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Abstract

The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem

cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most

recently, chronic inflammation has been described as an important factor for the develop-

ment and progression of MPNs in the biological continuum from early cancer stage to the

advanced myelofibrosis stage, the MPNs being described as “A Human Inflammation Model

for Cancer Development“. This novel concept has been built upon clinical, experimental,

genomic, immunological and not least epidemiological studies. Only a few studies have

described the development of MPNs by mathematical models, and none have addressed

the role of inflammation for clonal evolution and disease progression. Herein, we aim at

using mathematical modelling to substantiate the concept of chronic inflammation as an

important trigger and driver of MPNs.The basics of the model describe the proliferation from

stem cells to mature cells including mutations of healthy stem cells to become malignant

stem cells. We include a simple inflammatory coupling coping with cell death and affecting

the basic model beneath. First, we describe the system without feedbacks or regulatory

interactions. Next, we introduce inflammatory feedback into the system. Finally, we include

other feedbacks and regulatory interactions forming the inflammatory-MPN model.

Using mathematical modeling, we add further proof to the concept that chronic inflamma-

tion may be both a trigger of clonal evolution and an important driving force for MPN disease

progression. Our findings support intervention at the earliest stage of cancer development

to target the malignant clone and dampen concomitant inflammation.
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Introduction

The classic chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) include

essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF),

which are acquired stem cell neoplasms [1]. Most patients live with their MPNs for decades

although with a huge morbidity burden due to a high risk of thrombosis with cardiovascular

complications and a massive comorbidity burden as well due to an increased propensity to

develop autoimmune and chronic inflammatory diseases [2–4], including a 40% increased risk

of second cancers [5,6]–not only after the MPN-diagnosis but also prior to the MPN-diagnosis

[7]. Several years prior to the MPN-diagnosis these patients also have an increased risk of car-

diovascular, autoimmune and inflammatory diseases [8,9]. Furthermore, the MPNs have an

inherent risk of transformation to acute myelogenous leukemia (AML) and myelodysplastic

syndrome (MDS) [10].

During the last decade major breakthroughs have occurred in the understanding of the

pathogenesis of the MPNs, the most important being the identification of the somatic

clonal markers–JAK2, MPL and CALR [11–18]. The findings of several other mutations

already at the time of MPN-diagnosis, with the emergence of additional mutations in the

advanced transforming stages of MPNs [17,18], all support the concept of a biological con-

tinuum from the early cancer stages (ET/PV) to the advanced cancer stages (myelofibrosis

or AML) [1,19,20]. Chronic inflammation is the common link between common diseases

such as atherosclerosis, the metabolic syndrome, type II diabetes mellitus and cancer, in

which the JAK-STAT- signalling and the NF-kB pathways are activated and have major

roles in disease progression [21–28]. These pathways are activated in MPNs as well. Most

recently, the MPNs have been described as “Inflammatory Diseases “[4] and “A Human

Inflammation Model For Cancer Development”[29] reflecting chronic inflammation to

be a major driving force for clonal evolution and disease progression in MPNs [30–39].

This novel concept is built upon a platform, which has combined data from studies in sev-

eral research fields and disciplines within MPNs—clinical [3–9,29–53], experimental [54–

63], genomic [64–70], immunological [71–74] and not least epidemiological studies [3,5–

7,75–77].

Another research field—mathematical modelling of cancer development—has not been

applied to a similar extent within MPNs until very recently [78,79] and not in the context of

investigating the concept of MPNs as “A Human Inflammation Model for Cancer Develop-

ment”. Mathematical modelling of cancer development has provided new insights regarding

cancer initiation and progression [80–89]. In this context, mathematical modelling has a

huge potential to support or disprove understanding of research data on pathogenetic fac-

tors of significance for cancer development but also in regard to providing supportive evi-

dence for a drug to be used in cancer therapy and accordingly a novel tool in evidence-

based medicine [90–92]. Mathematical modelling of chronic inflammation as the trigger

and driver of MPNs has never been investigated. Although the concept of MPNs as “inflam-

matory diseases” is being increasingly recognized, additional proof of this novel concept by

mathematical modelling might be of utmost importance not only for our understanding of

the pathogenesis of these neoplasms, but also in regard to diagnosis and treatment. Herein,

we for the first time by mathematical modelling add further proof of the concept that MPNs

may be both triggered and driven by chronic inflammation. We discuss the perspectives of

our findings, which might implicate intervention at the earliest stage of cancer development

(ET, PV) to target the malignant clone and dampen concomitant inflammation when the

tumor burden is minimal, and accordingly, the outcome of treatment is logically most

favorable.

Mathematical modeling in myeloproliferative cancer

PLOSONE | https://doi.org/10.1371/journal.pone.0183620 August 31, 2017 2 / 18

disclose: consulting or advisory role for Qiagen

and Novartis, participated in speakers bureau

(Novartis and Roche), research funding (Incyte

and Novartis), holds a patent (patent pending on

contamination control of lymphocyte DNA when

measuring cell free DNA in liquid biopsies), travel

and accommodation (Novartis). H.C. Hasselbalch

has the following to disclose: invited speaker and

advisory role (Gilead), research funding

(Novartis), travel and accommodation (Gilead,

PharmaEssentia, Novartis). This does not alter

our adherence to PLOS ONE policies on sharing

data and materials.

https://doi.org/10.1371/journal.pone.0183620


Methods

The system describes the proliferation from stem cells to mature cells including mutations of

healthy stem cells to become malignant stem cells. We include regulatory interactions (e.g.

niche growth effects) and inflammation coping with cell death, inflammatory cytokines, and

neutrophils. In order to design an inflammatory MPNmodel, we build on the coupled dynam-

ics of inflammation and cancer progression as depicted in Fig 1.

The model

Most previous studies attempting to model the role of inflammation and immune deregulation

in cancer progression consider solid tumors and couple the T-cell and natural killer (NK) cell

dynamics to a logistic growth of a tumor. They mainly describe quite simplified versions of the

adaptive immune response without explicitly considering the underlying cancer growth

dynamics [93–98]. In contrast to all these models, our model is the first which couples the

principles underlying actual cell dynamics to a basal inflammatory response. This response is

seen for a normal infection, where the amount of dead cells provokes the immune response

and stimulates the renewal of stem cells. Despite this complex coupling, the model is kept as

simple as possible still allowing the relevant quantities to be described. Thus, the goal is to

describe an important coupling between MPN development and the inflammatory response at

Fig 1. The conceptual model. Light gray boxes (symbolized x0, x1, y0, and y1) illustrate the compartments of
the basic model, and the black arrows the rates of the flows between these compartments. Here x0 denotes
the number of HSC, x1 that of HMS, y0 that of MPN SC, and y1 the number of MPNMC. The light blue
compartment (symbolized a) contains all dead cells and the light orange compartment (symbolized s) the
inflammatory level, i.e. the immune response. Blue arrows from these represent related rates of flows. Red
stipulated arrows going from the inflammatory compartment represent effects of the cytokines (or neutrophils
when eliminating dead cells) modulating rates of the basic model. Two additional rates (depending on x0 and
y0) appearing as red stipulated arrows represent the bone marrow niches symbiosis with the stem cells
modulating the self-renewal rates. Note, stem cells leaving their respective compartments enter the
corresponding mature cell-pools as multiplied by the progenitor amplification factor (A).

https://doi.org/10.1371/journal.pone.0183620.g001
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a quantitatively conceptual level. Hence, the complicated mathematical question of model

identifiability and accurate parameter estimation will be addressed elsewhere. Nevertheless, we

include some model calibration and validation after presenting the model to justify and dem-

onstrate the strength of the model.

Basically, our model consists of four pools of cells; the hematopoietic stem cells (HSC), the

hematopoietic mature cells (HMC), the MPN-mutated stem cells (MPN SC) and the MPN

mature cells (MPNMC). The number of these cells are denoted x0, x1, y0, and y1 respectively,

where x refers to normal hematopoietic cells and y to MPN hematopoietic cells, while index 0

refers to stem cells and index 1 to mature cells. A single stem cell (SC) may proliferate in three

ways; symmetric self-renewal (having two stem cells as offspring), asymmetric self-renewal

(turning into one stem cell and one progenitor cell), and symmetric differentiation (giving rise

to two progenitor cells). The progenitor cells cannot be ignored, however, we consider the pro-

genitor cells simply as intermedia multiplication steps describing the way stem cells generate

mature cells. In the model, the generations or continuum of progenitor cells will be implicitly

accounted for as each stem cell will generate a number of mature cells by an amplification fac-

tor, A (= 2k if there are k generations of progenitor cells). Feedbacks from or to progenitor cells

are ignored or integrated into the other included feedbacks.

The present focus is on the ensemble of each cell type and not the individual cells; thus the

governing laws will be for the pools of cells, in science denoted compartments [99]. Mathemat-

ically, the dynamics will be described by non-linear ordinary differential equations respecting

conservation laws. The HSC self-renews with rate rx and the malignant MPN SC self-renews

with rate ry. Furthermore, HSC may be transformed by cell division by a rate ax whereas the

MPN SC does so with a rate ay. The mature cells are multiply generated, i.e. the HMC are gen-

erated with a rate ax�Ax and the MPNMC with a rate ay�Ay. Finally, all cell types may die; stem

cells with a lower rate and mature cells with a higher rate. The turnover (or mortality) rates are

dx0, dx1, dy0, and dy1 for the HSC, HMC, MPN SC, and MPNMC, respectively. Except for the

mutation part and the multiplication factor, this duplicates the structure of the model pro-

posed by Dingli and Michor (they silently used A = 1) [92].

A small probability rm describes the mutation of HSC into MPN SC. In that case, rm is not

the probability of a single mutation but possibly a serial sequence of mutations turning the

HSC into a cancer cell capable of self-renewal, by definition an MPN SC, where a mutation is

expected to be described by a Poisson process [100]. The probability for one mutation is about

10−7 per year per cell [101]. However, not all mutations are malignant; only mutations which

happen on particular locations (i.e. at specific nucleic acids) of the DNA cause MPN relevant

mutations. Inflammation increases the risk of mutations, including smoking, exposure to

ultraviolet light or certain chemicals [49,50,101–104]. It is this small probability which violates

a possible deterministic description with a simple mutation rate. Except for the mutation part,

the model will be deterministic and continuous. In most of our work, we studied the develop-

ment right after the first malignant mutation has occurred (denoted the first insult). In these

cases, the simulations start with one malignant stem cell. Meanwhile, the number of all other

cells are in a healthy steady state with the mutation rate put to zero. The approach is justified

by the fact that including a non-zero mutation rate did not affect the outcome of the model.

The equations are all of the general form,

Change in amount of a

compartment per time

( )

¼

rate of generation times

the generating source

( )

�

rate of elimination times the amount

in the compartment considered

( )

resulting in specific systems of ordinary differential equations as given in S1 Appendix.
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Whenever cells die the debris have to be engulfed by phagocytic cells, e.g. neutrophils and

macrophages while a hierarchic cascade of pro- and anti-inflammatory cytokines are released

[96–98,110]. Following the parsimonious principle, we let the dead cells (a) up-regulate the

amount of phagocytic cells (s) with rate constant rs per dead cell while they are eliminated with

a rate es. In addition, endotoxins, smoking and other environmental factors may add to the

inflammatory response; thus we add such a term (characterized by the lightning symbol in Fig

1). Since MPNs develop on time-scale years and inflammatory immune processes are fast (on

time-scale hours-days), we assume that the amount of phagocytic cells is balanced by the cyto-

kines levels in a fixed ratio. Thus, the cytokine level is proportional to the phagocytic level why

the inflammatory compartment (s) represents both (up to a possible proportionality constant

which may be incorporated into the rate constants). Meanwhile, the amount of dead cells is

down-regulated as a second order elimination process, -ea�a�s, with rate constant ea. Dead cells

are produced by d0�x0+dy0�y0+dx1�x1+dy1�y1 per time denoted the turnover, which is assessed

by the plasma concentration of lactic dehydrogenase (LDH). It is well-known that the inflam-

matory level affects the mutation rate [104] and the self-renewal rates [105]. For simplicity, we

take these to be proportional with the inflammatory level (of course saturation may occur) but

since the level (a) settles at constant levels so does the inflammatory level (s), which may be

thought of as the amount of inflammatory cytokines which have been shown to be increased

in patients with MPNs and several in a step-wise manner from controls over the early cancer

stages (ET, PV) to the advanced cancer stage–myelofibrosis (PMF) (S1 Appendix) [40–46].

Thus, it turns out that various specific cytokines (IL-1β, IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-
12) and C-reactive protein (CRP)—a conventional biomarker of inflammation—are linearly

correlated with the inflammatory level (s). These cytokines have been chosen for validation of

our model since elevated levels of several of these cytokines have been associated with an infe-

rior survival [44]. Likewise, elevated levels of CRP have been shown to be associated with

shortened leukemia-free survival in patients with myelofibrosis [42]. Of note, the inflamma-

tory cytokine IL-8 have been reported to be of particular interest in the context of MPN patho-

genesis [57–60]. These extra pools of cells are depicted in Fig 1 along with the rates governing

the dynamics. This establishes the coupled inflammatory-MPN model. The full system of

mathematical equations, representing the model is described in Table B in S1 Appendix

including default parameter values.

Model calibration, validation, and results

The model is inspired by Dingli and Michor, and therefore the parameter values are based

upon their values [92]. However, we have adjusted them to obtain more appropriate saturation

levels in agreement with data (see Fig 2 and the reported values in Table C in S1 Appendix).

First, the model is calibrated to the situation of no MPN cancer cells (y0i = 0 and y1i = 0). In

this situation, we expect a stable steady state such that the number of HSC is approximately

104 and that of HMC is approximately 1010. These choices are compromises between reported

values for the number of HSC [78, 86, 88, 89, 92].

From the steady state condition we have the number of dead cells to be

ax ¼
dx0

x0þdx1
x1

eas
� 10

3. We further expect rx>dx0 + ax and dx0 �dx1. When allowing for

MPN development the healthy state becomes unstable when perturbed by the malignant

stem cells. Thus, we expect ry >rx.

In the final stage the in silico patient will have vanishing hematopoietic cells and the MPN

cells will approach a stable steady state with a higher amount of MPN cells than normal

hematopoietic cells in the healthy steady state. This is accomplished by choosing all the c-

Mathematical modeling in myeloproliferative cancer
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values equal in order to keep the model as simple as possible and the number of parameters as

few as possible. Likewise, the parsimonious principle suggests dy0 = dx0, ay = ax and Ay = Ax.

The JAK2V617F allele burden has been reported to have median values of 7% (95% CL

2–15%; range 1–39%), 33% (95% CL 20–40%; range 1–92%) and 67% (95% CL 52–95%; range

37–99%) in ET, PV and PMF patients, respectively [19]. It follows that the model output per-

fectly resamples these dynamic changes in the JAK2V617F mutational load (Fig 3). Additional

details are given in the S1 Appendix section.

All these attempts in calibrating the model may simultaneously be considered as validation

since they performed successfully. However, the model may be validated further by predicting

affected cytokine levels from the inflammatory level. As indicators of the inflammatory level,

we refer to those cytokines, which are considered most important in the context of MPNs: IL-

1β, IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-12 and the inflammation biomarker CRP which all

turned out to be linearly correlated with the inflammatory level (s).

For the specific cytokines (Ci) tabulated in the S1 Appendix, we have ‘Normal’, ‘PV’, and

‘PMF’ median values (mij, where index i specifies the cytokine and index j refers to ‘Normal’,

‘PV’ and ‘PMF’ states) for each. Then we find ki1 and ki2 such thatmij = ki1 sj+ki2 where sj is the

value of s at year tj. Similarly, LDH values were demonstrated to be correlated and compared

to the total rate of dying cells DI = dx0x0 + dx1x1 + dy0y0 + dy1y1. The results are summarized

Fig 2. Model calibration. A) Plateaus to the left show the amount of hematopoietic stem cells x0 (upper
plateau) and that for MPN stem cells y0 (lower plateau) whereas the plateaus to the right show the amount of
hematopoietic stem cells x0(lower plateau) and MPNmature cells y0 (upper plateau). B) Plateaus to the left
show the amount of hematopoietic mature cells x1 (upper plateau) and that for MPNmature cells y1 (lower
plateau) whereas the plateaus to the right show the amount of hematopoietic mature cells x1 (lower plateau)
and MPNmature cells y1 (upper plateau). The yellow and purple boxes show our data used for calibrating
(and validating) the model with further details in S1 Appendix. Yellow boxes show our “no MPN cancer
values”, and purple boxes show our “full blown” MPN values in the advancedmyelofibrosis stage. Yellow
position marker shows the number of hematopoietic stem cells as used by Dingli & Michor [92], and black
position markers show the number of cells as used by Gentry et al. [86].

https://doi.org/10.1371/journal.pone.0183620.g002
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in Fig 4 which shows that the model predicts data very well. Only IL-6 seems to be less well

predicted.

Disallowing potential mutations and having no MPN-stem cells initially forces the model

system into a steady state where solutions are all constant after a possible initial transient

event. Introducing a mutation probability introduces a fatal malignant state; the higher the

mutation probability is the faster the malignant state develops. A typical scenario is shown in

Fig 3A along with a curve of the allele burden development (Fig 3B). The Figure depicts both

Fig 3. Left: Typical development in stem cells (top panel A) and mature cells (bottom panel B). Healthy
hematopoietic cells (full blue curves) dominate in the early phase where the number of malignant cells
(stipulated red curves) are few. The total number of cells is also shown (dotted green curves). When a stem
cell mutates without repairing mechanisms, a slowly increasing exponential growth starts. At a certain stage,
the malignant cells become dominant, and the healthy hematopoietic cells begin to show a visible decline.
Finally, the composition between the cell types results in a takeover by the malignant cells, leading to an
exponential decline in hematopoietic cells and ultimately their extinction. The development is driven by an
approximately exponential increase in the MPN stem cells, and the development is closely followed by the
mature MPN cells.Right: B)The corresponding allele burden (7%, 33% and 67% corresponding to ET, PV,
and PMF, respectively) defined as the ratio of MPNmature cells to the total number of mature cells.

https://doi.org/10.1371/journal.pone.0183620.g003

Fig 4. Model validation.Cytokines A) IL-1β, B) IL-1RA, C) IL-2R, D) IL-6, E) IL-8, F) IL-10, G) IL-12 and H)
C-reactive proteins (CRP) are approximatively linearly correlated with the inflammatory level s. For the
specific cytokines, we have from left to right ‘Normal’, ‘PV’, and ‘PMF’ median values (yellow columns) for
comparison based on the predicted inflammatory level s (full blue curve) as a function of time after the first
insult. I) Similarly, LDH is correlated with and compared to the total rate of dying cellsDI = dx0x0 + dx1x1 +
dy0y0 + dy1y1.

https://doi.org/10.1371/journal.pone.0183620.g004
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modeling of the development of MPN from normal HSC and the early MPN diseases stages

(ET/PV) to the advanced myelofibrosis stage.

Having a continuous mutation rate, it will take 24 years for the disease to develop to an

allele burden of 7% (e.g. ET) and after additional four years the allele burden reaches 33% (e.g.

transformation of ET to PV) to become 67% (e.g. transformation of PV to post-PV myelofi-

brosis) at year 36 after the first stem cell mutation. Disallowing mutations in the model and

initially including a single malignant stem cell and no malignant mature cells shifts the allele

burden curve by one year to the left on the time axis.

Thus, the mutation of an HSC to MPN SC triggers the disease. Once an MPN stem cell is

established the disease can progress without further mutations.

The baseline inflammatory load (stimulus) is arbitrarily set to 7 pg/ml per day during nor-

mal circumstances. It is an exogenous stimulation of the immune system, which leads to an

inflammatory level of 3.61 pg/ml, increasing to 3.66 pg/ml in MPNs. This corresponds to a

baseline of 700 dead cells (in the hematopoietic steady state) before MPN develops remarkably.

A doubling of the baseline inflammatory level is directly affecting the inflammation load (cyto-

kine level) and thereby affecting the rest of the system as dictated by the model equations. In

Fig 5 is depicted that shortening the exposure time of inflammation load is associated with

deceleration of disease progression.

Discussion

Chronic inflammation is characterized by persistently activated immune cells, DNA damage,

tissue destruction, remodeling and fibrosis [106]. In patients with MPNs, these processes are

exemplified by the advanced myelofibrosis stage [4, 29], which accordingly might be consid-

ered to develop as the consequence of chronic inflammation in the bone marrow–“the

inflamed bone marrow” and “the wound that won’t heal” [4, 29,107,108]. Herein, we for the

first time use mathematical modelling to substantiate the concept that MPN progression is

facilitated by chronic inflammation and that ET and PV are linked through increasing

JAK2V617F allele burden [19] which is destined to happen as time increases without interfer-

ence. Importantly, we were able to create the inflammation-MPN model based upon current

knowledge on the interactions between inflammatory cytokines, hematopoietic stem cells and

progenitors, and the bone marrow microenvironment [31–33,35–37,105]. By mathematical

modelling of all these interactions, our integrated inflammation-MPNmodel was created. The

model was validated from current data on circulating inflammatory cytokines in MPNs

[40,44–46], thereby substantiating inflammation to be a highly potent stimulus for clonal evo-

lution and cancer progression in MPNs. In the context that elevated CRP levels have been

shown to be associated with shortened leukemia-free survival in myelofibrosis [42], it is of

interest that our model was excellently validated by data on CRP levels in the different MPN

disease stages as well.

Mathematical modelling has been used to describe the impact of chronic inflammation and

immune deregulation in aging [109] and several diseases, including type 1 diabetes mellitus

[110], rheumatoid arthritis [96] and colitis-associated colon cancer [111]. Based upon the

known association between respiratory infections and chronic inflammation, Herald described

a general model of inflammation [97]. In this model, a system of nonlinear ordinary differen-

tial equations was used to describe interactions between macrophages, inflammatory and anti-

inflammatory cytokines and bacteria. Though initiated by bacteria as the stimulus to trigger

chronic inflammation, their study focused on chronic inflammation in the absence of patho-

gens as well [97]. Of note, even small changes in parameters of importance for inflammatory

cytokine production and macrophage sensitivity to cytokines resulted in dramatically different
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model behaviors [97]. According to this model chronic inflammation is not triggered when

the immune system is functioning properly. However, in patients with a dysfunction of the

immune system positive feedback of the inflammatory cytokine network is prone to induce

chronic inflammation. Furthermore, if the macrophage population is more sensitive to inflam-

matory cytokines small perturbations initiated by the inflammation stimulus will also lead to

chronic inflammation [97]. In this context, it is intriguing to consider if the inherited genetic

predisposition to acquire the JAK2V617F-mutation due to the haplotype 46/1 [112–117],

which also confers an increased risk of (other) inflammatory diseases (e.g. Crohns’ disease)

[118,119] and /or acquired genetic instability due to sustained chronic inflammation (chronic

inflammatory diseases or toxin exposure (e.g. smoking) might further increase the risk of

developing MPN—a hypothesis originally proposed by Hermouet et al [33,35]. Importantly,

the hypersensitivity of clonal MPN-cells to exogenous and endogenous growth factors and

inflammatory cytokines might also more easily lead to a chronic inflammatory state–similar to

the increased sensitivity of the macrophage population leading to chronic inflammation in the

Fig 5. Investigation of increased inflammatory load at various onsets and durations. Blue curve is default
parameters corresponding to Fig 3, red dotted is a doubling of inflammatory load, full red curve is a doubling of
inflammatory load in year 0–20, then back to default level, black dotted curve is inflammatory doubling from year 10,
the full black is inflammatory doubling year 10–30.Upper: Increasing inflammatory load has a boosting effect on
MPNMC (A) as well as on HMC (B). Lower:Displaying the results in terms of the clinically available quantity, total
blood cell count, also shows a boosted effect with increasing inflammatory load (C). The allele burden of JAK2
mutated blood cells similarly shows that increased inflammation increases disease development (D). There is a clear
effect of MPN promotion with increasing inflammatory load, earlier onset, and exposure time. Lowering inflammatory
load makes disease progression less rapid. Maintaining a doubling (red dotted curve) shifts the allele burden curve to
the left by two years. Shortening the exposure time of inflammatory load weakens the disease progression. The
inflammation has a fast impact on the total number of blood cells, which typically changes by 25%within the first year
after doubling or reducing the inflammatory load by 50%.

https://doi.org/10.1371/journal.pone.0183620.g005
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Herald model and also implemented in the Hermouet model, implying an enhanced myelo-

monocytic response to cytokine stimulation [33,35].

In the Herald model and the model described by Nielsen et al in regard to type 1 diabetes

mellitus, the macrophages constituted an important compartment [97,110]. The monocyte-

macrophage cell lineage is of major importance in the context of inflammation and cancer

development. In our MPN-inflammation model bone marrow macrophages are also of utmost

importance—both in regard to release of inflammatory cytokines, but also in regard to the

development of myelofibrosis. Thus, in MPNs the monocyte-macrophage cell—together with

the megakaryocyte (MK) cell lineage—are considered to be responsible for the development of

myelofibrosis by the release of a number of growth factors and inflammatory cytokines that

stimulate fibroblast proliferation [36,120,121]. The “Herald Model” is in several aspects equiv-

alent to our model when considering substituting “bacteria”in the “Herald Model” by any nox-

ious inflammatory stimulus. In fact, we implement yet another cell lineage—the MKs—as the

source of a continuous release of products that stimulate the vicious inflammation circle,

implying ultimately the development of cancer—the MPNs. As previously outlined, our math-

ematical modelling of the concept of chronic inflammation in MPNs is also supported by the

elegant model described by Hermouet and co-workers [33,35], in which the JAK2 46/1 haplo-

type was proposed as a marker of inappropriate myelomonocytic response to cytokine stimula-

tion, leading to increased risk of inflammation, myeloid neoplasms, and impaired defense

against infection [33]. Indeed, the Hermouet model for chronic inflammation [33,35] fits

exceedingly well with the Herald model of general inflammation [97] and our mathematical

modelling of MPNs as “A Human Inflammation Mode for Cancer Development [29–32]. In

this regard, chronic inflammation and immune deregulation in MPNs might act as a trigger

for later development of AML and MDS in line with the known association of inflammatory

signaling and cancer [24–27]. The above models are additionally supported by the hypothetical

model by Takizawa et al. (2010) [122], describing how chronic inflammatory processes might

impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, including

MPNs. By inducing high proliferation of most HSCs, chronic inflammation might give rise to

both exhaustion of the HSC pool and an even greater risk to accumulate genetic alterations in

HSCs. Furthermore, by inflammatory stimuli from the bone marrow microenvironment these

genetically altered HSCs might be rescued or “cancer cell niche” for later development of a

hematological cancer [122].

The perspectives of our study are several. In the context that myelomonocytic cells (granu-

locytes, macrophages, monocytes) and MKs are all deeply involved in cancer development and

progression [123,124], chronic inflammation is associated with premature atherosclerosis

(atherothrombosis) [21–23, 29,30], in which both platelets and monocytes are highly impor-

tant (monocytes a link between atherosclerosis and cancer [28]) and platelets are intimately

involved in the metastatic process in cancer [124]—and likely in MPNs as well [125]—the ave-

nue is opened for studying all these aspects by using mathematical modelling of current

knowledge of the impact of chronic inflammation and immune deregulation in patients with

MPNs. Ultimately, mathematical modelling may also be able to substantiate which agents to

be used in MPNs in order to induce “minimal residual disease”[125–129] and the importance

of early intervention with agents that directly target both the malignant clone (interferon-

alpha2) [126–129] and the inflammatory process (JAK1-2 inhibition with e.g. ruxolitinib)

[130].

In conclusion, we have for the first time applied mathematical modelling as a tool to

deliver the proof of concept that chronic inflammation is closely linked to the development of

the MPNs—myeloproliferative cancers which today are considered to be “chronic inflamma-

tory diseases”, in which chronic inflammation may be a driving force for clonal expansion and
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ultimately the development of AML [4, 29–32,39]. Studies are ongoing to elucidate the above

perspectives by mathematical modelling. In this regard, mathematical modelling of resolution

of inflammation may be highly important [98] and useful to support the decision-making

which agents to use in the future for patients with MPNs in order to induce minimal residual

disease and hopefully cure.
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