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Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.

Maria Skłodowska-Curie

Wir müssen wissen.

Wir werden wissen.

David Hilbert



Abstract

Stomata are tiny pores in plant leaves that regulate gas and water exchange between

plants and their environment. Abscisic acid and ethylene are two well-known elicitors

of stomatal closure. Yet when stomata are presented with a combination of both

signals, they fail to close; these observations are hard to reconcile biologically and their

explanation is not easily obtained by experimental means alone. To shed light on this

unexplained behaviour, a combination of mathematical, computational, and experimental

techniques are used. A differential equation model of stomatal closure is constructed from

known biochemical interactions; this modelling process has motivated the collection of

experimental measurements of components in the pathway, at time points beyond what

is usually found in the literature. The experimental observations include stomatal aperture

and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic

acid, ethylene, and a combination of both. These measurements show that sustained high

levels of hydrogen peroxide are required to achieve stomatal closure and that guard cells

exhibit increased antioxidant activity when treated with a combined dose of abscisic acid

and ethylene. Additionally, the experimental observations and modelling suggest a distinct

role for two antioxidant mechanisms during stomatal closure: a slower, delayed response

that is activated by a single stimulus (abscisic acid or ethylene) and another more rapid

mechanism that is only activated when both stimuli are present. The model indicates that

the presence of this ‘and’ mechanism in the antioxidant response is crucial to explain the

lack of closure under a combined stimulus.

Estimating parameters from data is a key stage of the modelling process, particularly in

models of biological systems many parameters need to be estimated from sparse and noisy

data sets, such is the case of the stomatal closure model presented here. Over the years, a

variety of heuristics have been proposed to solve this complex optimisation problem, with

good results in some cases yet with limitations in the biological setting. In this thesis,

an algorithm for model parameter fitting is developed combining ideas from evolutionary

algorithms, sequential Monte Carlo methods and direct search optimisation. The method is

shown to perform well even when the order of magnitude and/or the range of the parameters

is unknown. The method refines iteratively a sequence of parameter distributions through

local optimisation combined with partial resampling from a historical prior defined over

the support of all previous iterations. The method is tested on biological models using



both simulated and real experimental data, and it estimates the parameters efficiently even

in the absence of a priori knowledge about the parameters. Then, this method is used to

find the parameter values of the much larger stomatal closure model from experimental

observations.

A classic model of linear activation cascades is studied in this thesis. In a special

but important case the output of an entire cascade can be represented analytically as a

function of the input and a lower incomplete gamma function. If the inactivation rate of

any component is altered, the change induced at the output is independent of the position in

the cascade of the modified component. These analytical results show how one can reduce

the number of equations and parameters in ODE models of cell signalling cascades, and

how delay differential equation models can sometimes be approximated through the use

of simple expressions involving the incomplete gamma function. The expressions with the

lower incomplete gamma functions are used in the construction of the model of stomatal

closure to represent the activation dynamics of the antioxidant mechanisms in guard cells.

Fitting the stomatal closure model parameters to the data indicates that the antioxidant

responses should have two different timescales, which can explain the lack of closure under

a combined ABA and ethylene stimulus.



Acknowledgements

I am most grateful to my supervisors Radhika Desikan, Mauricio Barahona, and the late

Jaroslav Stark for agreeing to take me as a student, giving me guidance, and having patience

while I learnt the basics of biology. Working with you has been a tremendous experience.

On those difficult months when Jaroslav was seriously ill and Radhika was taking care

of her new baby, Piers Ingram, Robert Endres, Simon Moon, and John Mansfield went

out of their way and gave up their time to make sure I received enough support and help

although it was not their duty, thank you so much. I thank Sophia Yaliraki for being so

supporting and patient in these last months when this thesis was being written.

I thank the Biotechnology and Biological Sciences Research Council (BBSRC) and

Microsoft Research UK for providing the funding for this PhD through the Dorothy

Hodgkin Postgraduate Award.

I am grateful to Yvonne Stewart for showing me around the lab and teaching me how

to do experiments. I also want to thank Marco Lizzul and Mercedes Hernández Gómez for
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Chapter 1

Introduction

1.1 Overview

Plants are important organisms for a variety of reasons, one of them is that ultimately

we all depend on them for survival, which makes understanding them a vital task. One

remarkable feature of plants is their ability to adapt to the conditions of their surroundings,

which allows them to cope and thrive in ever-changing and uncertain environments.

This thesis is concerned with one of the most important mechanisms plants exploit

to cope with environmental changes: stomatal closure. Plants posses pores on their

leaves known as stomata; through these pores plants are able to exchange oxygen and

water-vapour for CO2 in the air. When the exchange of water for CO2 is not advantageous

to the plant, eg when water is scarce, there is not enough light to perform photosynthesis,

or under pathogen attack, plants can regulate the aperture of the pores to limit the loss of

water until conditions improve. Plants achieve stomatal regulation by sending signals that

travel through a complex network of cellular interactions; often, it is a hormonal signal

that initiates the process of stomatal closure. This work focuses on two hormones: abscisic

acid (ABA) and ethylene, and their interactions in stomata. Both hormones have been

widely studied in the literature; ABA is an important hormone involved in seed dormancy

and dessication tolerance, and ethylene is a gas hormone involved in fruit ripening, leaf

senescence and plant defence against pathogens. Specifically, we are interested in knowing

why these two hormones, which on their own cause the stomata to close, fail to do so when
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they are present at the same time.

Understanding stomatal closure and why this seemingly contradicting behaviour

occurs, invites an interdisciplinary approach. Given the large number of components

involved during stomatal closure and the large number of interactions among them, it is

difficult to understand the processes by experimental means alone. Using mathematical

descriptions of what is understood to occur during stomatal closure, we can keep track of

what happens to the components of the system, make hypothesis and predictions that can be

tested in the laboratory. New experimental results inform the improvement of the models

which are able to make new predictions. The cycle of mathematical-biological cooperation

can go on indefinitely and new, fascinating avenues for research (both mathematical and

biological) can arise from this process.

1.2 Aims and thesis structure

For this work a combination of experimental, mathematical, and computational approaches

are used to understand stomatal closure. The aims of the thesis are:

• The development of a series of mathematical models that help identify key elements

from the ABA-ethylene signalling pathway in guard cells that are responsible for the

blocking of signals and subsequent lack of stomatal closure.

• Development of mathematical techniques and frameworks to aid the development

and analysis of models of stomatal closure.

• Collection of experimental data to validate the models.

• Providing new directions for future research, based on the results obtained by the

modelling process and experimental observations.

To meet these aims, a thorough review of the current knowledge about stomatal closure

has been made, alongside a review of the mathematical techniques needed to construct

models of stomatal closure. The modelling process in this work has highlighted the

need for a consistent data-set performed under uniform laboratory conditions, on a single

plant species, and for longer times. Data available from published reports are obtained
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Figure 1.1: Structure of the thesis. In the blue balloons are the introduction and the

conclusions of the thesis. Background material is covered in the yellow balloons, and

results chapters are in green balloons. Appendix A (in the red balloon) contains additional

results.

under experimental conditions which vary considerably in their methodology, measurement

times, plant species and cell type. Therefore for this project it was necessary to gather new

data from experiments with uniform conditions and time points.

The background information and the results of the thesis are structured by chapters,

each dealing with a single topic. The dependencies among the chapters are presented in

Fig. 1.1:

• Chapter 2 (background): introduction to stomata, and a thorough review of what is

understood to happen after perception of the hormonal signals. The experimental

observations that are the motivation for this PhD project are discussed in Sec. 2.5.

• Chapter 3 (background): brief introduction to the mathematical biology techniques
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used in this thesis.

• Chapter 4 (results): development of an optimisation method using evolutionary

algorithms and Monte Carlo with applications to parameter fitting.

• Chapter 5 (results): analysis of activation cascade models which includes applica-

tions to model reduction, equation reordering, and substitution of delay differential

equations.

• Chapter 6 (results): experimental observations of guard cell signalling components

after treatments with ABA and ethylene.

• Chapter 7 (results): ODE-modelling of stomatal closure. The development of the

models is informed by biology in the introductory chapters and the experimental

observations, and uses results from Chapters 4 and 5.

• Chapter 8: concluding remarks of the thesis and outlines of what work should be

done to take further the research topics addressed in this document.

• Appendix A (additional results): contains explorations of antagonistic toy models

and network topologies. This approach has been used to analyse competition among

kinases for protein activation in Sec. A.3.

Note that in Fig. 1.1 Chapters 6 and 7 depend on each other. This dependency highlights the

iterative nature of the modelling process, where existing data informs models and models

prompt new experiments.

An alternative to reading this thesis following the order of the chapters is to read

the biological introduction in chapter Chapter 2, followed by the experimental results in

Chapter 6, and stomatal modelling in Chapter 7; this ensures that the theme of stomatal

closure is not broken by the more mathematical/computational themes in Chapters 3, 4, 5,

and Appendix A.
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Chapter 2

Biology of stomata

Stomata, guard cells, and their importance for the correct functioning and survival of

plants are introduced in this chapter. Then, a description is given of the cellular processes

involved in ABA and ethylene-induced stomatal closure, the main focus of this work. Some

questions about the signalling processes that still need to be answered are mentioned here,

and will be addressed in later chapters.

2.1 Stomata, their function and importance

Unlike animals, plants cannot move to another place whenever a resource (such as water or

light) becomes scarce, conditions become unfavourable, or when attacked by predators

or disease. Plants possess several physiological mechanisms to help them cope with

changes in their surroundings, spread their seeds, fight disease and competitors, and defend

themselves from predators.

One of the most remarkable mechanisms of adaptation in plants is the regulation of

water vapour and gas exchange. Such regulation responds to diverse stimuli such as

changes in light conditions, water-availability, temperature or presence of pathogens. Key

players in response to environmental cues are the tiny pores known as stomata (singular:

stoma), located mostly on the lower surface of leaves’ epidermis (Freeman, 2008; Taiz

and Zeiger, 2002). In the model organism Arabidopsis thaliana, each stoma is formed

by two kidney-shaped guard cells, which are attached to each other by their extremes
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Figure 2.1: Location of stomata on the lower epidermis of a leaf. Water absorbed by the

roots is transported into the leaves; if the pore is open, the plant is free to exchange gas and

water vapour for CO2 to perform photosynthesis.

(Fig. 2.1). Although stomata cover only about 5% of the leaf-epidermis area (Hetherington

and Woodward, 2003), their importance is difficult to overestimate. Through stomata

plants transpire and exchange gases with the atmosphere. The leaf epidermis is almost

impermeable to H2O and other gases, so the main point of gas and water vapour exchange

between a plant and the environment is the stomatal pore (Lawson, 2009). When the

stomata are open, the plant exchanges H2O and O2 for CO2 from the air, enabling

photosynthesis to perform optimally (Acharya and Assmann, 2009). Many environmental

factors such as blue-light availability, drought, humidity, CO2 concentration, or biotic

stresses (eg fungi or bacteria) can cause the plant to close its pores, thus slowing its

metabolism and minimising water loss (Acharya and Assmann, 2009; Pei et al., 1997;

Taiz and Zeiger, 2002).

The pressure of the contents of a plant-cell against its wall, determined by the amount of

water contained in the vacuoles, is known as turgor pressure (Thoday, 1952). A decrease

of the cell’s osmotic potential due to ion intake drives water inside the cell and into the

vacuoles. When the vacuoles fill with water, the guard cells swell (ie they become turgid).

Swelling causes the cells to expand in opposite directions but as they are coupled by their

extremes and the cell walls are thicker along their height than at the top, this results in the

opening of the pore (Fig. 2.2 A). Conversely, when the cell loses water from the vacuoles
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Figure 2.2: Stomata of Arabidopsis thaliana leaves under the microscope. A: An open

stoma, the aperture marked by the bold line is 2.5 µm wide. B: A closed stoma, the visibly

smaller aperture, compared to the pore on the left, is marked by the bold line across the

opening of the pore.

(loss of turgor pressure due to a lower cytosolic ion concentration) their volume decreases,

becoming flaccid and ultimately resulting in the closure of the pore (Fig.2.2 B) (Schroeder

et al., 2001; Taiz and Zeiger, 2002). Thus, ionic content of the cell is key for controlling cell

volume and stomatal aperture. Note also that the shape of guard cells mean that complete

closure (ie no opening whatsoever) does not occur; a significant reduction in aperture is

enough to slow down gas and water exchange to acceptable levels (the exchange never

fully stops, as closure is not total).

The regulation of stomatal aperture is at the core of a plant’s capacity to cope with

changes in its surroundings. Understanding how this process works is important for several

reasons:

• Climate change affects the conditions in which many food crops are grown (Gedney

et al., 2006). The role of stomata in the planet’s water and carbon cycle is a rather

important one. Evaporation of water through stomata amounts to 70× 1015 kg annu-

ally (nearly 65% of the precipitation on land). In the tropics alone, stomata release

32 × 1015 kg of water, twice the amount in the atmosphere. In addition, terrestrial

photosynthesis fixes 440 × 1015 gCO2 from the atmosphere annually (Hetherington

and Woodward, 2003). Understanding how plants will react to different (perhaps

more extreme) environmental conditions is paramount to guaranteeing food security
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for all.

• Knowledge of the mechanisms that regulate stomatal movements can inform us

of what to expect from plants as the conditions of growth change, and to help

engineer and design crops that are more resistant to adverse conditions and are more

economical in their need for resources (Li et al., 2006).

• Equally important is that guard cells provide a good framework to study cell-

signalling. Hypotheses for possible mechanisms involved in signal transduction (ie

the relay of an external signal to the inside of the cell to produce a response) can be

tested with relative ease by observing whether the stomata are open or closed. The

mechanisms of signal transduction in guard cells are likely to be common to many

other cell types where experiments are more difficult to perform (Schroeder et al.,

2001), which is why it is useful to understand them first in guard cells.

• Finally, guard cell signalling networks are (as this work will attempt to demonstrate)

fertile ground for interdisciplinary research where a wide array of approaches

from different branches of science (eg genetics, mathematics, computer science,

statistics) together with experimental biology have been successfully applied to solve

challenging and important problems (Li et al., 2006; Soni et al., 2008).

2.2 Important signalling molecules

This section provides an introduction to some of the most important molecular players

involved in the signalling pathways of stomatal closure.

2.2.1 Abscisic acid

Abscisic acid (ABA) is a well-known plant hormone involved in many physiological

processes. ABA belongs to the isoprenoid class of metabolites which includes carotenoids,

and is produced by most cells containing chloroplasts and amyloplasts (Nambara and

Marion-Poll, 2005). It was initially thought that ABA was the hormone responsible for

leaf and organ abscission (hence the name abscisic acid), though it was later shown that
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abscission is caused by ethylene (Taiz and Zeiger, 2002). ABA was identified early

on as the compound responsible for seed dormancy and embryo dessication tolerance

(it is sometimes called dormin); ABA-deficient mutants exhibit a wilty phenotype and

vivipary (Raz et al., 2001). In the absence of stress, ABA is produced in vascular tissues,

and taken up and metabolised by mesophyll cells (Koiwai et al., 2004). Under stress

conditions such as drought or salinity, ABA levels in plants increase by biosynthesis and

redistribution. Dry roots produce ABA to send a chemical signal to the leaves before

drought stress and water deficit are able to cause damage to the plant (Sauter et al., 2001).

The ABA signals cause the xylem sap to become more alkaline obstructing mesophyll cell

ABA-absorption, and facilitating ABA release which is then able to reach guard cells (Taiz

and Zeiger, 2002). In addition to being transported from the roots to the shoots and

leaves, ABA is also able to induce its own synthesis (Tan et al., 2003). Inactivation and

catabolism of ABA can be done by hydroxylation or conjugation. For example ABA is

hydroxylated into phaseic acid (PA) by a cytochrome P450 monooxygenase, and PA levels

have been reported to rise after a drought-stressed plant has been re-hydrated, coinciding

with a decrease in ABA levels (Nambara and Marion-Poll, 2005). PA is also reported to be

physiologically active (Mohr and Schopfer, 1995).

The effect of ABA on stomatal aperture under conditions of drought or salinity is well

documented and has been studied extensively in several plant species (Bari and Jones,

2009; Hetherington, 2001; Hubbard et al., 2010; Jones and Mansfield, 1970; Schroeder

et al., 2001; Sirichandra et al., 2009; Wasilewska et al., 2008). In Sec 2.3 the signalling

events triggered by ABA that lead to loss of turgor and stomatal closure in Arabidopsis

guard cells are described.

2.2.2 Ethylene

Ethylene is a gaseous hormone involved in several plant processes. In plants ethylene

is produced when methionine (Met) is transformed into s-adenosyl-methionine (AdoMet)

by AdoMet synthase (as part of the Yang cycle); AdoMet is transformed into the

ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase; ACC

is transformed into ethylene by ACC-oxidase (Taiz and Zeiger, 2002).
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There are five known ethylene receptors: ethylene resistant 1 and 2 (ETR1, ETR2),

ethylene insensitive 4 (EIN4), ethylene response sensor 1 and 2 (ERS1, ERS2). In the

absence of ethylene the receptors activate the protein controlled triple response 1 (CTR1),

a negative regulator of the pathway. Active CTR1 inactivates ethylene insensitive 2 (EIN2),

a bottleneck in the ethylene pathway below which lie all the other known components and

targets. Ethylene inactivates the receptors and CTR1 is unable to inactivate EIN2 and the

signal is able to propagate downstream (Chang and Bleecker, 2004; Guo and Ecker, 2004;

Stepanova and Alonso, 2005)

The effects of ethylene in plants have been extensively studied in seedlings, and include

the control of root elongation, swelling of the hypocotyl and curvature of the apical hook

(collectively known as the triple response), fruit ripening, leaf senescence and abscission,

defence from pathogens, and seed dormancy (Bari and Jones, 2009; Chang and Bleecker,

2004; Chen et al., 2005; McCue et al., 2009; Taiz and Zeiger, 2002). In some species (such

as Arabidopsis) ethylene has been found to elicit stomatal closure (Desikan et al., 2006;

Pallas and Kays, 1982), whereas in others (eg Vicia faba) it is involved in auxin-mediated

stomatal opening (Levitt et al., 1987).

2.2.3 Reactive oxygen species

Reactive oxygen species (ROS) are reactive molecules such as superoxide (O•−
2 ), hydrogen

peroxide (H2O2), hydroxyl radical (OH•), and singlet oxygen (1O2) produced by the

incomplete reduction of molecular oxygen (Hancock, 1999). These reactive molecules

have in common the ability to cause oxidative damage to DNA, proteins, and lipids, which

is why their concentrations in the cell are tightly controlled (Apel and Hirt, 2004). Another

common feature among these species (with the possible exception of the hydroxyl radical)

is that in sub-toxic concentrations they can function as signalling molecules and second

messengers (Cho et al., 2009b; Hancock, 1999; Wang and Song, 2008).

Chemically, ROS are the intermediary species in the process of reducing molecular

oxygen to water via a series of single electron transfer steps (Marks et al., 2009):

O2 + e− → O•−
2 + e− → H2O2 + e− → OH• + e− → H2O.
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There are several mechanisms that mediate these reactions, of particular importance for this

work are NADPH-oxidases which catalyse the production of superoxide, and superoxide

dismutase (SOD) which catalyses the dismutation of superoxide into hydrogen peroxide.

ROS are a normal by-product of respiration in many organisms; in plants ROS are

the product of photosynthesis and other metabolic processes occurring in chloroplasts,

mitochondria and peroxisomes (Neill et al., 2002). Additionally, ROS are produced in

response to a variety of stimuli in plants, including abiotic (eg light/dark, ozone (O3),

ultraviolet radiation, and CO2) and biotic (eg microbial invasion, fungi, and bacteria) (Pham

and Desikan, 2009).

As their name suggests ROS are highly reactive, particularly superoxide and the

hydroxyl radical. When ROS concentrations are not controlled, cells can suffer from

oxidative stress which can lead to impaired physiological function, random damage of

the cell machinery, and cell death (Finkel and Holbrook, 2000). Oxidative stress can

be a defence mechanism against pathogen invasion, during which up to 15µM H2O2 are

produced to kill invading microbes, to trigger programmed cell death and limit tissue

damage. This production of hydrogen peroxide may be augmented by suppression of

antioxidants by salicylic acid and nitric oxide (NO) (Klessig et al., 2000). ROS are also

involved in other processes in plants such as plant development, stomatal movements (see

below), root growth, and flowering (McInnis et al., 2006; Pham and Desikan, 2009; Zafra

et al., 2010).

Plants have a variety of mechanisms to keep ROS levels under control and to

reduce them into less-harmful compounds. Non-enzymatic antioxidants include glu-

tathione (GSH), ascorbate (ASC), tocopherol, flavonoids, carotenoids and NO; enzymatic

antoxidants include ascorbate peroxidase, superoxide dismutase (SOD), and catalase

(CAT) (Chen and Gallie, 2004; Desikan et al., 2007; Jahan et al., 2008; Miao et al., 2006;

Neill et al., 2002). Glutathione, ascorbate and their corresponding peroxidases reduce

hydrogen peroxide in the ascorbate-glutathione and glutathione-peroxidase cycles, while

CAT reduces H2O2 producing water and molecular oxygen (Apel and Hirt, 2004). The

role of NO as an antioxidant in plants is less clear: on one hand (as mentioned above) NO

suppresses the activity of catalase and ascorbate peroxidase, but on the other hand NO can

enhance the activity of SOD and itself can react with superoxide to form peroxynitrite (Neill
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et al., 2008), so it would seem that NO acts against superoxide and in favour of hydrogen

peroxide. Other methods of ROS control may include curbing its production by NADPH-

oxidase dephosphorylation or allosteric inactivation (eg nitrosylation) (Belin et al., 2006;

Gosti et al., 1999; Merlot et al., 2001; Yoshida et al., 2006; Yun et al., 2011).

ROS function as signalling molecules in response to a variety of stimuli such as

ABA, ethylene, salicylic acid (SA), ozone, or jasmonic acid (JA) (Taiz and Zeiger, 2002).

Hydrogen peroxide is the most common redox signalling molecule because it is moderately

reactive (the other ROS are far more reactive and not ideal for signalling), has a relative

long half-life (1ms), it can diffuse across cell membranes, its production can be induced

and stopped quickly, and can cause the post-translational modification of proteins to

alter their activity (Marks et al., 2009; Wang and Song, 2008). In addition to baseline

metabolic production of ROS, cells have dismutases and NADPH-oxidases to produce

ROS specifically for signalling (Kwak et al., 2003). Furthermore, in specialised cells such

as guard cells with negligible photosynthetic activity, the chloroplasts can be used as a

source of ROS for signalling (Pham and Desikan, 2009). ROS have been found to alter

the activity of two-component systems in a thiol group-dependent way, which may result

in expression or repression of target genes (Apel and Hirt, 2004; Desikan et al., 2006).

Hydrogen peroxide can also activate several MAPK-cascades (for which there are over

100 genes in Arabidopsis), regulate the activity of ion channels and proton pumps which

control pH and membrane polarity (Apel and Hirt, 2004; Cho et al., 2009b; Pham and

Desikan, 2009). The sheer variety of targets for interaction makes ROS a vital component

of many signal transduction pathways.

2.2.4 Nitric oxide

Nitric oxide (NO) is a reactive gas molecule and a free-radical (sometimes represented as

NO•) present in many cells and tissues. In most cells NO is produced from L-arginine by

the nitric oxide synthase (NOS) family of enzymes. Although in plants NOS-like enzymes

have not been found, NO production in plants has been shown to occur via nitrate reductase

(NR) enzymes such as NIA1 and NIA2 (Desikan et al., 2002), and others such as AtNOA1,

and nitrite reductase (Wilson et al., 2008).
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As with ROS, NO has the attributes of a second messenger: it is moderately reactive,

has a half life of 5-10s, can diffuse across membranes and in lipid environments, and its

concentration can be controlled by the cell either by stimulating its production (eg with

NOS or NR) or by accelerating its removal (Hancock, 1999; Wilson et al., 2008).

As a signalling molecule NO acts on guanyl-cyclase by binding on haem groups

to produce cyclic guanosine monophosphate (cGMP), another second messenger that

regulates serine threonine kinases. NO can induce conformational change in proteins

by nitrosylation of cystenyl-SH groups which can activate or deactivate an enzyme

(a conformational change analogous to phosphorylation), control ion channels, elevate

cytosolic Ca2+, and interact with ROS (Marks et al., 2009; Wilson et al., 2008). The

effect of NO depends critically on its concentration. For example, in guard cells NO can

deactivate inwards K+ channels, but in higher doses it can deactivate outwards K+ channels

as well (Bright, 2006; Sokolovski and Blatt, 2004). A halt of ion efflux can possibly block

stomatal movements. When NO is overproduced nitrosylation can occur non-specifically (a

situation known as nitrosative stress, similar to oxidative stress), and can trigger cell death;

NO induced cell death is used as a defence mechanism against invading organisms (Marks

et al., 2009). In seeds, NO antagonises ABA by reducing seed dormancy and stimulating

germination (Bethke et al., 2006; Libourel et al., 2006).

NO can be removed from cells by combining it with water, oxygen, and haemoglobins

to produce nitrites and nitrates. The antioxidant glutathione can bind to NO to from S-

nitrosylated glutathione (GSNO) which is converted to ammonia by GSNO-reductase. In

addition to reacting with an antioxidant, NO itself can have antioxidant activity by reacting

with superoxide to create peroxynitrite, normally a toxic substance but surprisingly plant

cells can resist its toxicity and even use it as a messenger (Delledonne et al., 2001; Klotz

et al., 2002).

2.2.5 Calcium

Calcium ions (Ca2+) have important roles in signalling processes in all cells (Hancock,

1999). The cytosolic concentration of Ca2+ is kept low in unstimulated conditions by

means of calcium pumps, channels, stores, and buffering proteins. ATP-dependent pumps
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such as the Sarco/Endoplasmic Reticulum Calcium-dependent ATPase (SERCA) and the

plasma membrane Ca2+-dependent ATPase (PMCA) transport Ca2+ ions against their

gradient into the Endoplasmic Reticulum (ER) and the outside of the cell, respectively.

Na+–Ca2+ and H+–Ca2+ exchangers use the gradient in the concentration of Na+ and H+

to transport Ca2+ either outside the mitochondria or outside the cell. Ca2+-uptake into

the mitochondria occurs via a uniporter (UP) along a charge gradient when required by

a cellular process. Ligand-controlled channels can release calcium ions into the cytosol

from the ER and the exterior of the cell. One of the best-known ligands controlling Ca2+

from the ER is inositol-3-phosphate (IP3). Although IP3 is active in guard cell signalling

its receptors in plant genomes have yet to be found (Kim et al., 2010). Additionally,

voltage-controlled channels can import Ca2+-ions from the exterior into the cytosol (Marks

et al., 2009). In plant cells, vacuoles also serve as calcium stores (Taiz and Zeiger,

2002). In addition to stores and channels, cells also control cytosolic Ca2+ concentration

via buffering proteins such as calmodulin. All the above mechanisms assure that under

unstimulated conditions, the concentration of calcium ions in the cytosol is four orders

of magnitude lower than outside the cell or in the stores, 10−7 M in the cytosol versus

2× 10−3 M outside the cell and in the stores (Hancock, 1999).

Many Ca2+-binding proteins contain a motif known as the EF-hand, consisting of a

helix-loop-helix domain where calcium ions can bind. In the Arabidopsis genome there are

over 200 Ca2+-binding proteins, including 34 calcium-dependent protein kinases (CDPK)

and 10 calcineurin B-like (CBL) proteins (D’Angelo et al., 2006; Kim et al., 2010).

Interestingly, in Arabidopsis NADPH-oxidases have an EF-hand which is activated by

cytosolic Ca2+ (Ogasawara et al., 2008). Many proteins upon binding Ca2+ undergo

conformational changes which might expose (or hide) active sites, altering the activity of

the protein and downstream signalling components.

Calcium signalling does not exclusively depend on cytosolic concentration. Many

signals induce transients, oscillations, and location-specific changes that have different

effects on cell behaviour, making Ca2+-signalling an extremely versatile tool for signalling.

It has been hypothesised that some signals induce specific “calcium signatures” to

produce specific cellular responses (Ng et al., 2001; Taiz and Zeiger, 2002). Further-

more, it has been shown that unstimulated Arabidopsis guard cells exhibit cytosolic
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Ca2+-oscillations (Yang et al., 2008), giving rise to the hypothesis that calcium signalling

may depend less than previously thought on concentration and may involve the “priming”

of Ca2+ sensors (Kim et al., 2010; Young et al., 2006).

2.2.6 Ions

Ions are particles with an imbalance in their numbers of electrons and protons which result

in an electric charge. If there are more protons than electrons then the charge is positive,

if the reverse is true then the charge is negative. There are five main ions in cells: H+,

Na+, K+, Cl−, and Ca2+ (Marks et al., 2009). Ions are used by cells to control pH (H+),

membrane potential (Na+, K+, Cl−, Ca2+), and function as second messengers (Ca2+).

Additionally, the concentration of K+ and Cl− in guard cells is regulated to establish

osmotic gradients to change the amount of water contained in the vacuoles which ultimately

determines cell volume and stomatal aperture (Taiz and Zeiger, 2002).

The cytosolic concentration of K+ ions in guard cells is controlled by the inwards-

rectifying K+
in and the outwards-rectifying K+

out channels, located in the plasma mem-

brane (Blatt and Armstrong, 1993; Schroeder and Fang, 1991), and slow (SV) and voltage

independent (VK) K+ vacuolar channels (MacRobbie, 1998; Ward and Schroeder, 1994).

The activity of these channels is controlled by pH, membrane potential (and vacuolar

membrane potential), and cytosolic Ca2+ concentration.

The channels regulating the concentration of Cl− anions are located on the plasma

membrane and include the slow-activating (S-type) and the rapid transient (R-type) (Hedrich

et al., 1990; Schroeder and Hagiwara, 1989). Vacuolar anion channels controlled by

CDPKs are reportedly active during stomatal closure (MacRobbie, 1998; Pei et al., 1996).

The concentration of H+ (and hence pH) in the cytosol is mainly controlled by proton

pumps located in the plasma membrane (H+–ATPase) and in the vacuolar membrane

(V–ATPase). Variations in the pH of the cytosol has consequences for the behaviour of

the cell and the activity of the proteins, eg more alkaline pH increases the availability of

K+ outwards channels (see below) (Blatt and Armstrong, 1993).
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Figure 2.3: Early events of ABA signalling in guard cells. A: In the absence of ABA, PYR

molecules form dimers and do not interact with ABI1, which dephosphorylates the kinase

OST1. The NADPH-oxidase AtrbohF does not produce ROS because OST1 activity is

blocked by ABI1. AtrbohD does not produce ROS in the absence of ABA. B: The ABA-

bound PYR/PYL impede ABI1 inactivation of OST1, which phosphorylates and induces

ROS production by AtrbohF. ABA also induces AtrbohD-mediated production of ROS.

2.3 Abscisic acid-induced stomatal closure

2.3.1 ABA perception

The family of proteins pyrabactin resistance (PYR) and PYR-like (PYL), sometimes

also known as regulatory component of ABA receptor (RCAR) have been shown to be

receptors of ABA in guard cells (Ma et al., 2009; Park et al., 2009). The perception of

ABA and early events in ABA signalling form a module that includes both positive and

negative regulators of the pathway (Hubbard et al., 2010; Weiner et al., 2010). The protein

phosphatase 2C (PP2C) ABA insensitive 1 (ABI1) is known to be a negative regulator of

ABA signalling, and lies upstream of all other known signalling events and components

involved in stomatal closure (Allen et al., 1999; Gosti et al., 1999; Merlot et al., 2001;

Pei et al., 1997). ABI1 inactivates the kinase activity of the SNF1-related protein kinase

2 (SnRK2) open stomata 1 (OST1) by removing phosphate groups (Mustilli et al., 2002;
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Vlad et al., 2009; Yoshida et al., 2006). In the absence of ABA, proteins of the PYR/PYL

family form dimers (Santiago et al., 2009), and ABI1 prevents OST1 from activating other

components that lie downstream in the pathway (Fig. 2.3A). The structure of PYR/PYL

proteins contains a cavity where the ABA binding site is located. Upon arrival of the

ABA signal, ABA molecules bind to PYR/PYL proteins in the cavity which weakens

and possibly breaks the dimer; ABA molecules are secured to the protein by a gate and

lock mechanism (Melcher et al., 2009, 2010; Miyazono et al., 2009; Nishimura et al.,

2009; Santiago et al., 2009). Binding of ABA, in addition to weakening the dimer, also

changes the conformation of PYR/PYL molecules which increases their affinity to PP2C

molecules (Miyazono et al., 2009). ABA-bound PYR/PYL have high affinity to ABI1, and

inhibit its phosphatase activity, thus allowing OST1 to become phosphorylated and activate

downstream components (Fig. 2.3B) (Weiner et al., 2010). PYR/PYL molecules are small

and soluble (Hubbard et al., 2010), which indicates that ABA must enter the cytosol to bind

to its receptors. A mediator of ABA uptake into the cell is the ATP binding cassette (ABC)

sometimes called Arabidopsis thaliana pleiotropic drug resistance transporter (PDR12)

located on the plasma membrane (Kang et al., 2010).

The Mg-Chelatase H-subunit (CHLH), located in the chloroplasts has been identified

by Shen et al. (2006) as an ABA receptor in Arabidopsis guard cells; however, this result

has been contested in barley (Müller and Hansson, 2009). Additionally two G-protein

coupled receptor type G-proteins GTG1 and GTG2, located on the membrane, have

been identified as ABA receptors (Pandey et al., 2009). Although GTG1 and GTG2 are

involved in stomatal closure, loss-of-function gtg1 gtg2 single and double mutants still

retain some ABA sensitivity (Pandey et al., 2009), possibly via PYR/PYL proteins. The

precise interaction between GTG1, GTG2, and the rest of the guard cell signalling pathway

remains to be uncovered.

It is perhaps worth mentioning that the search for the ABA receptors has not been

straightforward (McCourt and Creelman, 2008). For example, the RNA-binding protein

FCA was identified as an ABA receptor (Razem et al., 2006), which later was shown

to be incorrect (Razem et al., 2008; Risk et al., 2008). The role of CHLH needs also

to be clarified, given the negative result from the study in barley. So far, only the role

of PYR/PYL, via their interactions with ABI1 and OST1, is firmly established in the
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Figure 2.4: ABA-induced ROS and NO synthesis in guard cells. A: In the absence of

ABA AtrbohD/F remain inactive so ROS are not produced. Without ABA-induced ROS

NR remains in a phosphorylated state and there is no NO produced for signalling. B: When

the ABA signal arrives AtrbohD/F phosphorylate and ROS is produced. ROS cause the

dephosphorylation of NR which produces NO. Gluthathione (GSH) scavenges both ROS

and NO.

ABA-induced stomatal closure signalling pathway.

2.3.2 ROS signalling in ABA-induced stomatal closure

ABI1 impedes the activation of OST1 in the absence of an ABA signal (Fig. 2.3A). After

ABA perception by guard cells and the phosphatase activity of ABI1 has been halted,

OST1 is able to autophosphorylate and become active. Although in Arabidopsis there

are at least ten members of the NADPH-oxidases Arabidopsis thaliana respiratory burst

oxidase homolog (Atrboh) only two versions have been found to be active in ABA-induced

ROS production: AtrbohF and AtrbohD. It is known that AtrbohF is phosphorylated by

OST1 to produce superoxide which quickly becomes dismutated into hydrogen peroxide

(Fig. 2.3B) (Belin et al., 2006; Kwak et al., 2003; Mustilli et al., 2002). It is also known

that AtrbohD is active in ABA-induced stomatal closure, although its activation mechanism

is still unknown. Studies of loss-of-function mutants atrbohd and atrbohf, have shown that
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the amount of ROS produced by AtrbohD is less than the amount produced by AtrbohF, and

atrbohd mutants have sensitivity to ABA comparable to wild-type specimens (Kwak et al.,

2003). ROS have also been reported to inhibit the phosphatase activity of ABI1 in vitro,

possibly creating a positive feedback loop (Meinhard and Grill, 2001), whose existence

needs to be confirmed in vivo. Hydrogen peroxide production in guard cells begins within a

minute of exposure to ABA in an oxidative burst (Pei and Kuchitsu, 2005; Pei et al., 2000;

Wang and Song, 2008). The release of Ca2+ and its effect on ion channels (see below),

and subsequent stomatal closure in response to ABA depends on ROS, and ROS-regulated

MAPK proteins (Jammes et al., 2009; Köhler et al., 2003; Pei et al., 2000). Other targets

of ROS include glutathione peroxidase (GPX), which acts as a transducer and scavenger of

ROS (Miao et al., 2006), and possibly cell pH.

Antioxidants ascorbate (ASC) and glutathione (GSH) have been found in guard cells,

and are involved in the prevention of oxidative stress damage that might arise from

excessive ROS accumulation in guard cells (Fig. 2.4B) (Chen and Gallie, 2004; Kwak et al.,

2006). The expression of dehydroascorbate reductase (DHAR) which produces ASC, for

example, is regulated by circadian rhythms to allow ROS concentrations to increase in the

evening to allow stomatal closure at night (Chen and Gallie, 2004). As mentioned above,

GPX has a dual role in ROS signalling, its action is represented by Miao et al. (2006) as

a balance scale: when there is little ROS then GPX acts as a transducer, once the ROS

concentration passes a tipping point then GPX becomes a scavenger. The exact way in

which these antioxidants interact with the rest of the components of the ABA signalling

pathway remains to be clarified. ROS are now firmly established as an essential component

of the ABA-induced stomatal closure, but their regulation and removal during stomatal

closure needs to be understood yet (Kwak et al., 2006; Pham and Desikan, 2009; Wang and

Song, 2008; Zhang et al., 2001b).

2.3.3 NO production

Nitric oxide signalling occurs during biotic and abiotic stress responses in plants, and ABA-

induced stomatal closure is not an exception (Garcı́a-Mata and Lamattina, 2002; Melotto

et al., 2006; Neill et al., 2003). Production of NO in guard cells is observed after treatment
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Figure 2.5: ABA-induced cytosolic alkalinisation. A: In the absence of ABA the

phosphatase ABI1 inactivates OST1, and cytosolic and vacuolar pH are kept at equilibrium.

B: ABA-bound PYR/PYL blocks OST1 inactivation of ABI1. Phosphorylated OST1

increases the activity of the vacuolar proton pump, making the pH of the cytosol more

alkaline and the pH of the vacuole more acidic.

with ABA, and cells exposed to NO-scavengers become less responsive to stimuli. Loss-of-

function single and double NR mutants nia1nia2 fail to produce NO and show decreased

stomatal responses to ABA stimuli (Desikan et al., 2002), and production of NO by NR

in vitro has been shown to be modulated by phosphorylation (Rockel et al., 2002). In

ABA-induced stomatal closure NO production depends on hydrogen peroxide generated

by AtrbohD/F (Bright et al., 2006) (Fig. 2.4). ROS-dependent NO production is intriguing

given that, as explained above, NO and superoxide react with each other. This interaction

suggests that ROS may modulate their own concentration through NO. Additionally, NO

and hydrogen peroxide share GSH as a scavenger (Perazzolli et al., 2006; Wilson et al.,

2008). ABA-induced NO in guard cells regulates the concentration of K+ and Cl− by

facilitating the release of Ca2+ from intracellular stores (Fig. 2.6, see below) (Garcı́a-Mata

et al., 2003).
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2.3.4 Cytosolic alkalinisation

During ABA-induced stomatal closure the pH of the cytosol becomes more alkaline, going

from around 7.0 to 7.5; whereas the pH in the tonoplast (vacuoles) becomes more acidic,

decreasing from 5.5 to 5.0 (Blatt and Armstrong, 1993; Islam et al., 2010; Miedema and

Assmann, 1996; Pei et al., 1998; Zhang et al., 2001a). Changes to cytosolic pH during

stomatal closure are driven mainly by the vacuolar proton pump (V–ATPase), given that

rises in Ca2+ deactivate the plasma membrane H+–ATPases (Sec. 2.3.5). According to

what is described in Sec. 2.3.1, OST1 is inactivated by ABI1 in the absence of ABA

(Fig. 2.5A). When ABA-bound PYR/PYL prevents OST1 dephosphorylation, then OST1

is able to increase V–ATPase activity (Fig. 2.5B), though the details of this interaction

remain to be established (Islam et al., 2010; Suhita et al., 2004). There are conflicting

reports in the literature about the involvement of ROS in the rise of cytosolic pH after

treatment with ABA, which suggests complex interactions of the signalling components

at this level: Suhita et al. (2004) report that alkalinisation of the cytosol precedes ROS

production, whereas Zhang et al. (2001a) find that to the contrary, pH rises in response

to ROS elevations. What is not disputed is that cytosolic pH has an important role in

ABA-induced stomatal closure, and the effects of it becoming more alkaline include the

regulation on ion channels (see below).

2.3.5 Ca2+ release

The role of Ca2+ in ABA-induced stomatal closure was established by McAinsh (1990) in

a study where the cytosolic calcium levels were observed to rise in 80% of cells treated

with ABA. ABA-induced ROS production activates plasma-membrane Ca2+ channels

(Fig. 2.6) (McAinsh et al., 1996; Murata et al., 2001; Pei et al., 2000). In addition,

OST1 is thought to interact with Ca2+ channels, affecting cytosolic Ca2+ levels in a

ROS-independent way (Kim et al., 2010; Siegel et al., 2009). NO also mobilises Ca2+

into the cytosol in a process that requires protein phosphorylation (Garcı́a-Mata et al.,

2003; Lamotte et al., 2005; Neill et al., 2008; Sokolovski et al., 2005). As mentioned

in Sec. 2.2.5, unstimulated cells have spontaneous cytosolic Ca2+ oscillations, and ABA-

induced calcium increases also feature oscillations (Kim et al., 2010). Furthermore, it has
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Figure 2.6: ABA-induced ion efflux and loss of turgor. A: In the absence of ABA the kinase

OST1 is inactive and ion levels and pH remain at equilibrium levels. B: ABA-induced ROS

and NO mediate the rise in cytosolic Ca2+, membrane depolarisation, and ion efflux. Active

OST1 causes pH to rise and activates anion channels. The resulting osmotic gradient causes

the exit of water from the cell and the stomatal pore to close.

been shown that elevations in the cytosolic level of calcium are not required to successfully

complete ABA-induced stomatal closure, though the presence of calcium at least at resting

levels is required (Siegel et al., 2009). These observations have prompted the hypothesis

that ABA “primes” the Ca2+ receptors to be more sensitive (Kim et al., 2010). Downstream

in the ABA signalling pathway Ca2+ controls ion channels (Ng et al., 2001) and membrane

polarity (see below). Observations by Levchenko et al. (2005), McAinsh (1990) and Siegel

et al. (2009) also show that there are Ca2+-independent branches in the guard cell signalling

network, eg via pH.

2.3.6 Membrane polarity, ion and anion efflux

ABA-induced rises in the levels of ROS and NO promote the influx of Ca2+ into the cytosol

through membrane channels and its release from intracellular stores. This calcium elevation

down-regulates the activity of inwards-rectifying channels (K+
in) (Fig. 2.6) (Garcı́a-Mata

et al., 2003; Kwak et al., 2008; Pei et al., 2000; Schroeder and Hagiwara, 1989). A
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rise in cytosolic pH and an elevated NO concentration cause a reduction in the cytosolic

concentration of K+ by increasing the efflux through K+
out and a reduced influx through

K+
in. More alkaline levels of pH increase the number of available K+

out channels to

accelerate the rate of K+ ion extrusion (Blatt and Armstrong, 1993; Miedema and Assmann,

1996). Very high concentrations of NO (≥ 100nM), however, can block K+
out directly

by nitrosylation (Garcı́a-Mata et al., 2003; Sokolovski and Blatt, 2004; Sokolovski et al.,

2005), possibly compromising the closure process. High ROS concentrations can block

K+
in (Zhang et al., 2001c) and, surprisingly, K+

out. However, it has been suggested that the

blocking of K+
out by ROS may not be a feature in ABA-mediated stomatal closure (Köhler

et al., 2003). Anions such as Cl− and malate are released from the vacuole and out of the

cell during stomatal closure (Assmann and Shimazaki, 1999; Wang et al., 2001). OST1

phosphorylates the slow anion channel-associated 1 (SLAC1) channel, causing an Cl−

efflux which depolarises the cell membrane (Geiger et al., 2009). Guard cells dispose

of malate during stomatal closure by extrusion and consumption by the tricarboxylic acid

cycle (Dittrich and Raschke, 1977). An additional consequence of the rise in cytosolic

Ca2+, NO, and ROS is the deactivation of membrane proton pumps (H+-ATPases), which

further contribute to depolarise the membrane (Wasilewska et al., 2008), and allows K+
out

to increase its activity.

2.3.7 Loss of turgor and stomatal closure

The ion and solute efflux described above, and the resulting lower ionic concentration in

the cytosol create an osmotic gradient that forces the water in the vacuoles to exit the cell.

The loss of water leads to a decreased turgor pressure thus deflating the guard cells and

closing the pore (Kwak et al., 2008; Schroeder et al., 2001). The loss of turgor marks the

culmination of the stomatal closure signalling process and, depending on circumstances,

may mark the beginning of inhibition of stomatal opening, a related but distinct process

from stomatal closure (Kim et al., 2010; Pandey et al., 2009).
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Figure 2.7: Ethylene reception and ROS production in guard cells. A: ETR1 is a negative

regulator of ethylene signalling. B: Ethylene binding inactivates ETR1, ROS is produced

by AtrbohF. ETR1 senses ROS and relays the signal downstream.

2.4 Ethylene-induced stomatal closure

2.4.1 Ethylene

As described in Sec. 2.2.2, ethylene is an important and well-studied plant hormone. In

addition to all the functions already mentioned, ethylene is an effector of stomatal closure

in Arabidopsis thaliana (Pallas and Kays, 1982). Intriguingly, in other plant species such as

Vicia faba ethylene is an effector of stomatal opening as mentioned in Sec. 2.2.2, however

this work is focused only in ethylene effects in Arabidopsis. Although the ethylene pathway

is arguably well-understood in seedlings and root cells (Stepanova and Alonso, 2005), little

is known about it in guard cells. Below is described what is known so far about the ethylene

signalling pathway in guard cells leading to stomatal closure.

2.4.2 Ethylene perception and ROS production

Of the five known ethylene receptors only ETR1, located in the ER and a negative

regulator of ethylene signalling, has been shown to be involved in ethylene-induced
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stomatal closure (Desikan et al., 2005; Tanaka et al., 2005, 2006). The immediate events

after ethylene binding by ETR1 are still not known. Ethylene induces ROS production

by AtrbohF but, unlike in the ABA-pathway, not by AtrbohD (Fig. 2.7) (Desikan et al.,

2006). The signalling steps between ethylene perception by ETR1 and ROS production

by AtrbohF are not yet clear. Given that ETR1 is a negative regulator of the ethylene

pathway (ie ethylene inactivates ETR1), it is probable that its action on AtrbohF (in the

absence of ethylene, Fig. 2.7A) is also negative. Enzymes such as ABI1 and OST1 could

be involved in the production of ROS by ethylene (which would make the earliest events in

ethylene signalling resemble the early events in ABA signalling), although that remains to

be confirmed. In addition to ethylene perception, ETR1 has an additional role in ethylene

signalling: it senses ROS and relays the signal downstream in a process that depends on

the enzymes ethylene insensitive 2 (EIN2) and Arabidopsis thaliana response regulator 2

(ARR2) (Fig. 2.8); however, their exact roles have not been determined so far (Desikan

et al., 2006).

2.4.3 Downstream of ROS

The events downstream of ethylene-induced ROS production during stomatal closure have

not been fully verified experimentally. Preliminary results indicate that NO is produced in

guard cells treated with the ethylene precursor ACC (Devienne, 2010), possibly in a pH-

dependent way (Liu et al., 2010a). If indeed NO is produced, it is likely that at least some

is produced by NIA1 via ROS as it occurs in the ABA pathway, but other sources may also

be involved. The role of Ca2+, membrane polarity, and ion channels in ethylene-induced

stomatal closure has not been experimentally tested. An osmotic gradient must be produced

so that water may exit the cells for stomatal closure to happen, this requires ion extrusion

(Fig. 2.8). Given the overlap of the ethylene and ABA pathways at the AtrbohF and ROS

level, it is likely that the components downstream of ABA are also downstream of ethylene.
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Figure 2.8: Ethylene signalling downstream of ROS. A: At rest the cells maintains

equilibrium levels of ROS, and ion concentration. B: Ethylene-induced ROS requires

ETR1, EIN2, and ARR2 so that stomatal closure can be completed, which implies that

the extrusion of ions from the cytosol and other cellular compartments must occur.

2.5 Lack of closure under combined ABA-ethylene treatment

Hormone interactions in plant cells are common (Acharya and Assmann, 2009; Chang and

Bleecker, 2004; Liu et al., 2010b; Wilkinson and Davies, 2009a); Sections 2.3 and 2.4

discuss the mode of action of ABA and ethylene in guard cells. Both of these hormones

cause stomatal closure individually but, surprisingly, when applied simultaneously they fail

to produce full closure (Desikan et al., 2006; Tanaka et al., 2005). These observations

are hard to reconcile; two signals that individually produce a particular response but

none when they are combined seems contrary to intuition, specially since their signalling

pathways overlap. The mechanisms by which this cross-talk occurs are not yet known.

The signal transduction pathways presented in this chapter are only a partial description

of stomatal closure whose components are thought to be the most important ones in vivo.

An exhaustive list of all known interactions, whose understanding is incomplete in many

cases and sometimes fuzzy at best, is not presented here. For example, the roles of ARR,

EIN2, and ETR1 in the ABA pathway so far have not been elucidated. In addition,

there are components of the ethylene pathway that have been known to interact with or
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antagonise ABA signals in other cell types, for example: EIN2 modulates ABA stress

responses in Arabidopsis seeds (Wang et al., 2007), ABA can restrict ACC production also

in seeds (Matilla, 2000; Yoshii and Imaseki, 1981), and oxidative stress (ie excess ROS)

and ethylene are suspected to suppress stomatal closure (Wilkinson and Davies, 2009b).

The picture of stomatal closure is much more complicated than what is understood today.

Large and complex signalling systems which are almost always non-linear are known to

produce strange and unexpected behaviour such as bistability, oscillations, and chaos (Carter

et al., 2010; Stark and Hardy, 2003; Stark et al., 2007; Strogatz, 1994). In a way, it is not

surprising to find seemingly contradictory behaviour in a network with as many nodes and

interactions as the guard cell network.

In the rest of this thesis we will endeavour to understand the possible causes of the

ABA-ethylene cross-talk in guard cells. Chapter 3 provides a minimal introduction to

mathematical modelling for cell-signalling systems. Chapter 4 introduces a new method to

fit model parameters from data using Monte Carlo techniques and evolutionary algorithms.

Models of activation cascades are analysed in Chapter 5; analytical solutions are obtained,

and their uses in different contexts are discussed. Experimental measurements are made in

guard cells treated with single and combined stimuli in Chapter 6; an ordinary differential

equation model of stomatal closure is constructed in Chapter 7, incorporating the results

from the analysis of activation cascades and fit to the data using the new Monte Carlo

method.
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Chapter 3

Mathematical models in cell biology

Systems studied in the biological, physical, and social sciences usually contain many

components that interact in specific, yet complicated ways, often changing with time. In

biology, cell signalling systems (eg the regulation of transpiration in plants described in

Chapter 2 or the immune system) have numerous components including nucleic acids,

proteins, hormones, reactive molecules and ions (Hancock, 1999). These components

interact to elicit responses to external signals. For example, in sections 2.3 and 2.4 we

discussed how when plants detect unfavourable conditions (eg drought or pathogen attack),

interactions between various cell signalling components act to slow down their metabolism

until conditions improve. Although many components of these systems are known, the

size and complexity of the system often make detailed experimental investigations too

expensive or difficult to perform (Hardy and Stark, 2002; Stark and Hardy, 2003; Yates

et al., 2001). The use of tools from quantitative and physical disciplines has helped to

overcome some of these limitations by abstracting and representing biological systems

in a framework that allows the efficient exploration of hypotheses, and the extraction of

conclusions that would be difficult to obtain by experimentation alone. In biology, the

need for a quantitative understanding is specially acute. Mathematical modelling has been

successfully used to explain and predict system behaviour, what experiments should be

performed, what are the ’rate-limiting’ components of a system and whether or how a

system can be controlled (Howison, 2003; Keener and Sneyd, 1998). In many systems,

such as guard cells, many questions remain without an answer, such as what is the precise
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timing of events that lead to a response? Which components form groups of interaction,

when and for how long? What determines specificity to multiple stimuli?

Broadly, a model is an abstract representation of a phenomenon using in this case a

mathematical framework. There is no unique way to model a system, and rarely a model

is the model that answers all questions, nor is there a recipe for producing mathematical

models; generally, the process involves making assumptions about what the most important

characteristics of a system are, and ignoring the other less-important aspects of it. A good

model will capture the essential characteristics of the system, make predictions, and guide

new experiments. Models can always be refined further as needed, but should always be

kept as simple as possible.

The type of models that we use in this work are mechanistic and deterministic; they

describe a mechanism for the behaviour of a system. Once the rules of the system are

set and we provide some necessary initial or boundary conditions, the behaviour of the

system is determined for all time. Examples of deterministic models include differential

equations (continuous time), and Boolean models and difference equations (discrete time).

Other type of approaches are mechanistic but incorporate randomness, such as stochastic

models. Statistical models describe observations and data but do not provide insights into

the mechanisms that drive systems.

3.1 Differential equation models

In our modelling, the state of a biological system is described by an n-dimensional

continuous function x(t) = [x1(t), x2(t), . . . , xn(t)], where t is time, and the variables xi(t)

are features of the system such as temperature or concentration of a substance. We represent

the change of x(t) in time using ordinary differential equations (ODEs), which describe the

rate of change of an unknown function along one dimension, usually time (Kreyszig, 2006).

Partial differential equations (PDEs) describe the change along more than one dimensions

(eg time and spatial dimensions). In this project we are concerned mostly with the change

of a function in time, hence we will use ODEs. We write the change of x in time as

dx

dt
= f(t,x, θ), (3.1)
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where d
dt

is the time-derivative of x. We relate the rate of change of x in time to a function

of time t, its current state x(t), and a set of parameters θ. Parameters are constants that

stand for the inherent properties of the system, and typically are non-negative real numbers

(the signs are prescribed by the equations). To solve equation (3.1), we need to know the

initial conditions, the state of x at some time t0, ie x(t0) = x0.

Equation (3.1) is linear whenever f is a linear operator on x, ie when the following

properties hold

f(t,x+ y, θ) = f(t,x, θ) + f(t,y, θ),

f(t, αx, θ) = αf(t,x, θ),

and α is a fixed constant. If f does not have these properties then the equation is nonlinear.

Most biological systems present nonlinear behaviour; however, there are several cases in

which a linear model or a linear approximation can be used to understand the system.

Equation (3.1) reaches a steady state or an equilibrium point at xss when:

f(t,xss, θ) = 0,

that is, the rate of change is zero and the state of the system does not change. A steady

state can be stable, ie if the system is perturbed from the steady state it will return to

it, or unstable, ie if system does not return to the steady state when perturbed. Other

ODE systems may exhibit other more complex behaviour such as regular and irregular

oscillations (Strogatz, 1994).

Below, we present an example that is simple enough so that x(t) can be written

explicitly.

Example 3.1.1. Suppose a one-dimensional system x(t) whose rate of change is given by

dx

dt
= αx,

where x(0) = 1. Here the rate of change is proportional to the state of the system. This is

a simple linear equation whose solution is the exponential function x(t) = eαt. The only
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steady state of this system is xss = 0, and it is unstable.

Although many nonlinear models in biology cannot be solved analytically modellers

can rely on numerical methods to obtain accurate approximations to the solutions (Süli

and Mayers, 2003). To that end, there are a plethora of analytical methods and tools

(eg perturbation methods, bifurcation and stability analysis) that help to understand and

approximate the dynamics of a system without having to write an explicit solution (Bender

and Orszag, 1999; Kuznetsov, 1998; Seydel, 2010; Strogatz, 1994).

3.2 Reaction and enzyme kinetics

In cell biology many signals are transmitted by means of chemical and biochemical

reactions; in this section we introduce a few examples of how these reactions are modelled.

3.2.1 Mass-action kinetics

One of the simplest and most convenient ways of modelling chemical reactions is using

mass-action kinetics (also known as the law of mass action), first described in 1864 by

Waage and Gulberg (1986). Broadly, the law of mass-action states that the rate of reaction

of two components in a well-stirred container is proportional to their concentrations. The

use of the law of mass action is ubiquitous in biological systems modelling (Chen et al.,

2010; Feliu et al., 2010; Gunawardena, 2011; Higham, 2008).

If A and B are two substances that participate in the irreversible reaction

A+B
α
−→ C,

the change in their concentration is given by the nonlinear system of equations

d[A]

dt
= −α[A][B],

d[B]

dt
= −α[A][B],

d[C]

dt
= α[A][B],
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where [A], [B] and [C] are the variables of the model and the parameter α is the rate constant

of the reaction. The initial conditions of the equations are [A](0) = A0, [B](0) = B0, and

[C](0) = 0. If the reaction is reversible, eg

A+B
α
−⇀↽−
β

C,

then the equations are

d[A]

dt
= −α[A][C] + β[C],

d[B]

dt
= −α[A][B] + β[C],

d[C]

dt
= α[A][B]− β[C].

Note that in both sets of equations the negative terms are multiplied by the concentration

in whose equations it is found, eg−α[A][B] in the equations for [A] and [B], and−β[C] in

the equation for [C]; this guarantees that the variables in the equations cannot ever become

negative, a good reality check for the model.

3.2.2 Enzyme kinetics

Many reactions inside cells are catalysed by enzymes. The typical mode of action of an

enzyme is described by the reaction

S + E
k1−−⇀↽−−
k−1

SE
k2−→ P + E, (3.2)

where the substrate S reversibly binds to enzyme E to form the substrate-enzyme complex

SE, which either dissociates back to S and E or reacts to create a product P . The enzyme

is not changed by the reaction and can bind to a new molecule of the substrate to catalyse

another reaction.

The variables [E], [S], [SE], and [P ] are concentrations of the reactants, the differential
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equations that describe the reaction (3.2) (Cornish-Bowden, 2004) are

d[E]

dt
= −k1[S][E] + k−1[SE] + k2[SE], (3.3)

d[S]

dt
= −k1[S][E] + k−1[SE], (3.4)

d[SE]

dt
= k1[S][E]− k−1[SE]− k2[SE], (3.5)

d[P ]

dt
= k2[SE], (3.6)

with initial conditions:

[E](0) = E0, [S](0) = S0 [SE](0) = 0, [P ](0) = 0.

Equation (3.6) is decoupled from the rest, ie depends only on [SE] and no other equations

depend on it, so we will consider it separately from the other three. Equations (3.3)

and (3.5) cancel each other out:

d[E]

dt
+

d[SE]

dt
= 0,

which means that [E] + [SE] is always a constant (assuming no gene expression). More

specifically, [E] + [SE] = E0 which means that we can eliminate an equation to get

d[S]

dt
= −k1[S](E0 − [SE]) + k−1[SE], (3.7)

d[SE]

dt
= k1[S](E0 − [SE])− (k−1 + k2)[SE]. (3.8)

The units of equations (3.7) and (3.8) are concentration×time−1; for example, if the

concentration units are molar and time units are seconds, then the units of the equations

are Ms−1.

Nondimensionalisation and the Michaelis-Menten form

It is standard mathematical practice to nondimensionalise models, this means dividing

the quantities in the model by an appropriate scale (Fowler, 1997; Howison, 2003).
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Nondimensional equations and variables are useful because they allow us to know what

is small and can be ignored and what has to be kept in a model. We introduce the

nondimensional variables [̂S], ̂[SE], and t̂ such that

[̂S] = A[S], ̂[SE] = B[SE], t̂ = Ct. (3.9)

The constants A, B, and C are scales with units M (A and B), and s (C) chosen so

that the new variables are nondimensional and of order 1 (O(1)). Substituting (3.9) in

equations (3.7) and (3.8) we obtain

A

C

d[̂S]

dt̂
= −k1A[̂S](E0 − B̂[SE]) + k−1B̂[SE],

B

C

d̂[SE]

dt̂
= k1A[̂S](E0 −B ̂[SE])−B(k−1 + k2)̂[SE].

Choosing scales A = S0, B = E0, and C = 1
k1E0

, and inserting them in the equations and

gathering the terms (dropping the hat notation) gives

d[S]

dt
= −(1− [SE])[S] + (κ− λ)[SE], (3.10)

ε
d[SE]

dt
= [S]− ([S] + κ)[SE], (3.11)

with ε = E0

S0
, κ = k−1+k2

S0k1
, and λ = k2

S0k1
. The initial conditions now are [S](0) = 0 and

[SE](1) = 1. Usually the initial amount of substrate is much larger than the total amount

of enzyme, ie S0 ≫ E0 which means that ε ≪ 1. The small parameter in equation (3.11)

means that εd[SE]
dt
≈ 0, and

[SE] ≈
E0[S]

κ+ [S]
. (3.12)

When there is much more substrate than enzyme, the formation of the complex [SE] in

equation (3.11) reaches equilibrium before there is any substantial decrease in [S], and the

expression in equation (3.12) is a good approximation to [SE], that can be used to solve

equation (3.10). We can approximate the amount of product of the reaction with:

d[P ]

dt
≈

Vmax[S]

κ+ [S]
, (3.13)
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Figure 3.1: Michaelis-Menten reaction rates from equation (3.13) (in arbitrary units) where

Vmax = 2 and κ = 0.5 (blue dash-dotted line), κ = 1.0 (green continuous line), and κ = 5.0
(red dashed line). The horizontal dashed line is the maximum rate of reaction Vmax.

where Vmax = k2E0 is the maximum rate of the reaction, and κ is the Michaelis constant.

Note that

lim
[S]→∞

[S]

κ+ [S]
= 1,

so no matter how much more substrate is added, the reaction rate is limited by the amount

of enzyme present in the system. The form in equation (3.12) is called the Michaelis-

Menten form and was first proposed by Michaelis and Menten (1913). Figure 3.1 shows an

example of the effect of Vmax and κ on the reaction rates. Small values of κ indicate that

the substrate and the enzyme have high affinity for each other and the Michaelis-Menten

term saturates with relatively low quantities of [S] (eg the blue dash-dotted line), larger

values indicate lower affinity and demand more substrate to saturate the reaction rate. In

this example the maximum rate is given by Vmax = 2, as [S] becomes larger, the rates will

get closer to Vmax.

The Michaelis-Menten approximation of [SE], known as the quasi-steady-state as-

sumption (QSSA), is only adequate when t ≫ ε. To obtain the solution for earlier times

the assumption that εd[SE]
dt
≈ 0 no longer holds because

d[SE]
dt

is too large (order O(1
ε
)),

and a different scaling for t must be used (Fowler, 1997; Maini et al., 1991; Segel and

Slemrod, 1989). In this work we are mostly interested in the case when t ≫ ε, where the

Michaelis-Menten form and the QSSA are appropriate.
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Figure 3.2: Activation of a protein by multiple phosphorylation. When unphosphorylated

the protein is in a conformational state that shields its active site (in red) and prevents it

from participating in a reaction. After binding three phosphates, a conformational change

occurs and the active sites is exposed, thus allowing substrates to bind and other reactions

to take place.

3.2.3 The Hill equation

Some enzymes need to bind more than one molecule in order to catalyse a reaction

S + E
k1−−⇀↽−−
k−1

SE,

SE + S
k2−−⇀↽−−
k−2

2SE,

...

(n− 1)SE + S
kn−−⇀↽−−
k−n

nSE
kn+1
−−−→ P + E,

and the reaction rates have the shape of a sigmoid rather than the hyperbolic curves shown

in Fig. 3.1. For example, Fig. 3.2 shows how a protein undergoes conformational change

after binding three phosphate groups, allowing it to expose its active site (in red) and to

participate in a reaction. To model such reactions the Hill equation is often used. The Hill

equation has the form

V =
Vmax[S]

n

κn + [S]n
, (3.14)

where Vmax is the maximum reaction rate, κ is the constant that defines the dose of [S] for

which V = Vmax

2
(if n = 1 then κ is the Michaelis constant), and n is the Hill coefficient.

The value of n is an indicator of “cooperativity” between active sites of the enzyme, the

higher its value the more cooperative they are, but it does not mean that exactly n molecules



38

[S]
0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

[S
E

]

n=1

n=2

n=3

n=5

[S]
0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
[S

E
]

Figure 3.3: A: Reaction rates of the Hill expression in equation (3.14) when Vmax = 2,

κ = 5, and n = 1 (dark blue continuous line), n = 2 (green dashed line), n = 3 (red dotted

line), and n = 5 (light blue dash-dotted line). B: Reaction rates of the inhibitory form in

equation (3.15) with the same parameter values as image A.

have to bind the enzyme (Cornish-Bowden, 2004). Often the value of n is a real non-

negative number.

Figure 3.3A shows the reaction rates of equation (3.14) with different values of n. When

n = 1 we observe the Michaelis-Menten curve from Fig. 3.1. For n > 1 the response curve

is a sigmoid that becomes steeper as n increases.

Hill equations have also been used to model the case when multiple molecules bind to

an enzyme to stop it catalysing a reaction:

V =
Vmaxκ

n

κn + [S]n
. (3.15)

Figure 3.3B shows the reaction rates for different values of n. Again, the larger the n, the

more steep the sigmoid becomes.

The two forms of the Hill function from equations (3.14) and (3.15) are used to model

not only cooperative enzyme dynamics, but also used to model empirical relationships

between components in signalling systems, as we show in the following section.
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Figure 3.4: Simulation of the production of a molecule given by the stochastic

process (3.16) and (3.17), with parameters α = 1, µ = 0.1, dt = 0.1 and initial

condition X(t) = 0.

3.2.4 Stochastic models

A different approach to modelling signalling and biochemical processes in the cell is

with stochastic models. The cell is an intrinsically noisy environment and no two cells

function in exactly the same way, not even cells with identical genotype (Wilkinson, 2009).

Instead of dealing with rates of deterministic processes, in stochastic models we consider

the probability of occurrence of events (Taylor and Karlin, 1998). Stochastic models can

be defined in discrete (eg a discrete-time Markov chain) or continuous time (eg a Wiener

process).

Example 3.2.1 (Wilkinson (2009)). Let X(t) be the number of copies of a molecule at

time t; the number of molecules after a time-step h (ie X(t + h)) is determined by the

probability of having a new molecule added and the probability of having a molecule

degraded, given the value of X(t). In terms of probabilities:

P (X(t+ h) = X(t) + 1|X(t)) = αh, (3.16)

P (X(t+ h) = X(t)− 1|X(t)) = min (µhX(t), 1), (3.17)

where α and µ are analogous to rates of production and degradation from ODE models.

Figure 3.4 shows the time-course of a single simulation of the process defined by the
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probabilities (3.16) and (3.17). The analytical solution of the process is that X(t) is a

Poisson-distributed random variable, whose parameter depends on α, µ, and t.

The example we have just given is simple, models with more species interacting in com-

plicated ways require sophisticated theory and intensive computing techniques (Gillespie,

1977; Higham, 2008; Iliopoulos et al., 2010; Milner et al., 1992).

3.3 Cell signalling networks

Cells function by sensing and reacting to their environment; to do so they must interpret

external signals and relay them through a chain of components and events that together

form a signalling network. Cell signalling networks are formed by the chemical and

physical interactions among the different components of the cell that participate in the

signalling processes that elicit a response. Models of cellular signalling networks can

be constructed with varying levels of detail, usually depending on the data available. A

model of a network that includes every single physical and chemical interaction may not

be useful at all because the kinetic parameters and species are unlikely to be measurable

or identifiable, and investigating its behaviour can be just as complicated as studying the

system experimentally. In this section we provide a brief introduction to networks and

some examples from cellular network modelling.

3.3.1 Minimal introduction to networks

A network or graph is a mathematical object consisting of a collection of agents (nodes) and

their relations (edges) (Gross and Yellen, 2004). An edge may represent chemical or physi-

cal interaction, correlation, flux, presence in common places, or communication (Newman,

2003; Stumpf and Wiuf, 2010). The connectivity of a graph (which nodes are connected

to which) is known as the topology of the network. If a network has m nodes, the m ×m

adjacency matrix of the network G has nonzero entries for existing edges, and zeros

everywhere else. For example, if in a network there is a node between nodes in columns

1 and 4 of G then G(1, 4) 6= 0. In an undirected network (Fig. 3.5A) the relationship of

the nodes is symmetric, ie the edge from node NA to node NB , ωA,B is equivalent to ωB,A,
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Figure 3.5: Different types of networks. A: Undirected network, the relationships between

the nodes do not require that edges have a specific origin and end point. B: Directed

network, the relationship between two nodes is directional, and the edges have a precise

origin and destination. C: Signed and directed network, the relationships among nodes can

either be positive (edges ending with→) or negative (edges ending with ⊣).

the edge from NB to NA. The adjacency matrices of undirected networks are symmetric, ie

G = GT . Examples of undirected relationships can be acquaintanceship of two people

in a social network (Traud et al., 2011), strong correlation of two variables in a data

set (Onnela et al., 2003), and interaction of proteins in yeast (Schwikowski et al., 2000).

A directed network (Fig. 3.5B) is a network where the interactions are unidirectional; the

existence of an edge from node NA to node NB does not imply the reciprocal edge exists,

so ωA,B 6= ωB,A. Adjacency matrices of directed networks are not necessarily symmetric.

Examples of directed networks are disease transmission networks (Meyers et al., 2006),

and messages on social networks (Huberman et al., 2008). In a signed network edges can

be described as positive or negative. Figure 3.5C is an example of a signed and directed

network where the relationship between nodes NA and NB is negative ωA,B < 0; however,

not all signed networks are necessarily directed. The entries of the adjacency matrix of a

signed network may have positive and negative entries, depending on the sign of the edge.

Examples of signed networks include conflict networks (eg amity and enmity) (Wasserman

and Faust, 1994), metabolic and gene regulatory networks (Alon, 2007). In addition to

direction or sign, the edges on a network can be weighted or unweighted. The weight of an

edge provides additional information about the relationship between two nodes (Newman,

2003). In an unweighted network, all that is known about an edge is whether it exists or

not, ie ωA,B can either be 1 or 0. The entries of G in an unweighted network are either 1 or
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Figure 3.6: A: A Boolean network of three variables. B: Three simulations of the network

where the updates follow rules (3.18)-(3.20), starting from a different states (see text). Each

row tracks the state of one variable at 20 discrete time points from 0 to 19; black cells mark

a value of 0 and white cells mark a value of 1.

0, whereas in weighted networks they may have other values.

Importantly, in many networks the edges and their characteristics can change in

time (Mucha et al., 2010; Palla et al., 2007), so ωA,B(t) can be a function that represents

the time-changing weight of the edge between NA and NB .

3.3.2 Boolean network models

In Boolean models the variables can only be in one of two states on or off usually

represented by 1 and 0, respectively (Gershenson, 2004). Boolean networks are formed by

boolean variables whose interactions define the rules by which the states of each variable

are updated (Kauffman, 1969).

Example 3.3.1. A simple boolean network. In Fig. 3.6A we show a network of three

Boolean variables X , Y , and Z, each of which influences and is influenced by the other

two (ie the network is directed and fully-connected). In this example by Kauffman (1969)
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Xn, Yn, and Zn denote the state of the variables at time n, the rules for updating are:

Xn+1 = Zn ∧ (¬Yn), (3.18)

Yn+1 = Xn ∧ Zn, (3.19)

Zn+1 = ¬(Xn ∧ (¬Yn)), (3.20)

where ∧, and ¬ are the standard logic operators and and not, respectively. On Fig. 3.6B we

show three simulations of the boolean network in Fig. 3.6A, using rules (3.18)-(3.20) and

starting from three different initial conditions:

(i) [X0 Y0 Z0] = [0 0 0],

(ii) [X0 Y0 Z0] = [1 1 1],

(iii) [X0 Y0 Z0] = [1 0 1].

On all simulations, the network’s state settled into oscillations with period-three, and

simulation (i) is one time-step ahead of (ii) and (iii), who are synchronised from the

second iteration. The recurring states of the system are:

[0 0 1], [1 0 1], and [1 1 0].

More sophisticated boolean models and networks may have nontrivial dynamics, include

randomness, complex topologies, and asynchronous (non-simultaneous) updating of the

nodes (Aldana, 2003; Gershenson, 2003, 2004; Kauffman, 1969; Saadatpour et al., 2010).

3.3.3 ODE network models

Differential equation models of cell signalling networks typically have one equation per

node which describes the change in the state of the node, or a quantity that describes it.

The edges are the interactions that form the equations. (Sauro, 2009). Below we show two

examples of ODE network models that display different behaviour.
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Figure 3.7: A: Regulatory network of p53 upon DNA damage (Brewer, 2006). The network

is weighted, directed, signed, and time-dependent. B: Time course solutions of the model in

equations (3.21)-(3.24) using the parameters stipulated by Brewer et al. (2008): β10 = 0.05,

α20 = 0.52, k1 = 1.42, β20 = 0.041, k2 = 0.39, α40 = 0.01, k3 = 2.5, k4 = 0.75, and

β40 = 0.18, and initial conditions a(0) = 3, z(0) = 4.33, x(0) = 0 y(0) = 0.05 (the

unstimulated steady state for all variables except a(0) which has been increased to simulate

the DNA damage stimulus).

Example 3.3.2. Regulation of p53 expression. The protein p53 is crucial in preventing the

proliferation of cells with mutated or damaged DNA by inducing cell cycle arrest and DNA

repair, or inducing cell suicide. Mutations or alterations of normal p53 function often lead

to uncontrolled cell proliferation and cancer (Weinberg, 2007). In Figure 3.7A we show

the p53 regulatory network. DNA damage induces the activation of the protein ataxia

telangiectasia mutated (ATM) which phosphorylates inactive p53. Active p53 induces

the expression of the murine double minute (MDM2) oncogene, which accelerates the

degradation of both active and inactive p53. In addition to activating p53, ATM also helps

the degradation of active MDM2. The p53 regulatory network we have described has been
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Figure 3.8: A: Network representation of the control of TNF-α expression in rabbits

following corneal transplant. The network is formed by nodes A (the external signal),

TNF − α (the concentration of the tumour necrosis factor), and I (the inhibitor pool); it

is also signed, weighted and time-dependent. B: Sustained oscillations of TNF-α given by

equations (3.25) and (3.26) using parameters A = 21, B = 0, C = 5, D = 0.2, E1 = 0.1,

E2 = 0.001, F = 1, and n = 2, and initial conditions u(0) = 0.1 and v(0) = 0.1. C:

Trajectories of the solutions of equations (3.25) and (3.26) in the phase plane from different

initial conditions.

modelled with ODEs using mass-action kinetics by Brewer (2006), Brewer et al. (2008):

da

dt
= −β10a, (3.21)

dz

dt
= α20 − (k1y + k2a+ β20)z, (3.22)

dx

dt
= k2az − (k1y + β20)x, (3.23)

dy

dt
= α40 + k3x− (k4a+ β40)y, (3.24)

where a is active ATM, z; inactive p53, x; active p53, and y; active MDM2. Figure 3.7B

shows the time course behaviour of the model in equations (3.21)-(3.24).

Example 3.3.3. Cytokine oscillations. Tumour necrosis factor-α (TNF-α) is a cytokine

involved in inflammatory response. In rabbits that have rejected corneal transplant TNF-α

has been reported to oscillate (Rayner et al., 2000). The regulation of TNF-α is by no means

trivial given that a number of other cytokines can modulate its expression (eg IL-10, TGB-

β), and TNF-α itself can amplify its own effects. A simplified network depiction of the

TNF-α regulatory dynamics is shown in Fig. 3.8A. An external signal (node A) promotes

the expression of TNF-α which has a self-loop (promotes its own expression) and activates
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Figure 3.9: A: Temporal dynamics of TNF-α. Using parameters A = 5, B = 0, C = 1,

D = 1, E1 = 0.1, E2 = 0.1, F = 1, and n = 2, the steady state depends only on the initial

conditions. Using u(0) = 0.1 and v(0) = 0.1 gives a low level of TNF-α (red line), using

u(0) = 2 and v(0) = 2; a high level of TNF-α (green line). B: Phase plane with two sinks

(stable steady states), the system will go to one or the other depending on where it begins.

its inhibitor pool (node I). This TNF-α regulatory network has been modelled by Chan

et al. (1999) using the ODEs:

du

dt
= A

un + En
1

un + 1

1

1 + v
− u, (3.25)

dv

dt
= B + C

u+ E2

u+ F
−Dv, (3.26)

where u(t) denotes the concentration of TNF-α at time t, v(t) is the concentration of the

inhibitor pool, and A is the external stimulus; both equations are nondimensional. The

change in u is driven by the external stimulus A, TNF-α’s auto-activation, inhibition by

v, and linear inactivation. The change in v is driven by constant production B, activation

by u and linear inactivation. In this case, the external stimulus is constant so dA
dt

= 0.

Equations (3.25) and (3.26) and their dynamics have a diverse range of behaviour including

mono and multistability, excitability, and oscillations (Chan et al., 1999). For example

in Fig. 3.8B we show sustained oscillations of TNF-α, which resemble experimental

observations (Rayner et al., 2000). Figure 3.8C shows how different trajectories on the

TNF-α × inhibitor phase plane settle into a steady cycle. Changing the values of the

parameters with which we produced Figs. 3.8B and 3.8C results in a radically different

observed behaviour (ie a bifurcation). In Figs. 3.9A and 3.9B we solved the same two
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equations (3.25) and (3.26) with a different set of parameters which gives two stable steady

states instead of the only one observed previously (Chan et al., 1999).

The model of TNF-α regulation in equations (3.25) and (3.26) shows how even

simplifications of signalling processes of cells can give rise to rich dynamic landscapes

that can be used to guide further experimentation.

3.4 Discussion

In this chapter the basic modelling tools used in mathematical modelling of cell signalling

systems have been introduced. Brief descriptions and examples of stochastic and boolean

modelling were given, with special emphasis on differential equation models. These

concepts are used extensively in the next chapters to analyse activation cascades and to

construct a model of stomatal closure.
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Chapter 4

Evolutionary Monte Carlo optimisation

with local search acceleration

4.1 Introduction

The increasing drive towards quantitative technologies in Biology has brought with it a

renewed interest in the modelling of biological systems. As shown in Chapters 3, 5,

and 7, models of biological systems and other complex phenomena are generally nonlinear

with uncertain parameters, many of which are often unknown and/or unmeasurable (Alon,

2007; Edelstein-Keshet, 1988). Crucially, the values of the parameters dictate not only

the quantitative but also the qualitative behaviour of such models (Brown and Sethna,

2003; Strogatz, 1994). A fundamental task in quantitative and systems biology is to use

experimental data to infer parameter values that minimise the discrepancy between the

behaviour of the model and experimental observations. The parameters thus obtained

can then be cross-validated against unused data before employing the fitted model as

a predictive tool (Alon, 2007). Ideally, this process could help close the modelling-

experiment loop by: suggesting specific experimental measurements; identifying relevant

parameters to be measured; or discriminating between alternative models (Gutenkunst

et al., 2007; Toni and Stumpf, 2010; Yates et al., 2001).

The problem of parameter estimation and data fitting is classically posed as the

minimisation of a cost function (ie the error) (Gershenfeld, 1999). In the case of
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overdetermined linear systems with quadratic error functions, this problem leads to least-

square solutions, convex optimisations that can be solved efficiently and globally based on

the singular value decomposition of the covariance matrix of the data (Lawson and Hanson,

1995). However, data fitting in nonlinear systems with small amounts of data remains

difficult, as it usually leads to non-convex optimisations with several local minima (Brewer

et al., 2008).

A classic case in biological modelling is the description of the time evolution of

a system through ordinary differential equations (ODEs), usually based on mechanistic

functional forms such as the ones introduced as examples in Chapter 3, the models of

activation cascades from Chapter 5, and the models of stomatal closure developed in

Chapter 7. Typically, optimal parameters of the nonlinear ODEs must be inferred from

experimental time courses but the associated optimisation is far from straightforward.

Standard optimisation techniques that require an explicit cost function are unsuitable

for this problem due to the difficulty to obtain full analytical solutions for nonlinear

ODEs (Brown and Sethna, 2003; Chen et al., 2010; Papachristodoulou and Recht, 2007).

Spline-based methods, which approximate the solution though an implicit integration of

the differential equation (Brewer et al., 2008), require linearity in the parameters and are

therefore not applicable to models with nonlinear parameter dependencies, eg Michaelis-

Menten and Hill kinetics.

Implicit techniques, such as direct search methods (Powell, 1998), Simulated Anneal-

ing (Kirkpatrick et al., 1983), Evolutionary Algorithms (Mitchell, 1997; Runarsson and

Yao, 2000) or Sequential Monte Carlo (Sisson et al., 2007), do not require an explicit

cost function. However, if (as is usually the case) the cost function is a complicated

(hyper)surface in parameter space with many local minima. Gradient and direct search

methods tend to get trapped in local minima due to their use of local information. Although

still a local method, Simulated Annealing alleviates some of the problems related to local

minima through the use of stochasticity. However, its success comes at the cost of a high

computational overhead and slow convergence, without guarantees of finding the global

minimum.

Instead of an optimisation based on local criteria, Evolutionary Algorithms (EA)

produce an ensemble of possible answers and evolve them globally through random
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mutation and cross-over followed by ranking and culling of the worst solutions (Mitchell,

1997; Runarsson and Yao, 2000; Schwefel, 1995). This heuristic has been shown to

provide an efficient protocol for parameter fitting in the life sciences (Moles et al., 2003;

Zi and Klipp, 2006). However, EA methods can be inefficient when the feasible region

in parameter space is too large, a case typical of models with large uncertainty in the

parameters.

Probabilistic methods, such as Sequential Monte-Carlo (SMC) (Sisson et al., 2007),

propose a different conceptual framework. Rather than finding a unique optimal parameter

set, SMC maps a prior probability distribution of the parameters onto a posterior

constructed from samples with low errors until reaching a converged posterior. Recently,

SMC has been combined with Approximate Bayesian Computation (ABC) and applied to

data fitting and model selection (Toni et al., 2009). However, methods such as ABC-SMC

are not only computationally expensive but also require the starting prior to include the

true value of the parameters. This requirement dents its applicability to many biological

models, in which not even the order of magnitude of the parameters is known. In that

case, the support of the starting priors must be made overly large (leading to extremely

slow convergence) in order to avoid the risk of excluding the true parameter value from the

search space.

In this chapter, we present a novel optimisation algorithm for data fitting that takes

inspiration from EA, SMC and direct search optimisation. This method iterates and

refines samples from a probability distribution of the parameters in a ‘squeeze-and-breathe’

sequence. At each iteration the probability distribution is ‘squeezed’ by the consecutive

application of local optimisation followed by ranking and culling of the local optima.

The parameter distribution is then allowed to ‘breathe’ through a random update from

a historical prior that includes the union of all past supports of the solutions (Fig. 4.1).

This iteration proceeds until convergence of the distribution of solutions and their average

error. A key, distinctive feature of this algorithm is the accelerated step-to-step convergence

through a combination of local optimisation and of culling of local solutions. Importantly,

the method can also find parameters that lie outside of the range of the initial prior, and can

deal with parameter values across several orders of magnitude.
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4.2 Algorithm

We now provide definitions and a full description of this algorithm and give examples of

its applicability to different biological models of interest.

4.2.1 Formulation of the problem

Let X(t) = [x1(t), . . . , xd(t)] denote the state of a system with d variables at time t. The

time evolution of the state is described by a system of (possibly nonlinear) ODEs:

Ẋ = f(X, t; θ). (4.1)

Here θ = [θ1, . . . , θN ] is the vector of N parameters of our model.

The experimental data set is formed by M observations of some of the variables of the

system:

D =
{
X̃(ti) | i = 1, . . . ,M

}
, (4.2)

where X̃(ti) corresponds to the real value of the system plus observational error. Ideally,

M > 2N + 1 since 2N + 1 experiments are enough for unequivocal identification of an

ODE model with N parameters when no measurement error is present (Sontag, 2002).

The cost function to be minimised is the error of the model given the data:

ED(θ) =

M∑

i=1

∣∣∣
∣∣∣X(ti; θ)− X̃(ti)

∣∣∣
∣∣∣ , (4.3)

where ||·|| is a relevant vector norm. A standard choice is the Euclidean norm (or 2-norm)

which corresponds to the sum of squared errors:

E
(2)
D (θ) =

M∑

i=1

d′∑

j=1

(
Xj(ti; θ)− X̃j(ti)

)2
, (4.4)

where we assume that d′ variables are observed. The cost function ED : RN → R+ maps a

N-dimensional parameter vector onto its corresponding error, thus quantifying how far the

data and the model predictions are for that particular parameter set.
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The aim of the data fitting procedure is to find the parameter vector θ∗∗ that minimises

the error globally subject to restrictions dictated by the problem of interest:

θ
∗∗ = min

θ

ED(θ), subject to constraints on θ. (4.5)

4.2.2 Definitions

• Data set: D, a set of M observations, as defined in Eq. (4.2).

• Parameter set: θ = [θ1, . . . , θN ] ∈ RN
+ . Due to the nature of the models

considered, θi ≥ 0, ∀i.

• Objective function: ED(θ), the error function to be minimised given the data set D,

as defined in Eq. (4.4).

• Set of local minima of ED(θ):

M = {θ∗ | ED(θ
∗) ≤ ED(θ), ∀θ ∈ N (θ∗)},

where N (θ∗) is a neighbourhood of θ∗.

• Global minimum of ED(θ): θ
∗∗, a parameter set such that ED(θ

∗∗) ≤ ED(θ), ∀θ in

the feasible region. Clearly, θ∗∗ ∈M.

• Local minimisation mapping: L : RN
+ →M. Local minimisation maps θ onto a local

minimum: L(θ) = θ
∗ ∈M.

• Ranking and culling of local minima: {θ†}B1 = RCB
(
{θ}J1

)
. This operation ranks

J parameter sets and selects the B parameter sets with the lowest value of ED.

• Joint probability distributions of the parameters at iteration k: πk(θ) (prior) and

̟k(θ) (posterior).

• Marginal probability distribution of the ith component of θ: For instance,

π(θi) =

∫
π(θ)

∏

r 6=i

dθr.
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• Historical prior at iteration k: ζk(θ) =
∏N

i=1 ζk(θi) where

ζk(θi) ∼ U (min (Zk(θi)) ,max (Zk(θi))) . (4.6)

Here U(a, b) is a uniform distribution with support in [a, b] and Zk(θi) = ζ−1
k−1 ∪̟

−1
k

is the union of the supports of ̟k(θi) and ζk−1(θi).

• Update of the prior at iteration k: πk(θ) =
∏N

i=1 πk(θi) with

πk(θi) ∼ pm̟k(θi) + (1− pm)ζk(θi), (4.7)

that is, a convex mixture of the posterior and the historical prior with weight pm,

from which a new population is sampled in iteration k + 1.

• Re-population: Obtain a new population of J random points simulated from the

prior πk−1(θ).

• Convergence criterion for the error: The difference between the means of the

errors of the posteriors in consecutive iterations is smaller than the pre-determined

tolerance:

φk = ED(̟k−1(θ))− ED(̟k(θ)) < Tol. (4.8)

• Convergence criterion for the empirical distributions: The samples of the posteriors

in consecutive iterations are indistinguishable at the 5% significance level according

to the nonparametric Mann-Whitney rank sum test (Mood et al., 1974):

MW (̟k(θ), ̟k−1(θ)) = 0. (4.9)

4.2.3 Description of the algorithm

Algorithm 4.1 presents the pseudo-code for the method using the definitions above. The

iterations produce progressively more refined distributions of the parameter vector. At each

iteration k, a population simulated from the prior distribution πk−1(θ) is locally minimised

followed by ranking and culling of the local minima to create a posterior distribution ̟k(θ)
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Algorithm 4.1 Squeeze-and-Breathe optimisation.

Set running parameters of algorithm:

B, J ∈ N, pm ∈ [0, 1], Tol

Choose initial priors π0(θ) and ζ0(θ).
SetH0 = ∅ and k ← 1.

repeat

LetHk = Hk−1.

Simulate J points from πk−1(θ) through re-population.

for ℓ = 1→ J do

Obtain local minimum θ
∗
ℓ = L(θℓ).

Store the pair [θ∗
ℓ , ED(θ

∗
ℓ )] inHk.

end for

Rank and cull the set of local minima:

Hk = RCB (Hk)
Define the posterior ̟k(θ) from the sample Hk.

Update ζk(θ) from ζk−1(θ) and ̟k(θ).
Update the prior:

πk(θ) ∼ pm̟k(θ) + (1− pm)ζk(θ).
k ← k + 1.

until φk < Tol andMW (̟k(θ),̟k−1(θ)) = 0

(squeeze step). This distribution is then combined with an encompassing historical prior

to generate the updated prior πk(θ) (breathe step). The iteration loop terminates when

the difference between the mean errors of consecutive posteriors (φk) is smaller than the

tolerance and the samples of the posteriors are indistinguishable. We now explain these

steps in detail aided by Fig. 4.1 and the BPM model (see Sec. 4.3.1).

1. Formulation of the optimisation: The data setD and the model equations parametrised

by θ allow us to define an error function ED(θ) whose global minimum corresponds

to the best model.

In our illustrative example, the BPM model (4.10) has the parameter vector

θ = [α, β] and the error function is depicted in Fig. 4.1A. Typically, the global

optimisation on a rugged landscape of a function like this is computationally hard.

2. Initialisation:

• Set the running parameters of the algorithm: the size of the simulated

population, J ; the size of the surviving population after culling, B; the update
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Figure 4.1 (preceding page): Steps of Algorithm 4.1 exemplified through the BPM

model (4.10). A: The problem is defined by the data set, the model and the error function

to be minimised. Note the rugged landscape of the error function in the parameter plane

(α, β), with many local minima. B: In the first iteration, we simulate J points in parameter

space from the uniform initial prior π0(θ) (squares in plot, top and left histograms) which

are then minimised locally with a Nelder-Mead algorithm L(θ) (triangles in plot, bottom

and right histograms). The local optimisation aligns the parameter sets onto the level curves

of ED. C: The B best local minima (top, light stars) are selected and considered to be

samples from the posterior distribution (bottom, light histograms). D: Convergence of the

error of the samples (top plot on the right, B lowest minima are the light stars) and of the

posterior distributions (bottom, lighter histograms) are checked against the errors of the

sample (top plot on the left) and the priors (bottom, darker histograms). E: If convergence

is not achieved, the historical prior is updated (previous historical prior in bold, updated

in light) and a new set of J points are simulated from the posterior with probability pm
and from the historical prior with probability 1 − pm (squares in plot). This new sample

is fed back to the local minimisation step (b). F: The algorithm stops when convergence

is reached (after nine iterations, in this case) providing an optimal parameter set θ‡ and a

time course (top) and the sequence of optimised posteriors at each iteration (bottom).

probability, pm; and the tolerance, Tol.

In this example, J = 500, B = 50, pm = 0.95 and Tol = 10−5.

• Choose π0(θ), the initial prior distribution of the parameter vector.

In this case, we take α and β to be independent and uniformly distributed:

π0(θ) ∼ U(0, 100)× U(0, 100).

• Initialise ζ0(θ) = π0(θ), the historical prior of the parameters.

• Simulate J points from π0(θ) to generate the initial sample {θ̂0}
J
1 .

3. Iteration (step k): Repeated until termination criterion is satisfied. Figure 4.1B-E

shows the first iteration of our method applied to the BPM example.

(a) Local minimisation: Apply local minimisation to the simulated parameters

from the ‘prior’ {θ̂k−1}J1 and map them onto local minima of ED(θ) to generate

{L(θ̂k−1)}J1 ∈M.

Here we use the Nelder-Mead simplex method (Nelder and Mead, 1965),

though others can be used. Figure 4.1B shows the simulated points from π0(θ)

(squares in plot) and its corresponding histograms (top and left). After local
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minimisation, this sample is mapped onto the dark triangles in Fig. 4.1B (dark

histograms bottom and right). Note how the local minima align with the level

curves of ED with a markedly different distribution to the uniform prior. Note

also that many of the optimised values of α lie outside the range of the prior

(0, 100) and are now distributed over the interval (0, 200). On the other hand,

the values of β have collapsed inside (0, 1).

(b) Ranking and culling: Rank the J + B local minima from the k − 1 and k

iterations, select the B points with the lowest ED and cull (discard) the rest:

RCB
(
{L(θ̂k−1)}

J
1 ∪ {θ̂

†
k−1}

B
1

)
= {θ̂†

k}
B
1 .

We consider {θ̂†
k}

B
1 to be a sample from the optimised (‘posterior’) distribution,

̟k(θ) and we denote the best parameter vector of this set as

θ
‡
k = min

ED

(
{θ̂†

k}
B
1

)
.

The B = 50 best parameter sets are shown (light stars in plot) in Fig. 4.1C

(bottom histograms).

(c) Termination criterion: Check that the difference between the mean errors of the

consecutive optimised samples is smaller than the tolerance: φk ≤ Tol. We also

gauge the ‘convergence’ of the posteriors through the Mann-Whitney (MW) test

to determine if the samples from consecutive posteriors are distinguishable:

MW(̟k−1(θ), ̟k(θ)) ≡MW
(
{θ̂†

k−1}
B
1 , {θ̂

†
k}

B
1

)
,

whereMW is a 0-1 flag. The MW test gives additional information about the

change of the optimised posteriors from one iteration to the next.

Figure 4.1D shows the convergence check for the first iteration of the BPM

model: (i) top, errors of the sampled prior (left) with errors of the local minima

(right) and the B surviving points (light stars); (ii) bottom, histograms of

the prior and the posterior. Clearly, in this iteration neither the error nor the
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distributions have converged so the algorithm does not stop, and a new iteration

must be performed.

(d) Update of historical prior and generation of new sample: If convergence is

not achieved, update the historical prior ζk(θ) as a uniform distribution over

the union of the supports of the existing historical prior and the calculated

posterior (4.6). Equivalently, the support of the historical prior extends over

the union of the sequence of all historical priors {ζ0(θ), . . . , ζk−1(θ)} and of all

posteriors {̟1(θ), . . . , ̟k(θ)}.

As shown in Fig. 4.1(e) for the BPM example, the marginal of the historical

prior for α is expanded to U(0, 200), since the optimised parameter sets have

reached values as high as 200. Meanwhile, the β marginal of the historical

prior remains unchanged as U(0, 100) because there has been no expansion of

the support.

The historical prior is used to mutate the updated prior before the next iteration

by constructing a weighted mixture of the posterior and the historical prior

with weight pm, as shown in (4.7). We re-populate from this updated prior

by simulating from the posterior with probability pm = 0.95 and from the

historical prior with probability (1 − pm) to generate the new sample {θ̂k}J1

and iterate back.

Figure 4.1(e) shows the sample of J points simulated from the new prior. The

α-components of most points are between 100 and 200 and the β-components

are between 0.1 and 1.0, but there are a few that lie outside the support of the

posterior. The process in panels (b), (c), (d), and (e) of Fig. 4.1 is iterated for

this new population of points.

4. Output of the algorithm: When the convergence criteria have been met, the iteration

stops at iteration k∗ and the minimum of this last iteration, θ
‡
k∗ , is presented as

the optimal parameter set for the model (ie the estimation of the global minimum

θ
∗∗ provided by the algorithm). We can also examine the sequence of optimised

parameter distributions {̟1(θ), . . . , ̟k∗(θ)} resulting from all iterations (Fig. 4.1F)

to obtain more information about the convergence and behaviour of the method.
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4.3 Application to biological examples

We apply our algorithm to four biological examples of interest. The first three correspond

to simulated data from well-known models published in the literature, while in the third

example we apply our algorithm to unpublished experimental data of the dynamical

response of an inducible genetic promoter constructed for an application in Synthetic

Biology.

4.3.1 BPM model of gene-product regulation

The Bliss-Painter-Marr (BPM) model (Bliss et al., 1982) describes the behaviour of a gene-

enzyme-product control unit with a negative feedback loop:

Ṙ =
α

1 + P
− βR,

Ė = β(R− E), (4.10)

Ṗ = βE − c(t)
P

1 + P
.

Here, R,E and P are the concentrations (in arbitrary units) of mRNA, enzyme and product,

respectively. The degradation rate of the product has an explicit time dependence, which in

this case has the form of a ramp saturation:

c(t) =

{
5 + 0.2t 0 ≤ t < 50,

15 t ≥ 50.

The model represents a gene that codes for an enzyme which in turn catalyses a product

that inhibits the transcription of the gene. This self-inhibition can lead to oscillations, which

have been shown to occur in the tryptophan operon in E. coli (Bliss et al., 1982). Other

systems with similar models and dynamics include calcium signalling, the MAPK cascade

and immune responses (Höfer, 1999; Kholodenko, 2000; Stark et al., 2007).

We construct a data set from simulations of this model with θreal = [α, β] = [240, 0.15]

and initial conditions R(0) = E(0) = P (0) = 0. In this example, the data set D consists

of 10 measurements of R(t) at particular times with added gaussian noise drawn from
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Min. Conv. Conv.

k Error α‡
k β‡

k ̟k(α) ̟k(β) φk

1 56.0941 193.7447 0.1304 - - -

2 28.2735 246.7510 0.1528 No No 133.9020

3 27.2083 248.7557 0.1532 No No 6.8542

4 26.9838 250.3593 0.1536 No No 0.6532

5 26.6504 251.7189 0.1538 No No 0.3281

6 26.6504 251.7189 0.1538 No No 0.1963

7 26.6504 251.7189 0.1538 Yes Yes 0.0118

8 26.6504 251.7189 0.1538 No No 0.0131

9 (k∗) 26.6504 251.7189 0.1538 Yes Yes 1.414× 10−6

Table 4.1: Results of the fitting of the BPM model (4.10) with Algorithm 4.1: smallest

error of iteration k; the best values α‡
k and β‡

k; whether the distributions have converged;

and the difference of the mean errors of the optimised population.

a N (0, 152) distribution (given in Table B.1). The error function ED(θ) (4.4) corresponds

to a non-convex optimisation landscape1: a complex rugged surface with many local

minima making global optimisation hard (Fig. 4.1A).

We use Algorithm 4.1 to estimate the ‘unknown’ parameter values from the ‘measure-

ments’ of R, as illustrated in Sec. 4.2.3 and Fig. 4.1. Feigning ignorance of the true

values, we choose a uniform prior distribution with range [0, 100] for both parameters:

π0(θ) ∼ [U(0, 100), U(0, 100)]. The rest of the running parameters of the algorithm are set

to: J = 500, B = 50, pm = 0.95 and Tol = 10−5. Note that the true value of α falls

outside of the assumed range of our initial prior, while the range of β in our initial prior is

two orders of magnitude larger than its true value. This level of uncertainty about parameter

values is typical in data fitting for biological models.

Figure 4.1 highlights a key aspect of our algorithm: the local minimisation can lead to

local minima outside of the range of the initial prior. Furthermore, our definition of the

historical prior ensures that successive iterations can still find solutions within the largest

hypercube of optimised solutions in parameter space. In this example, the algorithm moves

away from the U(0, 100) prior for α and finds a distribution around 240 (the true value) after

three iterations, while in the case of β, the distribution collapses to values around 0.15 after

1I thank Markus Owen of the University of Nottingham for suggesting this example.
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one iteration. Although the algorithm finds θ‡ after 5 iterations, the algorithm is terminated

after 9 iterations, when the posterior distributions are similar (according to the MW test)

and the mean errors have also converged (Table 4.1). The estimated parameters for this

noisy data set are θ
‡
k∗ = [251.7189, 0.1530]. In fact, the error of the estimated parameter

set is lower than that of the real parameters: ED(θ
‡) = 26.65 < ED(θreal) = 28.26, due to

the noise introduced in the data. When a data set without noise is used, the algorithm finds

the true value of the parameters to 9 significant digits (not shown).

4.3.2 SIR epidemics model

Susceptible-Infected-Recovered (SIR) models are widely used in epidemiology to describe

the evolution of an infection in a population (Anderson and May, 1992). In its simplest

form, the SIR model has three variables: the susceptible population S, the infected

population I and the recovered population R:

Ṡ = α− (γI + d)S,

İ = (γS − v − d)I, (4.11)

Ṙ = vI − dR.

The first equation describes the change in the susceptible population, growing with birth

rate α and decreasing by the rate of infection γIS and the rate of death dS. The infected

population grows by the rate of infection γIS and decreases by the rate of recovery vI

and the rate of death dI . The recovered population grows by the rate of recovery vI and

decreases by the death rate dR. Here we use the same form of the equations as Toni et al.

(2009).

The data generated from the model (4.11) (Table B.2) were obtained directly from Toni

et al. (2009). Hence the original parameter values were not known to us and further we

assumed the initial conditions also to be unknown and fitted them as parameters. We used

Algorithm 4.1 to estimate α, γ, v, and d and initial conditions S0, I0, and R0. The prior

marginal distributions for all parameters were set as U(0, 100). The other parameters were

set to: J = 1000, B = 50, pm = 0.95 and Tol = 10−5. The algorithm converged
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Figure 4.2: Results of fitting SIR model (4.11) to data. A: Time courses of the SIR

model (4.11). Squares are simulated ‘data’ points (Table B.2) and bold lines are the model

fit with the best parameters α‡ = 1.0726, γ‡ = 0.7964, d‡ = 0.4945, and v‡ = 0.9863 and

the best fit initial conditions S‡
0 = 19.1591, I‡0 = 10.3016, and R‡

0 = 0.3861. Dashed lines

use the best fit parameters and the real initial conditions. The minimum error is ED(θ
‡) =

1.7297. B: Histogram of the values of the 50 best parameters and initial conditions of

the model obtained after convergence at six iterations. C: Convergence of the error of the

optimised samples at every iteration relative to the final error.

after six iterations. Figure 4.2A shows the prediction of the model (4.11) with the best

parameters estimated by our algorithm. The fit is good, with little difference between the

curves obtained using the real initial conditions and the ones estimated by our method.

The posterior distributions after six iterations of the algorithm are shown on Fig. 4.2B.

The errors obtained after each local minimisation in a decreasing order on each iteration

are shown on a semilogarithmic scale in Fig. 4.2C. We can observe how the errors decrease

several orders of magnitude over the first three iterations and converge steadily during the

last three iterations until φk ≤ Tol.

4.3.3 An inducible genetic switch from Synthetic Biology

The use of inducible genetic switches is widespread in synthetic biology and bio-

engineering as building blocks for more complicated gene circuit architectures. An

example is shown schematically in the inset of Fig. 4.3A. This environment-responsive

switch is used to control the expression of a target gene G (usually tagged with green
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Figure 4.3: Results of fitting genetic switch model (4.12) to data. A: Inset: An inducible

genetic switch consisting of P1, a negatively regulated environment-responsive promoter.

The repressor R1 promoted by P regulates P1. The switch is responsive to an exogenous

inducer I1, which binds to R1 to relieve its repression on P1 and to turn on the transcription

of the downstream target gene, such as a gfp. The ribosome binding site (rbs) is used

to tune the translation efficiency of the downstream gene. Plot: Fluorescent response of

the switch with gfp-34 to different doses of IPTG (squares). Solution of Eq. (4.12) using

the parameters obtained with Algorithm 4.1 (solid line), and stationary solution (dashed

line). B: Time course of the fluorescent response of the switch with gfp-34 to several

doses of IPTG (circles) and time-dependent solutions of Eq. (4.12) using the parameters

obtained with Algorithm 4.1 (solid lines). Similarly good fits were obtained for responses

to I1 = 0.0063, 0.0016, 0.0004, and 0.0 mM (not shown).

fluorescent protein or gfp) through the addition of an exogenous small molecule I1 (eg

isopropyl thiogalactopyranoside or IPTG). The input-output behaviour of this system can

be described by the following ordinary differential equation (Alon, 2007; Szallasi et al.,

2006):

Ġ = αk1 +
k1I

n1
1

Kn1
1 + In1

1

− dG. (4.12)

Here, αk1 is the basal activity of the promoter P1 and dG is the linear degradation term.

The second term is a Hill function that models the cooperative transcription activation in

response to the inducer I1 with maximum expression rate k1, Michaelis constant K1 and

Hill coefficient n1.

The lacI–Plac switch has been characterised experimentally in response to different

doses of IPTG by Wang (2010); Wang et al. (2011). Equation (4.12) can be solved

explicitly and one can use nonlinear least squares and the analytical solution to fit data
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Wang (2010) Algorithm 4.1

Parameter gfp-30 gfp-34 gfp-30 gfp-34

α‡ 0.0012± 0.027 1.4720× 10−9 0.0043 0.0024

k‡
1 N/A N/A 76.1354 63.6650

n‡
1 1.3700± 0.270 1.3690± 0.021 1.4832 1.3879

K‡
1 0.2280± 0.039 0.2590± 0.021 0.2467 0.2641

d‡ N/A N/A 0.0069 0.0052

k‡
1/d

‡ 9456± 487 7648± 152 10983.34 12163.04

Table 4.2: Parameter values obtained from gfp-30 and gfp-34 data. In (Wang, 2010), only

the steady state solution was used. Hence only the ratio of k1 and d can be estimated.

at stationarity (ie at long times) and estimate α, n1, K1, and the ratio k1/d. These estimates

have been obtained assuming equilibrium (Ġ = 0) and initial condition G(0) = 0 by Wang

et al. (2011) (Table 4.2).

In fact, the experiments measured time series of the expression of G every 20 minutes

from t = 140 to 360 min. for different doses of inducer

I1 = 0.0, 3.9× 10−4, 1.6× 10−3, 6.3× 10−3, 2.5× 10−2, 0.1, 0.4, 1.6, 6.4, 12.8 mM,

with two different reporters (gfp-30 and gfp-34, Tables B.4 and B.5). Instead of assuming

equilibrium and using only the data for t > 300 min as done previously (Wang et al., 2011),

we apply Algorithm 4.1 to all the data with the full dynamical equation (4.12) to estimate

θ = [α, k1, n1, K1, d]. In this case, we used initial priors U(0, 1) for α and n1; and U(0, 20)

for k1, K1 and d. The other parameters were set to: J = 1000, B = 50, pm = 0.95, and

Tol = 10−5.

The algorithm converged after five iterations to the parameter values in Table 4.2. The

parameter estimates provide good fits to both the time courses (Fig. 4.3B) and to the dose

response data (Fig. 4.3A). The values of K‡
1 and n‡

1 obtained here are similar those obtained

in (Wang, 2010) by using only stationary data; this is reassuring since these parameters are

related to the dose threshold to half maximal response and to the steepness of the sigmoidal

response, both static properties. On the other hand, the values of α and the ratio k1/d differ

to some extent due to the (imperfect) assumption (Wang, 2010) that steady state had been
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reached at t = 300 min. As Fig. 4.3B shows, G is not at steady state then. Hence the

parameter values obtained with our method should give a more faithful representation of

the true dynamical response of the switch.

4.3.4 Three-node Repressilator

We test our algorithm with a circuit of genetic regulators, known as the repressila-

tor (Elowitz and Leibler, 2000), which consists of an unidirectional ring of genetic

repressors. In one of its simplest forms the system of ODEs that describes the dynamics of

the circuit are:

dm1

dt
= α0 +

α

1 + pn3
−m1,

dp1
dt

= β(m1 − p1),

dm2

dt
= α0 +

α

1 + pn1
−m2, (4.13)

dp2
dt

= β(m2 − p2),

dm3

dt
= α0 +

α

1 + pn2
+−m3,

dp3
dt

= β(m3 − p3).

The variables mi and p1 represent the concentrations of mRNA and protein from gene i.

The equations for m1, m2, and m3 display a basal level of transcription which is obstructed

(by means of a Hill-function) by proteins p3, p1, p2, respectively and have linear decay. The

equations for pi show that translation is proportional to the amount of mRNA and also have

linear decay.

The dynamics of model (4.13) are capable of attaining stable steady states, long lived

oscillatory transients, and stable oscillations (Elowitz and Leibler, 2000; Strelkowa and

Barahona, 2011). The parameters of the model θ = [α0, α, n, β] are the rates of translation,

the Hill-coefficient of the repressor, and the protein translation and decay rate. We use data

taken from (Toni and Stumpf, 2010) consisting of measurements of m1, m2, and m3 at

several time points with added gaussian noise from simulations using parameters α0 = 1,
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n = 2, β = 5, and α = 1000, starting from initial conditions m1(0) = 0, p1(0) = 2,

m2(0) = 0, p2(0) = 1, m3(0) = 0, and p3(0) = 3 (Table B.3).

To find the value of the parameters using Algorithm 4.1 we set the prior distribution of

all the parameters to be U(0, 500) (note that the prior does not include the value of α and

contains values much larger than the other parameters’ real values), and running parameters

J = 1000, B = 50, pm = 0.95, and Tol = 10−2. Figure 4.4A shows all the local minima

obtained by our method in different iterations projected into two-parameter scatterplots (the

100 best points of each iteration). As in the BPM example, the local minima align with the

landscape of the error function. In the early iterations the algorithm explores regions of the

parameter space several orders of magnitude across before focusing on a specific region.

Figure 4.4B shows the errors of the local minima found after each iteration. After the first

two iterations there was not a significant reduction of the error; until iteration three the

algorithm was able to find regions in the parameter space with lower errors. The method

found a second “plateau” of the error until iteration 13, then the error decreased steadily

until convergence at the end of iteration 20. The minimum error was ED(θ
‡) = 484.53,

where α‡
0 = 0.9959, n‡ = 1.9703, β‡ = 4.7840, and α‡ = 1, 043.90. Note that

ED(θReal) = 500.59, again an artifact of the noise in the data. Figures 4.4C and 4.4D

show the final distribution of the parameters and the time-course of the solution with the

data. This example illustrates an important aspect of parameter fitting tasks; the algorithm

may remain trapped in regions of the parameter space for several iterations, emphasising

the need for careful consideration of the choice of priors and running parameters.

4.4 Discussion

We have presented an optimisation algorithm in this chapter that brings together ingredients

from Evolutionary Algorithms, local optimisation and Sequential Monte Carlo. The

method is particularly useful for determining parameters of ordinary differential equation

models from data; however, this approach can also be used in other contexts where an

optimisation problem has to be solved on complex landscapes, or when the objective

function cannot be written explicitly. The algorithm proceeds by generating a population

of solutions through Monte Carlo sampling from a prior distribution and refining those
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Figure 4.4 (preceding page): Results of fitting repressilator model (4.13) to data. A:

Scatterplot projections of the 100 best parameter sets after each iteration. Blue markers

show minima from early iterations, red markers; from later iterations. B: The lowest

errors attained after each iteration of the algorithm (on a logarithmic scale, normalised

by ED(θ
‡)). C: Posterior distribution of the parameters at the end of iteration 20. D: Time-

course of model (4.13) using parameters θ‡ (bold lines, see text) along with the noisy data

from Table B.3.

solutions through a combination of local optimisation and culling. A new prior is then

created as a mixture of a historical prior (which records the broadest possible range of

solutions found) and the distribution of the optimised population. This iterative process

induces a strong concentration of the Monte Carlo sampling through local optimisation

which accelerates convergence and increases precision, while at the same time the presence

of the historical prior allows the possibility that solutions can be found outside of the initial

presumed ranges for the parameter values.

The application of the algorithm to ODE models of biological interest has been

illustrated and found to perform efficiently. Chapter 7 shows that the algorithm also works

well when applied to a larger problem with tens of parameters in the model of stomatal

closure. The efficiency of the algorithm hinges on selecting appropriate running parameters

and priors. For instance, the number of samples from the prior J should be large enough

to allow for significant sampling of the parameter space while small enough to limit the

computational cost. We find that simulating J = 350 − 500 points in models of up to 10

parameters and keeping the best 15% of the local minima leads to termination within fewer

than 20 iterations. In the implementations in this thesis, the Nelder-Mead minimisation

is capped at 300 evaluations. These guidelines would result in up to 300,000 evaluations

of the objective function per iteration. Therefore the method can become computationally

costly if the objective function is expensive to evaluate, eg in stiff models that are difficult

to solve numerically. In essence, this algorithm proposes a trade-off: fewer but more costly

iterations. It is important to remark that, as with any other optimisation heuristic for non-

convex problems, there are no strict guarantees of convergence to the global minimum.

Therefore, it is always advisable to run the method with different starting points and

different settings with enough sampling points in parameter space to check for consistency

of the solutions obtained.
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The generation of iterative samples of the parameters draws inspiration from Monte

Carlo methods (Sisson et al., 2007; Toni and Stumpf, 2010; Toni et al., 2009) but without

pursuing the strict guarantees that the nested structure of the distributions in ABC-SMC

provides. This evolutionary approach adopts a highly focused Monte Carlo sampling driven

by a sharp local search with culling. Hence this iterative procedure generates samples

that only reflect properties of the set of local minima (up to numerical cutoffs) without

any focus on the global convergence of the distributions. As noted by Toni et al. (2009),

the distributions of the parameters (both their sequence and the final distributions) give

information about the sensitivity of the parameters: parameters with narrow support will

be more sensitive than those with wider support. Future developments of the method

will focus on establishing a suitable theoretical framework that facilitates its use in model

selection. Broadening the choice of historical priors may be a way of establishing such

framework. Currently, no assumptions about the parameter space are made, hence uniform

distributions over the support of all the posteriors are used. However, other distributions (eg

exponential or log-normal) may be considered as a way to bias the historical prior towards

regions of particular interest. Other work will consider the possibility of incorporating a

stochastic ranking strategy in the selection of solutions, similar to the one present in the

SRES algorithm (Runarsson and Yao, 2000), in order to solve more general constrained

optimisation problems with complex feasible regions.
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Chapter 5

Models of linear activation cascades:

properties and applications

5.1 Introduction

Activation cascades are frequently found in biological signal transduction systems (Hein-

rich et al., 2002; Marks et al., 2009). Perhaps one of the best studied examples is the

mitogen-activated protein kinase (MAPK) cascade, which plays a central role in important

cellular functions such as regulation of the cell cycle, stress responses and apoptosis (Marks

et al., 2009). In general, activation cascades are formed by a set of components (typically

proteins) that become sequentially active in response to an external signal (Fig. 5.1). The

role of cascades is to relay, amplify, dampen or modulate signals in order to achieve a

variety of cellular responses. Activation cascades, particularly the MAPK cascade, have

been the subject of numerous studies, experimental and theoretical (Chang and Karin,

2001; Chaves et al., 2004; Feliú et al., 2011; Heinrich et al., 2002; Huang and Ferrell,

1996; Kholodenko, 2000; Tyson et al., 2003; Zhang and Klessig, 2001).

In this chapter, we study ODE models of linear cascades and obtain analytical solutions

in terms of the lower incomplete gamma function for the case when inactivation rates are

identical and as well as the case when a single protein has a different inactivation rate than

the rest. We discuss how these results may be used in parameter fitting and model reduction

as an alternative to delay differential equations. The results from this chapter are used to
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Figure 5.1: A cascade of length n. The nodes in the cascade can either be in an inactive

state x∗
i , or active xi . An external signal R(t) activates the first node. Once a node is

active, it can activate the next node, and so on until the end. The activation rates are αi and

the inactivation rates of each xi are βi. Image adapted from Heinrich et al. (2002).

construct a model of stomatal closure in Chapter 7.

5.2 Linear cascades and their gamma function representation

Consider a cascade of length n subject to an external signal R̂(t). Upon perception of R̂(t),

the first inactive component (x∗
1) is transformed into its active state (x1) which then activates

the next inactive component (x∗
2). Sequential activation of x∗

i by xi−1 continues until the

end of the cascade. The output of the cascade is the active form of the last protein, xn. In

the case of the MAPK cascade, the components are proteins and the activation corresponds

to a post-translational modification, ie phosphorylation (Fig. 5.1). However, the formalism

below can also be used to describe other sequential biochemical processes with similar

functional relationships, for example n-step DNA unwinding (Lucius et al., 2003).

We consider mass-action reactions (without an intermediate complex) for the activation

of the proteins. For the activation of x1 we have

R̂ + x∗
1 −→ x1 + R̂,
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and for xi where i = 2, . . . , n the reaction is

xi−1 + x∗
i

α̂i−→ xi−1 + xi.

We assume that all proteins deactivate spontaneously at a constant rate:

xi
βi−→ x∗

i .

The ODE model of the reactions above describing the time evolution of the activation

cascade is then (Heinrich et al., 2002):

dx1

dt
= R̂(t)(T1 − x1)− β1x1,

dx2

dt
= α̂2x1(T2 − x2)− β2x2, (5.1)

...

dxn

dt
= α̂nxn−1(Tn − xn)− βnxn,

where (Ti − xi) = x∗
i is the inactive form of xi when the total amount of each component

is given by Ti = xi + x∗
i . We assume resting initial conditions (ie xi(0) = 0, for all i) and

that Ti remains constant (ie no protein production). As shown by Heinrich et al. (2002),

whenever Ti ≫ xi we have Ti − xi ≈ Ti (the so-called weakly-activated case) and we can

re-write the system (5.1) as

dx1

dt
= R(t)− β1x1,

dx2

dt
= α2x1 − β2x2, (5.2)

...

dxn

dt
= αnxn−1 − βnxn,

where R(t) = R̂(t)T1 and αi = α̂iTi.



74

The system of equations (5.2) is linear and can be written in vector form:

ẋ = Ax+R(t)e1, (5.3)

where x = [x1, . . . , xn]
T , the n× n rate matrix A is:

A =




−β1

α2 −β2

. . .
. . .

αn −βn



, (5.4)

and e1 = [1, 0, . . . , 0]T is the first n× 1 vector of the canonical basis. In general, we use ei

to denote the i-th canonical vector.

When a cascade receives an integrable input R(t), the Laplace transform (Ap-

pendix C.1.1) of the first protein is:

L (x1) =
α(1)L (R)

(βi + s)
.

In general, the transform for the n-th protein is

L (xn) =
αn
(n)L (R)

∏n
i=1(βi + s)

, (5.5)

and α(n) is the geometric mean of the activation rates

α(n) =

(
n∏

j=1

αj

)1/n

. (5.6)

Note that if βi 6= βk for all i, k then

n∏

i=1

(s+ βu)
−1 =

n∑

i=1

β(−i)

s + βi
,



75

where

β(−i) =

n∏

k=1
k 6=i

(βi − βk)
−1 ∈ R,

we can express equation (5.5) as

L (xn) =

n∑

i=1

αn
(n)β(−i)L (R)

s+ βi
. (5.7)

Using the linearity of the inverse of the Laplace transform and its convolution properties

we have that the output of the cascade is

xn(t) = αn
(n)

n∑

i=1

β(−i)(R ∗ e
−t)(βit), (5.8)

where

(R ∗ e−t)(βit) =

∫ βit

0

e−(βit−τ)R(τ)dτ =

∫ βit

0

e−τtR(βit− τ)dτ. (5.9)

Example 5.2.1. Consider a cascade of length n with a constant stimulus R(t) = α1,

t ≥ 0, then the output of the last protein in the cascade is given by the sum of exponential

functions:

xn(t) = αn
(n)

n∑

i=1

β(−i)

[
1− e−βit

]
.

5.2.1 Optimal cascades

Cells operate with limited resources and they must use them efficiently. Activation cascades

as part of the cell-signalling machinery should operate as economically as possible,

minimising use of valuable resources such as ATP or amino acids. Recently, Chaves et al.

(2004) showed that activation cascades in the weakly activated regime (whose dynamics are

described by equation (5.3)) are optimal for a given gain (ie achieve maximal amplification)

when all the deactivation rates of the proteins are equal and the number of proteins is finite.

The gain of a linear cascade is defined as the supremum of equation (5.7):

Gn =
1

l

α2 · · ·αn

β1 · · ·βn
,
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Figure 5.2: Time-course of the leaky integrators (xn+1(t)) of cascades of lengths 1 to 5

with fixed gain (Example 5.2.2). The optimal length of the cascade is 3 (dashed red-line),

whose maximum value is 1.0779 (indicated by the horizontal dashed line).

where l is the degradation of a protein (xn+1) introduced in the equations at the bottom of

the cascade with activation rate equal to 1 (ie a leaky-integrator). As mentioned, given a

fixed value of Gn, the cascade provides optimal amplification when βi = β for all i (Chaves

et al., 2004). This result means that arbitrarily long cascades are not useful for cells that

require particular gains from external signals. Furthermore, the degradation of the proteins

is

β =

(
α2 · · ·αn

lGn

)1/n

,

and the rate-matrix in equation (5.3) becomes

Ã =




−β

α2 −β
. . .

. . .

αn −β



. (5.10)

Example 5.2.2. Let Gn = 7, R(t) = 5te−2t, and αi = 1.2. We examine the time-course of

xn+1(t) (the leaky integrator) in cascades of length n = 1, . . . , 5, shown in Fig. 5.2. The

optimal cascade for the prescribed Gn has length n = 3 (red-dashed line), which means

that β = 0.6273. Longer or shorter cascades exhibit suboptimal amplification.
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Below we consider three cases where the input of the cascade can be of particular

importance in the modelling process.

Constant stimulus

In an experimental setting, one often wants to study the response of a biological system

to a constant stimulus such as constant temperature, light or treatment. In these cases we

express the stimulus as:

R(t) = α1 ∈ R, t ≥ 0.

Then the solution to equation (5.3) with initial condition x(0) = 0 is:

x(t) = α1A
−1
[
etA − In

]
e1, (5.11)

where In is the n × n identity matrix, and etA; the matrix exponential. If the cascade is

optimal (ie A = Ã), the Laplace transform of the last protein in (5.5) becomes

L (xn) =
αn
(n)

s(s+ β)n
,

whose inverse transform is (see Appendix C.1.3 for detailed calculations):

xn(t) =

(
α(n)

β

)n

P(n, βt), (5.12)

where P(n, βt) is the normalised lower incomplete gamma function (defined in equa-

tion (C.4)).

Exponentially decreasing stimulus

When the first protein in the cascade is subject to an exponentially decaying stimulus (eg

when the signal is a reactive molecule or it becomes metabolised, or the receptors become

desensitised)

R(t) = α1e
−λt,
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then the solution to equation (5.3) with initial condition x(0) = 0 is

x(t) = α1

[
etA − e−λtIn

]
A−1

[
In + λA−1

]−1
e1. (5.13)

If we assume again that A = Ã, then

L (xn) =
α(n)

(s+ λ)(s+ β)n

and the output of the system is given by:

xn(t) =





(
α(n)

β−λ

)n
e−λt P(n, (β − λ)t) if β 6= λ

1
Γ(n+1)

(
α(n)t

)n
e−βt if β = λ,

(5.14)

where α(n) is defined in (5.6) and Γ(n + 1) is the gamma function. As for the case

of constant stimulus, the solution is also given in terms of the lower incomplete gamma

function (see Appendix C.1.4 for calculations).

Sinusoidal stimulus

In certain experimental settings one is interested in studying the response of a system to a

periodic stimulus, for example in models of circadian rhythms, or periodic stimuli such as

day/night cycles (Locke et al., 2005). For that purpose we consider a cascade of length n

with a periodic input

R(t) = α1 (1 + sin (ωt)) ,

that oscillates between 0 and α1 with frequency ω > 0. From resting initial conditions (ie

x(0) = 0), the solution to equation (5.3) is:

x(t) = α1V
−1
[(
etA − In

)
V −

(
sin (ωt)In + ω cos (ωt)A−1

)
+ ωA−1etA

]
A−1e1,

(5.15)
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where V = (In + ω2A−2). When A = Ã we can obtain the explicit solution for the n-th

protein in the cascade (see Appendix C.1.5 for calculations):

xn(t) =

(
α(n)

β

)n

P(n, βt) +
(α(n)

r

)n
[
sin (ωt− nθ)− e−βt

n∑

k=0

tkrk

k!
cos ((n+ k)θ)

]

where r = (β2 + ω2)1/2, and θ = arctan
(
β
ω

)
. This solution consists of the normalised

lower-incomplete gamma function added to a function that takes a similar shape to the

incomplete gamma function with cosines as coefficients in the polynomials. Note that

cos((n+ k)θ) = Tn+k(cos(θ)) is the (n+ k)th Chebyshev polynomial evaluated at cos(θ).

For large t, xn(t) converges to

x̆n(t) =

(
α(n)

β

)n [
1 +

(
β

r

)n

sin (ωt− nθ)

]
, (5.16)

the behaviour in the long term of xn(t). The term
(
β
r

)n
in equation (5.16) is useful to

characterise the response based on the frequency of the stimulus, and could also be used

to establish bounds on the response of a cascade to noisy inputs with variance related to ω

(note that β/r < 1 ⇒ x̆n(t) > 0 ∀t).

5.3 Perturbation of a single inactivation rate

We now examine how the output of a weakly-activated (linear) activation cascade is

modified when a single protein in the cascade has a different inactivation rate. For

instance, Chaves et al. (2004) considered a cascade with an auxiliary protein with different

inactivation rate (ie the leaky integrator xn+1 described in the previous section) at the end of

the cascade. We study the effect of such a ‘perturbation’ and how the effect depends on the

position of the component in the cascade. Consider a cascade of n proteins with activation

rates αj and inactivation rates βj = β, ∀j 6= i, and βi = β + ε for a given node i. We can

see from the Laplace transform of xn(t) in equation (5.5) that the position of the protein

with degradation βi in the cascade does not affect the final output of the cascade.
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We can also examine the rate matrix of the system (5.3) which in this case becomes

A = Ã− ε eie
T
i ≡ Hi, (5.17)

where Ã is given in equation (5.10) and ei is the i-th vector of the canonical basis in Rn.

The Jordan decomposition of Hi is

Hi = QiJQ
−1
i , (5.18)

where J is the Jordan normal form

J =




−(β + ε)

−β 1

−β
. . .

. . . 1

−β




, (5.19)

and Qi is the matrix with generalised eigenvectors as columns.

Interestingly, a property of this Jordan decomposition is that both J and the vector

Q−1
i e1 are independent of the location of the perturbation i. As shown in Example C.2.1,

this follows from the following fact: consider i < h (without loss of generality), then rows

1 to i− 1 and h to n of Qi and Qh are identical, ie (in Matlab notation) Qi(1 : i− 1, :) =

Qh(1 : i− 1, :) and Qi(h : n, :) = Qh(h : n, :). (proof in Appendix C.2.)

5.3.1 Constant stimulus

The constant stimulus solution (5.11) for the perturbed case (A = Hi) is

x(t) = α1H
−1
i

[
etHi − In

]
e1 = α1QiJ

−1
[
etJ − In

]
Q−1

i e1, (5.20)

which follows from (5.18). For two cascades with modified decay rates at i and h (i < h),

we know from (5.5) that in each case xn(t) is exactly the same. Furthermore, the properties

of J and Qi stated above imply that the vector J−1
[
etJ − In

]
Q−1

i e1 is independent of the
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position of the perturbation, i. Hence the entries of x(t) are determined only by the matrix

Qi. In both perturbed cascades we have Qi(h : n, :) = Qh(h : n, :), meaning that the

solution for the last n − h + 1 proteins is the same in both cascades. (Similarly, the i − 1

first components of the solution (5.20) are identical, but that is obvious).

Example 5.3.1. Consider two cascades of length n = 6 with constant stimulus and

activation rates α1 = · · · = α6 = 3 and degradation rate β = 2 for all proteins except

for a perturbation ε = 0.5 on the third and fifth proteins of each cascade, respectively. The

corresponding rate matrices are:

H3 =




−2

3 −2

3 −2.5

3 −2

3 −2

3 −2




H5 =




−2

3 −2

3 −2

3 −2

3 −2.5

3 −2




.

The Jordan form for both cascades is:

J =




−2.5

−2 1

−2 1

−2 1

−2 1

−2



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and the corresponding generalised eigenvector matrices are:

Q3 =




0 0 0 0 0 1

0 0 0 0 3 0

36 0 0 0 18 −36

−216 0 0 54 −108 216

1296 0 162 −324 648 −1296

−7776 486 −972 1944 −3888 7776




, (5.21)

Q5 =




0 0 0 0 0 1

0 0 0 0 3 0

0 0 0 9 0 0

0 0 27 0 0 0

1296 0 162 −324 648 −1296

−7776 486 −972 1944 −3888 7776




. (5.22)

As explained above, rows 1-2 and 5-6 of Q3 and Q5 (in bold) are the same. In addition,

Q−1
3 e1 = Q−1

5 e1 = [1 0 0 0 0 1]T.

Since the rows of of Q3 and Q5 are the same below the second perturbation, then the

values of x5(t) and x6(t) are equal in both cascades. Figure 5.3 shows the time course of

the proteins in both cascades: x1(t), x2(t), x5(t), and x6(t) (solid lines) are the same in

both cascades, while x3(t) and x4(t), the proteins “sandwiched” between the perturbations

(dashed lines), are not. We discuss an application of this result in Section 5.4.2.
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Figure 5.3: Time course solutions of two ε-perturbed cascades from Example 5.3.1. A:

Cascade with a perturbation in the degradation of the third protein. B: Cascade with a

perturbation in the fifth protein. The activity of the proteins of both cascades is the same

for nodes above and below the perturbations (continuous lines), but is different in the nodes

between the perturbations (dashed lines).

5.3.2 Exponentially decreasing stimulus

Just as in the previous section, the solution (5.13) for the exponential stimulus in the

perturbed case (A = Hi) can be rewritten as:

x(t) = α1Qi

[
etJ − e−λtIn

]
J−1

[
In + λJ−1

]−1
Q−1

i e1, (5.23)

and, again, the same argument follows to conclude that the last n − h + 1 components of

the solution (5.23) are the same for two cascades modified at positions i and h (h > i).

Example 5.3.2. Consider the same cascades as in Example 5.3.1 with R(t) = α1e
−λt

and λ = 1. Figure 5.4 shows the time behaviour of the proteins in the two cascades.

As in the previous example, the proteins above and below the perturbations are unchanged.

5.4 Applications

5.4.1 Model simplification and parameter fitting

The expressions for the output of the cascade xn(t) in terms of incomplete gamma functions

can be useful to fit activation data to a reduced number of parameters. Rather than
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Figure 5.4: Time course solutions of two ε-perturbed cascades with decaying stimulus

from Example 5.3.2. A: Cascade with a perturbation in the third protein. B: Cascade

with a perturbation in the fifth protein. On the right of each plot, the label of each protein

is placed at the level where its solution peaks. The activity of the proteins is the same

for nodes above and below the perturbations (continuous lines), but different in the nodes

between the perturbations (dashed lines).

fitting the observed output of the cascade to n + 2 parameters for an entire module with

n components, the approximate expression with the lower incomplete gamma function

contains at most four parameters: α(n), β, n (and in the case of exponential decay, λ). In

this approach, (shown graphically in Fig. 5.5A) the length of the cascade n is turned into

a fitting parameter, similarly to what is done with Hill coefficients. Indeed, the fitted value

does not need to be an integer because the lower incomplete gamma function P(n, t) is

defined for any positive real number in its first argument (Abramowitz and Stegun, 1964).

Example 5.4.1. Consider two cascades of length n = 5 with parameters α1 = 3, αi = 4

for i = 2, . . . , 5 (so α(n) = 3.776), and β = 3. One cascade is subject to a constant stimulus

R(t) = α1 and the other to an exponentially decaying input R(t) = α1e
−λt with λ = 1.

After solving numerically the ODE models of the linear cascade (5.3) for both inputs

(dashed lines in Fig. 5.5B), we sample the output x5(t) at times t = {0, 1, . . . , 10} and we

add random noise from a distributionN (0, 0.052) to generate our ‘observed data’ (squares

in Fig. 5.5B).

We fit the gamma function expressions (5.12) and (5.14) to the ‘data’ using the method

introduced in Chapter 4 (Appendix C.4). The bold lines in Fig. 5.5B show the fits to

both cascade output data. The fits to the noisy data are good and the estimated values

are close to the ‘true’ ones: in the case of the constant stimulus cascade, the fitted values
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Figure 5.5: A: Schematic of a signal transduction model with a cascade. Given a linear

cascade of arbitrary length, the red node at the top is the stimulus, and green nodes

are the components of the cascade. The last node of the cascade transmits the signal

to downstream components of the pathway. The model of the cascade has up to n + 2
parameters: α1, . . . , αn, β, and if the stimulus decays, λ. Then the cascade is condensed

into an expression with an incomplete gamma function that sends the exact same signal as

the cascade in the left panel directly to the rest of the network. The new expression has

parameters α(n), β, n, and if the stimulus decays, λ. B: Examples of the time-course of two

cascades with constant (top) and exponentially decaying stimulus (bottom). The dashed

lines indicate the solutions to the corresponding systems of ODEs, squares are noisy data

generated from the models, and bold lines are fits to the data using the incomplete gamma

function expressions (see Example 5.4.1).
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are α(n) ≈ 4.068, β ≈ 3.281, and n ≈ 5.418; in the case of the exponentially decaying

stimulus, the estimated values are α(n) ≈ 3.317, β ≈ 2.177, n ≈ 4.6, and λ ≈ 2.177.

5.4.2 Cascade equation reordering

The results presented in Sec. 5.2 and 5.3 allow us to reshuffle equations of cascade models

where perturbations are known to occur. In particular, the equations of all proteins with

the same inactivation rates can be grouped together upstream in the cascade so that they

can be replaced with the incomplete gamma function expression, while the equations of the

perturbed proteins are placed downstream and take the gamma function as an input.

This process of reordering the cascade, which is schematically represented in Fig. 5.6A,

can be used to reduce the ODE model for the cascade without altering the dynamics or

the timescales. Suppose we have an ε-perturbed cascade of n + 1 proteins that we have

reordered so that the first n proteins have inactivation rate β and the (n+ 1)-th protein has

rate β + ε.

Constant input

Consider first a constant input R(t) = α1. Using (5.12), we write the dynamics of the

output of the cascade as

dxn+1

dt
= αn+1

(
α(n)

β

)n

P(n, βt)− (β + ε)xn+1, (5.24)

or, more conveniently, its Laplace transform:

L (xn+1) =
α(n)

s(s+ β)n+1(s+ β + ε)
.

This equation can be solved analytically (see C.3.1):

xn+1(t) =
αn+1

β + ε

(
α(n)

β

)n
(
1− e−βt

[(
−β

ε

)n

e−εt +
n−1∑

k=0

(εn−k − (−β)n−k)(βt)k

εn−kk!

])
,

(5.25)

where we have taken the initial condition xn+1(0) = 0.
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Figure 5.6: Example of cascade reordering and substitution. A: A linear ε-perturbed

cascade model of length 4, the input (red node) can either be constant or decaying.

Green circle nodes are proteins whose inactivation rates are all β, the blue star node has

inactivation rate β + ε. Downstream of the cascade lie other components of the signalling

pathway. Reordering of the equations: the protein with the perturbed inactivation has been

moved the bottom of the cascade. Both this cascade and the one on the left have the same

output. The first three equations in the reordered cascade are substituted for an incomplete

gamma function. B: Numerical example of cascade reordering. Top: the equation of the

perturbed protein is placed at the bottom of the cascade (the time-course of the untouched

cascade is shown in Fig. 5.4A). Bottom: the solution to the module of unperturbed proteins

is given by equation (5.14); the solution of the perturbed protein at the bottom of the

cascade is given by equation (5.29) (Example 5.4.2).
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Exponentially decaying input

Consider an exponentially decaying input R(t) = α1e
−λt. If β 6= λ the ODE for the

(n+ 1)-th protein is

dxn+1

dt
= αn+1

(
α(n)

β − λ

)n

e−λt P(n, (β − λ)t)− (β + ε)xn+1. (5.26)

When β = λ we have:

dxn+1

dt
= αn+1

(
α(n)t

)n

Γ(n+ 1)
e−βt − (β + ε)xn+1. (5.27)

In both cases the Laplace transform of xn+1(t) is

L (xn+1) =
αn
(n)

(s+ λ)(s+ β)n−1(s + β + ε)
. (5.28)

When the initial condition is xn+1(0) = 0, the analytical solution for equation (5.26) is (see

C.3.2):

xn+1(t) =
αn+1

β − λ+ ε

(
α(n)

β − λ

)n [
e−λt +

e−(β+ε)t

εn
−

−e−βt

n−1∑

k=0

(
εn−k − (λ− β)n−k

)
(β − λ)ktk

εn−kk!

]
. (5.29)

When λ = β the solution is

xn+1(t) =
(α(n+1)

ε

)n+1

e−βt

[
εn

n∑

k=0

(−1)ktn−k

εk(n− k)!
+ (−1)n+1e−εt

]
. (5.30)

Example 5.4.2. Consider the n = 6 cascade from Example 5.3.2, where the degradation

rate of the third protein is ε-perturbed (time-course shown in Fig. 5.3A). The equations

of the system can be reordered without affecting its final output so that the equation of

the perturbed protein is at the bottom of the cascade (Fig. 5.6B, top). The output of the

first 5 equations in the reordered cascade is then given by the incomplete gamma function

expression (5.14) and the analytical solution of the perturbed protein (which is now the
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output of the cascade) is given by Eq. (5.29) (Fig. 5.6B, bottom).

5.4.3 Delay differential equation models for activation cascades

Experimental observations in signalling cascades are typically concerned with the effect

of the cascade on the output characterised in terms of the amplification, distortion and

delay introduced in the output downstream. Within the framework of ODE models,

the interactions between the variables occur instantaneously. Hence, if the response to

a stimulus occurs with delay, one must incorporate further intermediate variables that

were not considered in the original ODE model, corresponding to unmeasured, hidden

processes that take time to complete (Stark et al., 2007). This process can lead to large

models with many unobservable variables and large numbers of parameters or to the

introduction of abstract variables to model unknown processes that may contribute to the

observed delays (Bar-Or et al., 2000; Höfer et al., 2002). Alternatively, modellers often use

delay differential equations (DDEs) to account for the lag between an event and its effect

parsimoniously (Bernard et al., 2006; Colijn and Mackey, 2005; Monk, 2003). In a DDE,

the activity of a variable depends on the state of the system in the past:

dx

dt
= f(x(t− τ)),

where the parameter τ ≥ 0 is the delay. Linear systems of delay differential equations

can be solved analytically using infinite series involving the Lambert function (Bellman

et al., 1963; Yi and Ulsoy, 2006), but such solutions are often impractical to use. Our

results indicate that simple delays can be modelled with linear activation cascades leading

to concise ODE descriptions in terms of the lower incomplete gamma function and without

relying on DDEs, as shown in Fig. 5.7A.

Example 5.4.3. Consider a system with a delay, which we model with the following linear

DDE:

dp̂1
dt

= α̂− β̂ p̂1,

dp̂2
dt

= α̂ p̂1(t− τ)− β̂ p̂2. (5.31)
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Figure 5.7: A: Example of the use of linear activation cascades to replace delay differential

equations. A signal node (red node) activates a node in a signalling pathway. The bottom

node responds with a delay τ . The delay in the equation is removed and substituted with

a linear cascade of length n. The entire cascade is replaced by a lower incomplete gamma

function. B: Top: The dashed line is the solution to the DDE (5.31) from Example 5.4.3, the

squares are points taken from the solution with added random noise. The continuous line

is the approximation using a lower incomplete gamma function. Bottom: the relationship

between the ratio n/β and τ is linear (dashed-line) with slope 0.977 and intercept 0.962.

Inset: α almost does not vary with τ (see text).
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Figure 5.7B (top plot) shows the simulated time course of p̂2(t) (red dashed line) when

α̂ = 2, β̂ = 3, and τ = 2 with initial conditions p̂1(0) = p̂2(0) = 0. To generate our

‘observed data,’ we sample p̂2 at various time points and add observational random noise

from a distributionN (0, 0.052).

We can fit this noisy data to a linear cascade of length n under constant input with

parameters α(n) and β:

pn(t) =

(
α(n)

β

)n

P(n, βt) ≈ p̂2(t), (5.32)

and estimate the corresponding parameters. The solid line in the top plot of Fig. 5.7B shows

the best fit of the data to a linear cascade, as obtained with the parameter fitting algorithm

introduced in Chapter 4 (Appendix C.4). The estimated parameter values are α(n) ≈ 2.27,

β ≈ 7.53, and n ≈ 22.1072.

We also explore the connection between the parameters of the DDE and the best fitted

(linear) activation cascade model, in particular as a function of the delay τ . We simulate

the DDE (5.31) with parameters α̂ = 2 and β̂ = 3) for different values of the delay

τ ∈ [0, 5] and collect data from these models as above, but without adding random noise.

The dependence of the fitted parameters and τ is shown in Fig. 5.7B (bottom plot): α

remains relatively constant (decreases minimally) while the ratio n/β grows almost linearly

with τ : n/β = 0.962 + 0.977τ . In fact, β increases linearly (slope ≈ 4.11) and n grows

almost quadratically with τ (exponent≈ 1.88). When the delay τ in the ‘data’ is increased,

the length of the fitted cascade (n) increases while the time scale of the gamma function

(1/β) decreases in consortium. If one attempts to fit the data allowing only the length n as

a fitting parameter, the fit is not successful, thus underscoring the importance of the time

scale β in the approximation. Indeed, the original time delay τ in the DDE is approximated

in the linear cascade by (n/β− 1), ie the accumulated time needed to traverse n sequential

steps with duration 1/β.

In Chapter 7 we use the approach described in this section to introduce delays in the

antioxidant responses of guard cells to abscisic acid and ethylene stimuli during stomatal

closure.
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5.5 Discussion

In this chapter the classic model of activation cascades in the weakly activated limit (Hein-

rich et al., 2002) has been examined. We have considered the important case where all

inactivation rates of the components of the cascade are identical, which has been shown

to provide optimal amplification (Chaves et al., 2004). These results show that the output

of these cascades can be represented exactly by lower incomplete gamma functions. We

also show that the position of a protein in the cascade does not affect the final output.

These results allow the reduction of the number of equations and parameters in ODE

models without affecting the dynamics or the timescales of the system. The results

show that in some cases incomplete gamma functions can be used to approximate delay

differential equations. Beyond its application to enzymatic activation cascades, similar

mathematical models of cascades could be helpful for the parametrisation and modelling

of multi-step transcriptional processes, an area of active research in Systems and Synthetic

Biology (Hooshangi et al., 2005; Lucius et al., 2003; Stricker et al., 2008; Wang et al.,

2011). These results also give an example of how reducing nonlinear models of ODEs

is not trivial. Some methods reduce network models (or modules) based on the topology,

effectively finding a minimal kernel that preserves some aspects of the dynamics (Kim

et al., 2011). By only considering the topology (and the signs) of the system such

methods cannot be guaranteed to preserve timescales or behaviour (Ingram et al., 2006),

and are best suited for boolean models. As Chapter 7 shows, timescales can be crucially

linked to the behaviour of a model. Reducing models of differential equations remains a

challenging and active area of research (Conzelmann et al., 2004; Prajna and Sandberg,

2005; Siahaan, 2008). Future work will focus on the characterisation of the output of

cascades with negative (nonlinear) feedback (eg see equation (C.50) for a preliminary

result), and studying the case in which the degradation of the proteins (βi) are random

variables with the same mean and testing the conditions for optimal amplification given

desired expected gains.



93

Chapter 6

Experimental results

Guard cells were introduced in Chapter 2 along with a description of the way in which

plant hormones abscisic acid (ABA) and ethylene induce stomatal closure. The intriguing

observations made by Tanaka et al. (2005) and Desikan et al. (2006), where stomata treated

with ABA and ethylene did not achieve full closure have been described in Sec. 2.5.

Experiments are performed in this chapter to reproduce such results and to obtain more

information about why this unexpected behaviour occurs. The gathering of data in this

chapter has been motivated by the development of the models of stomatal closure presented

in Chapter 7, where the data are used to fit the model parameters.

Most data about stomatal closure available in the literature show the response of some

component of the signalling network, typically aperture, within one to two hours of the

stimulus (Bright et al., 2006; Chen et al., 2004; Garcı́a-Mata and Lamattina, 2007; Li

et al., 2000). In addition, the data available are fragmented and sometimes not consistent

with each other, for example, with different species such as Arabidopsis thaliana, Vicia

faba (in which ethylene actually mediates stomatal opening (Levitt et al., 1987)) or

tomato, laboratory conditions, plant age, cell type (guard cells, epidermal peels, guard cell

protoplasts may all have different properties), and methods of measuring stomatal aperture

(area or opening width). Detailed temporal analyses of ABA or ethylene-induced signalling

responses in guard cells have not yet been made. Moreover, it has often been assumed

that ROS production in guard cells only occurs in a burst and therefore, measurements in

guard cells are conventionally made over a short period, up to 5 min, after treatment (Pei
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and Kuchitsu, 2005; Zhang et al., 2001b). To achieve a better understanding of the

signalling processes leading to stomatal closure, it is imperative to know the behaviour

of the components of the pathway in time. As larger signalling systems with multiple

stimuli become subject of more studies, the fundamental need for time course data is

increasingly evident. This study makes a first advance to track the temporal responses

of ABA and ethylene in guard cells under single and combined stimuli; to that end, we

obtain measurements of ROS production and stomatal aperture in Arabidopsis guard cells.

The experiments follow the state of the system upon the arrival of the signal for 60 minutes,

a time-frame sufficient to study stomatal closure in Arabidopsis.

The choice to measure stomatal aperture is clear since it is the phenomenon that is the

focus of this study. The choice to measure the concentration of ROS at this point is because

it is (with current knowledge) where the pathways of ethylene and ABA in guard cells first

meet; additionally, (as explained in Chapter 2) ROS are an important component of the

guard cell signalling pathway. It is important to know whether the interactions responsible

for the lack of closure happen at this point or further down the pathway. Furthermore, as

mentioned above, the time-course response of ROS to either ABA or ethylene stimuli is

only known for early time-points; however, the modelling in Chapter 7 indicates that ROS

measurements are necessary for longer times, which is why the time-course of ROS here is

extended to 60 minutes.

The experiments in this chapter were performed by Mariano Beguerisse and Alessandro

Lizzul (stomatal assays), and Mercedes Hernández Gómez (ROS fluorescence assays).

6.1 Materials and methods

6.1.1 Plant material

Arabidopsis thaliana seeds of Columbia ecotype (Col-0) were sown on Levington F2+S

(Avoncrop, Bristol, UK) soil and grown under constant conditions in a growth chamber

(Sanyo Gallenkamp, Loughborough, UK) with a 10 hour light-period, light intensity of

100-150µ E/m2/s, temperature of 22◦C and 70% relative humidity. After 7 days, seedlings

were transplanted individually into new pots. Leaves of 4-6 weeks old plants, which had
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not yet formed flower bolts, were harvested for the aim of these experiments.

6.1.2 Stomatal assays

Stomatal aperture bioassays were performed on 4 week old leaves, as described by Desikan

et al. (2006). Leaves from 4-6 week-old plants with their petioles intact were then cut from

the plants using scissors. Excised leaves were floated for 3 hours inside the growth chamber

in Petri dishes with MES/KCl buffer (5mM KCl, 50 µM CaCl2, 10mM MES, buffered to

pH 6.15 with KOH) to open their stomata. After the initial treatment in buffer the leaves

were exposed to doses of 1 µM, 10 µM, and 50 µM ABA (2-cis, 4-trans abscisic acid 98%,

synthetic, Aldrich), 1 µM, 10 µM, and 100µM ACC (1-aminocyclopropane-carboxylic

acid hydro-chloride, Sigma), or a combination of 10 µM ABA with 10 µM ACC, using

ethanol as a control. The treatments were left in the growth chamber for 15, 30, 45 and

60 minutes. Two leaves were blended in water for 1-2 minutes and epidermal fragments

collected on a 100 µm nylon mesh (Spectra-Mesh, BDH-Merck, Nottingham, UK) and

transferred to a microscope slide. Measurements of individual stomatal aperture were

conducted using a Leica DME light microscope, connected to a Leica DFC290 camera

imaging system (Leica, Milton Keynes, UK). Leica QWinV3 software (Leica QWIN

software, Leica, Milton Keynes, UK) was used to measure the apertures. Each data point

collected is the mean of three experiments where n = 30 for each experiments (ie 90

individual stomatal measurements).

6.1.3 ROS fluorescence assays

Stomatal H2O2 concentration was measured as described by Desikan et al. (2006). Leaves

from 4-6 week old plants (2 leaves per condition) were blended in deionised water and

epidermal fragments were collected with a 40 µm sterile cell strainer (Fisher Scientific).

Epidermal fragments were incubated in Petri dishes containing MES/KCl buffer (5mM

KCl, 50 µM CaCl2, 10mM MES buffered to pH 6.15 with KOH) inside the growth

chamber for 3 hours. Epidermal fragments were collected and equally distributed into Petri

dishes loaded with ethanol (as control), 10 µM ABA (2-cis, 4-trans abscisic acid 98%,

synthetic, Aldrich), 10 µM the ethylene precursor ACC (1-aminocyclopropane-carboxylic



96

0 10 20 30 40 50 60

80

90

100

110

120

130

10 M ABA

10 M ETH

10 M ABA + 10 M ETH

Figure 6.1: ROS fluorescence measurements. Experimental measurements of ROS in guard

cells as percentage of control. in response to 10 µM ABA (blue circles), 10 µM ethylene

(red squares), and 10 µM ABA + 10 µM ethylene (green diamonds). Error bars show the

standard error of the mean (n = 30× 3).

acid hydro-chloride, Sigma), and a combination of 10 µM ABA and 10 µM ACC. The

treatments, which had durations of 5, 15, 30, and 60 minutes, were performed. Following

treatment for the appropriate time, fragments were incubated with 50µM H2DCF-DA (2,

7 -dichlorodihydrofluorescein diacetate, Invitrogen) for 10 minutes for H2O2 detection.

After a washing step in MES/KCl buffer for 20 minutes, epidermal fragments were

placed onto a slide and observed under a microscope. All steps were carried out under

dark conditions, as the dye is light-sensitive. H2O2 was visualised with a fluorescence

microscope (Axioskop2 plus, Carl Zeiss Ltd., UK) with Zeiss filter set 3 (excitation light

filter: 450-490nm, emission light filter: 515-565nm). Photographic images were captured

with Axiovision software v3.1 (Carl Zeiss Vision GmbH, UK). The images were processed

and fluorescence intensities (as mean of the pixel intensities) were measured with ImageJ

software (Abramoff et al., 2004).

6.2 ROS production

We applied single and combined doses of 10 µM ABA and 10 µM ethylene (ie ABA,

ethylene, and ABA+ethylene) to Arabidopsis thaliana guard cells and measured the

resulting ROS concentration in fluorescence units. The level of ROS production relative
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Figure 6.2: Stomatal aperture measurements as percentage of control. A: In response to 10

µM ABA (blue circles), 10 µM ethylene (red squares), and 10 µM ABA + 10 µM ethylene

(green diamonds). B: In response to 1 µM ABA (blue circles), 1 µM ethylene (green

squares), 50 µM ABA (red diamonds), and 100 µM ethylene (light-blue stars). Error bars

show the standard error of the mean (n = 30× 3), control aperture is ≈ 1.9 µm.

to controls, in response to the treatments is shown in Fig. 6.1. ROS production is almost

indistinguishable among treatments in the immediate five minutes after the stimuli. After

15 minutes, the cells stimulated only with ABA or ethylene still showed a 25% increase in

their ROS concentration, whereas the increase in cells treated with a combined dose was

only 5% above control. ABA and ethylene-induced ROS levels were maintained until 30

minutes after treatment, then a marked decrease was observed. After 60 minutes the ROS

level in cells treated with ABA decreased but still remained higher than control, the cells

treated with ethylene showed a reduction in ROS close to control levels, whereas the ROS

level of the cells treated with the combined stimulus fell to 80% of control.

6.3 Aperture

The aperture responses of the guard cells treated with single and combined doses of 10µM

ABA and 10µM ethylene are shown in Fig. 6.2A. As in other studies (Siegel et al., 2009;

Tanaka et al., 2006) apertures are shown as percentage of control. The three treatments

produced a decrease in stomatal aperture within 15 minutes of treatment. Interestingly,

the cells with the combined ABA-ethylene dose showed an aperture reduction of 25%
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compared to control, while cells treated with single stimuli of ABA and ethylene showed

reductions of about 15% and 20% respectively. After 30 minutes the stomata with the

combined treatment displayed less closure than the stomata under single treatments, a

trend that was accentuated after 45 and 60 minutes (with a slight decrease at 60 min).

Cells treated with ABA maintained their apertures close to 30% below control, whilst cells

treated with ethylene had begun to re-open after 60 minutes but stayed below control.

Figure 6.2B shows additional measurements of stomatal closure made in cells stim-

ulated with different individual doses of ABA and ethylene. From these data a similar

behaviour to that in Fig. 6.2A can be observed, though with the additional information that

the 1 µM doses are not sufficient to achieve full closure and the higher doses (50 µM and

100 µM) seem to have saturated. Note that the response of guard cells to 10 µM ethylene

in Fig. 6.2A is consistent with the response to 100 µM ethylene in Fig. 6.2B causing its

reopening 60 minutes after the stimulus.

6.4 Discussion

The time profiles of ROS production and stomatal aperture in response to single and

combined 10 µM doses of ABA and ethylene shown in Fig. 6.1 and Fig. 6.2A are consistent

with each other. It appears that a sustained elevation of ROS is needed to maintain stomata

in a closed state. This is seen with individual ABA or ethylene stimulation, where up to

30 min there is a sustained level of ROS, coinciding with a decrease in aperture. Beyond

this, for ABA there is still enough ROS up to 60 min to keep the stomata closed, but with

ethylene, ROS levels appear to drop drastically, coinciding with a re-opening of stomata.

In case of the combined stimulus, a substantial reduction in ROS coincides with a greater

re-opening of the stomata.

The experimental observations in this chapter confirm the importance of ROS in ABA

and ethylene-induced stomatal closure (as described in Chapter 2 and reported by Desikan

et al. (2006); Kwak et al. (2003), and Pei et al. (2000)); they also provide new information

about the mechanisms of guard cell signalling. From observing the ROS production

in Fig. 6.1, it is immediately apparent that there is a mechanism only active under a

simultaneous ABA and ethylene stimulus that removes hydrogen peroxide from the cells.
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It is not clear what mechanisms are responsible for this behaviour, but as mentioned in

Sec. 2.5, cross-talk has been known to occur in the ABA and ethylene signalling pathways,

eg Wang et al. (2007). The interactions of the ABA and ethylene pathways seem to induce

a specific antioxidant activity rapidly that is not present when the cell is presented with

a single stimulus. A decrease in ROS levels between 30 and 60 minutes after treatment

is observed in all treatments (Fig. 6.1). An antioxidant response to sustained high levels

of ROS is unlikely to be the only mechanism present because cells with high levels of

ROS (treated with ABA or ethylene individually) and lower ROS (treated with ABA and

ethylene together) are affected similarly (Fig. 6.1). One explanation is that the individual

stimuli, in parallel to stimulation of ROS production, also promote a delayed antioxidant

response to allow ROS-mediated signalling to occur, removing ROS only after the signal

has been transmitted. This delay is lacking in the combined stimulus situation, when

another antioxidant mechanism is initiated early on. These results indicate that there may

be at least two different antioxidant responses in guard cells to treatments of ABA and

ethylene.

The observations reported here confirm the results of Tanaka et al. (2005) and expand

them suggesting that complex interactions between the ABA and ethylene signalling

pathways at the antioxidant level may be responsible for the reversal of stomatal closure fol-

lowing a combined stimulus. The long-term inhibition of stomatal opening seems unlikely

to depend on sustained high ROS levels, due to the danger of oxidative stress. Results

by Kim et al. (2010) and Pandey et al. (2007) indicate that long-term stomatal closure

depends on different signalling components and gene-expression, mediated primarily by

Ca2+. It should be noted that, from the observations in Fig. 6.2A and B, ethylene does

not seem to be able to keep stomata closed beyond the 60 minute mark. This reopening

could be a distinctive feature of ethylene-induced stomatal closure that has so far eluded

explanation. This hypothesis is further explored in Chapter 7 with the development of a

differential equation model of stomatal closure that incorporates the antioxidant features

that have been described here.



100



101

Chapter 7

Mathematical models of stomatal closure

The previous chapters discuss how unexpected outcomes may arise when multiple stimuli

are applied to a large complex signalling network, even in well-studied systems such

as guard cells, eg Desikan et al. (2006); Tanaka et al. (2005). In order to investigate

the cause for the observed reversal of closure under combined ABA and ethylene

stimuli, we develop a mathematical model for the signal transduction of these inputs in

connection with stomatal closure. To construct the model we use the description of the

signalling mechanisms involved in stomatal closure presented in Chapter 2, and the general

mathematical modelling techniques presented in Chapter 3. The results and techniques

of data fitting and signalling cascades from Chapters 4 and 5 are used to construct the

model and fit its parameters. We begin by summarising and integrating the biology of the

individual ABA and ethylene pathways to construct a single signalling network. Then,

we make mathematical descriptions of the different signalling events of the network and,

whenever possible, we seek expressions to simplify them. Finally, we fit the model to the

experimental observations, analyse its results, and make predictions.

The ABA signalling network in guard cells has been studied computationally from an

asynchronous dynamic boolean network perspective (Li et al., 2006; Saadatpour et al.,

2010) and the ethylene pathway in root cells has been modelled using ODEs (Dı́az and

Álvarez-Buylla, 2006, 2009); however, to our knowledge there are no models of stomatal

closure that incorporate both ethylene and ABA. We have chosen to construct our model

using ODEs; motivated by the importance of the dynamical effects (as the experimental



102

Figure 7.1: Integrated ABA and ethylene signalling network in guard cells. Interactions

between the components of the network are shown by the edges joining them. Positive

interactions such as activation or production are represented with edges ending in

arrowheads →. Negative interactions such as inactivation, repression, or scavenging are

represented by edges ending in hammerheads ⊣. Yellow nodes are hormones, green nodes;

proteins, blue nodes; ions, red nodes; reactive molecules, and orange nodes; physical

properties of the cells. The interactions shown in this network are a summary of the

signalling events described in Chapter 2.
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results in Chapter 6 have shown) and the flexibility that such models afford to include the

biochemical and biophysical interactions discussed in Chapter 2 which are summarised in

Fig. 7.1 (see Sec. 7.1 below for a description). Conversely, we have aimed for a reduced

model with a relatively small number of equations (variables) and parameters while still

preserving dynamics and timescales. Such ODE models can be useful to test alternative

biological hypotheses and can be amenable for more detailed analysis using bifurcation

theory and comprehensive sensitivity analysis (August et al., 2007).

7.1 Network representation of stomatal closure

The interactions of the components of the ABA and ethylene pathways described in Sec 2.3

and 2.4 are summarised in a network in Fig. 7.1. By constructing this network we inevitably

make assumptions of what we consider are the most important components and interactions

of the pathway, an inevitable consequence of the representation of current knowledge in a

tractable way. In principle, each node in the network represents a component that could be

a variable, either chemical, biochemical or physical, in a model. In the following sections

we use the network representation of the pathway in Fig. 7.1 as a starting point to construct

an ODE model of stomatal closure.

7.2 Construction of the model

7.2.1 Signal perception and ROS production

Sections 2.3.1, 2.3.2, and 2.4.2 describe the events in ABA and ethylene perception and

production of ROS. These early events are represented in Fig. 7.2A by the subnetwork

comprised of the nodes ABA, Ethylene, PYR/PYL, ABI1, OST1, AtrbohD/F, ROS, AOX

and ETR1, whose concentrations we denote by [ABA], [ETH ], [PY R], [ABI1], [OST1],

[AtrbohF ], [AtrbohD], [ROS], [AOX ], and [ETR1]. Given the timescales observed, we

do not consider gene expression so the total amount of each enzyme in this subnetwork

remains constant, thus we have the following conservation relations:
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Figure 7.2: Simplification of signal perception and ROS production model. A: Network

representation of the ROS production model (7.1)-(7.8). B: Simplification of the ROS

production model given in equations (7.9)-(7.13). C: Further simplification of ROS

production, given in equations (7.15)-(7.17).

[PY RT ] = [PY R] + [PY R-ABA] + [PY R-ABI1],

[ABI1T ] = [ABI1] + [ABI1-PY R],

[OST 1T ] = [OST 1] + [OST 1P ],

[AtrbohFT ] = [AtrbohF ] + [AtrbohFP ],

[AtrbohDT ] = [AtrbohD] + [AtrbohDP ],

[ETR1T ] = [ETR1] + [ETR1-ETH ],

where the name of the enzyme with a subscripted T denote total concentration of an enzyme
(a non-negative constant in R), those with a subscripted P ; phosphorylated (or active,
in general) enzymes, and variables joined with a dash are complexes. For example, the
constant [PY RT ] is the total amount of PYR/PYL in any form, the variable [PY R] is the
concentration of “available” PYR/PYL molecules, [PY R-ABA] is the concentration of
ABA-bound PYR/PYL molecules, and [PY R-ABI1] is the concentration of ABI1-bound
PYR/PYL. Based on the biology, we introduce the following model of what is known of
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ABA and ethylene perception and ROS production:

d[PY R-ABA]

dt
= k1([PY RT ]-[PY R-ABA] + [PYR-ABI1])[ABA]− (k−1 + k2([ABI1T ]− [ABI1-PY R]))[PY R-ABA],

(7.1)

d[PY R-ABI1]

dt
= k2[PY R-ABA]([ABI1T ]− [PYR-ABI1])− k3[PY R-ABI1], (7.2)

d[OST1P ]

dt
= k4([OST1T ]− [OST1P ])− (k−4 + k5([ABI1T ]− [PY R-ABI1]]))[OST1P ], (7.3)

d[AtrbohFP ]

dt
= k6([AtrbohFT ]− [AtrbohFP ])[OST1P ]− (k7 + k8([ETR1T ]− [ETR1-ETH])[AtrbohFP ], (7.4)

d[AtrbohDP ]

dt
= k9([AtrbohDT ]− [AtrbohDP ])[ABA]− k10[AtrbohDP ], (7.5)

d[ETR1-ETH]

dt
= k11([ETR1T ]− [ETR1-ETH])[ETH]− k12[ETR1-ETH], (7.6)

d[ROS]

dt
= k13 + k14[AtrbohFP ] + k15[AtrbohDP ]− (k16 + k17[AOX])[ROS], (7.7)

d[AOX]

dt
= k18 + k19[ROS]− k20[AOX]. (7.8)

Equations (7.1)-(7.3) describe the initial events of ABA perception, ABI1-phosphatase

inhibition, and OST1 phosphorylation (Sec. 2.3.1). Equations (7.4) and (7.5) describe

the activation of AtrbohD/F where OST1 phosphorylates AtrbohF, free ETR1 inactivates

AtrbohF, and AtrbohD is activated by ABA (Sec. 2.3.2, and 2.4.2). Equation (7.6) shows

ethylene binding and subsequent inactivation of ETR1 (Sec. 2.4.2). Equation (7.7) shows

the production of ROS by AtrbohD/F and by other cellular processes (k13), scavenging

by antioxidants (summarised in the variable AOX), removal or decay of ROS (k16[ROS]);

equation (7.8) shows that AOX has endogenous production (k18), production in response to

ROS (k19[ROS]), and decay or inactivation (k20[AOX ]).

Some things to note about the model above: the way in which the treatments are given

(floated on a Petri dish, see Sec. 6.1) allows us to assume that the concentration of ABA and

ethylene does not change, hence [ABA] and [ETH ] are constants. The amount of ATP for

the phosphorylation reactions and of NADPH for the production of ROS are also considered

abundant enough within guard cells and they are implicitly included in the parameters of

the model. We assume that when the complex PYR-ABA-ABI1 dissociates, it does so

completely (ie into PYR, ABA, and ABI1), to make the equations simpler. The variable

[AOX ] clusters together the group of antioxidants that are active during stomatal closure.

The model described in (7.1)-(7.8) has 8 equations and 20 kinetic parameters plus

6 parameters representing the total amount of the enzymes involved, which makes the
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task of determining parameter values from the ROS measurements in Chapter 6 a rather

difficult one. We attempt to reduce the number of equations and parameters as much

as possible by making a series of assumptions, but avoiding oversimplification of the

system. First, as noted by Kwak et al. (2003) and mentioned in Sec. 2.3.2 and Sec. 2.4.2,

AtrbohD has a limited role in ABA-induced stomatal closure and none in ethylene-induced

closure, so for our modelling we assume that ROS is exclusively produced by AtrbohF.

This assumption is supported by the observations in Sec. 6.2 which show similar initial

increases in ROS upon an ABA or ethylene stimulus (Fig. 6.1), for if there were two sources

of ROS the pattern of initial increase would most likely differ. We make quasi-steady-state

assumptions (QSSA) on the dynamics of the ABA and ethylene receptors (see Sec 3.2.2),

so equations (7.1) and (7.6) are expected to reach equilibrium before the other variables

have changed significantly. The expressions for the ligand-bound receptors then become:

[PY R-ABA] =
([PY RT ]− [PY R-ABI1])[ABA]

k
−1

k1
+ k2

k1
([ABI1T ]− [PY R-ABI1]) + [ABA]

,

[ETR1-ETH ] =
[ETR1T ][ETH ]

k12

k11
+ [ETH ]

.

The expression for [ETR1-ETH ] is a standard Michaelis-Menten term with a maximum

rate of reaction given by the total amount of ETR1. The expression for [PY R-ABA] is

a Michaelis-Menten-type term with a dependency on the variable [PY R-ABI1] (which

holds PYR/PYL molecules). The system in (7.1)-(7.8) becomes

d[PY R-ABI1]

dt
=

k2([ABI1T ]− [PYR-ABI1])([PY RT ]− [PY R-ABI1])[ABA]
k
−1

k1
+ k2

k1
([ABI1T ]− [PYR-ABI1]) + [ABA]

− k3[PY R-ABI1], (7.9)

d[OST1P ]

dt
= k4(OST1− [OST1P ])− (k−4 + k5([ABI1T ]− [PY R-ABI1]]))[OST1P ], (7.10)

d[AtrbohFP ]

dt
= k6([AtrbohFT ]− [AtrbohFP ])[OST1P ]−



k7 + k8[ETR1T ]



1−
[ETH]

k12
k11

+ [ETH]







 [AtrbohFP ],

(7.11)

d[ROS]

dt
= k13 + k14[AtrbohFP ]− (k16 + k17[AOX])[ROS], (7.12)

d[AOX]

dt
= k18 + k19[ROS]− k20[AOX]. (7.13)

Figure 7.2B corresponds to this new model where some nodes and edges have been

removed but the relationship between the signals and the output is still the same as in

Fig. 7.2A. Though a simplification, this model is still large and we would like to find



107

a further simplification, taking into account what we have learnt so far. Note that in

the network representation of equations (7.9)-(7.13) shown in Fig. 7.2B the path-length

from ABA to AtrbohF is 3 while the path-length from ethylene to AtrbohF is 1; however,

in Sec. 6.2 we observe a negligible difference between the ROS produced by ABA and

the ROS produced by ethylene five minutes after treatment (Fig. 6.1). Note that the

edge between ethylene and AtrbohF in Fig. 7.2B is positive because ETR1 inactivates

the inactivator of AtrbohF. These observations suggest that the number of steps between

ethylene perception and ROS production is about the same as with ABA signals (the

immediate events after ethylene binding by ETR1 in guard cells are still unknown), or

if the number of events is different then the timescale of the reactions is approximately

the same in both cases. Furthermore, in both cases the maximum rate of ROS production

is limited by the total amount of AtrbohF ([AtrbohFT ]), which means that the response

to either signal has the same theoretical maximum rate. Given that data are unavailable

for the receptors, OST1, and ABI1, and that ABA and ethylene have similar timescales

for producing ROS we further simplify our model so that AtrbohF becomes active directly

from the ABA and ethylene signals, as shown in Fig. 7.2C.

To determine the equations that represent the network in Fig. 7.2C, we must have a

hypothesis of how ABA and ethylene signals activate AtrbohF. One possibility is that

the signals activate AtrbohF through the same pathway, ie there is a bottleneck for both

signals upstream of AtrbohF. In this case the signals are essentially interchangeable. This

assumption would imply that, for example, a 2 µM dose of ABA and a combined 1 µM

ABA plus 1 µM ethylene dose are the same:

d[ROS]

dt
≈ k13 +

[AtrbohFT ]([ABA + ETH ])

κ+ ([ABA + ETH ])
− (k16 + k17[AOX ])[ROS].

The identity of the signalling “bottleneck” remains unknown. Another hypothesis that has

a similar result but that does not require a common node in the pathways of the signals

would be to assume that the signals converge for the first time at AtrbohF, and activate it

independently of each other:

d[ROS]

dt
≈ k13 +

α1κ2[ABA] + α2κ1[ETH ]

κ1κ2 + κ2[ABA] + κ1[ETH ]
− (k16 + k17[AOX ])[ROS], (7.14)
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where α1 is a product of [AtrbohFT ] and other rate-limiting parameters in the ABA

pathways, and κ1 is the ABA-specific Michaelis constant, and likewise for ethylene α2

is the rate-limiting parameter and κ2 the Michaelis constant. We use the approximation

(≈) sign to emphasise that this is not a rigorous derivation of the ROS-activation dynamics

but a deduction guided by our current knowledge of the system and assumptions deemed

reasonable. In Appendix A.2.2 we derive the compound Michaelis-Menten term in

equation (7.14) using the QSSA. Though both hypotheses of ROS production can produce

a similar response the latter one is better suited for modelling stomatal closure because it

does not require the assumption of additional interactions, includes the former as a special

case (when κ1 = κ2 and α1 = α2 = [AtrbohFT ]), and its derivation is clear.

Now we turn our attention to the antioxidant pool AOX; it is clear that a homo-

geneous antioxidant pool responsive only to the concentration of ROS as described by

equation (7.13) is incompatible with our observations in Chapter 6. Following the

experimental indications in Sec. 6.2, we consider the possibility of two different antioxidant

mechanisms described by the variables [AOX1] and [AOX2] which lie at the end of

linear activation cascades driven by [ABA] and [ETH ] (Fig. 7.3). As discussed when

the experimental results were presented, there is evidence to suggest that two distinct

antioxidant mechanisms might be at work during stomatal closure. The first of these

mechanisms (AOX1) can be activated by either an ABA or an ethylene signal and includes

endogenous antioxidant production (to maintain unstimulated equilibrium levels), whereas

the second antioxidant (AOX2) is active only when ABA and ethylene signals are present

simultaneously. Logical and and or gates in biochemical systems can be the result

of particular post-translational modification of enzymes, eg multiple phosphorylation,

trimerisation, etc (Mayo et al., 2006).

We place the response of the antioxidant to the signals at the end of cascades of

abstract variables to emulate the delay observed in the removal of ROS. Each cascade

has a constant input (depending on the ABA and ethylene signals, see below) and has a

solution proportional to the lower-incomplete Gamma function P(ni, hit) (see Sec. 5.4.3

and Appendix C.1.2) where ni represents the length of the cascade and hi is related to the

deactivation rates of the cascade, i = 1, 2.

The input of the cascade culminating in AOX1 must follow a boolean or logic and
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Figure 7.3: Antioxidant production at the end of linear activation cascades. A: Cascade of

length n1 whose input has a logic or function, the cascade responds to ABA or ethylene

treatment (equation (7.16)). B: Cascade of length n2 whose input has a logic and function,

the cascade becomes active only when ABA and ethylene are present simultaneously

(equation (7.17)).

saturate, therefore we use the compound Michaelis-Menten form we used to describe ROS-

production previously as the input for the ABA and ethylene signals, so the equation for

[AOX1] is

d[AOX1]

dt
= k18 +

α3κ4[ABA] + α4κ3[ETH ]

κ3κ4 + κ4[ABA] + κ3[ETH ]
P(n1, h1t)− k20[AOX1].

The cascade leading to the activation of AOX2 must operate as a logic and gate, ie

becoming active only if [ABA] > 0 and [ETH ] > 0. We consider that the input of the

cascade is downstream of the ABA and ethylene receptors and the response of the cascade

must also exhibit saturation, so we model the input as the product of two Michaelis-Menten

forms:
α5[ABA]

κ5 + [ABA]

α6[ETH ]

κ6 + [ETH ]
,

which enforce a logical and operation of the signals. The expression for AOX2 is

[AOX2](t) =
α5α6[ABA][ETH ]

(κ5 + [ABA])(κ6 + [ETH ])
P(n2, h2t).
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Now we have a complete reduced model of a ROS production-module in guard cells:

d[ROS]

dt
= k13 +

α1κ2[ABA] + α2κ1[ETH]

κ1κ2 + κ2[ABA] + κ1[ETH]
− (k16 + k17[AOX1] + k21[AOX2])[ROS],

(7.15)

d[AOX1]

dt
= k18 +

α3κ4[ABA] + α4κ3[ETH]

κ3κ4 + κ4[ABA] + κ3[ETH]
P(n1, h1t)− k20[AOX1], (7.16)

[AOX2](t) =
α5α6[ABA][ETH]

(κ5 + [ABA])(κ6 + [ETH])
P(n2, h2t), (7.17)

with initial conditions [ROS](0) = [ROS]0, [AOX1](0) = [AOX1]0, and [AOX2](0) = 0

to be determined at a later time.

7.2.2 NO production

A description of how ROS induces NO production in guard cells treated with ABA via the

enzyme NIA1 is given in Sec. 2.3.3 (Fig. 7.4A); and in Sec. 2.4.3 preliminary indications

that NO is also produced in guard cells treated with ethylene were discussed.

An initial ODE describing endogenous and enzymatic NO production in guard cells is

d[NO]

dt
= α30 +

α31[ROS]

k31 + [ROS]
− β30[NO],

where α30 is a constant rate of NO production by other processes, the Michaelis-Menten

term is ROS-induced NO production via NR1, and the last term is NO decay and removal.

Note that in unstimulated guard cells [ROS] > 0 and as measurements of NO to

distinguish between ROS and non-ROS induced production are not available, we gather

the ROS-dependent and ROS-independent NO production in a single term. We include

a second term that describes further enzymatic NO production from ethylene (Fig. 7.4B),

which could be either from NIA1 or another, yet unidentified source. This term is needed by

our fits to the data, as preliminary models without it were unable to reproduce experimental

observations. The new expression for NO production becomes

d[NO]

dt
=

α31[ROS]

k31 + [ROS]
+

α32[ETH ]

k32 + [ETH ]
− β30[NO], (7.18)
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Figure 7.4: NO production models in guard cells. A: NO-production network described in

Sec. 2.3.3 and Sec. 2.4.3. NO is produced in a ROS-dependent way by NIA1. B: Model of

NO-production given in equation (7.18). The key assumption of this model is the existence

of a ROS-independent pathway of NO production in response to ethylene.

with initial condition [NO](0) = [NO]0, which is to be determined later.

7.2.3 Ca2+ increase, cytosolic alkalinisation, and ion efflux

As discussed in Sec. 2.3.5, the dynamics of Ca2+-release and action in guard cells are

complex and not fully understood. Though the importance of Ca2+ in guard cell signalling

(and cell viability in general) is beyond doubt, in this work we do not include an equation

describing its behaviour for three reasons:

i. Reports of Ca2+-behaviour after ABA treatments in the literature describe both

oscillations and rises in cytosolic levels, and experimental data-sets encompassing both

single and combined ABA and ethylene treatments do not exist.

ii. As mentioned by Kim et al. (2010), the way in which a cytosolic Ca2+ rise (or

oscillations) transmit signals during stomatal closure is not yet clear. Current

hypotheses state that ABA “primes” Ca2+ receptors, making the rise in cytosolic levels

helpful but not essential for successful closure.

iii. Experimental evidence presented in Chapter 6 suggests that ABA-ethylene cross-

talk occurs at the ROS-level, upstream of Ca2+ in the guard cell signal transduction

network in Fig. 7.1, so we direct most of our efforts to understanding signal



112

transduction at this level.

In Sec. 2.3.4 we described the process of cytosolic alkalinisation whereby the pH in

the cytosol of guard cells increases from 7.0 to 7.5, and the pH in the tonoplast decreases

from 5.5 to 5.0 after treatment with ABA. The concentration of H+ determines pH (see

Appendix D.1 for a brief introduction to the Henderson-Hasselbach equation): pH =

− log([H+]). During stomatal closure the membrane H+–ATPases are inactivated, which

means that changes in pH are the result of the transport of protons from the cytosol into the

tonoplast by the vacuolar proton pumps (V–ATPases), activated by OST1 (Fig. 7.5A, see

Appendix D.2 for a brief introduction to proton transport by ATPases).

The model of cytosolic alkalinisation and ion-efflux shown in Fig. 7.5B has one

equation for the potassium ion concentration [K+], and one equation for the outwards

potassium channels [K+
out]:

d[K+
out]

dt
= α40 +

α41[ABA]

k11 + [ABA]
+ α42[NO]− β40[K

+
out], (7.19)

d[K+]

dt
=

α51

k51 + [NO]
− β50[K

+
out][K

+]. (7.20)

Equation (7.19) shows the change in [K+
out], the active outwards K+ channels. The

first (α40) and last (β40[K
+
out]) terms represent the constant flux of channels between the

active and inactive states, respectively. The second term represents the extra number

of channels made available by the increase in cytosolic pH following an ABA stimulus,

mediated by OST1. The third term (α42[NO]) is the increase in K+
out activity as a

result of membrane depolarisation, possibly via NO-induced Ca2+ release (ie via the path

NO→ Ca2+ ⊣ H+–ATPase→ Polarity ⊣ K+
out in Fig. 7.5A). Here we assume that NO does

not target K+
out, as ion efflux is required for stomatal closure (we note that although NO has

been shown to block K+
out in Vicia faba guard cells (Sokolovski and Blatt, 2004), the authors

of the study are unsure whether NO action is specifically targeted to K+
out.) Equation (7.20)

shows the change in [K+]. The first term represents the increase of ions that enter through

the inwards-rectifying channels (K+
in), which are inactivated by NO. The second term is the

ion efflux through the outwards channels that is proportional to the active channels [K+
out]

and the ion concentration itself. We include an equation for K+
out but not for K+

in because the
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Figure 7.5: Events in stomatal closure downstream of ROS. A: Cytosolic alkalinisation

following treatment with ABA, Ca2+–increase, membrane depolarisation, and ion efflux.

B: Model of late events in stomatal closure presented in equations (7.19) and (7.20).

alkalinisation of the cytosol has the effect of increasing the number of available channels to

extrude ions, whereas the inactivation of K+
in is only represented by a term in the equation

for K+.

7.2.4 Loss of turgor

The relationship of this model to stomatal aperture is via the last variable [K+]. Cell volume

(and hence stomatal aperture) is determined by the ion and solute concentration in the cell

relative to the external concentration (Pandey et al., 2007; Tanaka et al., 2006). Therefore,

we take ions and solutes (K+ in particular) as a simple proxy for aperture:

[AP ] ∝ [K+]. (7.21)

7.3 A model of signal transduction for stomatal closure

We use equations (7.15)-(7.20) to construct a a model of ABA and ethylene-induced

stomatal closure which we represented graphically in Fig. 7.6. The model describes the

dynamics of six variables in terms of the external input functions [ABA] and [ETH ],

which denote the doses of the treatments. We normalise the variables in the model

by their non-stimulated equilibrium levels (ie the initial conditions) so they represent
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percentage of control:

[̂ROS](t) =
100[ROS](t)

[ROS]0
,

̂[AOX1](t) =
100[AOX1](t)

[AOX ]0
,

[̂NO](t) =
100[NO](t)

[NO]0
,

[̂K+
out](t) =

100[K+
out](t)

[K+
out]0

,

[̂K+](t) =
100[K+](t)

[K+]0
,

[̂AP ](t) =
100[AP ](t)

[AP ]0
.

With the normalised variables we can transform equation (7.21) to [̂K+](t) = [̂AP ](t),

so we take the normalised potassium ion concentration as equivalent to the normalised

aperture. Dropping the hat notation, the equations of the model become (note that the

parameters have been renamed)

d[ROS]

dt
= α10 +

α11k12[ABA] + α12k11[ETH ]

k11k12 + k12[ABA] + k11[ETH ]
− (β11[AOX1] + β12[AOX2]) [ROS], (7.22)

d[AOX1]

dt
= α20 +

α21k22[ABA] + α22k21[ETH ]

k21k22 + k22[ABA] + k21[ETH ]
P(n1, α23t)− β20[AOX1], (7.23)

[AOX2](t) =
[ABA][ETH ]

(k11 + [ABA])(k12 + [ETH ])
P(n2, β13t). (7.24)

d[NO]

dt
=

α31[ROS]

k31 + [ROS]
+

α32[ETH ]

k12 + [ETH ]
− β30[NO], (7.25)

d[K+
out]

dt
= α40 +

α41[ABA]

k11 + [ABA]
+ α42[NO]− β40[K

+
out], (7.26)

d[K+]

dt
=

α51

k51 + [NO]
− β50[K

+
out][K

+]. (7.27)

The model describes the dynamics of six variables in terms of the external input

functions [ABA] and [ETH ], which denote the doses of ABA and ethylene respectively.

Note that the Michaelis-Menten term involving ethylene in equation (7.25) has the same

Michaelis constant k12 associated with [ETH ] in equation (7.22). The term with ABA in

equation (7.26) has also the same constant k11 as the one associated with [ABA] in the ROS

equation.
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Figure 7.6: Model of stomatal closure under ABA and ethylene stimuli. All nodes in

this picture are either explicitly or implicitly included in equations (7.7)-(7.20). The input

nodes are shown as yellow ellipses, variable nodes are shown in green ellipses, and nodes

that are blue rectangles are implicitly represented in the equations. The two circular grey

nodes represent parts of the signal transduction network whose components are not yet

known, and we include them as linear activation cascades (see text). The cascade AOX1

(on left) is activated by performing a logical or operation on the ABA and ethylene signals,

the presence of either suffices to elicit a response. The cascade upstream of AOX2 (on

right) becomes activated by performing a logical and operation on the ABA and ethylene

signals; the presence of both of them is required to elicit a response.



116

One of the distinctive aspects of this model is the approach towards the simplification

of uncharacterised activation cascades, which can control the strength and timing of the

antioxidant response (Heinrich et al., 2002). In particular, it is key that the modelling of

the cascades in this model incorporates a representation of the implicit delay present in the

antioxidant response, which occurs in parallel to the production of ROS (see the cascades

on both sides of Fig. 7.6). In order to accomplish this parsimoniously within the setting

of ODEs, equations (7.23) and (7.24) incorporate cascading terms which introduce a delay

through the effect of parallel processes. The introduction of such terms is commonplace as

an alternative to more complex delay equations (Bar-Or et al., 2000; Höfer et al., 2002).

In our case, we have used a simple model of a linear activation cascade with identical

deactivation rates (Heinrich et al., 2002), which has been shown to provide optimal signal

amplification (Chaves et al., 2004). Each cascading module has an explicit analytical

solution in terms of the normalised incomplete gamma function and introduces only three

parameters to the model, as discussed in Chapter 5.

7.3.1 Numerical results from the model

The resulting dynamical model of signal transduction (7.22)–(7.27) has six variables and

consists of five coupled nonlinear ODEs (because one of the variables can be solved

explicitly as a function of time) with 28 parameters. We now fit the model to experimental

data and we use it to study the temporal response of the system to external inputs of

[ABA], [ETH ] and combined [ABA] + [ETH ] stimuli.

Fitting the model to experimental observations

Our simulations start from a ‘control’ initial condition:

[ROS](0) = [AOX1](0) = [NO](0) = [K+
out](0) = [K+](0) = 100,

and [AOX2](0) = 0. (7.28)

Furthermore, we define relationships between some of the parameters such that when there

is no treatment (ie [ABA] = [ETH ] = 0), the system remains in equilibrium at the control
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Figure 7.7: Experimental data and model results for 10 µM doses. A: ROS fluorescence

time-course. B: Stomatal aperture time-course. Plots show responses after treatment

with 10 µM ABA (blue), 10 µM ethylene (red), and 10 µM ABA and 10 µM ethylene

(green). Markers show experimental measurements presented in Chapter 6, bold lines are

the solutions to equations (7.22)–(7.27) with the parameter values from Table D.1.

initial condition.

We use the experimental time-course measurements of ROS and aperture presented in

Chapter 6 to fit the model parameters. For a relatively large model with many parameters,

the amount of data we have is not very much, which will make parameter fitting a

challenging task. We use the squeeze-and-breathe optimisation procedure introduced in

Chapter 4 to find the values of the parameters. The squeeze-and-breathe procedure is suited

for optimisation problems such as this, given its ability to navigate the complex surfaces of

the objective function (the difference between the model and the data as a function of the

parameters) and find its minimum. Appendix D.3 gives the details of the implementation.

The parameters of the model found using the squeeze-and-breathe algorithm are shown in

Table D.1.

The fits to the data in Fig. 7.7 are shown to match the set of observations after

single and combined 10 µM treatments, specifically the response to the combined stimuli.

Figure 7.8 shows solutions of the model along with the aperture observations under assorted

treatments; these show that the model is able to reproduce observations that range from

low-dose treatments to higher doses.
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Figure 7.8: Experimental aperture data and model results. Stomatal aperture after

treatment with 1 µM ABA (blue circles), 1 µM ethylene (green squares), 50 µM ABA

(orange diamonds), and 100 µM ethylene (light-blue stars). Bold lines show the solutions

to equations (7.22)–(7.27) with the parameters in Table D.1.

7.3.2 Dynamical response of the model to stimuli

The dynamical behaviour of the model of signal transduction is explored in Figures 7.9

and 7.10. We remark again that the model is constructed to represent only the transient

dynamics following different external inputs and that we have not considered further

downstream mechanisms that would dominate the dynamics at longer timescales. Stomatal

closure in response to either ABA or ethylene is a relatively fast process that takes place

in time scales shorter than typical genetic regulation. Maintaining stomatal closure and

inhibiting stomatal opening are separate processes (Pandey et al., 2009), that require other

regulatory interactions and expression of certain genes (Cho et al., 2009a; Kim et al., 2010)

which we do not consider here. Therefore, we are only concerned in this work with short-

term, transient behaviour of stomata and we do not study the stationary dynamics of the

model. Once the model reaches steady state, other processes will be active in guard cells

affecting the model behaviour.

The heat maps in Fig. 7.9 show snapshots of the time-course of stomatal aperture

following treatments of different dose combinations of ABA and ethylene, represented

on the ([ABA], [ETH ]) plane. The simulations reproduce the observation that doses

of combined treatment (up to 20 µM) result in diminished closure (that could lead to
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Figure 7.9: Predicted aperture response map of combinations of ABA and ethylene doses

15, 30, 45, and 60 minutes after treatment. The coordinates of each point in represent

the dose combination and the colour denotes the response. Dark regions indicate less

aperture (ie more closure in response to treatment) and lighter regions show more aperture.

Response apertures shown as percent of control.

enhanced aperture if enough ROS is depleted) over the time course, as compared to the

increased closure induced by doses of single treatments. The variables respond with

different intensity to the treatments; in particular the model predicts that ethylene has a

stronger [AOX1] response than ABA (see Fig. 7.11A whose consequence can be observed

in the faster decay in ROS fluorescence from Fig. 7.7A). The antioxidant [AOX2] is only

active only during treatment with both hormones, as we have previously discussed.

Figure 7.10 shows that the responses to the two hormones (after 60 minutes) are

asymmetrical, with ABA inducing more closure than ethylene. This asymmetry of the

response is consistent with reports in the literature that stomata respond more strongly to

ABA than to ethylene (Tanaka et al., 2005), though it appears to diminish with increased

doses.

A prediction of the model is that relatively low doses of the combined stimulus

“backfire” 45 minutes after treatment, resulting in the arrest of the closure process. A

slight reopening can be observed in the response to combined treatments in Fig. 7.10;

such re-opening is a direct consequence of the excess antioxidant activity (ie [AOX2])

that results from the interaction of the ABA and ethylene pathways (Fig. 7.11). Further

experimental data are required to validate this prediction and to check if other mechanisms

become significant at longer times.

The modelling also suggests that ethylene should have more than one pathway to

produce NO. Alternative models with ethylene-induced NO exclusively produced via ROS
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Figure 7.10: Predicted aperture response after 60 minutes to doses of ABA (blue line),

ethylene (red line), and a combination of equal doses of ABA and ethylene (green line).

The responses to single treatments correspond to the x and y axes of Fig. 7.9. The green

line is the response to the combined stimulus of equal doses of ABA and ethylene, which

corresponds to the values along the diagonal in the heat map. The data points are the

experimental measurements at t = 60 minutes of the aperture also shown in Fig. 7.7.

(ie by making α32 = 0) were not able to reproduce the response dynamics of guard

cells that we report here. In parallel experimental studies in R. Desikan’s lab, new

signalling pathways downstream of ethylene that appear to be ROS-independent are being

uncovered. Similarly with the active K+
out channels: ABA-driven alkalinisation alone is

not enough to create the outwards flux of ions needed to achieve stomatal closure and an

NO term (α42[NO]) must be added to equation (7.26) to attain the necessary ion flux. The

relationship between NO and K+
out is unlikely to be direct, although NO can block K+

out

by nitrosylation (Sokolovski and Blatt, 2004). Enhancement of K+
out activity by NO is

more likely driven by membrane depolarisation in response to Ca2+ release or cytosolic

alkalinisation, as depicted in Fig. 7.1.

Using our analysis of DDEs from Sec. 5.4.3 we can calculate the characteristic

timescales τ1 and τ2, that lead to the activation of AOX1 and AOX2 respectively:

τ1 =
n1

α23
− 1 ≈ 111 min, τ2 =

n2

β13
− 1 ≈ 12 min.

These timescales (visible in the time-courses in Fig. 7.11) give information about the
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Figure 7.11: Antioxidant time-courses after treatment. A: Time-course of AOX1 given by

equation (7.23), responses to ABA treatments (dashed-lines) are lower than the responses

to treatments which include ethylene. B: AOX2 time-course given by equation (7.24), only

active when ABA and ethylene treatments are present at the same time.

nature of the mechanisms behind the observed antioxidant effects. The value of the AOX1

timescale τ1 suggests there is enough time for antioxidant genes to be expressed. In contrast

τ2 is smaller, meaning that AOX2 has a much faster timescale and its action is unlikely to

depend on gene expression.

7.4 Discussion

In this chapter, we have investigated theoretically why full stomatal closure fails to occur

when guard cells are presented with a combined ABA-ethylene stimulus, an observation

first reported by Tanaka et al. (2005), and reproduced in Chapter 6. As shown in Fig. 7.1,

the pathways of both hormones overlap strongly, with ROS playing a significant role.

The development of earlier models that culminated in the model presented here, has

required information about ROS levels past the 5 minute mark, after treatment, hence the

experimental observations of ROS production have been extended to 60 minutes. The

measurements of ROS and stomatal aperture in guard cells stimulated with ABA, ethylene,

and ABA plus ethylene show that when both hormones are present, ROS are removed

swiftly after an initial burst of production and the closure process reverses. This is the first

report of a rapid change and shift in pattern of ROS production in guard cells depending on
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the type and number of input stimuli.

Based on the experimental data, the model presented in this chapter posits the existence

of two separate antioxidant mechanisms active in guard cells. One such mechanism is

the generic antioxidant mechanism (AOX1) operational with any single ROS-generating

stimulus (ABA or ethylene), which allows ROS to signal downstream components of the

pathway and then removes ROS to control oxidative stress. The second antioxidant (AOX2)

response is only active when both hormones, ABA and ethylene, are present simultaneously

and does not allow the ROS signal to persist long enough to maintain closure, causing the

reversal of the closure process.

The antioxidant pool in guard cells is diverse, including eg ascorbate, catalase, and

glutathione (Chen and Gallie, 2004; Pham and Desikan, 2009). Furthermore, NO has been

shown to exhibit antioxidant activity by reacting with superoxide (Neill et al., 2008), to

enhance dessication tolerance (Bai et al., 2011), and to nitrosylate NADPH-oxidase (Yun

et al., 2011). Although the interactions between ABA, ethylene, signalling molecules and

antioxidants are highly complex, the model developed here presents a first hypothesis of

how ROS production and removal is tightly linked to stomatal closure in guard cells. The

modelling in this chapter also puts forward the hypothesis that ethylene may have a ROS-

independent way of producing NO, with effects on pH, Ca2+, and membrane polarity that

need to be elucidated.

The model in equations (7.22)–(7.27) predicts that a combined stimulus of 5µM

or more of each hormone would result in the arrest of the closure process (Fig. 7.9),

a consequence of the fundamental need of increased ROS production for successful

closure. This observation requires experimental verification; furthermore, the physiological

concentrations of both ABA and ethylene present during environmental stimuli such as

bacterial challenge or high humidity that cause stomata to open (Melotto et al., 2006; Zeng

et al., 2010) need to be ascertained.

In the natural environment, plants face threats from multiple stimuli; yet under

laboratory conditions, mostly single stimuli are studied. This is partly due to the complexity

and variability in responses that ensue following exposure to multiple stresses. Using guard

cells as a model system we have considered mechanisms for a non-trivial output under a

combination of stimuli. This study is a first step towards quantitation of a fundamental
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physiological process in plants, which is essential for growth and development.
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Chapter 8

Conclusions and further work

8.1 Finishing remarks

In this thesis, we have sought to understand how two signals with overlapping pathways

can produce different outputs when applied together than when applied individually. In

the case of ABA and ethylene in guard cells this problem has required an interdisciplinary

approach, combining traditional experimental biology with computational and mathemat-

ical methods. As the understanding about the inherent complexity to the functioning

of organisms increases, the need for biologists to liaise with mathematicians and other

quantitative scientists becomes even more evident (Yates et al., 2001). The rewards of such

interdisciplinary approaches come in the form of a more sophisticated understanding of life.

Living organisms are constantly subject to many simultaneous stimuli, and understanding

the way in which they sense all these inputs and react to them can be intractable using

exclusively experimental or theoretical methods. Thus, we have combined and developed

mathematical and computational approaches with experimental methods to investigate

stomatal closure under single and combined stimuli. Evidently this work is not the final

word in stomatal closure research; on the contrary, (as seen in Chapter 7) our results pose

new questions and suggest new avenues for future research. This work is an advance in the

quest to understand multiple stimuli in guard cells and other cellular systems.

This work accentuates the importance of transient and dynamical behaviour in cellular

processes, as noted previously by Strelkowa and Barahona (2011), and stresses the
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fundamental importance of time-course data (as opposed to a single measurement after

treatment) as an aid to understanding responses to multiple stimuli. Nonlinear interactions

are the norm in biology, and models representing them are capable of a variety of distinct

behaviours that depend on the values of their parameters (Kuznetsov, 1998). Time-course

data are essential to discriminate between plausible and implausible behaviour; this can be

done by narrowing ranges of the parameters or determining their value, aided by methods

such as the evolutionary Monte Carlo optimisation algorithm introduced in Chapter 4.

Acknowledging the inevitable complexity of large biological models, we have sought to

develop methods to reduce models so they can become more tractable without losing the

essential features of the system. In Chapter 5 we have made progress in the analysis

of activation cascades, their use in model reduction, and as a viable alternative to delay

differential equations. Finally, in Chapters 6 and 7 we have brought together experimental

observations, mathematical modelling techniques, the results of activation cascades and our

new parameter fitting method to study the absence of stomatal closure under simultaneous

ABA and ethylene treatment. The modelling process and experimental observations stress

the importance of ROS in stomatal closure not only during the initial moments after signal

perception, but over the first 60 minutes of signalling and highlight how crucial it is to

understand guard cell antioxidant mechanisms, which is another contribution of this work.

8.2 Future work

8.2.1 Evolutionary Monte Carlo methods

Further work on the Squeeze-and-breathe method introduced in Chapter 4 shall focus on

three main points:

• Establishing a probabilistic framework to allow the Squeeze-and-breathe to be used

with model selection methods. Currently, Bayesian model selection methods such

as ABC-SMC (Toni et al., 2009) require the probability of the posterior to be non-

negative, given a prior. The local optimisation step in Algorithm 4.1 can (and does)

explore regions outside the prior. A way of overcoming this limitation is to find an

acceptable way to assess the probability that the algorithm explores regions outside
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the prior or, as mentioned in Chapter 4, to use other distributions such as log-normal

or exponential instead of the uniform distribution. The development of alternative

model-selection criteria can also be explored. Additionally the local optimisation

step of the method could be constrained to find minima only within the prior region,

and progressively expanding the prior as needed. Yet another way can be, once

the sequence of posteriors becomes nested, to turn off the local optimisation step to

perform Bayesian analysis in the following iterations.

• It is also important to make the algorithm available to a wider range of optimisation

problems, and not only parameter fitting. Presently, the feasible region of the

optimisation problem is RN
+ , and in many constrained optimisation problems feasible

regions are complicated and even disjoint; algorithms often have to explore infeasible

regions before convergence to the minimum (Nocedal and Wright, 2006). Some

optimisation methods use penalty functions to gauge the gains in terms of reduction

of the objective function that are to be obtained from exploring infeasible regions,

in the hope that it helps to find a feasible minimum. This feature can be

incorporated into the Squeeze-and-breathe routine by biasing the posteriors towards

feasible regions or ranking local minima according to an established criterion, eg

SRES (Runarsson and Yao, 2000, 2005).

• Development and release of a software package for optimisation and parameter

fitting, or integration into other currently available software packages.

8.2.2 Activation cascades

The results on activation cascades presented in Chapter 5 so far focus on linear cascades

without feedback, Appendix C.5 offers preliminary results on weakly-activated cascades

with nonlinear negative feedback. Future work on this subject should include the

characterisation of (nonlinear) strongly-activated cascades and cascades with feedback.

Including negative feedback is a particularly challenging task because such cascades may

display stable steady states and oscillations; for these cascades it may be more convenient

to study different behaviours separately, deriving approximations for each case based in
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particular regions of the parameter space. Another interesting avenue for further research

is to consider the degradation rates of the components of the cascades as random variables,

and to derive conditions for optimality analogous to the ones obtained by Chaves et al.

(2004) for constant rates. Additionally, activation cascades can be studied from a stochastic

perspective (eg Csikász-Nagy et al. (2010)).

8.2.3 Stomatal closure

The experimental and theoretical investigations of stomatal closure under single and

combined ABA and ethylene stimuli have brought about new and interesting questions

about the functioning of guard cells. These possibilities for future work share the need for

continued interdisciplinary approaches, as has been done in this thesis. Some of the most

important tasks for the future are:

• Gathering more time-course data of NO, pH, K+, Cl−, under single and combined

ABA and ethylene stimuli, for a variety of treatments. These measurements are

essential to characterise the behaviour of guard cells and to aid the development and

improvement of future models.

• Understanding the ethylene pathway: as mentioned in Sec. 2.4, many components

of the ethylene pathway have not yet been uncovered. The interactions directly

below ethylene perception to this day remain unknown. Additionally, pH change,

NO production, and membrane depolarisation need to be confirmed after treatment

with ethylene.

• The hypothesis that the lack of closure following treatment with combined doses of

ABA and ethylene was put forward in Chapter 7; this hypothesis needs to be verified

experimentally. One way of testing the hypothesis is using mutants. Section 2.2.3

mentions enzymatic antioxidants ascorbate peroxidase, superoxide dismutase, and

catalase as part of the antioxidant repertoire of guard cells; plants with the pertinent

genes knocked-out can be used to test which of them are involved in controlling ROS

during stomatal closure. The use of mutant plants has the risk that other genes may

be expressed to compensate for the ones that have been knocked out; this could be
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avoided by performing experiments on wild-type plants treated with inactivators or

scavengers of antioxidants.

• If it is confirmed that the cross talk of ABA and ethylene occurs in the early stages of

signalling, detailed models such as the one in equations (7.1)-(7.8), can be explored

and expanded to achieve a full understanding of ABA and ethylene-induced ROS

production.

• A stochastic or a hybrid model could be needed to understand aspects of the

signalling process. For example if the number of molecules of a particular component

(eg a receptor or a protein cluster) is small, then it can be worthwhile to have a

stochastic description of its activity, integrated to a larger model containing ODEs.

Biophysical approaches may also be of use to understand other aspects of the closure

process, eg the biomechanics of stomatal closure.

In addition to the list above, it must be stressed that this work has been exclusively

concerned with stomatal closure; as mentioned before, this is a separate process from

inhibition of stomatal opening. The transition from one process to the next has not been

investigated. An exciting possibility for further research lies in the development of a

homeostatic model of guard cells, that incorporates circadian rhythms, stomatal closure,

inhibition of stomatal opening, and stomatal aperture. Such a model can be an invaluable

tool for understanding how plants react in the short and long term to environmental changes

or other pathogens, and may have important applications in the development of more

resilient crops and to further understand cellular processes. The approach from this work

can be used to understand combined stress signalling pathways where clearly defined

outputs and measurements are available, eg cell-death.

Ultimately, profound understanding of stomatal closure and cell signalling under

a variety of stimuli should translate into improved knowledge of water and nutrient

consumption by plants, whose importance for agricultural applications is difficult to

understate.
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Appendix A

Competition and antagonism in cellular

signals

Here we explore combinations of cell-signalling network topologies and dynamics which

exhibit antagonism or competition among incoming signals. This work is inspired from

the observation that a two signals such as ABA and ethylene by themselves cause stomatal

closure, but do not when they are applied simultaneously (Chapters 2, 6, and 7). Here

we show explorations of abstract toy models in which individual signals elicit the same

response but in combination display antagonistic behaviour or compete for a limited

resource, producing different outcomes together than individually. In Sec. A.3 we show

how this approach has been used to analyse how two isoforms of a MAPK compete for

activation by the same kinase.

A.1 Antagonistic activation

Suppose that in a cell-signalling system two signals, S1 and S2, activate receptors R1 and

R2, which in turn activate or produce (independently of each other) an output signal F .

Here we study the case in which both signals mutually antagonise each other so that S1

inactivates R2 and S2 inactivates R1. Figure A.1 shows a cartoon of these interactions.
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Figure A.1: Antagonistic action of signals S1 and S2. The signal S1 activates R1, which

produces F , and inactivates R2. In turn, S2 activates R2, which also produces F , and

inactivates R1.

A.1.1 Mass-action model

We can represent the interactions from Fig. A.1 (in a simple nondimensional way) using

mass-action kinetics. The ODE model of such a signalling network is:

dR1

dt
= S1 − (1 + S2)R1,

dR2

dt
= S2 − (1 + S1)R2,

dF

dt
= R1 +R2 − F,

with initial conditions R1(0) = R2(0) = F (0) = 0. The model is linear and can be solved

analytically:

R1(t) =
S1

1 + S2

[
1− e−(S2+1)t

]
,

R2(t) =
S2

1 + S1

[
1− e−(S1+1)t

]
,

F (t) =
S1

1 + S2

[
1 +

e−(S2+1)t

S2

]
+

S2

1 + S1

[
1 +

e−(S1+1)t

S1

]
−

S1
2 + S2

2

S1S2

e−t.
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Figure A.2: A: Values of Fss given by equation (A.3) under different dose combinations of

S1 and S2. B: Contour map of Fss.

The steady-state solution of the system is:

R1ss =
S1

S2 + 1
, (A.1)

R2ss =
S2

S1 + 1
, (A.2)

Fss =
S1

S2 + 1
+

S2

S1 + 1
. (A.3)

Figure A.2 shows the steady-state behaviour of Fss in equation (A.3). Figure A.2A shows

the steady-state landscape of Fss as a function of S1 and S2; Fig. A.2B shows the contours

of Fss.

If the antagonism is the result of impeding activation rather than actively scavenging

the other signal, we have the following equations:

dR1

dt
=

S1

1 + S2

−R1,

dR2

dt
=

S2

1 + S1
−R2,

dF

dt
= R1 +R2 − F.

The steady state behaviour of this system is the same as in equations (A.1), (A.2), and (A.3).
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Figure A.3: A: Values of Fss given by equation (A.6) under different dose combinations of

S1 and S2. B: Contour map of Fss.

A.1.2 Michaelis-Menten model

If we use Michaelis-Menten kinetics to model the system in Fig. A.1, the ODE model is:

dR1

dt
=

S1

1 + S1
−

[
1 +

S2

1 + S2

]
R1

1 +R1
,

dR2

dt
=

S2

1 + S2

−

[
1 +

S1

1 + S1

]
R2

1 +R2

,

dF

dt
=

R1

1 +R1
+

R2

1 +R2
−

F

1 + F
,

with the initial conditions R1(0) = R2(0) = F (0) = 0. The steady state of the system is:

R1ss =
S1(1 + S2)

1 + 2S2 + S1S2
, (A.4)

R2ss =
S2(1 + S1)

1 + 2S1 + S1S2
, (A.5)

Fss =
4S1

2S2
2 + 5S1

2S2 + 5S1S2
2 + 2S1

2 + 4S1S2 + 2S2
2 + S1 + S2

S1
2S2 + S1S2

2 + 5S1S2 + 2S1 + 2S2 + 1
. (A.6)

In Fig. A.3 we show the steady-state behaviour of F given by equation (A.6). Each

signal alone causes activation of F proportional to its strength and that it takes just a small

value of the second signal for F to decrease to almost zero. As more of the other signal is

added, the signals actually cooperate and F is greater than either signal individually.
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Figure A.4: Competitive activation of two signals S1 and S2, both of which need G to

produce compounds C1 and C2 which produce F .

A.2 Competitive activation

A.2.1 Rate-limiting resource

Two signals S1 and S2 combine (or react) with a limited resource G which is needed to

produce compounds C1 and C2 as shown in Fig. A.4. The compounds can activate an

output signal F when a sufficient amount of either one is present. We assume that the total

concentration of G is 1 (in arbitrary units) and that

G+ S1 ⇌ C1,

G+ S2 ⇌ C2.

An ODE model for this system is:

dC1

dt
= S1 [1− C1 − C2]− C1,

dC2

dt
= S2 [1− C1 − C2]− C2,

dF

dt
=

C1
n

1 + C1
n +

C2
n

1 + C2
n − F,



136

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100
0

20

40

60

80

100

0
20

40
60

80
100

0
20

40
60

80

100
0

0.1

0.2

0.3

0.4

0.5

Figure A.5: Response of competitive activation system for n = 5. A: Values of Fss given

by equation (A.9) under different dose combinations of S1 and S2. B: Contour map of Fss.

where G(t) = 1−C1(t)−C2(t). From resting initial conditions (C1(0) = C2(0) = F (0) = 0)

the steady-state of the system is:

C1ss =
S1

1 + S2 + S1
, (A.7)

C2ss =
S2

1 + S2 + S1
, (A.8)

Fss =

(
S1

1+S2+S1

)n

1 +
(

S1

1+S2+S1

)n +

(
S2

1+S2+S1

)n

1 +
(

S2

1+S2+S1

)n . (A.9)

Figure A.5 shows the response of Fss in equation (A.9) when n = 5 to different

combinations of S1 and S2. Again, each signal by itself produces a response. When n = 1

the signals actually cooperate and the response to a combined stimulus is greater than to a

single stimulus (Fig. A.6). As n grows, the antagonism between the signals increases.
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Figure A.6: Response of Fss from equation (A.9) to combinations of S1 and S2 and different

values of n.
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A.2.2 Compound Michaelis-Menten forms

Suppose an enzyme E catalyses the production of a substance P from two different

substrates S1 and S2 in the following chemical reactions:

S1 + E
k1−⇀↽−
k2

C1
k3−→ P + E

S2 + E
k4−⇀↽−
k5

C2
k6−→ P + E.

The enzyme binds to the substrates to form a complex which can either dissociate or

catalyse the reaction. If [E], [S1], [S2], [C1], [C2], and [P ] denote the concentrations of

the reactants and the products of the reactions, and the substrates are abundant enough (ie

the concentrations can be considered to remain constant), then the ODE system describing

the reactions is:

d[E]

dt
= −k1[S1][E]− k4[S2][E] + (k2 + k3)[C1] + (k5 + k6)[C2], (A.10)

d[C1]

dt
= k1[S1][E]− (k2 + k3)[C1], (A.11)

d[C2]

dt
= k4[S2][E]− (k5 + k6)[C2], (A.12)

d[P ]

dt
= k3[C1] + k6[C2]. (A.13)

Because
d[E]
dt

+ d[C1]
dt

+ d[C2]
dt

= 0, we express the total concentration of enzyme as

ET = [E] + [C1] + [C2], ET ∈ R+. We eliminate equation (A.10) using this conservation

relation. Now equations (A.11) and (A.12) become:

d[C1]

dt
= k1[S1](ET − [C1]− [C2])− (k2 + k3)[C1], (A.14)

d[C2]

dt
= k4[S2](ET − [C1]− [C2])− (k5 + k6)[C2]. (A.15)

The quasi-steady-state approximation (QSSA) states that before any meaningful amounts

of P are produced, the enzymes and complexes reach an equilibrium (Murray, 2005; Segel

and Slemrod, 1989). Thus, equations (A.14) and (A.15) are both equal to zero, because
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they do not depend on equation (A.13) and we can analyse them in isolation:

0 = k1[S1](ET − [C1]− [C2])− (k2 + k3)[C1],

0 = k4[S2](ET − [C1]− [C2])− (k5 + k6)[C2].

If ka = (k2 + k3)/k1 and kb = (k5 + k6)/k4 then

[C1] =
kbET [S1]

kb[S1] + ka[S2] + kakb
, (A.16)

[C2] =
kaET [S2]

kb[S1] + ka[S2] + kakb
. (A.17)

The production of P can be expressed as

d[P ]

dt
≈

ET (k3kb[S1] + k6ka[S2])

kb[S1] + ka[S2] + kakb
, (A.18)

which is a compound Michaelis-Menten form. When [S1] > 0 and [S2] = 0 the expression

in equation (A.16) becomes proportional to the standard Michaelis-Menten form:

[C1] =
ETk3[S1]

[S1] + ka
,

likewise when [S1] = 0 and [S2] > 0 we have

[C2] =
ETk6[S2]

[S2] + kb
.

Figure A.7 shows an example of the compound Michaelis-Menten form (A.18) with

ET = 1, k3 = 2, k6 = 0.8, ka = 5, and kb = 1. On Fig. A.7A we show the value of dP
dt

with different signal combinations, and on Fig. A.7B we show the cases when one of the

two signals is zero (bold blue and dashed red lines) and when the two signals are the same

(dash-dotted green line). Here we can see how one signal could affect the response of the

other.
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Figure A.7: Example of compound Michaelis-Menten responses of equation (A.18) when

ET = 1, k3 = 2, k6 = 0.8, ka = 5, and kb = 1. A: Response to combinations of S1 and S2.

B: Response to a single signal (bold blue and dashed red lines) and to S1 + S2 with “equal

doses” of each signal (dash-dotted green line).

A.3 Competition for activation among MAPK isoforms

The approaches to understanding antagonism and competition for limited resources

discussed above has been used by Harrington et al. (2011) to understand the dynamics

of the activation of two MAPKs that share the same activating kinase (MAPKK). The

mitogen activated protein kinases (MAPK) are important relays in many of these signal

transduction processes (Marks et al., 2009); they are involved in regulating cellular fates

such as proliferation, differentiation and apoptosis (Muller and Ram, 2010). The most

widely studied MAPKs, Erk1 and Erk2, are activated through phosphorylation by Mek,

their MAPK kinase (MAPKK), and Mek in turn is activated by its kinase (MAPKKK)

Raf. Activated kinases, such Erk or Mek, are deactivated via dephosphorylation by

their respective phosphatases. Erk is encoded by two genes, Erk1 and Erk2 differ only

subtly at the sequence level; however, Erk1 and Erk2 appear to have different biological

characteristics (Mazzucchelli et al., 2002; Pagès et al., 1999).

We study Erk1/2 activation in two cell types, HeLa and NIH 3T3, and under different

conditions. The two Erk isoforms (Erk1 and Erk2) exist in one of three states: inactive

(Erk), bound to Mek (Merk), or active (ErkP ). Erk transitions from inactive to active

through Mek, free phosphorylated Mek reversibly interacts with inactive Erk. Upon Mek-
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Erk1 Mek Erk2

Cytoplasm

Figure A.8: Schematic of Erk1/2 activation by Mek. Double arrows denote reversible

reactions, and single arrows; irreversible reactions. Image modified from Harrington et al.

(2011).

Reaction Forward rate (µM−1 s−1) Reverse rate (s−1)

Erk1 +Mek ⇋ Merk1 8.8× 10−1 8.8× 10−2

Merk1→Mek + Erk1P 3× 10−1

Erk2 +Mek ⇋ Merk2 8.8× 10−1 8.8× 10−2

Merk2→Mek + Erk2P 2× 10−1

Erk1P → Erk1 1.4× 10−2

Erk2P → Erk2 1.4× 10−2

Table A.1: Reactions of Erk1/2 activation by Mek, and deactivation. Forward and, where

pertinent, backward reaction rates are included. The reactions are illustrated by Fig. A.8

and described by equations (A.19)-(A.25). All reaction rates take from Fujioka et al.

(2006).

Erk binding and formation of an intermediary complex (Merk), Mek phosphorylates Erk

(ErkP ) and then dissociates. In order for ErkP to revert back to its inactive form, it

undergoes dephosphorylation by a phosphatase. Fig. A.8 shows a schematic of Erk1/2

activation by Mek. The mass-action model describing the reactions in Table A.3 are:

d[Erk1]

dt
= −k1[Erk1][Mek] + k−1[Merk1] + k9[Erk1P ], (A.19)

d[Mek]

dt
= −k1[Erk1][Mek] − k5[Erk2][Mek]

+ (k−1 + k2)[Merk1] + (k−5 + k6)[Merk2], (A.20)

d[Merk1]

dt
= k1[Erk1][Mek] − (k−1 + k2)[Merk1], (A.21)

d[Erk1P ]

dt
= k2[Merk1]− k9[Erk1P ], (A.22)
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Parameter Description

k1 Forward interaction rate between cytoplasmic Mek and Erk1

k−1 Reverse interaction rate between cytoplasmic Mek and Erk1

k2 Phosphorylation rate of cytoplasmic Erk1

k5 Forward interaction rate between cytoplasmic Mek and Erk2

k−5 Reverse interaction rate between cytoplasmic Mek and Erk2

k6 Phosphorylation rate of cytoplasmic Erk2

k7 Forward interaction rate between cytoplasmic Mek and Erk2

k−7 Reverse interaction rate between cytoplasmic Mek and Erk2

k9 Dephosphorylation rate of cytoplamsic Erk1P
k11 Dephosphorylation rate of cytoplasmic Erk2P

Table A.2: Description of the parameters in equations (A.19)-(A.25).

d[Erk2]

dt
= −k5[Erk2][Mek] + k5[Merk2] + k11[Erk2P ], (A.23)

d[Merk2]

dt
= k5[Erk2][Mek] − (k5 + k6)[Merk2], (A.24)

d[Erk2P ]

dt
= k6[Merk2]− k11[Erk2P ], (A.25)

and conservation relations:

[MekT ] = [Merk1] + [Merk2] + [Mek],

[Erk1T ] = [Erk1] + [Erk1P ] + [Merk1],

[Erk2T ] = [Erk2] + [Erk2P ] + [Merk2].

The parameters of the model are described in Table A.3. We study the system under

two different conditions: baseline and limited Mek, in each case the model has different

initial conditions. Under baseline conditions we have that [Erk1]0 = 0.2, [Erk2]0 = 0.8,

[Mek]0 = 1.0 (Fujioka et al., 2006; Marchi et al., 2008), and all other variables are zero at

t = 0. We explore the effects that limiting the amount of Mek would have on the system

by setting [Mek]0 = 0.2, and studying the system in parallel to baseline conditions.

We investigate the effects of the phosphorylation/dephosphorylation rates on the

relative abundances of Erk2P to Erk1P at steady state in both the baseline Mek and the

limited Mek scenarios. These parameters have been identified by Harrington et al. (2011)
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as the most sensitive in the model. The log-scale indicator

ϕ = log

(
[Erk2P ]

[Erk1P ]

)
,

can identify the dominance of a specific phospho-Erk isoforms by orders of magnitude

as physical conditions are changed. For example, a value of 1.0 indicates ten times

more Erk2P than Erk1P whereas a value of −1.0 establishes there is ten times more

Erk1P than Erk2P . The phosphorylation rates and dephosphorylation rates are each varied

separately from 10−3 to 101 in line with biophysical considerations and ϕ is evaluated

(Fig. A.9A,B). As the rate of phosphorylation of Erk1 (k2) increases, values of ϕ become

negative indicating dominance by Erk1P (Fig. A.9A (ii)), whereas an increase in the Erk2

phosphorylation rate (k6) demonstrates Erk2 prevalence. The effect of the phosphorylation

rate on ϕ is asymmetric, meaning that there is a larger region in the parameter space

of values giving rise to Erk2P dominance (see non-overlapping curves in Fig. A.9A (i)).

Under limited Mek conditions the maximum/minimum values of ϕ are larger and smaller,

respectively than the baseline conditions. An increase in dephosphorylation rate of Erk1

(k9) results in a larger positive ϕ, or an Erk2P steady-state bias, and vice-versa for

Erk2 dephosphorylation (k11); this is also reflected in the heat map asymmetry, with

a bias towards Erk2P , which is more easily activated than Erk1P . This asymmetry is

also apparent in the time course (Fig. A.9B (i)). Under limited Mek conditions, the

phosphorylation/dephosphorylation rate parameter space has a larger region for possible

competition scenarios (see largest (white) and smallest (black) values of ϕ, corresponding

to high Erk2P and Erk1P dominance in Fig. A.9A,B (iii)). Such dominance suggests

that for certain phosphorylation/dephosphorylation rates, a limited stimulus would more

strongly favour an Erk1P response than non-limited stimuli. Figure A.9C illustrates how

the total amount of Erk may vary across cells affects activation states. For small total Mek,

as well as baseline conditions, the initial amount greatly affects the steady-state value and

it gives the expected result that as total Erk1 in the system increases, the total Erk1P also

increases (Fig. A.9C). Unlike the phosphorylation/dephosphorylation cases, the value of ϕ

at a given total ([Erk1T ], [Erk2T ]) point does not change as Mek becomes limited (heat

map indicator colours are nearly identical).
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0

Figure A.9: Competition of Erk1/2 for activation. Competition in minimal model at

baseline ([Mek]0 = 0.8) and limited ([Mek]0 = 0.2) conditions. Competition scenarios

are studied using heat maps and time courses. Heat maps (ii-iii) of parameter /initial

condition values are given along the horizontal axis and vertical axis are varied and the

associated colour at each parameter/initial condition combination correspond to ϕ =
log([Erk2P ]/[Erk1P ]). Solid circles and open circles in heat maps are shown in time

course of [Erk1P ] (blue) and [Erk2P ] (red) in (i, iv) where a solid circle corresponds to

a solid line and an open circle corresponds to a dotted line. A: Effects of phosphorylation

rates on Erk1/2p. Values of (k2, k6) are varied, solid circle is high k2 = 0.6, low k6 = 0.1
and open circle is low k2 = 0.1, high k6 = 0.6. B: Effects of dephosphorylation rates on

[Erk1P ] and [Erk2P ]. Values of (k9, k10) are varied, solid circle is high k9 = 0.6, low

k10 = 0.1 and open circle is low k9 = 0.1, high k10 = 0.6. C: Effects of [Erk1]0 and

[Erk2]0. Values of total Erk concentrations ([Erk1T ], [Erk2T ]) are varied, solid circle is

high [Erk1T ] = 2.0, low [Erk2T ] = 0.5, and open circle is low [Erk1T ] = 0.5, high

[Erk2T ] = 2.0. Image modified from Harrington et al. (2011).
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The model (A.19)-(A.25) set in a competition framework provides a number of insights,

specifically it highlights that phosphorylation/dephosphorylation rates play an important

role in the steady-state behaviour of Erk1P and Erk2P . Under limited Mek conditions, the

parameter space exploration suggests there is a strong effect (large |ϕ|) on the response.

The value of the initial conditions can induce a Erk2P or Erk1P dominated response and

limiting Mek alters the steady-state value of this response. More generally, this model

provides a simple framework for gaining insight into the components which control the

competition between Erk1 and Erk2 for its kinase Mek, and we provide a indicator ϕ for

giving Erk1P or Erk2P cell response. See Harrington et al. (2011) for more details.
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Appendix B

Data fitting tables

B.1 Bliss-Painter-Marr model data

t R

0 0

20 43.5373

40 13.3667

60 140.8903

80 29.2816

100 108.1722

120 19.0093

140 75.0065

160 14.4018

180 50.4473

200 217.1082

Table B.1: BPM data.

Table B.1 shows data obtained from a simulation of the BPM model from equa-

tions (4.10) using parameters α = 240 and β = 0.15, initial conditions R(0) = 0,

E(0) = 0, P (0) = 0, and adding random noise sampled from a N(0, 152) distribution.

Only the data for variable R was obtained.
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t S I R

0.6 0.12 13.17 9.42

1.0 0.12 7.17 11.19

2.0 0.10 2.36 10.04

3.0 0.38 0.92 6.87

4.0 1.00 0.62 4.45

5.0 1.20 0.17 3.01

6.0 1.46 0.28 1.76

7.0 1.38 0.10 1.29

8.0 1.57 0.03 0.82

9.0 1.46 0.29 0.52

10.0 1.25 0.10 0.23

11.0 1.56 0.22 0.20

Table B.2: SIR data.

B.2 Susceptible-Infected-Recovered model data

Table B.2 shows data for the SIR model generated from equations (4.11) using initial

conditions S(0) = 20, I(0) = 10, and R(0) = 0 with added random noise sampled from a

N(0, 0.22) distribution as appears in Toni et al. (2009).

B.3 Repressilator data

Table B.3 contains the simulated repressilator data corresponding to the three mRNA

variables in model (4.13). The data were generated by Toni and Stumpf (2010) using

parameters α0 = 1, n = 2, β = 5, and α = 1000, starting from initial conditions

m1(0) = 0, p1(0) = 2, m2(0) = 0, p2(0) = 1, m3(0) = 0, and p3(0) = 3, with random

noise added from a N (0, 52) distribution.

B.4 Genetic switch data

Tables B.4 and B.5 show the fluorescent response of IPTG-induced genetic switches

described in Wang (2010); Wang et al. (2011).
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t m1 m2 m3

0 0 0 0

0.6 2.04 28.99 20.96

4.2 32.19 11.29 7.49

6.2 4.13 10.61 44.25

8.6 2.15 55.27 7.12

13.4 5.09 9.49 60.52

16 1.07 68.56 8.1

21.4 3.67 10.62 63.76

27.6 39.01 -1.95 22.9

34.4 73.83 3.53 6.27

39.8 8.54 63.87 10.59

40.6 17.62 39.68 6.5

45.2 11.96 -0.6 70.56

Table B.3: Repressilator data.



1
5

0
t 0mM 0.0004mM 0.0016mM 0.0063mM 0.025mM 0.1mM 0.4mM 1.6mM 6.4mM 12.8mM

0 0 0 0 0 0 0 0 0 0 0

140 88.6 177.8 174.4 197.8 210.4 1043.6 3945.8 5971 6643.8 6521.8

160 120.2 156.4 160.6 165.6 209.8 1300.8 4695.2 6768.4 7361.8 7513.8

180 66.6 96.4 94.6 126.4 171.6 1438.4 5238.8 7465.2 7801 8002.4

200 42.8 72.2 76.2 88 134.2 1578 5658 7914 8458 8542.8

220 37 64.8 61.2 55 135.8 1667 5799.6 8380.2 8976 8914.8

240 39.6 56.6 60.4 65.8 142.8 1758.6 6108.6 8601.4 9172.6 8957

260 36.2 47.6 62 69.8 143.6 1859.8 6104 9041.8 9528.6 9252.8

280 50.8 55.6 58.2 74.2 170.6 1968.2 6554.4 9071.6 9449 9018.4

300 39.6 51 40.8 60.2 197.8 2143.4 6452.2 8396.2 9269.2 9261.2

320 50.4 62.8 65.6 82 273.6 2317.8 6880.8 8941.2 9887.6 9982.8

340 53.8 71.4 71 88.6 296 2512.8 7052.2 8972.8 9694.6 10108

360 45.6 66 61.6 69.2 340.8 2639.2 7047.8 9103.6 9911 10018.4

t 0mM 0.0004mM 0.0016mM 0.0063mM 0.025mM 0.1mM 0.4mM 1.6mM 6.4mM 12.8mM

0 0 0 0 0 0 0 0 0 0 0

140 215 163.4 124.8 134 119 230.4 721.2 1001.8 1095.8 701

160 141.6 116.6 95.4 86 40 320.6 937 1112.2 1054 903.2

180 131.6 112.2 117.6 84 81 252.2 825.2 727.4 1026.8 679.2

200 69.8 42.4 37.8 39 44.2 225.2 688.4 829.8 761.6 584.6

220 55 58.4 59 60.6 50.4 169.2 645.8 713.6 739.6 454

240 38.8 48 30.8 43.4 42.2 148.8 366 418.6 453.8 668.2

260 42.2 44 48.6 41 53.8 152.8 496.4 638.4 547.8 626.2

280 55.2 54.4 51.8 53.6 76 257.2 498.2 722.2 889.8 606.2

300 50.4 57.4 62 67.8 95 339.8 447.4 835.6 693.2 602.6

320 52.6 69.6 78.4 81.2 146.8 385.8 540.4 776.4 1084.2 580

340 57 60.6 73.8 65.6 144.6 401.2 466.4 396.6 560.4 702

360 61.6 73.2 77.2 68.6 151 400 374.8 251 742 436.2

Table B.4: gfp30 fluorescence measurements (top) and standard deviations (bottom).



1
5

1

t 0mM 0.0004mM 0.0016mM 0.0063mM 0.025mM 0.1mM 0.4mM 1.6mM 6.4mM 12.8mM

0 0 0 0 0 0 0 0 0 0 0

140 149.1 199.7 107.4 124.6 242.4 801.9 2682.7 4292.3 4633.3 4923.8

160 96 212.2 121.6 78.4 199.3 945 3192.9 4893.7 5243.3 5572.6

180 64.3 178.7 73.7 40.4 158.7 1083.8 3598.4 5362.7 5762.6 6139.4

200 32.2 92.5 43.2 43.7 135.1 1190.5 3961.4 5901.6 6282.9 6499.9

220 56.4 86.5 51.5 43.5 142.8 1320.4 4274.4 6218.6 6589.5 6866.5

240 42.4 54.6 16.5 23.9 116.3 1330.6 4424.9 6247.9 6514.3 6815.1

260 31 49.9 11.3 13.4 100.4 1422.8 4583.5 6531 6917.5 7177.6

280 34.7 55.5 13 16.4 107.1 1535.8 4680.4 6609.6 7247.2 7290.1

300 33.2 46.1 21.7 22.1 129.7 1675.5 4958.5 6949.3 7620.3 7631.3

320 29.5 39 8.7 22.5 154 1824.5 5122.3 7053.4 7642.7 7645.1

340 31.2 43.2 19.1 27.1 172.2 1836.2 5282.7 7156.9 7661.2 7889.3

360 28 40 10.9 28.9 202.4 1979.3 5456.4 7245.6 7899.1 7910.6

t 0mM 0.0004mM 0.0016mM 0.0063mM 0.025mM 0.1mM 0.4mM 1.6mM 6.4mM 12.8mM

0 0 0 0 0 0 0 0 0 0 0

140 89.4 85.8 209.2 120.8 77.8 175.8 383.6 295.4 332.6 382

160 59.4 23 166.4 111.6 40.6 188.8 572.2 391.6 430.6 326.2

180 31.6 38.6 135.4 51.2 24.8 210.6 597 370.8 467.6 363.8

200 45.2 60.4 83.2 65.2 42 166 573.2 273.6 341.6 337

220 14 27.4 90.2 51.2 25 90 513.8 249.6 234 145.2

240 25.2 32.2 53.8 30.6 16.2 70 475.2 187.6 464.8 168

260 14.8 17.2 47.4 23.8 14.2 68.8 511.8 256 300.6 214

280 20 15.4 46.6 16.6 15.8 70.6 395.8 237.6 313.6 454.6

300 17.8 17.8 37.8 29.8 29.2 178.2 486.6 383.8 416.2 377.2

320 21 21.2 43 26.4 46.8 216.2 519.6 507.4 674.8 227

340 26 22.2 36.8 25.4 46.6 340.8 495.6 655.6 594.2 299.4

360 15.2 13 38.4 8.6 50 350.4 604.8 434.2 853.8 387.8

Table B.5: gfp34 fluorescence measurements (top) and standard deviations (bottom).



152



153

Appendix C

Analysis of activation cascades

C.1 Calculation of the output of the linear cascade, xn(t)

In this section we introduce necessary notation to present the calculations for obtaining the

solutions to equation (5.3).

C.1.1 The Laplace transform

If f(t) is a function integrable over t ≥ 0 its Laplace transform is given by (Kreyszig,

2006):

F (s) = L (f) =

∫ ∞

0

e−stf(t)dt.

The inverse of the Laplace transform is given by

f(t) = L
−1(F ) =

1

2πi
lim
T→∞

∫ γ+iT

γ−iT

estF (s)ds,

where γ is large enough so that the line of integration is beyond all singularities of F . The

Laplace transform (and its inverse) are linear so that

L (af(t) + g(t)) = aL (f) + L (g),
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where a is a constant. An important property of the Laplace transform is that

L (f ′) = sL (f)− f(0),

where f ′ = df
dt

. This can be applied successively to n-th order derivatives. The convolution

of functions f and g is

(f ∗ g) =

∫ t

0

f(τ)g(t− τ)dτ =

∫ t

0

f(t− τ)g(τ)dτ,

and

L (f ∗ g) = L (f)L (g).

C.1.2 The incomplete gamma function: definitions and notation

The gamma function is defined as (Abramowitz and Stegun, 1964):

Γ(a) =

∫ ∞

0

e−ssa−1ds, Re(a) > 0. (C.1)

One well-known property of the gamma function is Γ(n) = (n− 1)!, n ∈ N.

The lower incomplete gamma function is given by:

γ(a, t) =

∫ t

0

e−ssa−1ds, Re(a) > 0 (C.2)

A different way of writing γ(a, t) when a = n ∈ N is (Paris, 2010):

γ(n, t) = (n− 1)!

(
1− e−t

n−1∑

k=0

tk

k!

)
. (C.3)

The normalised lower incomplete gamma function, which we use in our calculations,

is defined as:

P(a, t) =
γ(a, t)

Γ(a)
. (C.4)
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C.1.3 Constant stimulus: derivation of Eq. (5.12)

The solution of the ODE system (5.3) for x(0) = 0 when R(t) = α1 is given in Eq. (5.11):

x(t) = α1A
−1
[
etA − In

]
e1. (C.5)

When A = Ã (defined in equation (5.10)), it can be shown by mathematical induction that

the n-th component of the solution is:

xn(t) =

(
α(n)

β

)n
(
1− e−βt

n−1∑

k=0

(βt)k

k!

)
. (C.6)

A similar result is obtained by Lucius et al. (2003) from the analysis of linear models of

n-step DNA unwinding.

Using (C.3) and the properties of the gamma function, equation (C.6) becomes:

xn(t) =

(
α(n)

β

)n
γ(n, βt)

Γ(n)
=

(
α(n)

β

)n

P(n, βt), (C.7)

which is the expression presented in equation (5.12).

C.1.4 Exponentially decaying stimulus: derivation of Eq. (5.14)

The solution of the ODE system (5.3) for x(0) = 0 when R(t) = α1e
−λt is given in (5.13):

x(t) = α1

[
etA − e−λtIn

]
A−1

[
In + λA−1

]−1
e1. (C.8)

When A = Ã and β 6= λ, we can use mathematical induction to show that

xn(t) =

(
α(n)

β − λ

)n
(
e−λt − e−βt

n−1∑

k=0

tk(β − λ)k

k!

)
(C.9)

=

(
α(n)

β − λ

)n

e−λtγ(n, (β − λ)t)

Γ(n)
=

(
α(n)

β − λ

)n

e−λtP(n, (β − λ)t), (C.10)
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and we obtain the top expression of equation (5.14). When β = λ, we solve sequentially

the ODEs (5.3) and use mathematical induction to get

xn(t) =

(
α(n)t

)n
e−βt

Γ(n+ 1)
, (C.11)

the bottom expression of (5.14).

C.1.5 Sinusoidal stimulus: derivation of Eq. (5.16)

To obtain an explicit solution for xn(t) when the input to equation (5.3) is

R(t) = α1(1 + sin (ωt)),

we use the property of the Laplace transform L (f ′) = sL (f) − f(0) to obtain the

transform of the equations of the system:

L (x1) = x̂1(s) =
α1ω

(s2 + ω2)(β + s)
+

α1

s(β + s)
,

where L (x1) = x̂1(s) and x1(0) = 0. It can be shown by mathematical induction that

x̂n(s) =
αn
(n)

s(β + s)n

αn
(n)ω

(s2 + ω2)(β + s)n
. (C.12)

To obtain xn(t), we must compute the inverse transform of x̂n(s). First we obtain the

inverse transform of the first term of equation (C.12); we use the properties of the Laplace

transform of convolutions to find two f(t) and g(t) such that

L (f ∗ g) = L (f)L (g) =
αn
(n)

s(β + s)n

where

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ =

∫ t

0

g(τ)f(t− τ)dτ.
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Note that (Kreyszig, 2006):

f(t) = L
−1

(
1

(β + s)n

)
=

1

Γ(n)
tn−1e−βt, g(t) = L

−1

(
1

s

)
= 1,

and

(f ∗ g)(t) =
1

Γ(n)

∫ t

0

τn−1e−βτdτ.

If we make the change of variables h = βτ then

(f ∗ g)(t) =
1

Γ(n)βn

∫ βt

0

hn−1e−hdh. ≡ P(n, βt),

which gives

L
−1

(
αn
(n)

s(β + s)n

)
=

(
α(n)

β

)n

P(n, βt). (C.13)

To obtain the inverse of the second term of equation (C.12) we use again the properties of

convolutions and the Laplace transform to get

L
−1

(
αn
(n)ω

(s2 + ω2)(β + s)n

)
=

αn
(n) sin(ωt)

Γ(n)

∫ t

0

τn−1e−βτ cos(ωτ)dτ

−
αn
(n) cos(ωt)

Γ(n)

∫ t

0

τn−1e−βτ sin(ωτ)dτ. (C.14)

Solving integrals of (C.14) gives

L
−1

(
αn
(n)ω

(s2 + ω2)(β + s)n

)
=

(
α(n)

ω2 + β2

)n

Re
(
ξϕnP(n, ϕt)

)
,

where ϕ = β + iω, ξ = sin(ωt) + i cos(ωt), z̄ is the complex conjugate of z ∈ C, and

Re(z) is the real part of z. It follows from the definition of the incomplete gamma function

that P(n, ϕt) = P(n, ϕ̄t). We extract the real part of ξϕnP(n, ϕt) to get

L
−1

(
αn
(n)ω

(s2 + ω2)(β + s)n

)
=

(α(n)

r

)n
[
sin(ωt+ nθ)− e−βt

{
cos(nθ)

n−1∑

k=0

tkrk cos (kθ)

k!
− sin (nθ)

n−1∑

k=0

tkrk sin (kθ)

k!

}]
,
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where r = (β2 + ω2)1/2 and θ = arctan
(
β
ω

)
. We now combine this last result with

equation (C.13) the expression we have in equation (5.16):

xn(t) =

(
α(n)

β

)n

P(n, βt) +
(α(n)

r

)n
[
sin (ωt− nθ)

− e−βt

{
cos (nθ)

n−1∑

k=0

tkrk cos (kθ)

k!
− sin (nθ)

n−1∑

k=0

tkrk sin (kθ)

k!

}]
,

=

(
α(n)

β

)n

P(n, βt) +
(α(n)

r

)n
[
sin (ωt− nθ)

− e−βt

{
n∑

k=0

tkrk

k!
(cos(nθ) cos(kθ)− sin(nθ) sin(kθ))

}]
,

=

(
α(n)

β

)n

P(n, βt) +
(α(n)

r

)n
[
sin (ωt− nθ)− e−βt

n∑

k=0

tkrk

k!
cos ((n+ k)θ)

]

C.2 Properties of the ε-perturbed matrix of rates, Hi

The matrix Hi, which corresponds to a linear cascade with a perturbation ε at position i, is

defined in Eq. (5.17) and has a Jordan decomposition given in Eq. (5.18):

Hi = QiJQ
−1
i . (C.15)

As can be seen from the lower-triangular structure of Hi, its Jordan form is the direct

sum of two Jordan blocks associated with −(β + ε), with multiplicity 1, and −β, with

multiplicity n− 1:

J = J−(β+ε) ⊕ J−β, (C.16)

where

J−(β+ε) = [−(β + ε)]1×1 , J−β =




−β 1

−β
. . .

. . . 1

−β




(n−1)×(n−1)

. (C.17)
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The transition matrix Qi contains the generalised eigenvectors {qi
ℓ}

n
ℓ=1 as columns

Qi =
[
qi
1|q

i
2| . . . |q

i
n

]
.

Proposition C.2.1. The following properties hold for Qi and J (see Example C.2.1 for the

case when n = 6):

I. J is independent of i.

II. qi
1, the eigenvector of Hi associated with −(β + ε), is given by:

qi
1(j) =





0 if j < i,

αj
(j)

(
−1
ε

)j−1
if j ≥ i.

(C.18)

III. {qi
n−k+1}

n−1
k=1 , the (n − 1) generalised eigenvectors of Hi associated with −β, are

given by:

• If i ≤ k

qi
n−k+1(j) =





0 j ∈ {1 . . . k},

−αj
(j)

(
−1
ε

)j−k
j ∈ {k + 1 . . . n}.

(C.19)

• If i > k

qi
n−k+1(j) =





0 j ∈ {1 . . . i− 1}\k,

αk
(k) j = k,

−αj
(j)

(
−1
ε

)j−k
j ∈ {i . . . n}.

(C.20)

IV. The inverse of the transition matrix Q−1
i has the following structure:

• The first row is

Q−1
i (1, j) =





(−ε)j−1

αj

(j)

if j ≤ i,

0 if j > i.

(C.21)
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• Rows k ∈ {2, . . . , n} are

Q−1
i (k, j) =





0 if j ≤ n− k,

1

αj

(j)

if j = n− k + 1,

ε

αj

(j)

if j = n− k + 2 and n− i+ 1 ≥ k,

0 otherwise.

(C.22)

V. For all i:

Q−1
i e1 = e1 + en =




1

0
...

1



. (C.23)

Proof. I. All the matrices Hi have the same eigenvalues with the same multiplicity so

the Jordan form J is identical for all i.

II. Let vi
1 = Hiq

i
1, if i = 1 it is straightforward to see that v1

1(1) = −(β + ε) and when

j > i

v1
1(j) = αjα

j−1
(j−1)

(
−1

ε

)j−2

−βαj
(j)

(
−1

ε

)j−1

= −(β+ε)αj
(j)

(
−1

ε

)j−1

, (C.24)

so v1
1 = −(β + ε)q1

1.

When i > 1 then vi
1(j) = 0 for j = 1 . . . i− 1. If j = i, then

v
j
1(i) = −(β + ε)αi

(i)

(
−1

ε

)i−1

,

and if j > i then the same situation as in equation (C.24) applies, so again we have

vi
1 = −(β + ε)qi

1.

III. Define Bi = (Hi + βIn), we can see from the definition of qi
2 in equations (C.19)

and (C.20) that Biq
i
2 = 0, ie qi

2 is the eigenvector of Hi associated to −β. The rest

of the generalised eigenvectors qi
3 . . .q

i
n associated with−β can be multiplied by Bi
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to show that

Biq
i
h = qi

h−1, h = 3 . . . n. (C.25)

It follows that Bh−1
i qi

h = 0, so Qi as defined in equations (C.18), (C.19), and (C.20)

is the transition matrix of generalised eigenvectors of Hi.

IV. We can verify that Q−1
i defined in equations in equations (C.21) and (C.22) is the

inverse of the transition matrix Qi by multiplying them to obtain Q−1
i Qi = In.

V. This property follows directly from the structure of Q−1
i .

Example C.2.1. Consider a cascade of length n = 6. The structures of the transition matrix
and its inverse for i = 1, . . . , 6 are

Q1 =





















































α(1) 0 0 0 0 0

−

α
2
(2)
ε

0 0 0 0
α
2
(2)
ε

α
3
(3)

ε2
0 0 0

α
3
(3)
ε

−

α
3
(3)

ε2

−

α
4
(4)

ε3
0 0

α
4
(4)
ε

−

α
4
(4)

ε2

α
4
(4)

ε3

α
5
(5)

ε4
0

α
5
(5)
ε

−

α
5
(5)

ε2

α
5
(5)

ε3
−

α
5
(5)

ε4

−

α
6
(6)

ε5

α
6
(6)
ε

−

α
6
(6)

ε2

α
6
(6)

ε3
−

α
6
(6)

ε4

α
6
(6)

ε5





















































, Q
−1
1 =

























































1
α(1)

0 0 0 0 0

0 0 0 0 1

α5
(5)

ε

α6
(6)

0 0 0 1

α4
(4)

ε

α5
(5)

0

0 0 1

α3
(3)

ε

α4
(4)

0 0

0 1

α2
(2)

ε

α3
(3)

0 0 0

1
α(1)

ε

α2
(2)

0 0 0 0

























































,
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Q2 =





















































0 0 0 0 0 α(1)

−

α
2
(2)
ε

0 0 0 0
α
2
(2)
ε

α
3
(3)

ε2
0 0 0

α
3
(3)
ε

−

α
3
(3)

ε2

−

α
4
(4)

ε3
0 0

α
4
(4)
ε

−

α
4
(4)

ε2

α
4
(4)

ε3

α
5
(5)

ε4
0

α
5
(5)
ε

−

α
5
(5)

ε2

α
5
(5)

ε3
−

α
5
(5)

ε4

−

α
6
(6)

ε5

α
6
(6)
ε

−

α
6
(6)

ε2

α
6
(6)

ε3
−

α
6
(6)

ε4

α
6
(6)

ε5





















































, Q
−1
2 =

























































1
α(1)

−
ε

α2
(2)

0 0 0 0

0 0 0 0 1

α5
(5)

ε

α6
(6)

0 0 0 1

α4
(4)

ε

α5
(5)

0

0 0 1

α3
(3)

ε

α4
(4)

0 0

0 1
α2
(2)

ε

α3
(3)

0 0 0

1
α(1)

0 0 0 0 0

























































,
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Q3 =








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
















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1
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ε
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ε
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C.3 Calculation of xn+1(t) with one ε-perturbed inactivation rate

C.3.1 Constant stimulus, derivation of Eq. (5.25)

We solve the differential equation (5.24) through an integrating factor to get:

e(β+ε)txn+1(t) = αn+1

(
α(n)

β

)n ∫
e(β+ε)tP(n, βt)dt + c. (C.32)

Use the properties of the gamma function to re-express the integral as

∫
e(β+ε)tP(n, βt)dt =

∫
e(β+ε)tdt−

∫
eεt

n−1∑

k=0

(βt)k

k!
dt. (C.33)

and solve the second integral of (C.33) using integration by parts:

∫
eεt

n−1∑

k=0

(βt)k

k!
dt =

eεt

ε

n−1∑

k=0

(βt)k

k!
−

∫
βeεt

ε

(
n−1∑

k=0

(βt)k

k!
−

(βt)n−1

(n− 1)!

)
dt (C.34)

to obtain

(
1 +

β

ε

)∫
eεt

n−1∑

k=0

(βt)k

k!
dt =

eεt

ε

n−1∑

k=0

(βt)k

k!
+

βn

ε(n− 1)!

∫
eεttn−1dt. (C.35)

The integral on the right-hand side of equation (C.35) can be solved using the for-

mula (Gradshteyn and Ryzhik, 2007):

∫
eεttn−1dt = eεt

(
n−1∑

k=0

(−1)k(n− 1)!

εk+1(n− 1− k)!
tn−1−k

)
. (C.36)

Substituting in equation (C.33) and gathering terms we obtain

∫
e(β+ε)tP(n, βt)dt =

eεt

β + ε

(
eβt −

n−1∑

k=0

(βt)k

k!
+

(−1)kβntn−1−k

εk+1(n− 1− k)!

)
+ c, (C.37)
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whence Eq. (C.32) becomes

xn+1(t) =
αn+1

β + ε

(
α(n)

β

)n
(
1− e−βt

n−1∑

k=0

[
(βt)k

k!
+

(−1)kβntn−1−k

εk+1(n− 1− k)!

])
+ ce−(β+ε)t. (C.38)

The initial condition xn+1(0) = 0 requires that

c = (−1)n+1 αn+1

β + ε

(α(n)

ε

)n
, (C.39)

which gives the final expression given in equation (5.25):

xn+1(t) =
αn+1

β + ε

(
α(n)

β

)n
(
1− e−βt

[(
−β

ε

)n

e−εt +

n−1∑

k=0

(εn−k − (−β)n−k)(βt)k

εn−kk!

])
. (C.40)

C.3.2 Exponentially decaying stimulus, derivation of Eqs. (5.29) and (5.30)

Consider first the case β 6= λ. To solve the differential equation (5.26), define σ = β − λ

and use integrating factors to get:

e(β+ε)txn+1 = αn+1

(α(n)

σ

)n
(∫

e(σ+ε)tdt−

∫
e−εt

n−1∑

k=0

(σt)k

k!
dt

)
+ c. (C.41)

Using integration by parts for the second integral on the right-hand side, and following

similar steps to those above gives

e(β+ε)txn+1 =
αn+1

σ + ε

(α(n)

σ

)n
(
e(σ+ε)t − eεt

n−1∑

k=0

(εn−k − (−σ)n−k)(σt)k

εn−kk!

)
+ c. (C.42)

The initial condition xn+1(0) = 0 requires that

c =
αn+1

σ + ε

(α(n)

ε

)n
, (C.43)
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thus giving equation (5.29):

xn+1(t) =
αn+1

β + ε− λ

(
α(n)

β − λ

)n [
e−λt +

e−(β+ε)t

εn
−

−e−βt
n−1∑

k=0

(
εn−k − (λ− β)n−k

)
(β − λ)ktk

εn−kk!

]
. (C.44)

When λ = β we use integrating factors to solve equation (5.27):

xn+1(t)e
(β+ε)t =

α(n+1)

Γ(n + 1)

∫
tneεtdt+ c =

α(n+1)

Γ(n+ 1)

n!

ε

n∑

k=0

(−1)kt(n−k)

εk(n− k)!
+ c, (C.45)

and taking the initial condition xn+1(0) = 0 we get equation (5.30):

xn+1(t) =
(α(n+1)

ε

)n+1

e−βt

[
εn

n∑

k=0

(−1)ktn−k

εk(n− k)!
+ (−1)n+1e−εt

]
.

C.4 Parameter fitting

We use the optimisation method developed in Chapter 4 to fit the parameters of our models

to the artificial ‘observed data’ used in Examples 5.4.1 and 5.4.3.

C.4.1 Model simplification and parameter fitting

In Example 5.4.1 we used Algorithm 4.1 from Chapter 4 to obtain the parameter values of

the gamma function expressions (5.12) and (5.14) from data taken from numerical solutions

of equation (5.3) with both constant and decaying inputs and random added noise (see

Fig. 5.5).

In the example we considered two cascades with parameters n = 5, α1 = 3, αi = 4

i = 2, . . . , 5, and β = 3 from resting initial conditions. The first of the cascades has

input R(t) = α1, the second; R(t) = α1e
−λt, λ = 1. To avoid confusion, in this

section we denote the output of the cascade with constant stimulus as x5c(t), and the

output from using a decaying stimulus as x5d(t). Table C.1 shows both the untouched

sample from the numerical solutions of the equations of both cascades (dashed lines in both
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t x5c(t) x̃5c(t) x5d(t) x̃5d(t)
0 0 0 0 0

1 0.584 0.5821 0.4651 0.4667

2 2.2611 2.2977 1.205 1.2423

3 2.9855 3.1372 0.8544 0.9596

4 3.1339 3.1167 0.3963 0.3352

5 3.1573 3.2542 0.1572 0.1451

6 3.1601 3.332 0.059 0.068

7 3.1607 3.0908 0.0218 0.0244

8 3.1606 3.1167 0.008 0.0071

9 3.1604 3.2505 0.003 0.0034

10 3.1604 3.2208 0.0011 0.0009

Table C.1: Data sampled from numerically solving equation (5.3) for constant and decaying

inputs (columns x5c(t) and x5d(t)) using parameters n = 5, α1 = 3, αi = 4, β = 3 and

λ = 1, and by adding random noise to the solutions (columns x̃5c(t) and x̃5d(t)).

plots of Fig. 5.5B), and the sample with added random noise sampled from a N (0, 0.052)

distribution (squares in Fig. 5.5B), which we denote by x̃5c and x̃5d.

We define the parameter vectors θc = [α(n), β, n] for the cascade with constant

stimulus, and θd = [α(n), β, n, λ] for the cascade with decaying stimulus. To find the

estimates of θc and θd we minimise the error (4.3) on each cascade:

ED(θc) =
10∑

t=0

||x5c(t; θc)− x̃5c(t)||
2
2 , (C.46)

ED(θd) =
10∑

t=0

||x5d(t; θd)− x̃5d(t)||
2
2 , (C.47)

where x5c(t; θc), x5d(t; θd) are functions (5.12) and (5.14) evaluated at θc and θd,

respectively.

We begin each minimisation with a prior distribution U(0, 10) for each parameter. At

every iteration of the algorithm we simulate 500 points in the parameter space, to which we

apply local minimisation. Of the 500 local minima we select the 50 with the smallest error

to construct the posterior. We sample 500 new points from the posterior (now a prior) and

continue the sample-minimise-cull cycle until the means of the errors of the posteriors in
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Figure C.1: A: Histograms of the parameters of equation (5.12) found by minimising

error (C.46). B: Histograms of the fit of equation (5.14) to error (C.47). In all histograms

the red dot marks the value of the parameter that gave the smallest error (ie the components

of θ‡
c and θ

‡
d).

consecutive iterations (φk) is smaller that 10−5 (see Chapter 4 for details on the method).

Figure C.1 shows the histograms of the components of θ†
c and θ

†
d obtained after minimising

errors (C.46) and (C.47). On each case the algorithm converged after only two iterations,

with φ2 ≈ 0. The values of the parameters of the cascade with constant stimulus are

α(n) ≈ 4.068, β ≈ 3.281, and n ≈ 5.418, giving ED(θ
‡
c) = 0.2338. The parameters

obtained with the decaying stimulus are α(n) ≈ 3.317, β ≈ 2.177, n ≈ 4.6, and λ ≈ 2.177,

with error ED(θ
‡
d) = 0.0842.

C.4.2 Delay differential equation models for activation cascades

In Example 5.4.3 we approximate data drawn from the solution of a delay differential

equation with a linear cascade represented by an incomplete gamma function expression.

We use Algorithm 4.1 to find the parameter values that minimise the distance from the data

to equation (5.12).

We simulate the DDE system (5.31) with parameters α̂ = 2, β̂ = 3, and τ = 2 from

resting initial conditions (see Fig. 5.7B, top). We denote the solution to equation (5.31) by

p̂2(t) and the solution with added random noise from a N (0, 0, 052) distribution by p̃2(t),

shown in Table C.2. With equation (5.32) we approximate p̂2(t) using Algorithm 4.1 to
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t p̂2(t) p̃2(t)
0 0 0

0.2524 0 0.0091

0.5336 0 0.1521

0.9385 0 0.0019

1.2083 0 0.1227

1.55 0 0.0348

2.0069 0.0002 0.001

2.5374 0.6565 0.5782

2.8395 1.1261 1.1848

3.0717 1.4221 1.397

3.4184 1.7484 1.7964

3.7092 1.9289 1.9957

4 2.0488 2.041

4.9736 2.2142 2.3031

5.4868 2.2362 2.4671

6 2.2447 2.2972

7 2.251 2.2498

8 2.2496 2.3409

9 2.2501 2.2557

10 2.25 2.1393

Table C.2: Data sampled from a numerical solution of equation (5.31) (p̂2(t)) using

parameters α̂ = 2, β̂ = 3, and τ = 2. Column p̃2(t) contains the numerical solution

data with added random noise.
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find the parameters θ = [α(n), β, n] that minimise the error

ED(θ) =

20∑

i=1

||pn(ti; θ)− p̃2(ti)||
2
2 .

We use the prior U(0, 10) for all the parameters. As before, we sample 500 points

from the parameter space, minimise them locally and use the 50 best local minima to

construct a posterior. We continue the sample-minimise-cull interactions until φk ≤ 10−5.

The algorithm finished after two iterations (φ2 ≈ 0), obtaining parameters α(n) ≈ 2.27,

β ≈ 7.53, and n ≈ 22.1072. The posterior distribution of all parameters is extremely

narrow (support centred on each parameter value ±10−8).

C.5 Cascades with negative feedback

C.5.1 Constant stimulus

Consider the cascade given by the system of ODEs:

dx1

dt
= R(t)− βx1 − ǫx1xn, (C.48)

dxi

dt
= αixi−1 − βxi, i = 2, . . . , n,

where x1(0) = xi(0) = 0. When R(t) = α1 we can try to approximate the solutions by

expanding xk in powers of ǫ:

xk = xk0 + ǫxk1 + ǫ2xk2 + . . . .

From equation (5.12) we get the leading-order approximation to xk as a normalised lower-

incomplete gamma function:

xk0(t) =

(
α(k)

β

)k

P(k, βt).
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When k = 1 we get the order 1 correction by solving the equation:

dx11

dt
= −βx11 − x10xn0,

= −βx11 −
α1α

n
(n)

βn+1
P(1, βt)P(b, βt).

The order 1 approximation to x1(t) is then

x1(t) ≈
α1

β
P(1, βt)−

ǫα1α
n
(n)

βn+2

[
P(n, βt) +

{
nP(n + 1, βt)−

(βt)n

n!
− βtP(n, βt)

}]
e−βt.

C.5.2 Exponentially decreasing stimulus

When R(t) = α1e
−λt in equation (C.48) we can again expand xn(t) in powers of ǫ and

obtain the leading order approximation in terms of the incomplete gamma function (5.14):

xn0(t) =





(
α(n)

β−λ

)n
e−λt P(n, (β − λ)t) if β 6= λ

1
Γ(n+1)

(
α(n)t

)n
e−βt if β = λ,

To obtain xn1(t) lets suppose that β = λ; furthermore, we assume that a suitable

nondimensionalisation has been performed so that

xn0(t) =
tne−t

n!
.

The order-one correction can be shown to be:

xn1(t) = (−1)n+1e−2t(t+ n)− e−t
n∑

k=1

(−1)n
ktn−k

(n− k)!
.
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The sum in this last equation is a particular case of the hypergeometric function:

n∑

k=1

(−1)n
ktn−k

(n− k)!
=

tn−1

(n− 1)!

n∑

k=1

{
(−1)k+1k

tk−1

k∏

j=1

(n− j)

}
,

=
tn−1

(n− 1)!

n−1∑

m=0

{
(−1)m(m+ 1)

tm

m−1∏

j=1

(n− j)

}
,

changing variables m = k − 1, and (−1)k+1 = (−1)k−1 = km

. . . =
tn−1

(n− 1)!

n−1∑

m=0

{
m+ 1

tm

m+1∏

j=1

(−m+ j)

}
,

=
tn−1

(n− 1)!

n−1∑

m=0

{
(m+ 1)Γ(−n + 1 +m)

tmΓ(−n+ 1)

}
,

using Γ(z + 1) = zΓ(z) recursively, also Γ(2) = 1 so:

. . . =
tn−1

(n− 1)!

n−1∑

m=0

{
m+ 1

tm
m!

m!

Γ(−n+ 1 +m)

Γ(2)Γ(−n + 1)

}
,

=
tn−1

(n− 1)!

n−1∑

m=0

{
Γ(−n + 1 +m)Γ(2 +m)

Γ(−n+ 1)Γ(2)

t−m

m!

}
. (C.49)

Once that −n + 1 + m ≥ 2, we cannot cancel out Γ(−n+ 1) out of the denominator of

equation (C.49). Because Γ(−n + 1) goes to infinity when−n+1 is a negative integer, all

terms containing it in the denominator go to zero, so

. . . =
tn−1

(n− 1)!

∞∑

m=0

{
Γ(−n + 1 +m)Γ(2 +m)

Γ(−n + 1)Γ(2)

t−m

m!

}
,

=
tn−1

(n− 1)!
2F0

(
[−n + 1, 2]; , t−1

)
,

Where 2F0 is a case of the hypergeometric defined as (Abramowitz and Stegun, 1964):

2F0([a, b]; , z) =

∞∑

j=0

(a)j(b)j
zj

j!
,
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and (a)j is Pochhammer’s symbol:

(a)j =
Γ(a+ j)

Γ(a)
.

Therefore the order-one approximation to Xn(t) is

xn(t) ≈
tn

n!
e−t + εn

[
(−1)n+1e−2t(t + n)−

e−ttn−1

(n− 1)!
2F0

(
[−n + 1, 2]; , t−1

)]
. (C.50)

The results described above can be used to try to approximate the behaviour of activation

cascades in a signalling network, eg when only the output of the cascade can be measured.

C.6 A result from Golub and Van Loan (1996)

In Golub and Van Loan (1996) the following statement is provided as an exercise1:

Show that if

exp

(
z

[
−AT P

0 A

])
=

[
F11 F12

0 F22

]
,

where A, P ∈ Rn×n and z ∈ R, then

FT
22F12 =

∫ z

0

esA
T

PesAds.

A proof is given by Van Loan (1976), here we show an alternative version using the

definition of the matrix exponential that arose from studying approximations to nonlinear

activation cascades of length n.

It can be easily verified from the definition of eA) that F22 = ezA and

F12 =
∞∑

k=1

k−1∑

i=0

zk

k!

(
−AT

)i
P (A)k−1−i ,

1Page 577 problem 11.34. In the book it is incorrectly printed as FT
11F12 =

∫ z

0
. . . , it should be FT

22F12.
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so we have

FT
22F12 = ezA

T

∞∑

k=1

k−1∑

i=0

zk

k!

(
−AT

)i
P (A)k−1−i .

Differentiating the last expression gives

dFT
22F12

dz
= A

T ezA
T

∞∑

k=1

k−1∑

i=0

zk

k!

(
−AT

)i
P (A)

k−1−i
+ ezA

T

∞∑

k=1

k−1∑

i=0

zk−1

(k − 1)!

(
−AT

)i
P (A)

k−1−i
,

rearranging indices and using the fact that a matrix and its exponential commute, then

= ezA
T

[
∞∑

k=0

k∑

i=0

zk

k!

(
−AT

)i
P (A)k−i −

∞∑

k=1

k∑

i=1

zk

k!

(
−AT

)i
P (A)k−i

]
,

where only the terms with i = 0 or k = 0 do not get cancelled out and

dFT
22F12

dz
= ezAP

[
In + zA +

z2

2
A+ . . .

]

= ezA
T

PezA,

which is the result we wanted to obtain.
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Appendix D

Additional modelling and computations

D.1 Henderson-Hasselbach equation

Let the concentrations of protons H+, a weak acid A−, and protonated acid HA in a solute

be [H+], [A−], and [HA], respectively. The reaction

H+ + A− k1−⇀↽−
k2

HA,

is represented by the ODE

d[H+]

dt
= k2[HA]− k1[H

+][A−].

The equilibrium concentration of H+ is [H+] = Ka
[HA]
[A]

, where Ka = k2
k1

. If we take a

logarithm (base 10) on both sides and multiply by −1 we get

− log([H+]) = − log(Ka) + log

(
[A−]

[HA]

)
. (D.1)

The right-hand side of equation (D.1) is equivalent to pH according to the Henderson-

Hasselbach equation (Po and Senozan, 2001); this means that

pH = − log([H+]).
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D.2 Proton transport across the vacuolar membrane

In simple terms the transport across the vacuolar membrane via the V–ATPase can be seen

as the reaction (Keener and Sneyd, 1998):

H+
cyt + ATP

k1−⇀↽−
k2

H+
vac + ADP + P.

If [H+]cyt and [H+]vac are the proton concentrations in the cytoplasm and the vacuole, the

ODE model describing the change in proton concentration in the cytoplasm is

d[H+]cyt
dt

= −k1[H
+]cyt[ATP ] + k2[H

+]vac[ADP ][P ], (D.2)

and the Gibbs free-energy for the reaction is:

G△ = RT ln

(
[H+]vac[ADP ][P ]

[H+]cyt[ATP ]

)
− FEmvac

+G△ATP ,

where R is the gas constant, T ; the absolute temperature (in K), F ; the Faraday constant,

Emvac
; the vacuolar membrane potential (given by the Nernst equation), and G△ATP ; the

Gibbs free-energy for ATP-hydrolysis (Ke, 2010). When G△ = 0 (energy equilibrium) we

have
[H+]vac[ADP ][P ]

[H+]cyt[ATP ]
= exp

(
−
G△ATP − FEmvac

RT

)
.

From equation (D.2) at steady state we obtain the relation

k1[H
+]cyt[ATP ] = k2[H

+]vac[ADP ][P ],

which gives
k1
k2

= exp

(
−
G△ATP − FEmvac

RT

)
.

The flux through the channel is described by (Ke, 2010; Keener and Sneyd, 1998):

JV -ATPase = k1

{
[H+]cyt[ATP ]− [H+]vac[ADP ][P ] exp

(
−
G△ATP − FEmvac

RT

)}
.

In Sec. 2.3.4 we discussed that V–ATPase activity is increased by active OST1, a result
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of ABA-inactivation of ABI1, which means that the rate of proton transport from the

cytoplasm to the vacuoles has a dependency on ABA. We can argue that the dependency

on ABA (because it is mediated by enzymes) can saturate and thus be approximated with a

Michaelis-Menten term, for example:

k1([ABA]) = k̂1 +
k̃1[ABA]

κ+ [ABA]
.

D.3 Fitting the parameters of the stomatal closure model

Equations (7.22)-(7.27) have 28 parameters whose values must be determined. (Note that

the variables are rescaled dividing them by 100, so that control levels and initial conditions

are 1, to improve numerical stability of the fitting process.)

We reduce the number of free parameters from 28 to 23 through a series of assumptions.

Firstly, we assume that in the absence of stimuli (ie [ABA] = [ETH ] = 0) we must remain

stationary in the control state:

d[ROS]

dt
=

d[AOX ]

dt
=

d[NO]

dt
=

d[K+
out]

dt
=

d[K+]

dt
= 0, (D.3)

Hence the following relationships between parameters must hold:

α10 = β11,

α20 = β20,

β30 =
α31

k31 + 1
, (D.4)

β40 = α40 + α42,

β50 =
α51

k51 + 1
.

With these conditions, the number of unknown parameters has been reduced to 23 and we
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define the vector θ ∈ R23 in parameter space:

θ = [α11, α12, k11, k12, β11, β12, β13, n2, α22, α23, k21, k22,

α24, n1, β20, α31, k31, α32, α41, α42, α43, α51, k51] ,

whose components are all non-negative. We define the treatments as the following set:

T = {T1, T2, T3, T4, T5, T6, T7}, where

T1 = 1µM ABA+ 0µM ethylene,

T2 = 0µM ABA+ 1µM ethylene,

T3 = 10µM ABA + 0µM ethylene,

T4 = 0µM ABA+ 10µM ethylene,

T5 = 10µM ABA + 10µM ethylene.

T6 = 50µM ABA + 0µM ethylene.

T7 = 0µM ABA+ 100µM ethylene.

The data setD with measurements of ROS and aperture consists of the observations shown

in Figs. 6.1 and 6.2. We denote by [R̂OS]i and [ÂP ]i the vectors of measurements of ROS

and aperture under treatment Ti; and by [ROS]i(θ) and [AP ]i(θ) the model predictions at

the same time points as the data with dose Ti, using parameters θ. The discrepancy of the

model in equations (7.22)-(7.27) and the data is measured by the following error function:

ED(θ) =
∑

i∈{1,2,3}

∣∣∣
∣∣∣[R̂OS]i − [ROS]i(θ)

∣∣∣
∣∣∣
2

2
+
∣∣∣
∣∣∣[ÂP ]i − [AP ]i(θ)

∣∣∣
∣∣∣
2

2
, (D.5)

where ||·||2 is the euclidean norm. That is, we measure the distance between our ROS and

aperture measurements and the model for a given θ in the parameter space. The global

optimisation problem is to find θ
‡ where

θ
∗∗ = min

θ

ED(θ),

subject to θ ≥ 0.
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Figure D.1: Convergence criteria for optimisation algorithm. A: Difference between the

best 50 local minima from each iteration (k) of the algorithm (the posterior) and the

global minimum θ
‡ on a semilogarithmic scale. B: Difference between the mean of the

errors of the local minima from consecutive iterations of the fitting algorithm (φk) on a

semilogarithmic scale. C: Mean of the cosines among individual local minima from each

iteration on a semilogarithmic scale.

We use the Squeeze-and-breathe optimisation method from Chapter 4 to find θ
‡. The

method requires an initial probability distribution for each parameter (called a prior). Here

we use a uniform distribution U(0, 10) for all parameters. On each iteration 500 points in

the parameter space (in R23
+ ) are sampled from the prior. Each point is used as a starting

point to minimise ED(θ) locally (using the Nelder-Mead simplex algorithm). The 50

local minima with the smallest errors are used to construct a posterior distribution of the

parameters. The posterior is used as a prior for the next iteration where another 500 points

are sampled and minimised until the convergence criteria has been met. Figure D.1 shows

the convergence of the method for fitting the parameters of our model. On Fig. D.1A, we

show the decrease in the difference (on a semilogarithmic scale) between the errors of the

parameter sets found at the end of each iteration and the global minimumED(θ
‡) ≈ 0.0215,

obtained at the end of iteration 43. The 50 lowest errors of each iteration minus ED(θ
‡)

are shown on a decreasing order from left to right. Figure D.1B shows the convergence

criterion defined in Chapter 4. We stop the iterations of the method once the difference

between mean of the errors of the 50 parameter sets from consecutive iterations (φk, shown

on a semilogarithmic scale) is smaller that 10−5. During the first 20 iterations of the method

φk appears to decrease exponentially and thereafter the trend still continues downwards

albeit no longer exponentially. On Fig. D.1C we show the mean of the cosines of the
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Figure D.2: Frequencies of the parameters after fitting. Histograms of the distribution of

the 50 best parameters obtained after 43 iterations of the fitting algorithm. The red dots

indicate the value of the parameter that gave the smallest error (θ‡).

angles between all local minima from each iteration. This is to assert that the method

converges to a single region of the parameter space. After iteration 43 the mean cosine is

O(10−4). Based on these metrics we conclude that θ‡ is a good estimation of the model

parameters, given the present data. Figure D.2 shows the distribution of the best 50

parameters after 43 iterations of the algorithm. Red dots mark the mean of each parameter

(values in Table D.1). The behaviour of the model that we observe in Figs. 7.7–7.10 is

given by these parameters.
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Parameter Value Units

α11 3.2976 min−1

α12 3.0054 min−1

k11 1.9389 dimensionless

k12 1.551 dimensionless

β11 10.8119 min−1

β12 3.6752 min−1

β13 0.2749 dimensionless

n2 3.192 dimensionless

α21 3.8179 min−1

α22 11.9759 dimensionless

k21 0.2962 dimensionless

k22 0.0268 dimensionless

α23 0.0868 dimensionless

n1 9.755 dimensionless

β20 1.5973 min−1

α31 2.5528 min−1

k31 22.1635 dimensionless

α32 0.0133 min−1

α40 5.7029 min−1

α41 1.4584 min−1

α42 11.3133 min−1

α51 0.2713 min−1

k51 1.256 dimensionless

α10 10.8119 min−1

α20 1.5973 min−1

β30 0.1102 min−1

β40 17.0162 min−1

β50 0.1203 min−1

Table D.1: Parameter values obtained by the Squeeze-and-Breathe algorithm. Other values

are given by the relations given in the text. The bottom five parameters are calculated using

the expressions in (D.4).
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Köhler, B., Hills, A., and Blatt, M. R. (2003). Control of Guard Cell Ion Channels by Hydrogen

Peroxide and Abscisic Acid Indicates Their Action through Alternate Signaling Pathways. Plant

Physiology, 131(2), 385–388.

Koiwai, H., Nakaminami, K., Seo, M., Mitsuhashi, W., Toyomasu, T., and Koshiba, T. (2004).

Tissue-Specific Localization of an Abscisic Acid Biosynthetic Enzyme, AAO3, in Arabidopsis.

Plant Physiology, 134(4), 1697–1707.

Kreyszig, E. (2006). Advanced Engineering Mathematics. John Wiley & Sons, 9 edition.

Kuznetsov, Y. A. (1998). Elements of applied bifurcation theory. Applied mathematical sciences.

Springer.

Kwak, J. M., C.Mori, I., Pei, Z.-M., Leonhardt, N., Torres, M. A., L.Dangl, J., E.Bloom, R., Bodde,

S., D.G.Jones, J., and I.Schroeder, J. (2003). NADPH oxidase AtrbohD and AtrbohF genes

function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal, 22, 2623–2633.

Kwak, J. M., Nguyen, V., and Schroeder, J. I. (2006). The role of reactive oxygen species in

hormonal responses. Plant Physiology, 141(2), 323–329.
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