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In this paper we consider a mathematical model of cancer cell invasion of tissue (extra-
cellular matrix). Two crucial components of tissue invasion are (i) cancer cell prolifer-
ation, and (ii) over-expression and secretion of proteolytic enzymes by the cancer cells.
The proteolytic enzymes are responsible for the degradation of the tissue, enabling the
proliferating cancer cells to actively invade and migrate into the degraded tissue. Our
model focuses on the role of nonlocal kinetic terms modelling competition for space and
degradation. The model consists of a system of reaction-diffusion-taxis partial differen-
tial equations, with nonlocal (integral) terms describing the interactions between cancer
cells and the host tissue. We first of all prove results concerning the local existence,
uniqueness and regularity of solutions of our system of nonlinear PDEs. We then extend
these results to prove global existence, uniqueness and regularity of the solutions. Using
Green’s functions, we transform our original nonlocal equations into a coupled system of
parabolic and elliptic equations and we undertake a numerical analysis of this equivalent
system, presenting computational simulation results from our model showing travelling
waves of cancer cells, degrading, invading and replacing the tissue. Finally, concluding
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remarks are made in the discussion section.
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1. Introduction

The prognosis of a cancer is primarily dependent on its ability to invade and

metastasize. Many steps that occur during tumour invasion and metastasis (as well

as in a number of distinct physiological events in the healthy organism, such as

trophoblast invasion, and skin wound healing) require a controlled and localized

degradation of extracellular matrix (ECM) macromolecules. An even more local-

ized degradation of matrix components is required when cells migrate through a

basal lamina. The breakdown of these barriers is catalyzed by proteolytic enzymes

released from the invading tumour. Most of these proteases belong to one of two

general classes: many are metalloproteases,37 while others are serine proteases.7,8

Proteases give cancers their defining characteristic - the ability of malignant cells

to break out of tissue compartments.

Cell migration plays a central role in a wide variety of physiological and patho-

physiological processes, for instance embryo development, inflammation, and cancer

metastasis (for reviews see Ref. 32). Cell migration is the locomotion of a cell on a

substratum of extracellular matrix (ECM) proteins. Cells require attachment sites

on extracellular matrices in order to reorganize their cytoskeleton and initiate pro-

trusions important to migration. In this regard, cancer cells require a well-regulated,

pericellular proteolysis to migrate. They must cleave linkages to the extracellular

matrix and to other cells and degrade barriers like the basement membrane, the de-

struction of which is a common observation in invasive cancer as well as in normal

pathological situations such as wound healing.

Although proteolysis and migration through tissue barriers are normal cell func-

tions in specific physiological circumstances, it is clear that a general aspect of ma-

lignant neoplasms includes a shift toward sustained invasive capacity. For invasion

to take place, cyclic attachment to matrix components and subsequent release must

occur in a directed and controlled manner. This implies that proteolysis, although

enhanced in tumour cells, is still tightly regulated in a temporal and spatial fashion

with respect to cell attachment. Proteolytic activity is the balance between the local

concentration of activated enzymes and their endogenous inhibitors.

Tumour cells encounter a variety of substratum-bound factors which may influ-

ence their directed migration at different stages in the process of tumour invasion

and metastasis. Such factors can promote the directed movement of tumour cells by

a mechanism termed haptotaxis. This is defined as cellular locomotion directed

in response to a concentration gradient of a bound, non-diffusible molecule such
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as those present within the components of the extracellular matrix e.g. collagen,

fibronectin, vitronectin.17,22 Such adhesive molecules can be present in spatially

varying amounts within extracellular matrix. A cell that is constantly making and

breaking adhesions with such molecules would move from a region of low concen-

tration to an area where that adhesive molecule was more highly concentrated.

Both cell-cell interactions and cell-matrix interactions play an important role dur-

ing the invasive cascade. Connections through cell adhesion molecules, integrins,

and cadherins stabilize tissue integrity, whereas loss or alteration of these cell sur-

face proteins has been shown to be associated with increased metastatic potential.

In this regard, pericellular proteolysis initiated by matrix degrading enzymes ful-

fils pivotal functions in cellular migration. Direct binding of molecules of matrix

degrading enzymes to cell surface receptors or to extracellular matrix drastically

increases the local concentration and the efficiency of protease formation/action.

In this paper we develop a new mathematical model of cancer cell invasion of

tissue which focusses on the role of the highly controlled invasion mechanisms in-

volved. In order to achieve this we develop an integro-differential equation model

involving cancer cells and the tissue (extracellular matrix). The modelling of the

highly localized degradation of tissue is achieved through the incorporation of a

spatial kernel modeling the degradative interactions between cancer cells and the

tissue. In the following section we formulate and describe the mathematical model

which consists of two coupled, nonlinear parabolic partial integro-differential equa-

tions. In Section 3 using the theory of linear semigroups we first of all prove results

concerning the local existence, uniqueness and regularity of solutions of our system

of nonlinear PDEs. In Section 4, we then extend these results to prove global exis-

tence, uniqueness and regularity of the solutions. Using Green’s functions, in Section

5 we transform our original nonlocal equations into a coupled system of parabolic

and elliptic equations and we undertake a numerical analysis of this equivalent

system, presenting computational simulation results from our model showing trav-

elling waves of cancer cells, degrading, invading and replacing the tissue. Finally,

concluding remarks are made in the Discussion Section 6.

2. The Mathematical Model

Previous mathematical models for cancer invasion and metastasis can be found

in, for example, Refs. 5, 6, 16, 18, 19, 25, 31, 35, 38, 39. Many of these papers

examine how cancer cells respond to ECM gradients via haptotaxis. The gradients

are created through the degradation of the extracellular matrix (ECM) by matrix

degrading enzymes (MDEs). In this paper, we will base our mathematical model

on generic solid tumour growth, which for simplicity we assume is at an avascular

stage, focussing initially solely on the interactions between the cancer cells and the

surrounding tissue. We develop a mathematical model consisting of two coupled

partial differential equations (PDEs) describing the evolution in time and space
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of the system variables and including nonlocal (integral) terms. The key physical

variables are taken to be the cancer cell density (denoted by u) and the extracellular

matrix protein density (denoted by v). The focus of the model is on examining

different key features of the system separately i.e. cell random motility, haptotaxis,

and proliferation and a specific emphasis on the highly controlled process of matrix

degradation. In vivo matrix degradation is achieved either through re-binding of

secreted MDE to receptors on the cancer cell surface, or through the secreted MDE

diffusing a short distance in to the tissue where it is then bound and can activate

other matrix degrading components such as plasmin. In either case, the actual region

of degradation is highly localised around the leading edge invasive cancer cells. We

model this effect by including an integral term in our PDEs. This approach means

that we do not explicitly include an equation for the MDE.

We now describe the way in which the cancer cell density u(t, x) and the extra-

cellular matrix density v(t, x) are involved in invasion and derive partial differential

equations governing the evolution of each variable.

(a) Cancer Cells:

It is well known that pericellular proteolysis plays a crucial role in cancer cell in-

vasion. The controlled degradation of the extracellular matrix by cancer cell asso-

ciated proteases allows cancer cells to invade surrounding tissues and gain access

to the circulation.2 In addition, invasive cells in vivo adhere to surrounding ECM

molecules via specific receptors such as integrins or urokinase plasminogen activa-

tor receptors, and produce and secrete several types of matrix degrading enzyme

(MDE) such as matrix metalloproteinases and urokinase plasminogen activators 11.

The actual matrix degradation is achieved largely through re-binding of MDE to

receptors on the cancer cell surface producing a highly localized area of degrada-

tion. The consequent digestion of ECM allows the cells to move into the spaces

thereby created and also sets up tissue gradients, which the cells then exploit to

move forwards.10,12,33,34,43 Movement up concentration gradients of ECM has been

reported as a mechanism enabling movement through tissues by a variety of cell

types. Tumour cell motility toward high concentrations/densities of substratum-

bound insolubilized components has been termed “haptotaxis”. The haptotaxis

function in our model is denoted χ(v). Using the derivation from kinetic analy-

sis of a model mechanism for the cell-surface-receptor-extracellular-ligand binding

dynamics, we assume that this haptotactic function is of the form:

χ(v) =
χu

(α0 + β0v)2
, (2.1)

where χu ≥ 0 and α0, β0 > 041. Other possibilities for this function are given in

Ref. 21. We assume that the cancer cells also migrate through random motility,

with a (constant) coefficient Du.

Individual cells proliferating within the overall tumour cell mass have to compete
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for nutrients, oxygen and space. So even cancer cells (that in culture may proliferate

indefinitely) under some conditions are suppressed in their proliferation e.g. cells in

the interior of a solid tumour do not divide as quickly as the cells on the surface

(mainly due to the lack of space and nutrients). Describing cell growth we therefore

have to take into account this phenomenon. It is possible to do this by using a logistic

growth term, for instance. However, assuming ordinary logistic growth may well be a

crude over-simplification, since it means that proliferation of the cells depends on the

cells and the ECM concentration/density at given point, whereas the proliferation

probably actually depends on the cell and ECM concentration/density in a local

neighbourhood. The immediate surrounding of a cell influences its ability to divide

and therefore we include a nonlocal term describing a neighbourhood of a cell that

inhibits its proliferation in the model and we adopt the following proliferation term

in our model:

µ1 u(t, x)
(

1 −
∫

Ω

k1,1(x, y)u(t, y) dy −
∫

Ω

k1,2(x, y) v(t, y) dy
)

,

where Ω is a bounded domain in R
d (d ≥ 1) with smooth boundary ∂Ω, µ1 repre-

sents the cancer cell proliferation rate, and k1,1, k1,2 are given spatial kernels. The

terms

u(t, x)

∫

Ω

k1,1(x, y)u(t, y) dy

and

u(t, x)

∫

Ω

k1,2(x, y) v(t, y) dy ,

describe the inhibition of the cells’ proliferation caused by the density of surround-

ing cells and ECM respectively.

Therefore the equation describing the dynamics of tumour cells reads

∂tu(t, x) = ∇ ·
(

Du ∇u(t, x)
)

−∇ ·
(

χ(v)u(t, x)∇v(t, x)
)

+µ1 u(t, x)
(

1 −
∫

Ω

k1,1(x, y)u(t, y) dy −
∫

Ω

k1,2(x, y) v(t, y) dy
) (2.2)

(b) Extracellular Matrix

We now turn attention to the extracellular matrix (ECM). This is known to

contain many macromolecules such as vitronectin, laminin and fibronectin which

can be degraded by several matrix degrading enzymes.

Since extracellular matrix (ECM) is “static”, we neglect any random motion

and focus solely on its degradation by the cancer cells. As mentioned above, matrix
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degradation in vivo is achieved either through re-binding of MDE to receptors on

the cancer cell surface or by MDE-activation of other degrading components in the

matrix. This has the effect of producing a region of degradation that is restricted to

a small distance around the leading edge of the invading cancer cells. Therefore, in

our model we assume that cancer cells themsleves degrade the ECM upon contact in

a highly controlled and restricted manner, and use an integral term to capture this,

thus simplifying our model slightly by not explicitly modelling the MDE. We also

suggest that ECM components re-establish or re-model while they are competing

for space with the invasive cells in a manner similar to that describing cancer cell

proliferation. Thus, in the absence of cancer cells, extracellular matrix remodels in

a logistic manner. On the other hand, the presence of cancer cells leads to compe-

tition for space between the cancer cells and the ECM which again we model by

incorporating a crowding term into the logistic growth. Using a modified logistic

growth with rate constant µ2 to describe the ECM production, and taking γ to rep-

resent the rate of degradation, we have the following equation for the extracellular

matrix:

∂tv(t, x) = −γ v(t, x)
∫

Ω

k(x, y)u(t, y) dy

+µ2 v(t, x)
(

1 −
∫

Ω

k2,1(x, y)u(t, y) dy −
∫

Ω

k2,2(x, y) v(t, y) dy
)

,

(2.3)

where γ is a given nonnegative parameter and k2,1, k2,2 and k are non-negatively

defined functions.

The complete system of equations describing the interactions between the tu-

mour cells and extracellular matrix is:

∂tu(t, x) = ∇ ·
(

Du ∇u(t, x)
)

−∇ ·
(

χ(v)u(t, x)∇v(t, x)
)

+u(t, x)µ1

(

1 −
∫

Ω

k1,1(x, y)u(t, y) dy

−
∫

Ω

k1,2(x, y) v(t, y) dy
)

∂tv(t, x) = −γ v(t, x)
∫

Ω

k(x, y)u(t, y) dy

+v(t, x)µ2

(

1 −
∫

Ω

k2,1(x, y)u(t, y) dy

−
∫

Ω

k2,2(x, y) v(t, y) dy
)

,

(2.4)

where Du, µ1, µ2, γ are given nonnegative parameters, k, ki,j (i, j = 1, 2) are given

spatial kernels and χ is a function that depend on v. We assume that

k , ki,j ∈ L∞ , ∇k ,∇k2,j ∈ L∞ , i, j = 1, 2 , (2.5)

k ≥ 0 ki,j ≥ 0 i, j = 1, 2, (2.6)

χ ∈ C2(R) , χ ≥ 0

and χ, χ′ are globally Lipschitz continuous.
(2.7)
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The system (2.4) may be rewritten in the following compact version

∂tu = Du∆u −∇ ·
(

uχ(v)∇v
)

+ µ1u
(

1 − k1,1 ⊛ u − k1,2 ⊛ v
)

,

∂tv = −γ v k ⊛ u + µ2 v
(

1 − k2,1 ⊛ u − k2,2 ⊛ v
)

,
(2.8)

where k ⊛ u(x) =
∫

Ω

k(x, y)u(y)dy.

Remark 2.1. If instead of Ω we consider R
d or d−dimensional torus T

d (periodic

boundary conditions), then it is natural to use the convolution ⋆ instead of ⊛.

Boundary Conditions: Guided by the in vitro experimental protocol in which

invasion takes place within an isolated system, we assume that there is no-flux of

cancer cells on the boundary of the domain, i.e.

uχ(v)
∂v

∂ν
− Du

∂u

∂ν
= 0 on ]0, T [×∂Ω , (2.9)

where ν is the outward normal vector to ∂Ω.

Initial Conditions: We consider the initial–boundary–value problem: Eqs.

(2.8), (2.9) together with the initial data

(

u(0, x) , v(0, x)
)

=
(

u0(x) , v0(x)
)

. (2.10)

3. Local existence

Denote the norm of Lp(Ω) by
∣

∣

∣

∣ .
∣

∣

∣

∣

p
and the norm of the Sobolev space W l,p(Ω) by

∣

∣

∣

∣ .
∣

∣

∣

∣

(l)

p
. Let

p > d . (3.1)

For a fixed T > 0 let

∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

p
= sup

t∈[0,T ]

∣

∣

∣

∣u(t)
∣

∣

∣

∣

p
,

∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

(l)

p
= sup

t∈[0,T ]

∣

∣

∣

∣u(t)
∣

∣

∣

∣

(l)

p
,

The positive dimensionless parameters Du, γ, µ1, µ2 do not play essential rôle

in the analysis and therefore from now on we assume that

Du = γ = µ1 = µ2 = 1 . (3.2)

Now we introduce the new variable (see Ref. 21 and references therein)

w(t, x) =
u(t, x)

z(t, x)
, z(t, x) = exp

(

v(t,x)
∫

0

χ(s) ds
)

(3.3)
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In the new variables the equation reads

∂tw = ∆w + χ(v)∇v · ∇w + w
(

1 − k1,1 ⊛ (w z) − k1,2 ⊛ v
)

+

+χ(v)w vk ⊛ (w z) − χ(v)w v
(

1 − k2,1 ⊛ (w z) − k2,2 ⊛ v
)

∂tv = −vk ⊛ (wz) + v(1 − k2,1 ⊛ (wz) − k2,2 ⊛ v
)

(3.4)

on ]0, T [×Ω, with the boundary conditions

∂w

∂ν
= 0 , (t, x) ∈ ]0, T [×Ω , (3.5)

and the intial data

(w, v)(0, x) = (w0, v0)(x) , x ∈ Ω . (3.6)

In order to show local existence of solutions to (3.4)–(3.6), we apply the theory

of linear semigroups. Let Ap denote the sectorial operator defined by

Apu = −∆u , u ∈ D(Ap) =

{

ξ ∈ W 2,p(Ω) :
∂ξ

∂ν
= 0 on ∂Ω

}

.

Since ℜD(Ap + 1) = 1 > 0, where D(Ap + 1) is the spectrum of Ap + 1,

the operator Ap + 1 possesses the fractional powers (Ap + 1)β, β ≥ 0. Let Xβ
p =

D((Ap + 1)β) then we have the following embedding properties27 (Theorem 1.6.1)

Xβ
p →֒ W k,q(Ω) for k − d

q
< 2β − d

p
, q ≥ p > d

Xβ
p →֒ Cκ(Ω) for 0 ≤ κ < 2β − d

p
,

(3.7)

where Cκ is the space of [κ]–times continuously differentiable functions with the

[κ]–order derivative satisfying the Hölder condition with exponent κ − [κ].

Since Ap + 1 is a sectorial operator then {e−t(Ap+1)}t≥0 defines an analytical

semigroup. Moreover for u ∈ Lp(Ω) we have (see Ref. 27)
∣

∣

∣

∣(Ap + 1)βe−t(Ap+1)u
∣

∣

∣

∣

p
≤ ct−βe−δt

∣

∣

∣

∣u
∣

∣

∣

∣

p
, (3.8)

where δ ∈ ]0, 1[ .

Let p > d and β ∈ ] 1
2 + d

2p
, 1[ be fixed. We denote the spaces Xβ

p by X and

the corresponding norm by
∣

∣

∣

∣ .
∣

∣

∣

∣. Given T > 0, let

Y = C0
(

[0, T ] ; X
)

, Y 1,∞ = C0
(

[0, T ] ; W 1,∞(Ω)
)

with the norms denoted by
∣

∣

∣

∣

∣

∣ .
∣

∣

∣

∣

∣

∣ and
∣

∣

∣

∣

∣

∣ .
∣

∣

∣

∣

∣

∣

(1)

∞
, respectively.

Now the local existence theorem can be formulated

Theorem 3.1. Let initial data (3.6) be such that (w0, v0) ∈ X × W 1,∞(Ω). If

assumptions (2.5), (2.7) are satisfied, then there exists T > 0 such that problem

(3.4)–(3.6) has a unique solution (w, v) in Y × Y 1,∞ and

w ∈ C1
(

]0, T [ ; X
)

∩ C0
(

]0, T [ ; W 2,p(Ω)
)

,

v ∈ C1
(

]0, T [ ; W 1,∞(Ω)
)

.
(3.9)
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Moreover, if w0 , v0 ≥ 0, then

w(t) ≥ 0 , v(t) ≥ 0 , t ∈ [0, T ] . (3.10)

Let Tmax be the maximal existence time. If there is a continuous function ω :

]0,∞[→ ]0,∞[ such that, for each τ > 0,

∣

∣

∣

∣w(t)
∣

∣

∣

∣ ≤ ω(τ),
∣

∣

∣

∣v(t)
∣

∣

∣

∣

(1)

∞
≤ ω(τ) 0 < t < min

{

τ, Tmax

}

, (3.11)

then Tmax = +∞.

Proof. Let BR, for some R > 0, be the ball

BR =
{

(w, v) ∈ Y × Y 1,∞ :
∣

∣

∣

∣

∣

∣w − w0

∣

∣

∣

∣

∣

∣+
∣

∣

∣

∣

∣

∣v − v0

∣

∣

∣

∣

∣

∣

(1)

∞
≤ R

}

and J = (J1, J2) be the operator

J1(w, v) = e−t(Ap+1)w0 +
t
∫

0

e−(t−s)(Ap+1)
(

χ(v)∇v · ∇w + 2w

−w k1,1 ⊛ (wz) − w k1,2 ⊛ v + χ(v)w vk ⊛ (w z)

−χ(v)w v
(

1 − k2,1 ⊛ (w z) − k2,2 ⊛ v
)

)

ds

J2(w, v) = v0 +
t
∫

0

(

− v k ⊛ (w z)

+v
(

1 − k2,1 ⊛ (w z) − k2,2 ⊛ v
)

)

ds .

(3.12)

Fix R > 0. We first prove that BR is invariant under J if T > 0 is sufficiently

small. Since w0 ∈ X and using inequality (3.8) we obtain

∣

∣

∣

∣J1 − w0

∣

∣

∣

∣ ≤ R
2 + const

t
∫

0

(t − s)−βe−δ(t−s)

(

∣

∣

∣

∣χ(v)
∣

∣

∣

∣

∞

∣

∣

∣

∣∇w
∣

∣

∣

∣

∞

∣

∣

∣

∣∇v
∣

∣

∣

∣

∞

+2
∣

∣

∣

∣w
∣

∣

∣

∣

∞
+
∣

∣

∣

∣w
∣

∣

∣

∣

∞

∣

∣

∣

∣k1,1 ⊛ (w z)
∣

∣

∣

∣

p
+
∣

∣

∣

∣w
∣

∣

∣

∣

∞

∣

∣

∣

∣k1,2 ⊛ v
∣

∣

∣

∣

p

+
∣

∣

∣

∣χ(v)
∣

∣

∣

∣

∞

∣

∣

∣

∣w
∣

∣

∣

∣

∞

∣

∣

∣

∣v
∣

∣

∣

∣

∞

(

∣

∣

∣

∣k ⊛ (w z)
∣

∣

∣

∣

p
+ 1

+
∣

∣

∣

∣k2,1 ⊛ (w z)
∣

∣

∣

∣

p
+
∣

∣

∣

∣k2,2 ⊛ v
∣

∣

∣

∣

p

)

)

ds.

(3.13)

By the definition of p and β we may choose κ = 1 in (3.7)2 and therefore by (2.5)

we obtain

∣

∣

∣

∣

∣

∣J1 − w0

∣

∣

∣

∣

∣

∣ ≤ R
2 + const

1−β
T 1−β

∣

∣

∣

∣

∣

∣w
∣

∣

∣

∣

∣

∣

(

(∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

∞
+ χ0

)∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

(1)

∞
+ 1

+
∣

∣

∣

∣

∣

∣w
∣

∣

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

∣z
∣

∣

∣

∣

∣

∣

∞
+
∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

p
+
∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

∞

∣

∣

∣

∣

∣

∣w
∣

∣

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

∣z
∣

∣

∣

∣

∣

∣

∞

+
(∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

∞
+ χ0)

)∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

∞

(

1 +
∣

∣

∣

∣

∣

∣w
∣

∣

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

∣z
∣

∣

∣

∣

∣

∣

∞
+
∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

p

)

)

,

(3.14)

where χ0 is a positive constant.
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Assuming now that (w, v) ∈ BR, by (3.7) and (3.14) we have

∣

∣

∣

∣

∣

∣J1(w, v) − w0

∣

∣

∣

∣

∣

∣ ≤
R

2
+

const

1 − β
T 1−β , (3.15)

where the constant indicated by ”const” depends on R,
∣

∣

∣

∣w0

∣

∣

∣

∣, and
∣

∣

∣

∣v
∣

∣

∣

∣

(1)

∞
.

In the same manner, by (2.5) and (2.7), we obtain

∣

∣

∣

∣

∣

∣J2(w, v) − v0

∣

∣

∣

∣

∣

∣

(1)

∞
≤

R

2
+ constT , (3.16)

where the constant indicated by ”const” depends on R,
∣

∣

∣

∣w0

∣

∣

∣

∣, and
∣

∣

∣

∣v
∣

∣

∣

∣

(1)

∞
. Hence we

can choose T sufficiently small to assert that J(BR) ⊂ BR.

Similar arguments show that

∣

∣

∣

∣

∣

∣J1(w1, v1) − J1(w2, v2)
∣

∣

∣

∣

∣

∣ ≤
const

1 − β
T 1−β

(

∣

∣

∣

∣

∣

∣w1 − w2

∣

∣

∣

∣

∣

∣+
∣

∣

∣

∣

∣

∣v1 − v2

∣

∣

∣

∣

∣

∣

(1)

∞

)

(3.17)

and
∣

∣

∣

∣

∣

∣J2(w1, v1) − J2(w2, v2)
∣

∣

∣

∣

∣

∣

(1)

∞
≤ constT

(

∣

∣

∣

∣

∣

∣w1 − w2

∣

∣

∣

∣

∣

∣+
∣

∣

∣

∣

∣

∣v1 − v2

∣

∣

∣

∣

∣

∣

(1)

∞

)

, (3.18)

where the constants indicated by ”const” depend on R,
∣

∣

∣

∣w0

∣

∣

∣

∣, and
∣

∣

∣

∣v
∣

∣

∣

∣

(1)

∞
.

Hence given T small enough we obtain the contractivity of the operator J in

BR. Thus local existence and uniqueness follow.

Now, we proceed with the proof of (3.9). Let t0 ∈]0, T [ fixed, then (see Ref. 27,

Lemma 3.5.2) entails

d

dt
u(t0, ·) ∈ Xγ

p ,

for any γ < 1. Next, we rewrite the first equation of (3.4) in the following form

−∆w − b · ∇w + w = f −
∂w

∂t
,

where b = χ(v)∇v ∈ (L∞(Ω))N and

f = w
(

2−k1,1⊛(wz)−k1,2⊛v)+χ(v)wv(k⊛(wz)−1+k2,1⊛(wz)+k2,2⊛v
)

∈ Lp(Ω).

Therefore, from the Schauder estimates we get q(t0) ∈ W 2,p(Ω), ending the proof

of (3.9).

From (2.5), (2.7) and the regularity of our solutions we obtain
(

1−k1,1⊛(wz)−k1,2⊛v+χ(v)v(k⊛(wz)−1+k2,1⊛(wz)+k2,2⊛v)
)

∈ L∞(]0, T [×Ω).

Consequently the non–negativity of w follows from the maximum principle argu-

ments, see Ref. 3 (page 18), or Ref. 4 (Section 15). Next we observe that the equation

for v can be written as

vt = vf,
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with f = 1 − k ⊛ (wz) − k2,2 ⊛ v − k2,1 ⊛ (wz). Thus,

v(x, t) = v0(x)e
R

t

0
f(x,s)ds,

concluding the non–negativity of v.

The last statement follows by prolongation arguments (see Ref. 27, Theorem

3.3.4). This finishes the proof. �

Remark 3.1. Theorem 3.1 yields existence, uniqueness and regularity of solutions

to problem (2.8), (2.9), (2.10).

Remark 3.2. By using the Fourier transform techniques one may prove an analo-

gous local existence and uniqueness theorem for Eq. (2.4) with (3.6), χ ≡ const, in

the whole space R
d , with the convolution ⋆ instead of ⊛, with

u(t) ∈ H l(Rd) , v(t) ∈ Hs(Rd) , t ∈ [0, T ] , (3.19)

where T > 0 is sufficiently small, l > 2 + d
2 , and s > l + 1 + d

2 .

4. Global existence

It is very well-known that for the (local) Keller-Segel-type chemotaxis equations (see

Refs. 21, 28, 29, 30) the solutions may blow up in finite time. Here we prove that

the solutions to the nonlocal equation (2.4) exist globally in any space dimension d

without imposing any kind of smallness conditions in the initial conditions.

In this section we assume that (u, v) is a nonnegative solution to Eq. (2.4), (2.9),

(2.10) given by Theorem 3.1 — see Remark 3.1 — on the time interval [0, T ], with

T > 0. We start with some simple lemmas that deliver a priori estimates.

Lemma 4.1.

v(t, x) ≤ v0(x) eT , t ∈ [0, T ] , x ∈ Ω . (4.1)

Proof. The statement is a consequence of the nonnegativity of u and v, the

assumption (2.6) as well as the inequality

∂tv ≤ v , (4.2)

that follows from Eq. (2.4). �

Lemma 4.2.
∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

1
≤
∣

∣

∣

∣u0

∣

∣

∣

∣

1
eT ,

∣

∣

∣

∣

∣

∣w
∣

∣

∣

∣

∣

∣

1
≤
∣

∣

∣

∣u0

∣

∣

∣

∣

1
eT . (4.3)

Proof. Integrating Eq. (2.4)1 we obtain
∣

∣

∣

∣u(t, . )
∣

∣

∣

∣

1
=
∫

Ω

u(t, x) dx

≤
∫

Ω

u0(x) dx +
t
∫

0

∫

Ω

u(t′, x) dxdt′

∣

∣

∣

∣u0

∣

∣

∣

∣

1
+

t
∫

0

∣

∣

∣

∣u(t′, . )
∣

∣

∣

∣

1
dt′ .

(4.4)
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Hence, by Gronwall’s lemma

∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

1
≤
∣

∣

∣

∣u0

∣

∣

∣

∣

1
eT , (4.5)

Taking into account that w = u
z

and z−1 ≤ 1 yields (4.1). �

Lemma 4.3.

∣

∣

∣

∣

∣

∣v
∣

∣

∣

∣

∣

∣

(1)

∞
≤ c1

(

∣

∣

∣

∣v0

∣

∣

∣

∣

(1)

∞
+ c2

)

, (4.6)

where the constants c1 and c2 depend on T ,
∣

∣

∣

∣u0

∣

∣

∣

∣

1
and

∣

∣

∣

∣v0

∣

∣

∣

∣

∞
.

Proof. By Eq. (3.4)2 we have

∂t∇v = −∇v k ⊛ u − v (∇1k) ⊛ u

+∇v
(

1 − k2,1 ⊛ u − k2,2 ⊛ v
)

+v
(

(∇1k2,1) ⊛ u − (∇1k2,2) ⊛ v
)

,

(4.7)

where by ∇1 we indicate the gradient with respect to the first variable x.

Therefore, by (2.5), we obtain

|∇v(t, x)| ≤ |∇v0(x)| + const
t
∫

0

∣

∣

∣

∣v(s)
∣

∣

∣

∣

∞

(

∣

∣

∣

∣u(s)
∣

∣

∣

∣

1
+
∣

∣

∣

∣v(s)
∣

∣

∣

∣

∞

)

+const
t
∫

0

|∇v(s, x)|
(

1 +
∣

∣

∣

∣u(s)
∣

∣

∣

∣

1
+
∣

∣

∣

∣v(s)
∣

∣

∣

∣

∞

)

.

(4.8)

By (4.1) and (4.3) it follows

|∇v(t, x)| ≤
(

|∇v0(x)| + constTeT
∣

∣

∣

∣v0

∣

∣

∣

∣

∞

(∣

∣

∣

∣u0

∣

∣

∣

∣

p
+
∣

∣

∣

∣v0

∣

∣

∣

∣

∞

)

)

× exp
(

constT eT (1 +
∣

∣

∣

∣u0

∣

∣

∣

∣

p
+
∣

∣

∣

∣v0

∣

∣

∣

∣

∞

)

.
(4.9)

This completes the proof. �

Lemma 4.4.

∣

∣

∣

∣

∣

∣w
∣

∣

∣

∣

∣

∣ ≤ c3

∣

∣

∣

∣w0

∣

∣

∣

∣ , (4.10)

where the constants c3 depends on T ,
∣

∣

∣

∣u0

∣

∣

∣

∣

1
and

∣

∣

∣

∣v0

∣

∣

∣

∣

∞
.

Proof. Estimates similar to that in (3.13) show

∣

∣

∣

∣w(t)
∣

∣

∣

∣ ≤ const t−βe−δt
∣

∣

∣

∣w0

∣

∣

∣

∣

p
+ const

t
∫

0

(t − s)−βe−δ(t−s)
∣

∣

∣

∣w
∣

∣

∣

∣

×

(

1 +
∣

∣

∣

∣χ(v)
∣

∣

∣

∣

∞

∣

∣

∣

∣∇v
∣

∣

∣

∣

∞
+
∣

∣

∣

∣k1,1 ⊛ u
∣

∣

∣

∣

p
+
∣

∣

∣

∣k1,2 ⊛ v
∣

∣

∣

∣

p

+
∣

∣

∣

∣v
∣

∣

∣

∣

∞

∣

∣

∣

∣χ(v)
∣

∣

∣

∣

∞

(

∣

∣

∣

∣k ⊛ u
∣

∣

∣

∣

p
+ 1

+
∣

∣

∣

∣k2,1 ⊛ u
∣

∣

∣

∣

p
+
∣

∣

∣

∣k2,2 ⊛ v
∣

∣

∣

∣

p

)

)

ds .

(4.11)
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Thus, by (2.5)

∣

∣

∣

∣w(t)
∣

∣

∣

∣ ≤ const t−β + const
t
∫

0

(t − s)−β
∣

∣

∣

∣w(s)
∣

∣

∣

∣

×

(

1 +
(

∣

∣

∣

∣v(s)
∣

∣

∣

∣

(1)

∞
+ χ0

)

∣

∣

∣

∣v(s)
∣

∣

∣

∣

(1)

∞
+
∣

∣

∣

∣u(s)
∣

∣

∣

∣

1
+
∣

∣

∣

∣v(s)
∣

∣

∣

∣

∞

+
(

∣

∣

∣

∣v(s)
∣

∣

∣

∣

∞
+ χ0

)

∣

∣

∣

∣v(s)
∣

∣

∣

∣

∞

(

∣

∣

∣

∣u(s)
∣

∣

∣

∣

1
+ 1 +

∣

∣

∣

∣v(s)
∣

∣

∣

∣

∞

)

)

ds .

(4.12)

By Theorem 7.1.1 of Ref. 27 as well as (4.1), (4.3) and (4.6) we conclude that
∣

∣

∣

∣w
∣

∣

∣

∣ ≤ const t−β, (4.13)

for 0 < t ≤ T . Finally, taking into account the local existence and (4.13) we finish

the proof. �

By (4.6), (4.10) and Theorem 3.1 we obtain the main global result

Theorem 4.1. Let initial data (3.6) be such that (w0, v0) ∈ X × W 1,∞(Ω). If

assumptions (2.5), (2.7) are satisfied, then for any T > 0 problem (3.4)–(3.6) has

a unique solution (w, v) in Y × Y 1,∞ and

w ∈ C1
(

]0, T [ ; X
)

∩ C0
(

]0, T [ ; W 2,p(Ω)
)

,

v ∈ C1
(

]0, T [ ; W 1,∞(Ω)
)

.
(4.14)

Moreover, if w0 , v0 ≥ 0, then

w(t) ≥ 0 , v(t) ≥ 0 , t ∈ [0, T ] . (4.15)

�

Remark 4.1. Theorem 4.1 yields global existence, uniqueness and regularity of

solutions to problem (2.8), (2.9), (2.10).

Remark 4.2. By using the Fourier transform techniques one may prove an analo-

gous global existence and uniqueness theorem for Eq. (2.4) with (3.6), χ ≡ const,

in the whole space R
d with the convolution ⋆ instead of ⊛, with

u(t) ∈ H l(Rd) , v(t) ∈ Hs(Rd) , t ∈ [0, T ] , (4.16)

where l > 2 + d
2 , and s > l + 1 + d

2 under additional conditions on initial data

ensuring L1-setting.

Remark 4.3. The regularity of the solutions is strictly related to the regularity of

the initial conditions and the regularity of the kernels. In particular, under suitable

regularity assumptions on the kernels and on the initial data, we obtain for any

T > 0

w ∈ C0
(

[0, T ]; X
)

∩ C1,2
(

]0, T [×Ω
)

,

v ∈ C0
(

[0, T ]; C1+α(Ω)
)

∩ C1
(

]0, T [ ; C1+α(Ω)
)

,
(4.17)

for 0 < 1 + α < 2β − d/p.
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5. Numerical Analysis and Computational Simulations

5.1. Model Nondimensionalisation

In order to solve the system numerically, we first of all non-dimensionalise the equa-

tions. The variables and parameters in the system of equations and their associated

boundary conditions are transformed into dimensionless quantities using the follow-

ing reference variables:

(1) a reference length scale, L, (e.g. the maximum invasion distance of the cancer

cells at this early stage of invasion 0.1 − 1cm),

(2) a reference time unit, τ =
L2

Dc

, where Dc is a reference chemical diffusion

coefficient e.g. 10−6cm2s−1.13 Therefore, we deduce that τ varies between

104 − 106sec.

(3) a reference tumour cell density u0, extracellular matrix density v0 (where u0,

v0 are appropriate reference variables).

We thus define the non-dimensional variables:

t̃ =
t

τ
, x̃ =

x

L
, ũ =

u

u0
, ṽ =

v

v0
.

and new parameters via the following scaling:

D̃ =
Du

Dc

, χ̃ = χu

v0

Dc

,

µ̃1 = µ1τ, µ̃2 = µ2τ, γ̃ = γu0v0τ.

The haptotactic function is of the form:

χ(v) =
χ̃

(Ku + v)2
, (5.1)

where χ̃ ≥ 0 and Ku > 041.

Henceforth, we omit the tildes for notational simplicity.

Concerning the numerical analysis and computational simulation of our system,

regarding the spatial kernels we proceed as follows (cf. Refs. 14, 15, 26). Let p ≥ 1.

We fix t ∈ [0, T ]. Then for each g(t, . ) ∈ Lp(Ω) we consider the linear operator

G : Lp(Ω) → W 2,p(Ω) where G(g) is the unique solution to the equation

−∆f + λ2f = λ2g in Ω ,

∂f

∂ν
= 0 on ∂Ω ,

(5.2)
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for some λ ∈ R. Observe that

f(x) = G(g)(x) =

∫

Ω

k(x, y)g(y) dy (5.3)

satisfies ∇f ∈ W 1,p(Ω) and in particular for d = p = 1 by Sobolev Embedding

Theorem (see Ref. 1)

∂xf ∈ L∞(Ω) . (5.4)

The function k(x, y) is then easily seen to be the Green’s Function for the prob-

lem

−∆f + λ2f = δ(x − y) in Ω ,

∂f

∂ν
= 0 on ∂Ω ,

(5.5)

It is not difficult to see that the assumption guaranteeing the global existence

can be be relaxed to cover this case. The general system can be rewritten as

∂tu(t, x) = ∂x

(

D ∂xu(t, x)
)

− ∂x

(

χ(v)u(t, x) ∂x v(t, x)
)

+ µ1u(t, x)
(

1 − f1,1(t, x) − f1,2(t, x)
)

∂tv(t, x) = −γ v(t, x)f(t, x) + µ2v(t, x)
(

1 − f2,1(t, x) − f2,2(t, x)
)

λ2u = −∂2
xf + λ2f

λ2
i,1u = −∂2

xfi,1 + λ2
i,1fi,1 , i = 1, 2 ,

λ2
j,2v = −∂2

xfj,2 + λ2
j,2fj,2 , j = 1, 2 .

(5.6)

For the computational simulations, we make one final simplification i.e. k1,1 = k2,1

and k1,2 = k2,2. This reduces the above system of seven equations to a system of

five equations as follows:

∂tu(t, x) = ∂x

(

D ∂xu(t, x)
)

− ∂x

(

χ(v)u(t, x) ∂x v(t, x)
)

+ µ1u(t, x)
(

1 − f1,1(t, x) − f2,2(t, x)
)

∂tv(t, x) = −γ v(t, x)f(t, x) + µ2v(t, x)
(

1 − f1,1(t, x) − f2,2(t, x)
)

λ2u = −∂2
xf + λ2f

λ2
1,1u = −∂2

xf1,1 + λ2
1,1f1,1 ,

λ2
2,2v = −∂2

xf2,2 + λ2
2,2f2,2 .

(5.7)

Guided by the in vitro experimental protocol in which invasion takes place within

an isolated system, we assume no-flux boundary conditions i.e.

u χ(v) ∂xv − D∂xu = ∂xf = ∂xf1,1 = ∂xf2,2 = 0 , on ]0, T [×∂Ω . (5.8)

Finally, the initial distribution of the tumour cells and the extracellular matrix

density are prescribed by the system of equations. Initially we assume that there

is a cluster of cancer cells already present and that they have penetrated a short
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Fig. 1. Plot of the finite kernel (Green’s function) on [0,1], y = 0.5, for the two cases λ = 1, 10.

distance into the extracellular matrix while the remaining space is occupied by the

matrix alone i.e.

(

u(0, x) , v(0, x)
)

=
(

u0(x) , v0(x)
)

. (5.9)

where

u0(x) = exp(
−x2

ǫ
), x ∈ Ω and ǫ = 0.01 > 0,

v0(x) = 1, x ∈ Ω,

(5.10)

For the computational simulation results presented in Section 5.3, we work on

a one-dimensional domain [0, L]. In this case, it is straightforward to calculate ex-

plicitly the Green’s Function (and hence the spatial kernel) for our problem (see,

for example, Ref. 45). Thus we have

k(x; y) =



















λ coshλx cosh λ(L − y)

sinhλL
, 0 < x < y

λ coshλ(L − x) cosh λy

sinhλL
, y < x < L
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A plot of the above kernel for different values of λ is given in figure (5.1). In

the above equations we note the role played by the parameters λ and λi,j — the

smaller λ (or λi,j) is, the greater the nonlocal effect and, conversely, if λ → ∞ the

nonlocal term becomes local (see the corresponding equation). The quantity
1

λ
can

therefore be considered as a measure of the spatial scale over which the nonlocal

term acts. Thus for our system,
1

λ
is a measure of the size of the spatial domain

over which degradation acts,
1

λ1,1
is a measure of the size of the spatial domain over

which cancer cells compete with each other for space/resources,
1

λ1,2
is a measure

of the size of the spatial domain over which cancer cells and components or cells of

the ECM compete with each other for space/resources, and so on.

5.2. Estimation of Parameters

Whenever possible parameter values are estimated from available experimental

data. However, given the large number of parameters in the model to be determined,

it is perhaps not surprising that several remain unquantified. In the cases where

no experimental data could be found, parameter values were chosen to give the

best qualitative numerical simulation results. This is in line with previous papers

successfully simulating tumour invasion and angiogenesis.5,16,36

Estimation of the Reference Diffusion Coefficients Dc, Du

We introduce Dc a reference chemical diffusion coefficient e.g. Dc ∼ 10−6cm2s−1,13.

In their model of epidermal wound healing Sherratt and Murray, used values of

3 × 10−9cm2s−1 - 5.9 × 10−11cm2s−1 for the random motility of epidermal cells.40

Furthermore, in their study of individual endothelial cells (ECs), Stokes et al. cal-

culated a random motility coefficient of (7.1±2.7)×10−9cm2s−1 for ECs migrating

in a culture containing an angiogenic factor αFGF, heparin and fetal serum as well

as a random motility coefficient of migrating endothelial cells with agarose overlays

(2.3±0.6)×10−9cm2s−1 and without agarose overlays of (6.9±2.6)×10−9cm2s−1,42.

In agreement with the aforementioned measurements for cell dispersion Bray esti-

mated the animal cell random motility coefficient to be ∼ 5 × 10−10cm2s−1,13.

In this regard, our choice for the cell random motility coefficient Du will vary be-

tweeen 10−9cm2s−1 and 10−11cm2s−1, so our nondimensional value will be between:

D = 10−3 − 10−5.

The haptotactic coefficient (χu)

Stokes et al. estimated the chemotaxis coefficient of ECs migrating in a culture

containing αFGF, to be 2600cm2s−1M−1,42. A value of v0 in the range 0.38 ×
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10−9M − 0.38 × 10−12M is consistent with experimental measurements. In the

absence of reliable empirical data, we chose the haptotaxis coefficient χu to be

in the range of 2.5 × 10−3 − 2.5 × 10−1 cm2s−1M−1. Therefore, considering the

fact that the vitronectin blood plasma concentration is around 4µM ,20 leads to a

dimensionless estimate of the haptotaxis coefficient χ in the range between 0.001 -

1.

Proliferation rate constant, µ1

Yu et al. estimated the doubling time of human epidermoid carminoma cells

(HEp3) from in vitro proliferation experiments time to be 24h.44 By taking the

proliferation rate as the reciprocal of the cell-cycle time we get µ̃1 ∼ 0.042h−1.

In this regard, in our numerical simulations we will choose the proliferation rate

to be between 0.02h−1 − 0.72h−1, and thus obtain the dimensionless parameter of

µ1 in the range 0.05 - 2.

Parameters λi, i = 1, 2, 3

As noted previously, the quantities 1/λi can be considered as a measure of the

spatial scale over which the nonlocal term acts. In our simulations, we used values

of λ1 = 1 − 10 in dimensionless units. Although the cancer cells have rather non-

regular shape we estimate that its average diameter is equal to 10 microns. The

above range for λ1 is therefore equivalent to the assumption that the non-local

effect varies from 1 cell diameter up to 10 cell diameters. Similarly we used values

of λ2 = 10 − 50 and λ3 = 1 − 10000.

Remaining Parameters

Not all parameters in the model were able to be estimated. Therefore, we chose

these values in order to give the best qualitative results in the simulations. For the

extracellular matrix degradation rate we consider γ to vary between 1 - 20. We took

µ2 in the range of 0.15 - 2.5.
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Parameter Description Value

D cell diffusion coefficient 10−5 - 10−3

χ haptotactic coefficient 10−3 - 1

µ1 proliferation rate of cancer cells 5 · 10−2 - 2

µ2 matrix re-modelling rate 1.5 · 10−1 - 2.5

γ matrix degrading rate 1 - 2 · 10

λ1 cancer cell non-local effect 1 - 10

λ2 ECM non-local effect 1 - 50

λ3 degradation non-local effect 1 - 10000

5.3. Computational Simulations

We now present some computational results from numerical simulations of our sys-

tem of equations 5.7. Figures 2 and 3 show the results from a computational simula-

tion of equations (5.6). In this case the parameters λ1 = 10, λ2 = 50 and λ3 = 10000.

The choice of parameter λ3 = 10000 means in effect that the degradation term of

the second equation of (5.6) is almost local i.e. ≈ −γuv. We chose this value for λ3

in order to focus on the effect of nonlocal proliferation. As can be seen from the

plots in figures 2 and 3, the initial profile of cancer cells develops into a travelling

wave which invades the ECM, degrading the ECM as it invades. Eventually all the

ECM is degraded and we are left with the cancer-only steady state of (1, 0).

Figures 4 and 5 show the results from a computational simulation of equations

(5.6) where the parameters λ1 = 1, λ2 = 5 and λ3 = 10000. As can be seen from both

sets of plots, once again the initial profile of cancer cells develops into a travelling

wave which invades the ECM, degrading the ECM as it invades. However, in this

case we note that there is a “bump” in the cancer cell density at the front of

the travelling wave, where the maximum cancer cell density reaches a value of

approximately 1.5. This is due to the influence of the nonlocal proliferation terms

whose effects have been enhanced due to the choice of parameters λ1 = 1, λ2 = 5.

Once again, the wave of cancer cells invades the ECM, degrading the ECM as it

invades. Eventually all the ECM is degraded and we are left with the cancer-only

steady state of (1, 0). We note that in this case, the cancer cells penetrate less deeply

into the ECM - at t = 60 the leading edge of the cancer cells has reached the point

just beyond x = 0.7, while in figure 2 at t = 60 the leading edge of the cancer cells

has reached approximately x = 0.625.

The results presented in figures 2 , 3 and 4 , 5 illustrate the effect of the nonlocal

proliferation terms. The cancer cells degrade the surrounding tissue and then invade

this degraded region of tissue by a combination of diffusion (random motility) and

haptotaxis. Mathematically this is seen as the travelling wave solution connecting

the cancer-free state with the cancer-only state. In the model we assume that cancer

cells are competing for nutrient (e.g. oxygen) with other cells at different spatial

locations. In the one-dimensional domain considered here this means that the cancer
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Fig. 2. Plot showing profile of the density of cancer cells at times t = 10, 20, 30, 40, 50, 60. Figure
shows the travelling wave of invasion of cancer cells invading the ECM. Parameters λ1 = 10, λ2 =
50, λ3 = 10000, D = 0.001, χ = 0.075, µ1 = 1, µ2 = 0.15 and γ = 1.

Fig. 3. Plot showing the corresponding profile of the density of ECM at times t =
10, 20, 30, 40, 50, 60. Figure shows ECM being degraded by the cancer cells as they invade.
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Fig. 4. Plot showing profile of the density of cancer cells at times t = 10, 20, 30, 40, 50, 60. Figure
shows the travelling wave of invasion of cancer cells invading the ECM. Parameters λ1 = 1, λ2 =
5, λ3 = 10000, D = 0.001, χ = 0.075, µ1 = 1, µ2 = 0.15 and γ = 1.

Fig. 5. Plot showing the corresponding profile of the density of ECM at times t =
10, 20, 30, 40, 50, 60. Figure shows ECM being degraded by the cancer cells as they invade.
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cells competing both with those cells in front and with those cells behind. In an

invasion of a region of tissue where there were no cancer cells, those cells at the

front of the invasion wave (mathematically, at the point where the travelling front

is steepest) will find there are essentially no cancer cells ahead of them. This means

that essentially these cells are only in competition with the cells behind. This gives

them an “invasive advantage” and allows the cell numbers there to get above the

carrying capacity level (the maximum level that can be sustained in the long term),

but only in the neighbourhood of the front of the invading cells.26 As a result we

see a hump in the front profile.

6. Discussion

In this paper we have presented a mathematical model of cancer cell invasion of

tissue and investigated the effect of nonlocal reaction kinetics. The model was for-

mulated as a system of partial differential equations (integro-differential equations)

with the nonlocal terms modelling competition for nutrient between the cancer

cells and tissue re-modelling. Additionally we incorporated a nonlocal degradation

term. Certain important analytical results were proved and computational results

of numerical simulations of our model were given.

In Section 3 we presented a mathematical analysis of the model and proved some

existence results for the solution of our equations using the theory of linear semi-

groups. In Section 4 we proved that the solutions to the nonlocal equations exist

globally in any space dimension d without imposing any kind of smallness condi-

tions in the initial conditions. Specifically by using Fourier transform techniques

we proved a global existence and uniqueness theorem. Finally regarding a formal

analysis of our system, we showed that the regularity of the solutions is strictly

related to the regularity of the initial conditions and the regularity of the kernels

and proved some results related to this.

In Section 5 we presented the computational results of numerical simulations of

our basic model. The results of these simulations showed the effect of the nonlocal

terms.26 Travelling waves of invading cancer cells were observed, and the shape of

the travelling wave was closely linked to the nonlocal terms and the size of the

parameters λi. The invasive waves were either “regular” or had a “hump” at the

front, indicating a region of high cancer cell density. From a biological perspective

these results indicate the important role that competition for nutrient (e.g. oxygen)

and space may play during cancer cell invasion. The results of the numerical simu-

lations indicate that cancer cell at the leading edge of an invasive front are only in

competition with the cells behind, giving them an “invasive advantage” over cells

futher behind. This may have implications for the depth of penetration into the

ECM.

In addition to proliferation, migration and competition for space, cell-cell and

cell-matrix adhesion are other vitally important features of cancer invasion. Until
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now, this effect has only really been investigated using discrete models,23,24,6 al-

though recent work on cell-cell and cell-matrix adhesion using a continuum PDE

model has been developed by Armstrong et al. (see Ref. 9). Future work will consider

using nonlocal terms to more accurately model cell-cell and cell-matrix adhesion.

Acknowledgment:

The authors gratefully acknowledge support from the EU Marie Curie Research

Training Network Grant “Modelling, Mathematical Methods and Computer Simu-

lations of Tumour Growth and Therapy”, contract number MRTN-CT-2004-503661

and Polish SPUB-M. The work of ZS was partially supported by the Polish-German

PhD studies Graduate College “Complex Processes: Modelling, Simulation and Op-

timization”. The authors thank Professor Maciej Żylicz and Jakub Urbański from
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