga, |. Ferndndez-Castro, J. Gutierrez-Serrano
and J.A. Vadillo-Zorita (1992). "User Modeling and Architecture in
Industrial ITS's" Proceedings of ITS'92, Springer Verlag, pp. 661-668.

11. Mandelbrot, B. (1983). "The Fractal Geometry of Nature", Wrrdeman
and Company.

12. Rasband, S. (1990). "Chaofizynamics of Non-Liear Systems", John
Wiley & Sons.

13. Rao, R. Band S. Lu (1993)'An Knowledge-BasedEquationDiscovery
System for engineering Domains, IEEE Expert, pp. 37-42.

14. Takeuchi, A. and S. Otsuki (1992). "EXPITS: ABxperimental
Environment onTS", Proceedings of ITS'92, Montreal, Spriny&arlag,
pp. 124-131.

15. Vukobratovic', K.M. (1989).Applied Dynamics of ManipulatiofRobots:
Modelling, Analysis and Examples", Springer-Verlag, Berlin.

16. Vukobratovic', K.M. (1991). "Robotics andFlexible Automation
Simulator/Integrator”, in Neural and Intelligent Systems Integration, Edited
by Branko Soucek, Wiley Interscience Publisher.

17. Ueda, Y. and N. Akamatg@981)."Chaotically Transitional phenomena in
the Forced Negative Resistance OscillatiffEE Trans. CSVol. 28, pp.
217-224.



