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Abstract

This thesis presents a mathematical modelling in nanotechnology. Many ex-

periments and molecular dynamics simulations demonstrate that the melting point

of nanoparticles shows a size-dependent characteristic in the nanoscale. Based on

the assumption that the material is a pure one, the melting process of spherical and

cylindrical particles, especially nanoparticles, is treated as a Stefan moving boundary

problem. Analytical or semi-analytical approaches, such as small-time perturbation

expansions with front-fixing techniques, large Stefan number limit, integral iterative

scheme, and numerical methods, such as enthalpy scheme and front-fixing method,

are applied to the one- and or two- phase Stefan problem in spherical and cylindrical

domains by taking into account the effect of the interfacial or surface tension. The

results from these methods are compared and show excellent agreement to some ex-

tent. This thesis may provide a possibility of explaining some interesting phenomena

occurring in the physical experiments, i.e. superheating and “abrupt melting”, or

work as a guide for the potential applications of nanoparticles, for example, drug

delivery, nanoimprinting and targeted ablation of tumor cells

In Chapter 1, a simply survey of the research background is given. Chapter 2

studies the full classical two-phase Stefan problems without surface or interfacial

tension. By using the approach from large Stefan number limit and small-time

perturbation methods, long- and short-time solutions are obtained, and the results

from these methods are compared with the numerical enthalpy scheme. The limits

of zero Stefan-number and slow diffusion in the inner core are also noted. Chapter 3

presents the melting of a spherical or cylindrical nanoparticle by including the effects

of surface tension through the Gibbs-Thomson condition. A single-phase melting

limit is derived from the general two-phase formulation, and the resulting equations

are studied analytically in the limit of small time and large Stefan number. Further

analytical approximations for the temperature distribution and the position of the

solid-melt interface are found by applying an integral formulation together with an

iterative scheme. All these analytical results are compared with numerical solutions

obtained using a numerical front-fixing method, and they are shown to provide

good approximations in various regimes. In Chapters 4 and 5, the methods used

in above sections are extended to the melting problem for spherical and cylindrical
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nanoparticles, respectively. The results from these approaches are compared with

those from the numerical front-fixing method.

The original contributions of this thesis are: approximate analytical solutions are

obtained for the classical two-phase Stefan problems in a spherical domain; a general

single-phase limit for the melting of nanoparticles are derived and analyzed with the

correct boundary conditions; a critical radius is found to exist for the blow-up of

the one-phase melting; the melting process of spherical and cylindrical nanoparticles

are studied analytically from the perspective of Stefan moving boundary problem

by including the effect of surface tension; some interesting phenomena observed

in physical experiments, i.e. superheating and “abrupt melting”, are explained in

terms of Stefan problems.
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4.5 Interface speed Ṙ versus R for the case α = 0.1, κ = 1, δ = 1,

V = −1, σ = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Temperature plot for the case α = 1, κ = 1, δ = 1, V = −1, σ = 0.1 . 102

5.2 Local temperature plot when R = 0.4 for the case α = 1, κ = 1,

δ = 1, V = −1, σ = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Temperature plots for the case α = 10, κ = 1, δ = 1, V = −1, σ = 0.1 104

5.4 Temperature plots for the case α = 1, κ = 0.05, δ = 1, V = −1, σ = 0.1105

5.5 Temperature plots for α = 0.1, κ = 1, δ = 1, V = −1, σ = 0.05 . . . . 106

viii
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1

Nomenclature

k∗` , k∗s the thermal conductivities of the solid and liquid phases, respectively

c`
∗, c∗s the specific heat of the solid and liquid phases, respectively

σsv, σlv the interfacial tension between the solid and vapor phases and between

the liquid and vapor phases, respectively

T ∗
` , T ∗

s the physical temperatures of the liquid and solid phases, respectively

T`, Ts the dimensionless temperatures of the liquid and solid phases, respectively

T ∗
a the physical temperature of particle surface

V ∗, V the physical and dimensionless initial temperatures of the particle

T ∗
m the fusion temperature of the bulk material of the particle

R∗, R the physical and dimensionless positions of the solid/liquid interface

a∗ the initial radius of the particle

T ∗
f (R∗) the equilibrium temperature at the solid/liquid interface

κ the ratio of the thermal conductivities k∗s/k
∗
`

δ the ratio of the specific heat c∗s/c`
∗

L the latent heat of fusion

λ the interfacial tension coefficient

α the Stefan number α = L/[c`(T
∗
a − T ∗

m(1− ω/a∗))]

β the effective Stefan number β = α− σ(1− δ)− δV

σ the parameter related to the interfacial tension



Chapter 1

Research overview

1.1 Nanoparticle and its applications

1.1.1 Background of nanoparticles

Nanotechnology and nanoscience stimulate great interest in the fields of physics,

chemistry, medicine, electronics, electromechanics and so on. As the building blocks

for nanotechnology, nanoparticles have become the focus of tremendous research

for their interesting and unique properties, such as quantum conductance [1], en-

hanced mechanical strength and binding energy [2] and thermal stability [3]. Because

of these properties, nanoparticles find wide engineering applications, for example

switches, catalyst, novel photoluminescent material, sensors [2], drug delivery [4],

nanoimprinting [5] and targeted ablation of tumor cells [6].

1.1.2 Size-dependent properties

One of the most interesting phenomena is that some thermal properties of the ma-

terial in the nanoscale become greatly different from those in the macro scale. This

kind of problem can be traced to W. Thomson in 1870 and J.J. Thomson in 1888 (see

[7]) who suggested that the melting temperature of a finite particle would depend on

the physical and chemical properties of the surface, also known as thermodynamics

size effect. It was not until 1909, however, that a theoretical expression of a size-

dependent solid-liquid coexistence temperature was first proposed by Pawlow (see

[7]). The melting of tin nanoparticles was observed first experimentally by Takagi

[8] with reflection electron diffraction and Blackman & Curzon [9] with transmis-

sion electron diffraction. In 1960 Hanszen [10] derived an expression for the melting

point of a solid sphere by considering the equilibrium between the solid sphere and

2



Chapter 1: Research overview 3

a concentric liquid shell and Wronski [11] used this model to account for the ex-

periments on the melting of small tin particles. During the past several decades, a

large number of experiments have been carried out on the melting of some metallic

nanoparticles, such as lead, bismuth, indium, silver, copper and tin. Two classical

experiments were carried out by Kofman [7] and Buffat & Borel [12]. Buffat & Borel

[12] studied the melting point lowering of gold particles and accounted for the results

by using several melting models. Kofman [7] utilized the dark-field microscopy tech-

nique to investigate the melting of small tin particles on SiO2 substrate and found

that, in addition to the melting point depression, an “abrupt melting” phenomena

happens. Moreover, molecular dynamics (MD) simulation on the melting, freezing

or coalescence of nanoparticles [13, 14, 15, 16, 17] also indicates that the melting

temperature of nanoparticles shows size-dependent characteristics at the nanoscale.

In addition to the size-dependent melting point, researchers also found that some

other properties of the material, such as the latent heat of fusion [18, 19, 20], cohe-

sive energy [21], melting enthalpy and melting entropy [22], exhibit size-dependent

characteristics.

1.1.3 Melting point model

Because of the enhanced effect of the size-dependent melting point on the phys-

ical phenomena, much research has been undertaken to relate the melting point

temperature to the interfacial tension of the material. Many models, such as the ho-

mogeneous melting and growth model [12], the liquid shell model [11, 12], the liquid

nucleation and growth model [23, 24] and the surface-phonon instability model [25]

have been proposed. For a spherical or cylindrical nanoparticle, the size-dependent

models based on theoretical calculations and empirical results generally take the

form

T ∗
f (R∗) = T ∗

m (1− ω/R∗) , ω = 2λ/ρsL, (1.1)

which is the Gibbs-Thomson effect mentioned in the Introduction. Here the melting

point temperature of a nanoparticle with radius R∗ is denoted by T ∗
f (R∗), T ∗

m is the

bulk melting point of the material, L is the latent heat of fusion, ρs is the density

of the material in the solid state, and λ the interfacial tension coefficient. The

homogeneous melting and growth model considers the thermodynamical equilibrium
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between the solid particle and the melted liquid phase. In this model, the interfacial

tension coefficient of the nanoparticles may be expressed as

λHGM = σsv − σlv(ρs/ρ`)
2/3, (1.2)

where ρ` denotes the mass density of the material in liquid state, σsv is the interfacial

tension between the solid and vapour phases and σlv the interfacial tension between

the liquid and vapour phases.

Table 1.1 contains values for these physical properties, using the metals gold,

bismuth, tin and lead as examples. We see that for gold, with an atomic radius of

about 0.135 nm, we have the value ω = 0.2396 nm. This means that when the radius

of a gold particle is R∗ = 10 nm, containing about 200 atoms, the melting point is

about 26.9 K less than the bulk melting point. This is a significant reduction.

Table 1.1: Physical properties of some metals
ρs ρl σsv σlv L Tm λ ω

(kg/m3) (kg/m3) (N/m) (N/m) (J/kg) (K) (J/m2) (nm)

Au 19.30×103 17.31×103 0.90 0.74 63718 544.4 0.1473 0.2396
Bi 9.80×103 10.05×103 0.55 0.38 51900 544.4 0.1812 0.7126
Sn 7.27×103 6.99×103 0.66 0.55 59225 505.8 0.0957 0.4447
Pb 11.34×103 10.66×103 0.56 0.45 23020 600.6 0.0893 0.6847

From the equation (1.1), we see that the model becomes invalid when the particle

size R∗ approaches 0 because the sign of T ∗
f (R∗) becomes negative. Experiments

show that the melting temperature will never be negative. In fact, Kofman [7]

investigated the melting of tin small particles approaching 0 diameter and divided

the melting process of nanoparticles into two regimes: the mesoscale regime in which

the above melting model works well and the molecular regime in which the melting

point does not display a monotonic relation with the particle size.

1.2 Classical Stefan problems

1.2.1 An introduction to the Stefan problem

As the melting or freezing process is closely related to phase change, also known

as Stefan problem [26, 27], there exists a moving boundary which separates the

material into solid, liquid and sometimes plus gas phases. The Stefan problem
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happens very often in daily life and in engineering environments, such as diffusion

controlled bubble growth and dissolution, melting or freezing of foods [28], crystal

growth, melting and solidification of alloys, production of ice, various problems in

mechanics of continuous media [29], the penetration of frost into the earth, ice

accretion on vehicles and static structures [30]. So it is of interest and importance

to study the properties of these problems, i.e. the temperature distribution, solution

concentration and interface motion.

The heat conduction in a pure material is assumed to obey the Fourier equation

in the solid and liquid phases

ρc
∂T ∗

∂t∗
= 5.(k5 T ∗), (1.3)

where ρ, c and k are the mass density, specific heat and thermal conductivity of the

material, respectively, and can be temperature-dependent. When the phase change

happens, the temperatures of different phases at the moving boundary are equal to

T1
∗(x∗, t∗) = T ∗

2 (x∗, t∗) = T ∗
f (X∗), x∗ = X∗, (1.4)

where 1 and 2 denote different phases, X∗ is the coordinate of the moving boundary,

T ∗
f (X∗) is the equilibrium temperature . Due to conservation of energy at the moving

boundary, the Stefan condition takes the form

k1
∂T1

∗

∂x∗
− k2

∂T2
∗

∂x∗
= q, on x∗ = X∗, (1.5)

where q is the interface heat source because of liberation or absorption of the latent

heat.

The above equations represent the general formulations for the classical two-

phase Stefan problems with appropriate boundary and initial conditions. It is of

importance to mention a special case. When melting a particle with the initial tem-

perature at its fusion point, as heat diffuses only in the liquid phase, the temperature

in the solid phase remains constant. In this case we only need to consider the liquid

phase. This is the classical one-phase melting problem.

There are several differences between classical melting or freezing and nanoparti-

cle melting or freezing. First, for classical melting or freezing problems, the temper-

ature T ∗
f (X∗) at the moving boundary is generally a constant, i.e. the bulk melting
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point T ∗
m, while for the nanoparticle melting, as mentioned in the previous subsec-

tion, T ∗
f (X∗) is a function of the moving boundary position X∗(t∗). Secondly, the

interface heat source for classical Stefan problem is q = ρLυ, where L is the latent

heat and υ is the speed of the interface, while for nanoparticle melting or freeezing

q should be modified to be

q = ρV [c1(T
∗
1 − T ∗

m)− c2(T
∗
2 − T ∗

m) + L], on x∗ = X∗, (1.6)

when considering the superheating or supercooling and the effect of interfacial ten-

sion. Physically speaking, the right side of the equation (1.6) can be regarded as the

difference between the rate of the heat flux which enters and leaves the interface. A

detailed derivation of this equation can be found in [31] by Alexiades & Solomon.

1.2.2 Solving methods

Classical Stefan problems have been greatly investigated since the nineteenth century

by Lamé and Clapeyron in 1831, Neumann in the 1860s and Stefan in 1889 [32]. The

introduction of the moving boundary makes the problem nonlinear and adds much

complexity to the solution. Accordingly, very few analytical solutions are available

in closed form, and only exist for one-dimensional cases of an infinite or semi-infinite

region with simple boundary and initial conditions and constant physical properties.

For example, the Neumann solution, found in [32, 33], is obtained for the freezing of

a liquid which is initially at a temperature higher than the melting point in a semi-

infinite region and takes the form of functions of the single variable r/t
1
2 , known

as similarity solutions. Tao [34] studied the analyticity of solutions of the Stefan

problem for a semi-infinite body with arbitrarily prescribed initial and boundary

conditions, and proved the existence and convergence of the series solutions. Fazio

[35] also used the similarity approach to transform some classes of free boundary

value problems into initial value problems.

In addition to similarity solutions, some approximate analytical or asymptotic

solutions are proposed. For example, after Savino & Siegel [36] proposed an ap-

proximate method using an integral iteration scheme to solve the one-phase freezing

problem, Shih & Tsay [37] and Shih & Chou [38] applied this method to success-

fully study the solidification of a saturated liquid in a cylinder or spherical domain.



Chapter 1: Research overview 7

The applicability of this method for the spherical and cylindrical cases is due to

some suitable transformations which change the governing equations into the con-

ventional form. Dewynne [39] also used this approach to investigate the two-phase

melting of spherical and cylindrical particles. This approach works well only when

the initial temperature is equal to the fusion temperature of the material and needs

lengthy calculations if high order iteration results are required. The convergence

and stability of this approach are not verified in above references [36, 37, 38, 39].

The heat balance integral method is another approximate approach proposed by

Goodman [40] to solve problems involving a change of phase. This method is based

on one basic assumption, that the temperature distribution can be expressed by a

polynomial or finite trigonometric series in the space variables. Later Goodman &

Shea [41], Yuen [42] and Tsai [43] applied this method to determine the melting rate

of a finite or semi-infinite slab which is initially at a uniform temperature below the

melting point. Riley & Duck [44] applied this method to a three-dimensional problem

of the freezing of cuboid. Charach & Zoglin [45] combined the heat balance integral

method and the perturbation theory to study a finite, initially overheated slab and

the resulting solution is valid uniformly in time. One interesting example is that

Konrad et al. [46] investigated the melting and re-solidification of a subcooled metal

powder particle subjected to nanosecond laser heating. As the differences arising in

the method’s implementation may result in quantitatively distinct solutions, Wood

[47] gives some guidance for selecting the appropriate implementation of the method.

Asymptotics approaches are widely used to solve the melting or freezing prob-

lems. For example, in the one-phase problem for cylindrical or spherical particles,

a small-time series approach has been described by Tao [34], Ostrach & McConnell

[48], Wu & Chen [49], Wu et al. [50], Davis & Hill [51] and Hill & Kucera [52].

Hill & Kucera [52] also applied this short-time perturbation method to a two-phase

solidification problem with arbitrary initial conditions in cylindrical and spherical

domains. Comparing the results from this method with those from accurate en-

thalpy solutions [53], the short-time solutions do not work well when the Stefan

number is large. Fortunately, this shortcoming can be overcome by the large Stefan

number asympotics approach and there is a great deal of research on this method.

One particular problem, i.e. one-phase solidification initially at fusion temperature
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in a cylindrical or spherical domain, was considered by a large number of researchers,

such as Pedroso & Domoto [54], Riley, Smith & Poots [55], Huang & Shih [56], who

applied the regular perturbation method and found that singular points exist at the

end of the solidification. Similar work can be found in Stewartson & Waechter [57]

and Soward [58] who provided an asymptotic theory which adequately describes the

final temperature profile. Weinbaum & Jiji [59] employed a singular perturbation

theory with asymptotic matching techniques to obtain long- and short- time scale

results for the melting or freezing in a finite domain initially not at the fusion tem-

perature. Other work on the large Stefan number limit can be found in Davis &

Hill [51], Jiji [60], Prud’homme & Nguyen [61], Gammon & Howarth [62, 63, 64],

Kharche & Howarth [65, 66] and Feltham & Garside [67].

As few analytical solutions are available, a great number of numerical schemes

have been developed. In Crank [32] and Hill and Dewynne [68], some numerical

approaches are discussed in detail and some of these methods are compared by

Furzeland [69]. These numerical methods can be classified into three main types:

the front tracking method, the fixed-domain method and the front-fixing method.

For the front tracking method, which computes the position of the moving boundary

at each time step, fixed, modified grids or adaptive meshes [70, 71] are used. Mur-

ray and Landis [72] proposed two new numerical methods, i.e. fixed and variable

space network, either of which is applicable to a region with arbitrary initial and

boundary conditions. Tao [73] presented general solutions for the problem of freez-

ing a saturated liquid inside a cylindrical or spherical container. Tien and Churchill

[74] considered the two-phase freezing outside an isothermal cylinder by using a

four-point Lagrangian interpolation at the moving boundary. Multidimensional so-

lidification/melting problem was solved by Lazaridis [75] using a simple numerical

technique. Based on the method of lines with invariant imbedding, Womble [76]

solved the two-phase or multiphase Stefan problem. Askar [77] combined finite

difference and the finite element method to study the two phase freezing problem.

It should be noted that in the fixed domain methods the enthalpy scheme pro-

posed by Eyre et al. [78] received wide applications for Stefan problems. The

advantage of this method is that the direct tracking of the moving boundary is

not necessary. Voller & Cross [53] described a simple development over the en-
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thalpy formulation leading to very accurate solutions. They also developed an en-

thalpy formulation for problems about convection/diffusion phase change. Wood et

al. [79] evaluated the performance of the enthalpy scheme by considering a two-

dimensional melting problem. As standard finite difference discretizations of the

enthalpy method have a tendency to oscillate numerically in temperature and phase

front position, Tacke [80] derived a procedure to discretize explicit enthalpy formu-

lations for one-dimensional planar phase change problems and removed numerical

oscillations. Dewynne [39] applied this method to the one-and two- phase melting

problems in spherical and cylindrical domains by combining it with integral formu-

lation. Rostami et al. [81] modified the technique so that it is not necessary that the

temperature of the mesh containing the interface remains constant at the melting

point.

The third type adopts new space coordinates using the Landau transformation

[82] to fix the moving boundary. This approach was first used by Crank [83]. Later

Furzeland [69] utilized this method to consider a more general, linear equation with

constant coefficients for the unknown temperature variable in each phase.

From the references mentioned we know that a great deal of work has been

carried out for the classical Stefan problems. However, most of the work focuses on

the cases without interfacial tension, meaning that the temperature at the interface

is always equal to the bulk melting point. In fact, the interfacial tension plays

an important role in the melting or freezing process of material. We also know

from equation (1.1) that, for a cylindrical or spherical particle, when the melting

or freezing begins, the equilibrium temperature at the solid/liquid interface will be

a function of the position of the interface (or the curvature of the interface). In

addition to the effect the interfacial tension has on the temperature at the interface,

some interesting issues remain to be answered in this thesis and include: what other

effects the interfacial tension has on the temperature distributions, what the melting

or freezing rate will be like and when the melting or freezing process is complete.

1.3 Plan of the thesis

This thesis consists of 6 chapters. Chapter 1 presents the background of nanoparti-

cles and gives a simple introduction to the classical Stefan problems. Chapter 2 deals



Chapter 1: Research overview 10

with the classical two-phase freezing Stefan problem for spherical particles without

interfacial tension. In Chapter 3 the formulation for one-phase problem of nanopar-

ticle melting is derived and the results from an integral iterative scheme, small-time

solution and large Stefan number limit are compared. Following this, in Chap-

ter 4 the two-phase melting problem for spherical nanoparticles will be formulated,

analyzed and discussed with small-time series solutions, large Stefan asympotic ap-

proaches and numerical front-fixing technique. Chapter 5 presents the two-phase

melting problem for cylindrical nanoparticles. Finally, some concluding marks are

given in Chapter 6 with Appendices and References at the end of the thesis.



Chapter 2

Classical two-phase Stefan
problems

2.1 Introduction

One of the most simple moving boundary problems to pose is the classical Stefan

problem for the inward solidification of a spherical-shaped ball of liquid, or, equiv-

alently, the melting of a spherical ice-ball. For the solidification problem, consider

a sphere of liquid of radius a∗, initially at some constant temperature V ∗, which

is greater than, or equal to, the fusion temperature T ∗
m. Now suppose the outer

surface of the sphere is held at a temperature T ∗
a , which is lower than the fusion

temperature. The sphere will begin to solidify inwards. The problem to be solved

is to obtain the temperature field in both the liquid and solid phases, as well as

to track the location of the interface between the two phases. The corresponding

melting problem is equivalent (with appropriate trivial adjustments in language),

but for clarity we think of the Stefan problem in terms of solidification, and note

that all the results and conclusions in this chapter apply equally well for both cases.

The characterising feature of this solidification problem, which holds for all Stefan

problems, is the moving solid-melt boundary. Latent heat will be liberated at this

interface between the two phases, and for the classical Stefan problem it is assumed

to be removed via conduction only. Thus, the model considered here is that the

temperature in each phase is governed by the linear heat equation, and coupled via

a boundary condition (the Stefan condition) that describes the dependence of the

latent heat removal on the speed of the interface.

The thermal diffusivity in the solid and liquid phases is denoted by κ∗s and κ∗` ,

respectively. By scaling all temperatures, lengths and time with respect to T ∗
m−T ∗

a ,

11
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a∗ and a∗2/κ∗, respectively, and by setting the nondimensional fusion temperature

to be zero, the dimensionless solidification problem becomes

∂Ts

∂t
=

∂2Ts

∂r2
+

2

r

∂Ts

∂r
in R(t) < r < 1, (2.1)

∂Tl

∂t
= κ

(
∂2Tl

∂r2
+

2

r

∂Tl

∂r

)
in 0 < r < R(t), (2.2)

with fixed boundary conditions

Ts = −1 on r = 1, (2.3)

Ts = 0 on r = R, (2.4)

∂Tl

∂r
= 0 on r = 0, (2.5)

Tl = 0 on r = R, (2.6)

the moving boundary condition (the Stefan condition)

∂Ts

∂r
− κ

∂Tl

∂r
= α

dR

dt
on r = R, (2.7)

and initial conditions

Tl = V at t = 0, R = 1 at t = 0. (2.8)

Here Ts(r, t) and Tl(r, t) are the temperature fields in the solid and liquid, respec-

tively, r is the radial distance, t represents time, and r = R(t) describes the location

of the solid-melt interface. The three parameters in the problem are the dimension-

less initial temperature V , the Stefan number α = L/(c(T ∗
m − T ∗

a )), and the ratio of

thermal diffusivities κ = κ∗`/κ
∗
s. Here c is the specific heat of the substance, which is

assumed to be the same constant in both phases, and L is the latent heat of fusion.

Care needs to be taken during the initial stages of the solidification process,

since the interface behaves like dR/dt → −∞ as t → 0+. In Section 2.5 we seek to

understand the small time behaviour by refining the analysis of Kucera & Hill [84],

which is not accurate for larger values of the Stefan number. All of the analytical

results are compared with numerical solutions in Section 2.6, and finally a brief

discussion is included in Section 2.7.
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2.2 Large Stefan number limit α À 1

In this section we generalise the large Stefan number analysis of Pedroso & Domoto

[54], Riley, Smith & Poots [55], Stewartson & Waechter [57] and Soward [58] to hold

for the full two-phase problem (2.1)-(2.8). The main goal is to determine the extent

to which the inner liquid phase affects the outer solid phase and the evolution of the

solid-melt interface. In doing so, we wish to establish under what circumstances the

second phase can be ignored.

For α À 1 a large amount of latent heat is being produced at the solid-melt

interface r = R(t), the result being that generally the interface moves very slowly.

The two exceptions are for 1−R ¿ 1 or R ¿ 1; in these two regimes the interface

speeds up, with dR/dt → −∞ as t → 0+ and t → t−f , where tf is the time it takes

for the sphere to completely solidify.

In the large Stefan number limit the two-phase problem breaks up into a number

of different time-scales, and these are described below.

2.2.1 Time-scale 1, t = O(1)

The first time-scale is for t = O(1). On this short time scale (compared to tf , which

turns out to be tf = O(α)), the temperature in the liquid phase is approximately

equal to V for most values of r, but rapidly decreases to Tl = 0 near the free

boundary r = R(t). Thus there are two length-scales to consider: one away from,

and one near, the free boundary.

Note that the analysis on this time-scale is not necessary in order to examine the

next time-scale, which is for t = O(α), since it happens that on the next time-scale

we are able to apply the initial conditions directly (without matching). However,

the results for this time-scale do shed light on the coupling between the two phases

for small time, which is something we are most interested in.

2.2.1.1 Inner region, 1− r = O(α−1/2)

For the inner region we scale the spatial variables as r = 1 − α−1/2r̃, R(t) = 1 −
α−1/2R̃(t), and write

Ts ∼ ũ0(r̃, t) +
1

α1/2
ũ1(r̃, t) + O(α−1), Tl ∼ ṽ0(r̃, t) +

1

α1/2
ṽ1(r̃, t) + O(α−1),
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R̃ ∼ R̃0(t) +
1

α1/2
R̃1(t) + O(α−1) as α →∞.

The leading order partial differential equations are

∂2ũ0

∂r̃2
= 0 in 0 < r̃ < R̃0,

∂2ṽ0

∂r̃2
= 0 in r̃ > R̃0, (2.9)

with boundary conditions

ũ0 = −1 on r̃ = 0, (2.10)

ũ0 = 0, ṽ0 = 0,
∂ũ0

∂r̃
− κ

∂ṽ0

∂r̃
=

dR̃0

dt
on r̃ = R̃0, (2.11)

ṽ0 ∼ ã0(t)r̃ as r̃ →∞. (2.12)

The function ã0(t) in the last condition comes from matching onto the outer region,

as described below.

The next order problems are

∂2ũ1

∂r̃2
= 2

∂ũ0

∂r̃
in 0 < r̃ < R̃0,

∂2ṽ1

∂r̃2
= 2

∂ṽ0

∂r̃
in r̃ > R̃0, (2.13)

with boundary conditions

ũ1 = 0 on r̃ = 0, (2.14)

ũ1 + R̃1
∂ũ0

∂r̃
= 0, ṽ1 + R̃1

∂ṽ0

∂r̃
= 0,

∂ũ1

∂r̃
− κ

∂ṽ1

∂r̃
=

dR̃1

dt
on r̃ = R̃0, (2.15)

ṽ1 ∼ ã0(t)r̃
2 + ã1(t)r̃ as r̃ →∞. (2.16)

Again, the function ã1(t) will be determined by matching with the outer region.

In terms of ã0(t) and ã1(t) the solutions to (2.9)-(2.12) and (2.13)-(2.16) are

ũ0 = −1 +
r̃

R̃0

, ṽ0 = ã0(t)(r̃ − R̃0),

ũ1 =
1

R̃0

r̃2 −
(

1 +
R̃1

R̃2
0

)
r̃, ṽ1 = ã0(r̃

2 − R̃2
0 − R̃1) + ã1(r̃ − R̃0),

with R̃0 and R̃1 satisfying the differential equations

dR̃0

dt
− 1

R̃0

= −κã0,
dR̃1

dt
+

R̃1

R̃2
0

= 1− κ(2ã0R̃0 + ã1) (2.17)

and initial conditions R̃0(0) = 0, R̃1(0) = 0.
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2.2.1.2 Outer region, 1− r = O(1)

The outer region is for 1− r = O(1). Here we write Tl = v̄(r, t), where

∂v̄

∂t
= κ

(
∂2v̄

∂r2
+

2

r

∂v̄

∂r

)
in 0 < r < 1,

v̄ = 0 on r = 1,
∂v̄

∂r
= 0 on r = 0, v̄ = V at t = 0.

By using the method of separation of variables, the solution for v̄ is

v̄ =
2V

πr

∞∑
n=1

(−1)n+1

n
sin(nπr)e−n2π2κt. (2.18)

2.2.1.3 Matching between regions

By rewriting (2.18) in inner variables (r̃, t) and expanding as α →∞ we find

ṽ0 → 0, ṽ1 ∼ 2V r̃

∞∑
n=1

e−n2π2κt as r̃ →∞.

Thus matching between the two regions gives

ã0 = 0, ã1 = 2V
∞∑

n=1

e−n2π2κt, ṽ0 = 0, ṽ1 = 2V (r̃ − R̃0)
∞∑

n=1

e−n2π2κt.

With ã0 and ã1 we may now solve (2.17) for the moving boundary location, yielding

R̃0 = (2t)1/2, R̃1 =
2t

3
+ V

∞∑
n=1

{
2e−n2π2κ

n2π2
− erf

(
πn
√

κt
)

n3π5/2κ1/2t1/2

}
.

2.2.1.4 Small-time limit of time-scale 1 solution

Although the solutions given in Section 2.2 (2.2.1) (2.2.1.3) involve infinite series, in

practice for t = O(1) only a few terms are necessary to give an accurate solution.

However, as t decreases, the terms begin to decay much more slowly, so that for

t ¿ 1 many terms are required to give an accurate solution.

This problem with convergence for t ¿ 1 is overcome by noting that the function

$(z) =
∞∑

n=1

e−n2πz (2.19)

has the property

1 + 2$(z) = z−1/2 [1 + 2$ (1/z)] (2.20)
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(Whittaker & Watson [85](page 273), thus

∞∑
n=1

e−n2π2κ t = −1

2
+

1

2
√

πκt

[
1 + 2

∞∑
n=1

e−n2/κt

]
. (2.21)

It follows that in the inner region we have

Tl ∼ V

α1/2
(r̃ − R̃0)

{
−1 +

1√
πκt

[
1 + 2

∞∑
n=1

e−n2/κt

]}
,

R ∼ 1− (2t)1/2

α1/2
− 1

α

{
2

3
(1 + κV )t− V√

π
(κt)1/2

− 2V√
π

∞∑
n=1

[
(κt)1/2e−n2/κt − n2

(κt)1/2
E1

(
n2

κt

)]}
as α →∞,

where E1(z) is the exponential integral defined by

E1(z) =

∫ ∞

z

e−ξ

ξ
, dξ.

The infinite sums in these expressions contain terms which decay very quickly for

t ¿ 1, and in particular, we now see that

R ∼ 1− (2t)1/2

α1/2
+

1

α

{
V√
π

(κt)1/2 − 2

3
(1 + κV )t + O(t3/2e−1/κt)

}
+ O(α−3/2)

as t → 0+, α →∞. By solving this equation asymptotically for t we find

t

α
∼

[
1

2
+

V

α1/2

√
κ

2π
+ O(α−1)

]
(1−R)2 +

[
−1

3
(1 + κV ) + O(α−1/2)

]
(1−R)3

(2.22)

+O((1−R)4) as α →∞, R → 1−.

2.2.1.5 Summary of time-scale t = O(1)

On the time-scale t = O(1) it can be seen that near the moving boundary the

temperature in both phases has an algebraic dependence on the small parameter

α−1/2. Furthermore, the two phases are coupled, although to leading order both the

temperature in the solid and location of the free boundary are independent of the

liquid phase.

2.2.2 Time-scale 2, t = O(α)

The second time-scale is for t = O(α), so we rescale time as t = αt̂, where t̂ =

O(1). As mentioned earlier, this time-scale can be described without reference to
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the previous time-scale t = O(1), since we are able to apply the initial conditions

(2.8) directly, and thus it is not necessary to match back onto t = O(1).

2.2.2.1 Liquid phase

In the liquid phase we have the heat conduction problem

1

α

∂Tl

∂t̂
= κ

(
∂2Tl

∂r2
+

2

r

∂Tl

∂r

)
in 0 < r < R,

with boundary conditions

∂Tl

∂r
= 0 on r = 0,

Tl = 0 on r = R,

and initial conditions

Tl = V at t̂ = 0,

where we may think of R as being a given function of t̂.

This problem is similar to one treated in Nayfeh [86](page 150). We set ρ = r/R

and look for a solution of the form

Tl ∼ e−αg(t̂)

(
v0(ρ) +

1

α
v1(ρ, t̂) + . . .

)
as α →∞.

Thus, to leading order, we obtain the eigenvalue problem

d2v0

dρ2
+

2

ρ

dv0

dρ
+

R2g′

κ
v0 = 0 in 0 < ρ < 1,

dv0

dρ
= 0 at ρ = 0, v0 = 0 at ρ = 1,

where the dash denotes a derivative with respect to t̂. By using the method of

separation of variables, the eigenvalues must therefore be of the form g′ = n2π2κ/R,

where n is an integer, and so after satisfying the initial condition Tl = V at t̂ = 0,

we find

Tl ∼ 2V R

πr

∞∑
n=1

(−1)n+1

n
sin

(nπr

R

)
exp

{
−n2π2κα

∫ t̂

0

dt̂

R2

}
as α →∞. (2.23)
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2.2.2.2 Solid phase and free boundary location

In the solid phase we have

1

α

∂Ts

∂t̂
=

∂2Ts

∂r2
+

2

r

∂Ts

∂r
in R < r < 1,

with boundary conditions

Ts = −1 on r = 1,

Ts = 0,
∂Ts

∂r
− κ

∂Tl

∂r
=

dR

dt̂
on r = R. (2.24)

From the analysis in the liquid phase we see that

∂Tl

∂r

∣∣∣∣
r=R

∼ −2V

R

∞∑
n=1

exp

{
−n2π2κα

∫ t̂

0

dt̂

R2

}
as α →∞, (2.25)

thus, by noting the form of the Stefan condition (2.24), the liquid phase is expected

to contribute exponentially small terms to the location of the free boundary.

With this in mind, and noting the large Stefan number analysis for the one-phase

problem given in Pedroso & Domoto [54] and Riley, Smith & Poots [55], we treat r

and R as being the two independent variables, and write

Ts = u0(r, R) +
1

α
u1(r, R) +

1

α2
u2(r, R) + O(α−3),

t̂ = t̂0(R) +
1

α
t̂1(R) +

1

α2
t̂2(R) + . . . + T̂ (R; α). (2.26)

The ellipses in (2.26) denote terms which are O(α−3) and independent of V , while

the term T̂ (R; α) is exponentially small in α (and will depend on V ).

We may read off the solutions

u0 = −1

r

[
1−

(
1− r

1−R

)]
, u1 =

1− r

6rR(1−R)

[
1−

(
1− r

1−R

)2
]

,

u2 = − (1− r)

rR3(1−R)

{
1

36

[
1−

(
1− r

1−R

)2
]

+
4R− 1

120

[
1−

(
1− r

1−R

)4
]}

,

t̂0 =
1

2
(1−R)2 − 1

3
(1−R)3, t̂1 =

1

6
(1−R)2, t̂2 = −(1−R)2

45R2
, (2.27)

from Pedroso & Domoto [54] and Riley, Smith & Poots [55] and, given (2.25) and



Chapter 2: Classical two-phase problems 19

the initial condition R = 1 at t = 0, we find from (2.24)2 that

T̂ ∼ 2κV

∫ 1

R

ξ(1− ξ)2

∞∑
n=1

exp

{
n2π2κα

∫ 1

ξ

1

R2

dt̂

dR
dR

}
dξ as α →∞. (2.28)

Substitute t̂0, t̂1 and t̂2 into (2.26) and we may rewrite the integral in the braces as

∫ 1

ξ

1

R2

dt̂

dR
dR = 1− ξ + ln ξ +

1

3α

(
1− ln ξ − ξ−1

)
+ . . . . (2.29)

The temperature in the inner core is now found by combining (2.23) and (2.29).

2.2.2.3 Small-time limit of time-scale 2 solution

As with many of the expressions given in Section 2.2 (2.2.1) (2.2.1.3), parts of the

solutions in Section 2.2 (2.2.2) (2.2.2.2) involve infinite series. For t = O(α) these se-

ries contain terms which decay extremely quickly, with the first term being sufficient

for practical purposes. However, as t̂ → 0 we have R → 1−, and

1−R + ln R +
1

3α

(
1− ln R−R−1

)
+ O(α−2) ∼

[
−1

2
− 1

6α
+ O(α−2)

]
(1−R)2

+

[
−1

3
− 2

9α
+ O(α−2)

]
(1−R)3 +

[
−1

4
− 1

4α
+ O(α−2)

]
(1−R)4 + O

(
(1−R)5

)

as R → 1, α →∞. Thus in this limit care must be taken, as an increasing number

of terms are required to obtain an accurate solution.

To obtain the limiting behaviour as R → 1− (t̂ → 0) of our large Stefan number

solution, we again use the property (2.20) of the function defined in (2.19). By

expanding and then integrating term by term, we find

T̂ ∼
[

V

α1/2

√
κ

2π
+ O(α−1)

]
(1−R)2 +

[
−κV

3
+ O(α−1/2)

]
(1−R)3 + O((1−R)4)

as R → 1−. Thus, from (2.26) and (2.27) we can derive the expression (2.22).

2.2.2.4 Summary of time-scale t = O(α)

On the time-scale t = O(α) we see that the temperature in the solid phase has

algebraic dependence on the small parameter α−1, while the temperature in the

liquid phase is exponentially small in α. Thus the solid and liquid phases essentially

decouple, with the liquid phase contributing only exponentially small contributions

to the location of the solid-melt interface (the result is that for t = O(α) the solid
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phase and free boundary location look almost identical to that found for the well-

studied one-phase problem).

2.2.3 Time-scale 3, t− tf = O(1)

Recall that tf is the time to complete solidification, and note that tf = O(α). On

the time-scale t − tf = O(1) (that is, at times close to complete solidification) the

interface no longer moves slowly, and so the leading order behaviour in the solid away

from the interface is no longer quasi-steady. We expect that at this stage the two

phases completely decouple, and that the appropriate analysis coincides with the

one-phase problem. The details are given in Riley, Smith & Poots [55], Stewarton

& Waechter [57]) and Soward [58].

2.2.4 Time-scale 4, t− tf = O(e−2
√

2πα1/2

)

As with the one-phase problem, further analysis is required to remove nonuniformi-

ties that arise on the time-scale t− tf = O(1). This leads to an exponentially short

final time-scale, which is for t− tf = O(exp(−2
√

2πα1/2)). The details are presented

by Stewarton & Waechter [57], Soward [58] and Herrero & Velázquez [87], and are

not repeated here.

2.2.5 Time to complete solidification

It is of interest to obtain an approximate value for tf , the time to complete solid-

ification. Unfortunately the expansion (2.26) breaks down before R = 0, and thus

further analysis is required on the third time-scale t − tf = O(1), as mentioned

above. However, we can read off the value of tf for the one-phase problem (V = 0)

from Riley, Smith & Poots [55], Stewarton & Waechter [57] and Soward [58] and

simply add the appropriate correction for the second phase.

The leading order behaviour of the additional term is found by considering

αT̂ (0; α) as α →∞. This approach works because the second phase contributes al-

gebraic corrections to the solidification time only during the first time-scale t = O(1)

(the contributions from the later time-scales are exponentially small, as mentioned
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above). The result is that

T̂ (0; α) ∼
√

2V

π5/2κ1/2α3/2

[
1− 2

3π1/2
+

∞∑
n=1

(
2e−n2

π1/2n2
+

erfc(n)

n3

)]
(2.30)

as α →∞, and thus

tf ∼ α

6
+

1

6
−

√
2

π5/2α1/2

(
ζ(3)− V

κ1/2

[
1− 2

3π1/2
+

∞∑
n=1

(
2e−n2

π1/2n2
+

erfc(n)

n3

)])
,

where ζ(z) is the Riemann zeta function. The above result for tf with V = 0 is

given by Riley, Smith & Poots [55], Stewarton & Waechter [57] and Soward [58].

The derivation of (2.30) is detailed in Appendix A.

2.2.6 Summary

In summary, for Stefan number α À 1 the complete solidification time is O(α).

On the first time-scale t = O(1) the leading order behaviour near the interface

coincides with one-phase problem, with the effects of the liquid phase only coming

in at the first correction term. By the second time-scale t = O(α) the liquid phase

contributes only exponentially small terms to the location of the solid-melt interface,

with the analysis in the solid phase coinciding with the one-phase problem to all

algebraic orders. At times close to complete solidification the temperature in the

liquid essentially vanishes, and the analysis follows the one-phase problem.

2.3 Zero Stefan number solution α = 0

When κ = 1, there is an exact solution for the case α = 0 from the method of

separation of variables , namely

Ts = Tl = V − 1 + V

r

∞∑
n=0

{
erfc

(
2n + 1− r

2t1/2

)
− erfc

(
2n + 1 + r

2t1/2

)}
, (2.31)

with the location of the moving boundary r = R(t) given implicitly by

RV

1 + V
=

∞∑
n=0

{
erfc

(
2n + 1−R

2t1/2

)
− erfc

(
2n + 1 + R

2t1/2

)}
.

Provided V = O(1), the first term in the infinite sums above is usually sufficient, at

least for practical purposes.

Using this exact solution we find the complete solidification time tf to be given
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implicitly by
V

1 + V
=

2√
πtf

∞∑
n=0

e−(2n+1)2/4tf .

As V → 0 we have that tf → 0 (very slowly), and in fact

1

tf
∼ 4 ln(1/V ) + 2 ln (ln(1/V )) + 2 ln(16/π) as V → 0 (for α = 0),

although this leading order approximation is only accurate for extremely small values

of V . Thus the sphere freezes instantly in the zero Stefan number limit of the one-

phase problem. This is to be expected, since with α = 0 there is no latent heat

liberated by the interface, and with V = 0 no heat must diffuse out in order to lower

the temperature in the core to the fusion temperature.

On the other hand, using a formula similar to (2.21) (see Whittaker & Watson

[85] (page 124, with a = 1/2), we find

π2tf ∼ ln V + ln 2 + V −1 as V →∞ (for α = 0),

which is of course consistent with the notion that increasing the initial temperature

should increase the freezing time.

2.4 Slow diffusion limit κ ¿ 1

In the limit κ → 0, which corresponds to slow diffusion in the liquid phase, the

two-phase problem reduces to a one-phase problem as described by King & Evans

[88, 89], and Struckmeier & Unterreiter [90].

The important point is that in order to derive a leading order model for V 6= 0,

κ ¿ 1, one cannot simply set κ = 0 in the Stefan condition (2.7), since putting

κ = 0 into (2.2) suggests that Tl ≡ constant, which is incorrect. The problem

is thus singularly perturbed, with an interior layer developing near the solid-melt

interface.

The interior layer is for r = R(t)− κρ̄, where ρ̄ = O(1). By writing Tl ∼ V̄ (ρ̄, t)

in this region, we have
∂2V̄

∂ρ2
=

dR

dt

∂V̄

∂ρ
,

which, provided that Ṙ < 0, implies that V̄ = V (1− eṘρ̄), where we have matched

with the region away from the sold-melt interface. It follows that for κ ¿ 1, the
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approximate one-phase problem is

∂Ts

∂t
=

∂2Ts

∂r2
+

2

r

∂Ts

∂r
in R(t) < r < 1, (2.32)

Ts = −1 on r = 1, (2.33)

Ts = 0 on r = R, (2.34)

∂Ts

∂r
=

dR

dt
(α + V ) on r = R. (2.35)

The main point here is that this free boundary problem is the same as the well-

studied classical one-phase problem (relevant for κ = O(1) and V = 0) except that

the Stefan number α is replaced by α + V . It is now the size of α + V which

determines the speed of the solid-melt interface.

2.5 Small-time perturbation t ¿ 1

In this section we derive an approximate solution to (2.1)-(2.8) which is valid for

small time. The approach used is similar to the one outlined in Kucera & Hill [91],

however, a number of key refinements have been made, which for certain parameter

values lead to a much more accurate approximation.

2.5.1 Review of Kucera & Hill [91]

In Kucera & Hill (1986), a small-time solution to (2.1)-(2.8) is sought by first making

the domain-fixing transformation ξ = (r−1 − 1)/(R−1 − 1), τ = R−1 − 1, and then

applying the ansatz

Ts ∼ Ã0(ξ) + τÃ1(ξ) + O(τ 2), Tl ∼ −V + V
{

B̃0(ξ) + τB̃1(ξ) + O(τ 2)
}

(2.36)

as τ → 0+. With this change of variables, the liquid phase is transformed to

1 ≤ ξ < ∞, the solid phase is for 0 ≤ ξ ≤ 1, and the time-domain is 0 < τ < ∞
(with τ → 0+ as t → 0+).

There are two main concerns with this approach. The first is that the ansatz

(2.36) assumes that to leading order the solution in both the solid and liquid phases

is almost self-similar; however, this is only true for the outer solid phase. The result

is that with their approach, Kucera & Hill [91] were unable to satisfy the initial

condition (2.8)1.
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The second concern with using (2.36) is that, as a part of the analysis, a Taylor

expansion is employed under the assumption that ξτ ¿ 1 for τ ¿ 1. However, the

quantity ξτ = r−1 − 1 is independent of τ , and in fact becomes very large close to

the centre of the sphere, even for very small time. The result is that the scheme is

unlikely to converge in the appropriate regime, regardless of how many extra terms

in (2.36) are included.

In Section 6 of Kucera & Hill [91] a second method is proposed, which involves

looking at small-time perturbation expansions of the form

Ts ∼ Ā0(X) + Y Ā1(X) + O(Y 2), Tl ∼ −V + V
{
B̄0(X) + Y B̄1(X) + O(Y 2)

}

as Y → 0+, where

X =
1− r

1−R
, Y = 1−R. (2.37)

With this new transformation the liquid phase is now for 1 ≤ X < (1 − R)−1 (it

is not fixed), the solid phase is for 0 ≤ X ≤ 1, and the time-domain is 0 < Y < 1

(with Y → 0+ as t → 0+). In this case Kucera & Hill [91] were able to satisfy the

initial condition (2.8)1, but could not satisfy the no flux condition (2.5).

2.5.2 An alternative method

The small-time approximation derived by Kucera & Hill [91] does not agree well

with numerical results for moderate to large values of the Stefan number α (see

Figure 1, for example); we endeavour to present an alternative approximation in the

present section.

2.5.2.1 A summary of the details

As mentioned above, any small-time expansion which assumes that the leading order

solution in the liquid phase is self-similar can never satisfy every one of the boundary

conditions (2.3)-(2.7) and initial conditions (2.8). Thus this sort of approach can

only be approximate in nature, as one boundary condition must be sacrificed, or

satisfied only in the limit t → 0+.

The starting point for our alternative scheme is to look for solutions of the form

Ts ∼ 1

r

{
A0(X) + Y A1(X) + O(Y 2)

}
, Tl ∼ V +

1

r

{
B0(X) + Y B1(X) + O(Y 2)

}
,

(2.38)
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as Y → 0+, where X and Y are defined in (2.37). We arrive at this ansatz by taking

note of the solutions presented in Section 2.2 and Section 2.3, as well as the small-

time perturbation series developed by Davis & Hill [51] for the one-phase problem.

After substituting (2.38) in (2.1)-(2.4), (2.6)-(2.8), we find that A0, A1, B0 and B1

satisfy a series of coupled ordinary differential equations

αA”
0 = a0XA

′
0, αA”

1 = a0(XA
′
1 − A1) + (a0 + a1)XA

′
0,

καB”
0 = a0XB

′
0, καB”

1 = a0(XB
′
1 −B1) + (a0 + a1)XB

′
0,

with boundary conditions

A0 = 1, A1 = 0, on X = 0,

A0 = 0, A1 = 0, B0 = −V, B1 = V on X = 1,

B0 = o(1), B1 = o(X), as X →∞,

where a0 = A
′
0(1) − κB

′
0(1) and a1 = A

′
1(1) − κB

′
1(1) + κV . The leading order

solutions are

A0 = 1− erf
(√

γ
2
X

)

erf
√

γ
2

, B0 = −V
erfc

(√
γ
2κ

X
)

erfc
√

γ
2κ

, (2.39)

where γ is the solution to the transcendental equation

γα =
1

L`

e−γ/2 − κV

Ls

e−γ/2κ, (2.40)

with L` and Ls defined by

L` =

√
π

2γ
erf

√
γ

2
, Ls =

√
κπ

2γ
erfc

√
γ

2κ
.

Equation (2.40) also arises in the well known Neumann solution (Carslaw & Jaeger

[33] page 285) which is for the two-phase semi-infinite planar case. This means that

for small time the solidification process in the neighbourhood of r = 1 behaves in

the same way as the one-dimensional process in a semi-infinite domain.

The next order solutions are

A1 = c1 X
(
1− eγ(1−X2)/2

)
,
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B1 = c2

[
e−γX2/2κ −

√
γπ

2κ
X erfc

(√
γ

2κ
X

)]
+ c3 Xe−γX2/2κ, (2.41)

where

c1 =
1

3γ

(
γ − a1

α

) 1

L`

e−γ/2,

c2 = − kV

γLs

[
1− 1

3γ

(
γ − a1

α

) 1

Ls

e−γ/2κ

] [
1− κ

γLs

e−γ/2κ

]−1

, c3 =
V

3γLs

(
γ − a1

α

)
,

γ − a1

α
=

3γ + 3κV
α

{[
1− κ

γLs
e−γ/2κ

]−1

− 1

}

3 + γ + V
αγLs

e−γ/2κ

{
κ

[
1− κ

γLs
e−γ/2κ

]−1

− κγ − κ + γ

} .

Note that this approximate solution does not satisfy the boundary condition (2.5),

and hence for each value of time t ¿ 1, there will be a small region near r = 0 for

which the solution is not appropriate. This point is reviewed in Section 2.5 (2.5.3).

An approximate location of the moving boundary is given by

t ≈
∫ R

1

ξ(1− ξ)

γ − a1(1− ξ)/α
dξ =

γα2

a2
1

(1−R)− α

2a1

(1−R2)

+
γα3

a3
1

(
γ − a1

α

)
ln

(
1− a1

γα
(1−R)

)
, (2.42)

which for small time gives

t =
1

2γ
(1−R)2 − 1

3γ2

(
γ − a1

α

)
(1−R)3 + O((1−R)4) as R → 1−. (2.43)

2.5.2.2 Large Stefan number limit of small-time perturbation

In the limit that α →∞ we have from (2.40) that γ → 0, and in fact

γ =
1

α
+ V

√
2κ

π

1

α3/2
+

(
−1

3
+

2V

π
+

κV 2

π

)
1

α2
+ O(α−5/2) as α →∞.

Substituting this expression into (4.13) gives

t

α
∼

[
1

2
− V

α1/2

√
κ

2π
+

1

α

(
1

6
− V

π
+

κV 2

2π

)
+ O(α−3/2)

]
(1−R)2

+

[
−1

3
(1− κV ) +

V

18α1/2

√
2κ

π
(4 + 3π − 10κV ) + O(α−1)

]
(1−R)3

+O((1−R)4) as α →∞, R → 1−. This statement extends the result (2.22).

Some lengthy calculations confirm that the large Stefan number limit of the

present small-time perturbation for the liquid phase agree with the small time limit
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of the large Stefan number solutions given in Section 2.2. However, there is not the

same level of agreement in the liquid phase, which is not surprising, as the solution in

the liquid phase is not self-similar, and the small-time perturbation is not uniformly

valid there.

2.5.2.3 Zero Stefan number limit of small-time perturbation

Substituting α = 0 and κ = 1 into (2.40) gives

erf

√
γ

2
=

1

1− V
, erfc

√
γ

2
= − V

1− V
.

Thus we find that, as t → 0+,

Ts ∼ V

r
+

1− V

r
erf

(
1− r

2t1/2

)
, Tl ∼ V +

1− V

r
erf

(
1− r

2t1/2

)
.

These solutions are in close agreement with the exact solutions (2.31), provided that

t ¿ 1.

2.5.2.4 Slow diffusion limit of small-time perturbation

By considering the limiting behaviour of the error function (Abramowitz & Stegun

[92], page 298), we find that

κV

Ls

e−γ/2κ ∼ γV + O(κ) as κ → 0,

which implies that for κ ¿ 1, (2.40) is given approximately by

γ(α + V ) =
1

L`

e−γ/2.

This well known transcendental equation arises in the study of one-phase problems

(Carslaw & Jaeger [33], page 286), except that the usual Stefan number has been

replaced by α + V . The conclusion is that for κ ¿ 1 and t ¿ 1, the temperature in

the solid phase is essentially self-similar and governed by the usual one-phase equa-

tions with an adjusted Stefan number α + V . These one-phase equations are given

by (2.32)-(2.35), and thus the slow diffusion limit of the small-time perturbation

solutions are totally consistent with the analysis given in Section 2.4.
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2.5.3 Further approximation

The temperature profiles generated by the small time approximation of Section

2.5 (2.5.2) do not satisfy the no flux condition (2.5), and in fact, this approach has

the temperature in the liquid phase Tl blowing up in the limit r → 0. In order to

satisfy (2.5), (2.38)2 is adjusted by writing

Tl ≈ V +
1

r

{
B0(X)−B0(2Y

−1 −X) + Y B1(X)− Y B1(2Y
−1 −X)

}
,

where B0 and B1 are given by (4.9) and (4.11). Given that 2Y −1−X = (1+r)/(1−
R), this alteration can be thought of as adding an image solution in the domain

−1 ≤ r < 0. The effect of this change is that the new solution now satisfies (2.1)-

(2.5) and (2.8) exactly, but only satisfies (2.6) and (2.7) approximately; however,

the errors from (2.6) and (2.7) are exponentially small in Y as Y → 0+. The result

is that we are able to derive an excellent approximate solution to the two-phase

Stefan problem, valid for t ¿ 1.

2.6 Numerical results

The two-phase problem (2.1)-(2.8) is solved numerically using an enthalpy method,

which we summarize here. The fundamental idea is to recast (2.1) and (2.2) in the

form
∂h

∂t
=

∂2T

∂r2
+

2

r

∂T

∂r
in 0 < r < 1, (2.44)

where the enthalpy h is related to the temperature T by

T =





h− α, if h < 0,

0, if 0 ≤ h ≤ α,

κ(h− α), if h > α.

(2.45)

and the fixed boundary and initial conditions become ∂T/∂r(0, t) = 0, T (1, t) = −1

and and h(r, 0) = V/κ + α. A finite-difference scheme is applied to (2.44) to give

hj+1
i = hj

i +
δt

δr2

[
δr

ri

(
T j

i+1 − T j
i−1

)
+

(
T j

i+1 − 2T j
i + T j

i−1

)]
(2.46)



Chapter 2: Classical two-phase problems 29

where the standard notation is used. After each time step the temperature is up-

dated via (2.46). The location of the solid/melt interface can then be determined,

again with the use of (2.46), as described by Voller & Cross [53]. In the present case,

δt = 10−5, δr = 0.01, then δt/δr2 = 0.1 which is enough to make the calculations

convergent and provides second order accuracy.

Figure 2.1 provides a number of temperature profiles for α = 10, κ = 1 and V =

1, which is representative of a large Stefan number solution. Included in the figure

are numerical results from the enthalpy method, asymptotic results from Section

2.2 (2.2.2), the small-time approximation from Kucera & Hill [91], and the small-

time approximation described in Section 2.5 (2.5.3). In part (a) of this figure, three

profiles are drawn, for R = 0.95, 0.875 and 0.8, to illustrate small time behaviour,

while for part (b) of the figure, profiles are drawn for latter times. In part (b), only

the outer solid phase is included, since the temperature in the solid phase for these

times is essentially zero for all r (see (2.23) and (2.29)).

Figure 2.1 shows that the asymptotic results derived in Section 2.2 agree ex-

tremely well with those from the numerical scheme, especially for smaller values

of time. As the solid-melt interface approaches the centre of the sphere we expect

this approach to break down, as described in Section 2.2 (2.2.3), and this tendency

can be observed from the figure. Further, we see that, at least for these parame-

ter values, the small-time approximation described in Section 2.5 (2.5.3) provides a

much closer agreement with the numerical solution than the one given by Kucera

& Hill [91], especially in the liquid phase. In the outer solid phase there is even

reasonable agreement between our small-time solution and the numerical results for

larger values of time.

In Figure 2.2 the dependence of the solid-melt location on time is shown for the

same parameter values as those in Figure 2.1. Agreement between the numerical

and analytical results is good for small time, while the large Stefan number solution

(2.26) also works well for larger times. Note that only the first two terms in (2.26)

are included in this figure.

To illustrate the behaviour for small Stefan numbers, temperature profiles are

shown in Figure 2.3 for the case α = 0.1, κ = 1 and V = 1. In addition to

the numerical solution, the exact zero-Stefan-number solution is drawn, as well as
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Figure 2.1: Plots of the temperature profiles for the case α = 10, κ = 1, V = 1:(a) is
for R=0.80, 0.875 and 0.95; (b) is for R=0.2, 0.4, 0.6 and 0.8. The four approaches
used are the numerical scheme (solid), the large Stefan number expansion (dots),
the small time approximation (dot-dashed) and the small time solution of Kucera
& Hill [91] (dashed).
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Figure 2.2: Dependence of the interface location on time for the case α = 10, κ = 1,
V = 1.
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Figure 2.3: Plots of the temperature profiles for the case α = 0.1, κ = 1, V = 1: (a)
is for R=0.85, 0.90 and 0.95; (b) is for R=0.2, 0.4, 0.6 and 0.8. The four approaches
used are the numerical scheme (solid), the zero Stefan number solution (dots), the
small time approximation (dot-dashed) and the small time solution of Kucera & Hill
[91] (dashed).
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Figure 2.4: Plots of the temperature profiles for the case α = 1, κ = 0.01, V = 1 at
different positions R=0.2, 0.4, 0.6 and 0.8.. The four approaches used are the numer-
ical scheme (solid), the slow conduction limit (dots), the small time approximation
(dot-dashed) and the small time solution of Kucera & Hill [91] (dashed).

the two small-time approximations (from Kucera & Hill [91] and Section 2.5 (2.5.3)).

Again, agreement between each approach is good for small times, but it is worthwhile

noting that for small values of the Stefan number α, the small-time solutions do not

work well for larger times (unlike the case with larger Stefan numbers), which is of

course not unexpected.

Finally, to demonstrate the singular behaviour for slow conduction, temperature

profiles are shown in Figure 2.4 for α = 1, κ = 0.01 and V = 1. In addition to the

numerical solution and the two small-time approximations, results are shown from

Section 2.4. That is, in the solid phase, the plot shown is the numerical solution to

the one-phase problem with α replaced by α + V , while in the solid phase, the plot

shown is for the interior layer

Tl = V (1− eṘ(R−r)/κ),
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where Ṙ is obtained by solving the one-phase problem numerically. It can be seen

(in the case of constant V ) that the leading order asymptotic solution in the interior

layer provides an excellent approximation for the entire liquid phase (including the

outer region). Note that the agreement between the small-time results from Section

2.5 (2.5.3) and the numerical solution is very good for early times; however for later

times an artifact of the scheme presented in Section 2.5 is that it produces some

slightly spurious behaviour in the liquid phase.

2.7 Discussion

It is somewhat surprising that the two-phase Stefan problem for spheres has received

such little attention, given the significant amount of literature devoted to the ide-

alised one-phase case. For large values of the Stefan number α, it can be loosely

argued that since the solid-melt interface moves slowly relative to the speed at which

solidification occurs, the temperature in the inner liquid phase decays very quickly

to the fusion temperature. Thus, except for small values of time, the liquid phase

does not affect the solidification process, and can be essentially ignored.

Using the method of matched asymptotic expansions this structure has been ex-

plored in some detail. We have been able to confirm that on the time-scale at which

heat diffuses to the centre of the sphere, the leading order description of both the

temperature in the solid phase and the location of the solid-melt interface is inde-

pendent of the inner liquid phase, although there is a coupling between the phases

at higher orders. However, on the much longer time-scale at which solidification

occurs, the solid and liquid phases essentially decouple, with the temperature in the

liquid phase being exponentially small. This work extends the existing analysis for

the one-phase problem.

While the present study is limited to the simple spherical geometry, the scalings

for the large Stefan number limit would be expected to carry through to the more

general problem of the inward solidification of a truly three-dimensional region of

liquid. Thus we might expect the near-complete-solidification results of McCue,

King & Riley [93] for the one-phase problem with arbitrary geometry to also hold

in the two-phase case.

Consideration has also been given to deriving an approximate solution valid for
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small time. In the one-phase problem, this can be done by employing a boundary-

fixing transformation and then writing out the temperature Ts in the form (2.38)1,

as in Davis & Hill [51]. This small-time solution has been extended to include

four terms Ai, i = 1, 2, 3, 4 by Hill & Kucera [94]. Adapting this approach to the

two-phase problem is not straightforward, since the leading order behaviour for the

two-phase problem is not self-similar. However, with the use of an image solution,

we have been able to derive an approximate solution which works very well for small

values of time.



Chapter 3

Single phase limit for melting
nanoparticles

3.1 Introduction

In this chapter we study the effect of surface tension on the one-phase limit of

spherical particle melting, and for completeness we consider cylindrical particles

as well. In Section 3.2 we follow closely the argument by Evans & King [88, 89],

and derive the appropriate one-phase problem with the correct Stefan condition.

Solutions to this problem in the limits of small time and large Stefan number are

detailed in Sections 3.3 and 3.4, while in Section 3.5 we extend the method presented

in [36, 37, 38, 39, 84, 95] (which is for constant melting temperature) to apply to

the case in which there is non-zero surface tension. Comparisons are made between

the various analytical results and numerical values obtained from both enthalpy

and front-fixing schemes in Section 3.6, and finally the results from the study are

discussed in Section 3.7.

3.2 Derivation of one-phase limit

3.2.1 Two-phase problem

The geometry for the melting process in question is shown in Fig. 3.1. At time

t∗ = 0 the temperature on the surface is suddenly raised to T ∗
a , which is higher

than the melting point, and subsequently remains unchanged. The particle begins

to melt, with the evolving solid-melt interface position denoted by r∗ = R∗(t∗).

The problem to be solved is to obtain the temperature distributions T ∗
` (r∗, t∗)

and T ∗
s (r∗, t∗) in the liquid and solid phases, respectively, as well as the location of

36
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R*(t*)

a*

Solid

Liquid

Ta
*

Figure 3.1: Schematic of particle melting

the moving boundary r∗ = R∗(t∗). As it is assumed that the heat transfers through

both phases via conduction only, the governing equations are

∂T ∗
`

∂t∗
=

k`

ρc∗`

1

r∗m
∂

∂r∗

(
r∗m

∂T ∗
`

∂r∗

)
in R∗(t∗) < r∗ < a∗, (3.1)

∂T ∗
s

∂t∗
=

k∗s
ρc∗s

1

r∗m
∂

∂r∗

(
r∗m

∂T ∗
s

∂r∗

)
in 0 < r∗ < R∗(t∗), (3.2)

where m = 1 is for cylindrical cases and m = 2 for spherical cases. The material

parameters k∗` and c∗` are, respectively, the thermal conductivity and the specific

heat capacity of the liquid phase, with the corresponding parameters for the solid

phase taking the alternate subscript s. The density ρ of the material is assumed to

be the same constant in each phase.

Equations (3.1)-(3.2) are supplemented with the appropriate boundary condi-

tions, which are as follows. On the fixed boundaries we have

T ∗
` = T ∗

a on r = a∗ and
∂T ∗

s

∂r∗
= 0 on r∗ = 0. (3.3)

At the solid/liquid interface the temperature is equal to the curvature-dependent

melting point T ∗
f (R∗):

T ∗
` = T ∗

s = T ∗
f (R∗) on r∗ = R∗(t∗), (3.4)

where the form we use for T ∗
f (R∗) is given in equation (1.1). Further, the disconti-

nuity in heat flux due to the absorbtion of latent heat L across the interface gives
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rise to the Stefan condition (see equations (1.5) and (1.6) in Chapter 1)

k∗`
∂T ∗

`

∂r∗
− k∗s

∂T ∗
s

∂r∗
= −ρ

dR∗

dt∗
[
(c∗` − c∗s)(T

∗
f − T ∗

m) + L
]

on r∗ = R∗(t∗), (3.5)

where T ∗
m is the bulk melting point of the material (the melting temperature when

the interface is flat). Finally, the initial conditions are that

T ∗
s = V ∗(r∗), R∗ = a∗, at t∗ = 0. (3.6)

By introducing the following nondimensional variables

r =
r∗

a∗
, R(t) =

R∗(t∗)
a∗

, t =
k∗`

ρc∗`a
∗2 t∗, ∆T = T ∗

a − T ∗
m

(
1− ω

a∗

)
,

T`(r, t) =
T ∗

` (r∗, t∗)− T ∗
m(1− ω/a∗)

∆T
, Ts(r, t) =

T ∗
s (r∗, t∗)− T ∗

m(1− ω/a∗)
∆T

,

the non-dimensional two-phase Stefan problem now reduces to solving the heat

conduction equations

∂T`

∂t
=

∂2T`

∂r2
+

m

r

∂T`

∂r
in R(t) < r < 1, (3.7)

∂Ts

∂t
=

κ

δ

(
∂2Ts

∂r2
+

m

r

∂Ts

∂r

)
in 0 < r < R(t), (3.8)

where m is a parameter which takes the value m = 1 for a cylindrical particle, and

m = 2 for a spherical one. The governing equations are subject to the boundary

conditions

T` = 1 on r = 1, (3.9)

T` = Ts = σ

(
1− 1

R

)
on r = R(t), (3.10)

∂T`

∂r
− κ

∂Ts

∂r
= −dR

dt
[(1− δ)T` + α− σ(1− δ)] on r = R(t), (3.11)

∂Ts

∂r
= 0 on r = 0, (3.12)

and initial conditions

Ts(r, 0) = V (r), R = 1, at t = 0. (3.13)

The four dimensionless parameters in the problem are defined by

κ =
k∗s
k∗`

, δ =
c∗s
c∗`

, σ =
ωT ∗

m

a∗∆T
, α =

L

c∗`∆T
.
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These are the ratio of thermal conductivities, the ratio of specific heat capacities,

the surface tension parameter and the Stefan number, respectively. The other input

is the dimensionless initial temperature V (r). For many applications V is considered

constant and acts as another dimensionless parameter.

3.2.2 One-phase problem for σ = 0 and V (r) ≡ 0

In Section 3.2.3 we shall be concerned with deriving an approximate one-phase limit

from the full two-phase problem (3.7)-(3.13). However, we first note that when the

surface tension σ = 0, an exact one-phase problem arises if the solid is initially at

the melting temperature (that is, if V (r) ≡ 0). In this case heat flows in the liquid

phase only, and the one-phase problem is to solve (3.7) subject to the boundary

conditions (3.9) and

T` = 0,
∂T`

∂r
= −α

dR

dt
on r = R(t), (3.14)

together with the initial condition R(0) = 1. We observe there is only one pa-

rameter in this problem, the Stefan number α, and that this one-phase problem

results regardless of κ and δ. The one-phase problem (3.7), (3.9), (3.14) has re-

ceived considerable attention in the literature, as mentioned in the Introduction.

Of particular note, asymptotic solutions for small time [51, 91, 96] and large Ste-

fan number [54, 55, 57, 58] have been derived, and further approximations have

been detailed using an iterative scheme [37, 38, 39]. All of these approaches will be

extended to include the effects of surface tension in Sections 3.3-3.5 below.

3.2.3 One-phase limit for σ 6= 0

For the case in which σ 6= 0, there can never be a true one-phase problem, even if

V (r) ≡ 0, since the temperature at the solid-melt interface changes as the interface

evolves, meaning there will always be temperature gradients in the solid phase.

However, in the limit κ ¿ 1, which corresponds to slow conduction in the solid

phase, a self-consistent one-phase limit can be derived, as described by Evans &

King [89, 88], and repeated below for completeness.

It is worth noting that in the past, a number of researchers have considered one-

phase problems with surface tension that arise by simply ignoring (3.8) and setting
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κ = 0 in (3.11). See for example, Wu et al. [50] and Herraiz et al. [97], who both

consider one-phase Stefan problems for spheres. As explained in some detail by

Evans & King [88, 89], this practice does not conserve heat at the interface, and

should be avoided. Further, we reiterate that even if σ = 0 then the one-phase

problem (3.7), (3.9), (3.14) only arises if V (r) ≡ 0. If V (r) 6≡ 0 then a one-phase

limit can only be derived under the assumption κ ¿ 1 (see Struckmeier & Unterreiter

[90]) as described below.

For κ ¿ 1 we have from (3.8) that Ts ∼ V (r) in the solid away from the moving

boundary r = R(t). This means there must be an interior layer in the solid near

r = R(t) where the temperature changes rapidly approximately from V (r) (away

from r = R(t)) to σ(1− 1/R) (on r = R(t)).

The interior layer is for

r = R(t)− κr̃,

where r̃ = O(1). To leading order we write Ts ∼ T̃s(r, t), so that

∂2T̃s

∂r̃2
= δ

dR

dt

∂T̃s

∂r̃
.

We solve this equation subject to the boundary conditions

T̃s = T`(R(t), t) on r̃ = 0, T̃s → V (R(t)) as r̃ →∞, (3.15)

where the second condition in (3.15) comes from matching back into the region away

from the moving boundary. The result is that

T̃s ∼ V (R(t)) + [T`(R(t), t)− V (R(t))]eδṘ(t)r̃. (3.16)

This solution is valid provided Ṙ(t) < 0, which is true in the present melting context

(but not in the ill-posed case of crystal growth from a seed in a supercooled liquid).

We now have from (3.16) a quantitative description of how the temperature rapidly

changes near the moving boundary.

To derive the correct boundary conditions for the liquid phase we note that on

the moving boundary r = R(t) we have r̃ = 0, and so

−κ
∂Ts

∂r
= δṘ(t)[T`(R(t), t)− V (R(t))]
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This expression can be directly substituted into (3.11) to eliminate Ts. Thus, in

summary, when κ ¿ 1 the appropriate one-phase limit involves solving

∂T`

∂t
=

∂2T`

∂r2
+

m

r

∂T`

∂r
in R(t) < r < 1, (3.17)

T` = 1 on r = 1, (3.18)

T` = σ

(
1− 1

R

)
on r = R(t), (3.19)

∂T`

∂r
= −dR

dt
(T` + α− σ(1− δ)− δV ) on r = R(t), (3.20)

with the initial condition R(0) = 1. In the solid region away from the interface we

have Ts ∼ V (r), while for the interior region the temperature is given by (3.16). As

discussed above, the correct Stefan condition (3.20) does not arise by naively setting

κ = 0 in (3.11), and can only be derived by carefully considering the singular limit

κ → 0.

The following points are worth mentioning. First, we note that this entire one-

phase model must break down at times for which R(t) = O(κ), when the size of the

solid region is of the same order as the interior layer. Furthermore, when σ 6= 0 the

solution to the one-phase problem equations (3.17)-(3.20) ceases to exist before the

limit R = 0 is reached. From (3.19)-(3.20) we see that the velocity of the interface

dR/dt → −∞ as R → Rc, where the critical radius Rc is the root of the equation

Rc =
σ

σδ + α− δV (Rc)
. (3.21)

The corresponding temperature on the interface is

lim
R→R+

c

T`(R(t), t) = −[α− σ(1− δ)− δV (Rc)],

which forms a lower bound on the temperature generally. Thus the model predicts

there will be a form of blow-up before the particle melts completely. A phenomenon

very similar in nature has been observed experimentally, and is referred to as abrupt

melting [7].

Second, while in general the boundary conditions (3.19)-(3.20) depend on σ, α,

and δV (r), the commonly assumed initial condition V ≡ constant implies that the

only important parameters are σ and the combination β = α−σ(1− δ)− δV , where

here β acts as an effective Stefan number.
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Finally, we note that for the case V ≡ 0, corresponding to the entire solid being

initially at the melting temperature, the limiting one-phase problem (3.17)-(3.20)

does not depend on κ (as is the case for the classical one-phase problem (3.7), (3.9),

(3.14)), but this parameter is required to describe the interior layer through (3.16).

3.3 Small-time behaviour

The small-time behaviour of the solution to the one-phase problem (3.17)-(3.20)

is briefly described here by extending the approach of Davis & Hill [51] and Hill

& Dewynne [96], which was applied to the case σ = 0. An equivalent procedure

was detailed in Wu et al. [49] for σ 6= 0 with different boundary conditions to

(3.19)-(3.20).

3.3.1 Spherical geometry

We anticipate self-similar leading order behaviour as t → 0, and look for solutions

of the form

T`(r, t) ∼ 1

r

{
A0(X) + A1(X)Y

}
as Y → 0, (3.22)

where

X =
1− r

1−R
and Y = 1−R

are similarity and time-like variables, respectively. The functions A0 and A1 satisfy

the following ordinary differential equations

A′′
0 + γXA′

0 = 0, A′′
1 + γ(XA′

1 − A1) =
a1 − γα

α− σ(1− δ)
XA′

0,

with boundary conditions

A0 = 1, A1 = 0, on X = 0,

A0 = 0, A1 = −σ, on X = 1.

The solutions are

A0(X) = 1− erf
(√

γ
2
X

)

erf
(√

γ
2

) , A1(X) = −σX + c1X
(
1− eγ(1−X2)/2

)
, (3.23)
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where γ is the real root of the well-known transcendental equation [32](page 103)

[α− σ(1− δ)− δV (1)]

√
πγ

2
eγ/2erf

(√
γ

2

)
= 1,

and c1 is the constant

c1 =
γ[α + δσ − δV (1)− δV

′
(1)] + σ

γ + 3
.

The location of the free boundary is found to be given implicitly by

t ∼ 1

2γ
(1−R)2 − c2

γ(3 + γ)
(1−R)3 + O((1−R)4), as R → 1−,

and where the constant c2 is given by

c2 = 1 +
(γ + 1)σ − γδV

′
(1)

α− σ(1− δ)− δV (1)
, (3.24)

with the dash denoting a derivative with respect to R. Thus it can be seen that for

small time the melting process is only weakly dependent on the surface tension σ.

In particular, with δ = 1 the effects of σ appear in the correction terms only.

3.3.2 Cylindrical geometry

Again we expect self-similar behaviour at leading order, and thus write

T`(r, t) ∼ B0(X) + B1(X)Y as Y → 0,

where X and Y are given in (3.23). The function B0 turns out to be the same

function as A0, given in (3.23)1, while B1 is

B1(X) = −σX +
X

6

{
3B0(X) + d1

(
1− e(1−X2)γ/2

) }
,

where d1 denotes the constant

d1 =
6[γ(σ − δV

′
(1)) + σ]

γ + 3
.

The location of the solid-melt interface is found to be given implicitly by

t ∼ 1

2γ
(1−R)2 − c2 − 1

γ(3 + γ)
(1−R)3 + O((1−R)4), as R → 1−,

where the constant c2 is defined in (3.24). As with the spherical case, it can be seen

that the surface tension has a weak effect during the initial stages of the melting
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process.

3.4 Large Stefan number limit

We present here a summary of the limiting behaviour of the one-phase problem

(3.17)-(3.20) as the Stefan number α → ∞. This limit is particularly relevant for

melting nanoscaled particles, since in typical experiments the temperature imposed

at the surface of a particle is not much higher than the melting point, leading to

high Stefan numbers. In [7], for example, where gold particles (whose radius is of

the order of tens to a hundred nanometres) are melted, they have L = 63718 J/kg,

c`
∗ = 129 J/(kg· K), when ∆T = 100 K, which gives α = 4.94. Of course smaller

values of ∆T produce larger Stefan numbers.

In what follows we have left the initial temperature profile V (r) arbitrary, but we

recall that for the situation in which V = constant, the one-phase problem depends

only on surface tension σ and the effective Stefan number β = α − σ(1 − δ) − δV .

Thus, in this special (but frequently assumed) case, V = 0, δ = 1 may be set, in the

following formulae, and replace α with β.

3.4.1 Time-scale t = O(α)

The first time-scale is for t = O(α). Here the details are a simple extension of that

given in Pedroso & Domoto [54] and Riley et al. [55]. The appropriate rescaling

of time is t = αt̂, where t̂ = O(1), and so by choosing to employ R as the time-

like independent variable, the location of the moving boundary is described by the

function t̂(R).

In the limit α →∞ we seek solutions to (3.17)-(3.20) of the form

T ∼ T̂0(r, R) +
1

α
T̂1(r, R) +

1

α2
T̂2(r,R) + O(α−3), (3.25)

t̂ ∼ t̂0(R) +
1

α
t̂1(R) +

1

α2
t̂2(R) + O(α−3), (3.26)

so that the leading order problem is

∂2T̂0

∂r2
+

m

r

∂T̂0

∂r
= 0 for R < r < 1, T̂0 = 1 on r = 1, (3.27)

T̂0 = σ

(
1− 1

R

)
, t̂′0

∂T̂0

∂r
= −1 on r = R, (3.28)
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where the dash denotes a derivative with respect to R. We note that (3.27)-(3.28)

also describes the radially-symmetric problem of contracting bubbles of air in Hele-

Shaw cells (m = 1) or in porous media (m = 2), otherwise filled with viscous fluid

(see [98, 99], for example). In that case the function T̂0 represents fluid pressure,

and the (averaged) fluid velocity is recovered by q = −∇T̂0.

The problems for T̂1 and T̂2 are

∂2T̂1

∂r2
+

m

r

∂T̂1

∂r
=

1

t̂′0

∂T̂0

∂R
for R < r < 1, T̂1 = 0 on r = 1,

T̂1 = 0, t̂′1 = t̂′0

(
t̂′0

∂T̂1

∂r
+ T̂0 − σ(1− δ)− δV (R)

)
on r = R,

and

∂2T̂2

∂r2
+

m

r

∂T̂2

∂r
= 0 for R < r < 1, T̂2 = 0 on r = 1,

T̂2 = 0, t̂′2 = t̂′0

(
t̂′0

∂T̂2

∂r
+ t̂′1

∂T̂1

∂r

)
on r = R,

respectively. From (3.27) and (3.28) we obtain T̂0 and t̂0. Then substitute T̂0 and

t̂0 into higher order equations for T̂1 and T̂2, we can obtain T̂1,T̂2, t̂1 and t̂2. After

some lengthy but straight-forward calculations we find that

T̂0 =
1

r

[
1−

(
1− r

1−R

)]
− σ(1−R)

r

(
1− r

1−R

)
, (3.29)

t̂0 = − σ2

(1− σ)3
(1−R) +

1− 2σ

2(1− σ)2
(1−R)2 − 1

3(1− σ)
(1−R)3

− σ2

(1− σ)4
ln [R + σ(1−R)] , (3.30)

T̂1 = −R + σ(1−R)

6rR2

(
1− r

1−R

) [
1−

(
1− r

1−R

)2
]

, (3.31)

t̂1 =
σ(1− 4σ)

3(1− σ)3
(1−R) +

1− σ − 3σ2

6(1− σ)2
(1−R)2 − σ

3(1− σ)
(1−R)3 (3.32)

+
σ(1− 4σ) ln [R + σ(1−R)]

3(1− σ)4
− σ(1− δ)t̂0 − δ

∫ 1

R

ξ2(1− ξ)

ξ + σ(1− ξ)
V (ξ) dξ,
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for the sphere, with T̂2 and t̂2 given in Appendix A, and

T̂0 = 1− [R + σ(1−R)] ln r

R ln R
, (3.33)

t̂0 =
1−R2 + 2R2 ln R

4(1− σ)
− σ(1−R + R ln R)

(1− σ)2
(3.34)

+
σ2

(1− σ)3

{
ln

[
R + σ(1−R)

σ

]
+ dilog

[
R + σ(1−R)

σ

]
ln R− dilog(1/σ)

}
,

for cylinders, with T̂1 and t̂1 given in Appendix A. Here dilog(z) is the dilogarithm

function defined by

dilog(z) =

∫ z

1

ln t

1− t
dt.

We recall that for σ 6= 0, solutions to the full one-phase problem (3.17)-(3.20)

have solid-melt interfaces which exhibit blow-up at the critical radius R = Rc, given

by (3.21). The limiting behaviour of (3.17)-(3.20) as R → Rc is discussed below in

Section 3.4.3, but for now note that the large Stefan number expansions (3.25)-(3.26)

do not predict the existence of this critical radius, since Rc → 0 as α →∞. Instead,

as α → ∞, the one-phase problem (3.17)-(3.20) predicts that the temperature on

the interface becomes unbounded as R → 0 (which, of course, is not physically

realistic).

All the solutions (3.29)-(3.35), (B.2)-(B.4) agree with the corresponding ones

given in [54, 55] in the limit σ → 0 with r and R fixed, as expected. Furthermore,

the leading order behaviour of each of the above solutions is found to be independent

of σ as R → 1−, confirming that the small-time behaviour is only weakly dependent

on the surface tension, as established in the previous section. To take an example,

for the sphere with V constant we have

t̂0 ∼ 1

2
(1−R)2 − 1

3
(1 + σ)(1−R)3 + O((1−R)4),

t̂1 ∼
(

1

6
− 1

2
σ(1− δ)− 1

2
δV

)
(1−R)2 −

(
4

9
σ +

1

3
(1 + σ)(σ(1− δ) + δV )

)
(1−R)3

+O((1−R)4)

t̂2 ∼ − 1

45
(1−R)2 − 1

45

(
1 +

1

3
σ

)
(1−R)3 + O((1−R)4) as R → 1−,

the surface tension σ appearing in the correction terms only.

On the other hand, for times just before complete melting, the qualitative be-
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haviour of the solutions T̂i, t̂i for σ 6= 0 is different to that for σ = 0, even for

σ ¿ 1. This is because, for the case in which σ 6= 0, the melting temperature

T`(R, t) ∼ −σ/R as R → 0, meaning the Gibbs-Thomson model (1.1) predicts the

temperature on the interface becomes unbounded in this limit (whereas for σ = 0

we have T`(R, t) = 0, a constant).

Such qualitatively different behaviour manifests itself in the above large-Stefan

number expansion when observing the limiting forms of the solutions at each order

as R → 0. By taking the limit R → 0 in t̂0, it can be seen that a first approximation

for the complete melting time tf (or the exact extinction time for the corresponding

shrinking bubble problem) is given by

tf ≈ βt̂0(0) = β

{
1− 5σ − 2σ2

6(1− σ)3
− σ2 ln σ

(1− σ)4

}

for the sphere, and

tf ≈ βt̂0(0) = β

{
1− 5σ

4(1− σ)2
− σ2dilog(1/σ)

(1− σ)3

}

for the cylinder. In the limit σ → 0, these expressions agree with the σ = 0 results

βt̂0(0) = 1
6
β (sphere) and βt̂0(0) = 1

4
β (cylinder) found in [54, 55], the limiting

behaviour

t̂0(0)− t̂0 ∼ 1

3σ
R3 + O(R4) as R → 0 (3.35)

for the sphere, and

t̂0(0)− t̂0 ∼ 1− 3 ln R

9σ
R3 + O(R4 ln R) as R → 0

for the cylinder, give different scalings to the case σ = 0, namely

t̂0(0)− t̂0 =
1

4
(1− 2 ln R)R2 (sphere), t̂0(0)− t̂0 =

1

2
R2 − 1

3
R3 (cylinder).

In context of the investigating shrinking bubbles in Hele-Shaw cells, these simple

results imply that including surface tension in the two- and three-dimensional studies

in [98, 99] will lead to very different scalings, and may destroy the elliptic/ellipsoidal

nature of the bubble shape just before extinction.
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3.4.2 Further time-scales for sufficiently small σ

As detailed in [55, 57, 58], the above expansions (3.25)-(3.26) for the case σ = 0

fail to provide a valid approximation at times close to complete melting. Physically,

the solid-melt interface speeds up as R → 0, and thus there is a limit at which the

process is no longer quasi-steady, even though α À 1. The appropriate time-scale

for this behaviour is tf − t = O(1), where tf is the complete melting time (recall

that tf = O(α)). By considering carefully where the expansion (3.25)-(3.26) breaks

down, it can be shown that R = O(α−1/2) on this time-scale for the sphere, while

R = O(ε) for the cylinder, where here ε is a small number related to the Stefan

number α by 1 = αε2 ln(1/ε) (see [55, 58]).

For sufficiently small surface tension, namely σ ¿ α−1/2 for the sphere and

σ ¿ ε for the cylinder, we expect the same structure to arise on a second time-scale

tf − t = O(1) as the σ = 0 case mentioned above (we would have R À Rc on this

time-scale, where Rc is the critical radius given by (3.21)). In a narrow region near

the solid-melt interface the temperature will rise very quickly from approximately

zero (since | − σ/R| will be small on this time-scale) to approximately unity, while

away from the interface analysis is required to account for the order-one temporal

variations in the temperature field (see [55, 57, 58] for details).

For the case σ = 0 the analysis on the second time-scale breaks down when

R is extremely small, and further treatment is required on a third exponentially

short time-scale [57, 58, 87]. When σ 6= 0, however, we expect a rather different

near-complete-melting limit (regardless of how small σ is), as the increasingly large

magnitude of the melting temperature as R decreases will eventually dominate the

process near the interface. We discuss this phenomenon below in Section 3.4.3.

3.4.3 Generic extinction limit

For larger values of the surface tension (σ = O(α−1/2) for the sphere and σ = O(ε)

for the cylinder as α →∞) we expect the melting process to lose its quasi-steadiness

before R = O(α−1/2) for the sphere or R = O(ε) for the cylinder, so that the analogy

with the σ = 0 case treated in [55, 57, 58] will no longer be relevant. Furthermore,

as mentioned above, the solid-melt interface exhibits finite-time blow-up, meaning

that the interface velocity dR/dt → −∞ as R → Rc, where R → Rc is the root
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to (3.21). Thus for surface tensions with these orders of magnitude we expect

completely different scalings in the extinction limit t → tf (where now tf denotes

the finite blow-up time) to the previously studied cases for σ = 0.

Indeed, a generic near-complete-melting analysis, valid for α = O(1) and σ ¿ 1,

has been attempted by Herraiz et al. [97]; however, as explained in Section 3.2.3,

Herraiz et al. use boundary conditions which do not conserve heat at the solid-melt

interface. Herraiz et al. find that T` ∼ −σ/r for r − R ¿ 1 as R → 0, with the

interface behaving thus

tf − t ∼ α

3σ
R3 as R → 0, (3.36)

which agrees with the leading-order large Stefan number result (3.35) for the sphere

(the analysis of Herraiz et al. [97] is for both spheres and cylinders, and does not

lead to finite-time blow-up). With the more appropriate boundary conditions (3.19)-

(3.20), for α = O(1) and σ ¿ 1 we also have T` ∼ −σ/r for r−R ¿ 1 as R → R+
c ,

but this time the solid-melt interface scales thus

tf − t ∼ 1

2
(R−Rc)

2 as R → R+
c ; (3.37)

this leading order behaviour being independent of the surface tension, and com-

pletely different to that given by Herraiz et al. [97].

3.5 An integral formulation that leads to an iter-

ative scheme

A number of researchers [36, 37, 38, 39] have obtained approximate analytical so-

lutions for one-phase Stefan problems without surface tension through an iteration

scheme derived from an integral formulation. Here this approach is extended to the

radially symmetric one-phase problem including surface tension effects.

3.5.1 Integral formulation

In what follows we make use of the function Km(x, y), defined by

Km(x, y) =

∫ x

y

ξ−mdξ, m = 1, 2,



Chapter 3: Single phase limit for melting nanoparticles 50

where we recall that m = 1 corresponds to cylinders while m = 2 corresponds to

spheres. By multiplying (3.17) by rm and integrating the resulting equation with

respect to r from R(t) to r, we arrive at

rm ∂T`(r, t)

∂r
= Rm ∂T`(R, t)

∂r
+

∫ r

R(t)

ξm ∂T`(ξ, t)

∂t
dξ,

which can be simplified to

∂T`(r, t)

∂r
= −Rm

rm
(T`(R, t) + α− σ(1− δ)− δV (R))

dR

dt
+

1

rm

∫ r

R(t)

ξm ∂T`(ξ, t)

∂t
dξ

by utilising the Stefan condition (3.20). We integrate this equation with respect to

r, again from R(t) to r, to yield

T`(r, t)−T`(R(t), t) =
∂

∂t

∫ r

R(t)

Km(r, ξ)ξm[T`(ξ, t)+α−σ(1− δ)− δV (ξ)]dξ, (3.38)

and apply the fixed boundary condition (3.18) to give

1− σ

(
1− 1

R(t)

)
=

∂

∂t

∫ 1

R(t)

Km(1, ξ)ξm[T`(ξ, t) + α− σ(1− δ)− δV (ξ)]dξ. (3.39)

Equations (3.38) and (3.39) represent the key equations in what follows.

It proves useful to again treat R as an independent variable, and describe the

moving interface by t = t̄(R). Further, we make use of the dependent variable T

defined by T (r,R) = T`(r, t). After applying the chain rule in (3.39) we find

dt̄

dR
=

∫ 1

R
Km(1, ξ)ξm ∂T (ξ,R)

∂R
dξ − [α− σ(1− δ)− δV (R) + T (R, R)]Km(1, R)Rm

1− σ (1− 1/R)
,

(3.40)

which provides an expression for the speed of the interface in terms of the tempera-

ture T and R. By again applying the chain rule and eliminating dt̄/dR from (3.38),

we find

T (r, R) = F (r,R)

[
1− σ

(
1− 1

R

)]
+ σ

(
1− 1

R

)
, (3.41)

where the function F (r,R) is defined by

F (r, R) =

∫ r

R
Km(r, ξ)ξm ∂T (ξ,R)

∂R
dξ − [α− σ(1− δ)− δV (R) + T (R, R)]Km(r, R)Rm

∫ 1

R
Km(1, ξ)ξm ∂T (ξ,R)

∂R
dξ − [α− σ(1− δ)− δV (R) + T (R, R)]Km(1, R))Rm

.

Thus, (3.41) provides an equation with the temperature T on both sides. Together

with (3.40), this expression will form the basis of an iterative scheme, described in
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the following section.

3.5.2 Iterative procedure

The iterative scheme works as follows: given an expression for the temperature

distribution at a particular iteration, we can substitute it into (3.41) to obtain the

distribution for the next iteration, and into (3.40) to obtain an updated relationship

between time t̄ and solid-interface position R. Thus for each integer value n we have

Tn+1(r, R) = Fn(r, R)

[
1− σ

(
1− 1

R

)]
+ σ

(
1− 1

R

)
,

with Fn(r, R) defined by

Fn(r, R) =

∫ r

R
Km(r, ξ)ξm ∂Tn(ξ,R)

∂R
dξ − [α− σ(1− δ)− δV (R) + Tn(R,R)]Km(r, R)Rm

∫ 1

R
Km(1, ξ)ξm ∂Tn(ξ,R)

∂R
dξ − [α− σ(1− δ)− δV (R) + Tn(R, R)]Km(1, R)Rm

,

and

dt̄n+1

dR
=

∫ 1

R
Km(1, ξ)ξm ∂Tn(ξ,R)

∂R
dξ − [α− σ(1− δ)− δV (R) + Tn(R, R)]Km(1, R)Rm

1− σ (1− 1/R)
.

We begin the iteration process by choosing T−1 ≡ 0.

For the spherical case (m = 2), the first three results for the temperature are

given by

T0 =
1

r

[
1−

(
1− r

1−R

)]
− σ(1−R)

r

(
1− r

1−R

)
, (3.42)

T1 = T0 − R + σ(1−R)

2rR[3σ(R− 1) + 3(α− σ(1− δ)− δV (R))R + 1]

×
(

1− r

1−R

) [
1−

(
1− r

1−R

)2
]

, (3.43)

T2 = T0 − [R + σ(1−R)]h1(r,R)

8rR(R− 1)2h2(R)

(
1− r

1−R

) [
1−

(
1− r

1−R

)2
]

, (3.44)

where the functions h1(r, R) and h2(R) are given by Appendix (C.1)-(C.3) in Ap-

pendix C. The corresponding results for the motion of the interface are given by

t̄0 = (α− σ(1− δ))t̂0(R) +

∫ 1

R

δV (ξ)(ξ − 1)ξ2

(1− ξ)σ + ξ
dξ,

t̄1 = (α− σ(1− δ))t̂0(R) + t̂1(R),

t̄2 =

∫ 1

R

(1− ξ)h2(ξ)

15ξ[(1− σ)ξ + σ][3(σ + α− σ(1− δ)− δV (ξ))ξ + 1− 3σ]2
dξ,
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where the functions t̂0 and t̂1 are defined in (3.30) and (3.33), and h2(ξ) is given in

Appendix (C.3). Clearly there is a strong correspondence between these results and

the ones derived in Section 3.4. In terms of the solutions T̂i given in (3.29), (3.31),

(B.2), we have T0 = T̂0,

T1 = T̂0 +
1

α
T̂1 + O(α−2) as α →∞, (3.45)

T2 = T̂0 +
1

α
T̂1 +

1

α2

h3(r, R)T̂1

60R3(R− 1)2
+ O(α−3) as α →∞,

where the function h3(r, R) is defined in Appendix (C.3), so that clearly these ap-

proaches agree well in that limit. It is hoped that the iteration method also produces

accurate analytical results for α = O(1).

For cylindrical particles (m=1) the first two iterations give

T0 = 1− [R + σ(1−R)] ln r

R ln R
,

T1 = T0 +
(−R + σR− σ)

Rh4(R)

{[
r2 −R2 +

R2 − 1

lnR

]
ln r + 1− r2

}
,

t̄0 = (α− σ(1− δ))t̂0(R) +

∫ 1

R

δV (ξ)ξ2 ln ξ

(1− ξ)σ + ξ
dξ,

t̄1 =

∫ 1

R

h4(ξ)

4ξ(ln ξ)2[(ξ − 1)σ − ξ]
dξ.

where h4(R) is defined in Appendix (C.4) and t̂0 is given in (3.35). Again, there is a

strong relationship with the large Stefan number solutions presented in Section 3.4.

We have T0 = T̂0, where T̂0 is the leading order solution (3.33) from the large Stefan

number expansion, and furthermore, (3.45) holds with T̂1 given in Appendix (B.3).

In principle, this iterative scheme can be applied to obtain higher order approxi-

mations. Indeed, Dewynne [39] found that the second- or third-order approximations

can provide reasonable results for the one-phase Stefan problem without surface ten-

sion, but lose their validity at times close to complete melting. However, as noted

in Dewynne & Hill [95], there is no proof of convergence, and higher order iterations

may lead to unphysical singularities. Some numerical results using this method are

presented in the following section.
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3.6 Results

In this section the analytical results of Sections 3.3-3.5 are compared with numerical

solutions found using a front-fixing method given in Appendix D. This numerical

scheme is chosen over the commonly used enthalpy method [32, 53], which has proved

to be an efficient method for classical Stefan problems without surface tension, since

the application of the enthalpy method involves characterising the liquid phase by

the value of the temperature (or enthalpy) only. With the addition of surface tension

effects, the temperature on the solid-melt interface is not constant, and thus this

characterisation is no longer applicable. On the other hand, the front-fixing method,

which works by transforming the moving boundary problem to a fixed-boundary

problem, is relatively easy to apply, and produces acceptable results provided the

timestep is properly chosen according to the Neumann method [100].

Note that only results for the sphere are shown here. It is found that the quali-

tative behaviour for cylinders was the same as for spheres, and it is only the scalings

that are found to differ in some instances.

3.6.1 Check of numerical scheme for σ = 0, V ≡ 0

As a check on the front-fixing scheme used to compute solutions for σ 6= 0, results

obtained using this method for σ = 0, V ≡ 0 were compared with results computed

using the enthalpy method (which, as mentioned above, is straightforward to apply

for σ = 0, V ≡ 0). It was found that, regardless of the Stefan number, the numerical

results produced by the two methods were in excellent agreement, with temperature

profiles essentially indistinguishable when plotted on the scale 0 ≤ T ≤ 1 with

0 ≤ r ≤ 1. As an example, included in Fig. 3.2 are profiles drawn for the two

different Stefan numbers α = 1 (corresponding to moderately fast melting) and

α = 10 (corresponding to slow melting). The only exception in this close agreement

was for very small values of R (corresponding to times close to complete melting).

In this regime, a slight difference between results produced by the two methods was

noticed, as can be seen by Fig. 3.3, which contains the dependence of R on time t

for Stefan numbers α = 1, 2 and 5.

Thus, except for in the very final stages of melting, we are confident that the

front-fixing scheme is accurate, provided the proper time-step is chosen to ensure
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the stability of the scheme [100]. It may be that for times near complete melting

the enthalpy method is more accurate than the front-fixing scheme, and to take an

example, it is noted that for the value α = 10 used in Fig. 2(b), the calculated

time for complete melting using the front-fixing scheme was tf = 1.85, while the

corresponding time using the enthalpy method was tf = 1.81. Using the large

Stefan number approximation taken from [55, 57, 58], namely

tf ≈ α + 1

6
−
√

2ζ(3)

π5/2α1/2
,

where ζ(z) is the Riemann zeta function, we see that the complete melting time is

approximately tf ≈ 1.80, which is in closer agreement with that found using the

enthalpy scheme. For the reasons given above, however, all numerical solutions for

σ 6= 0 cited in the rest of this section have been computed using the front-fixing

scheme.

3.6.2 Comparison of small-time series and large Stefan num-
ber expansion with numerical results

In Figs 3.4 and 3.5 typical temperature profiles and interface positions (for σ 6= 0)

computed with the front-fixing scheme are compared with corresponding results

from the small time series (Section 3.3.1) and the large Stefan number expansion

(Section 3.4.1, including all three terms) for a surface tension value σ = 0.15. The

thin solid curve in Fig. 3.4 denotes the melting temperature (3.19), which for nonzero

σ is dependent on both the surface tension σ and the location of the solid-melt

interface r = R. For these plots the initial temperature V is assumed to be constant,

meaning the melting process depends only on the effective Stefan number β =

α− σ(1− δ)− δV .

In Figs 3.4(a) and 3.5(a), which are for effective Stefan number β = 1, there

is very good agreement between the numerical results and the small time solution

during the early stages of the melting process, with each of these two methods

producing noticeably different results for late times. Of course this behaviour is to

be expected, since terms of order Y 2 ignored in (3.22) become more important as

R decreases in value. The large Stefan number solution in Fig. 3.4(a) agrees much

less favourably with the numerical solution than the small time series, and indeed
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Figure 3.2: Plots of the temperature profiles computed numerically for σ = 0, V = 0
at different positions R=0.1, 0.3, 0.5, 0.7 and 0.9: part (a) is for α = 0.1; part (b)
is for α = 10.
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Figure 3.3: Plots of particle radius R versus time t computed numerically for Stefan
numbers α = 1, 2 and 5. For each curve σ = 0, V = 0.
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Figure 3.4: Plots of the temperature profiles for surface tension σ = 0.15 at different
positions R=0.2, 0.4, 0.6 and 0.8: part (a) is for β = 1; part (b) is for β = 10. The
three approaches used are the numerical scheme (dashed), the large Stefan number
expansion (solid) and the small time series (dot-dashed). Included as a thin curve
is the melting temperature.
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part (a) is for β = 1; part (b) is for β = 10. The three approaches used are the
numerical scheme (dashed), the large Stefan number expansion (solid) and the small
time series (dot-dashed).
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we have left out the curve for R = 0.2 since it does not fit in the scale of the figure.

This behaviour is not unsurprising, since the the value β = 1 is not large.

On the other hand, Figs 3.4(b) and 3.5(b) are drawn for β = 10, which can be

considered large. Here both analytical approximations agree extremely well with

the numerical solutions for the temperature profiles, but not quite as well for the

interface position. It is remarkable that the small time series produces such accurate

results for the temperature profiles, especially for later times. Any disagreement

between the large Stefan number approximation and the numerical results for small

values of R is due to the nature of the expansion (3.25)-(3.26), which implies that the

interface is moving relatively slowly, and is not valid near complete melting (recall

that increasing the Stefan number slows the melting process).

3.6.3 Comparison of iterative scheme with numerical results

Fig. 3.6 shows a comparison of the temperature profiles obtained from the three

iterations (3.42)-(3.44) and the numerical front-fixing method for an effective Stefan

number β = 2. In Fig. 3.6(a), which is for surface tension σ = 0.05, the profiles

corresponding to each subsequent iteration agree more closely with the numerical

result, suggesting the scheme may be converging to the exact solution. Indeed, the

results from the third iteration are in excellent agreement with the numerical results

for most of the melting process. Temperature profiles for a larger value of surface

tension, namely σ = 0.15, are shown in Fig. 3.6(b). In this case it is evident that,

at least for larger times, the iterative scheme is not converging. For R = 0.2 we

see that the third iteration is much further away from the numerical results than

the second. This suggests that the iterative scheme derived in Section 3.5 is a less

effective tool for producing analytical results than the small time series and the large

Stefan number expansion given in Sections 3.3 and 3.4. Similar conclusions can be

drawn by observing plots showing the dependence of the interface position R on

time t.

We make the comment that, as well as working better for smaller values of

surface tension σ, it was found that the iterative scheme agreed well with numerical

results for large values of the Stefan number. Of course this is not unexpected,

given that in the limit α → ∞ we have shown in Section 3.5.2 that the iterative
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Figure 3.6: Plots of the temperature profiles for effective Stefan number β = 2 at
different positions R=0.2, 0.4, 0.6 and 0.8: part (a) is for σ = 0.05; part (b) is
for σ = 0.15. The numerical solution is compared with results obtained using the
iterative scheme.
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scheme approaches the large Stefan number expansion, and in Section 3.6.2 we have

seen that the large Stefan number expansion gives an excellent approximation to

the numerical results in that limit.

3.6.4 Effect of surface tension on the solid-melt interface

As an illustration of the effect of varying the surface tension parameter σ, the re-

lationship between the velocity of the solid-melt interface dR/dt and the particle

radius R is shown in Fig. 3.7 for three typical values of σ (all results are found using

the numerical scheme). It is clear that for small time, varying surface tension does

not have a significant effect on the curves, which is consistent with the finding that

σ does not appear in the leading order term A0 in the small time series (3.22). How-

ever, as R decreases, surface tension becomes more important and has a dramatic

effect on the speed of the interface. Of course the critical radius Rc given in (3.21)

increases as σ increases, which explains why blow-up occurs for each curve in this

figure at different values of R.

More generally, it can be observed that the speed of the solid-melt interface

decreases initially, then reaches a minimum when R is approximately a half of the

original particle radius. For later times the interface accelerates until blow-up occurs

(dR/dt → −∞ as R → R+
c ).

As noted in Section 3.2.3, while the use of the boundary condition (3.14) instead

of (3.20) is commonplace in the literature (see [50] and [97], for example), this

approach does not conserve heat at the solid-melt interface, and should be avoided

(at least for well-posed melting problems; (3.14) is only appropriate for the ill-

posed process of outward solidification into an undercooled melt). In Fig. 3.8 the

dependence of the interface velocity dR/dt on the particle radius R is shown for

α = 2, σ = 0.2, by applying each boundary condition separately (each solution

is found numerically using the front-fixing method). The solid curve denotes the

solution with (3.20), while the dashed curve corresponds to (3.14). It can be seen

that for small time both solutions are in agreement, but for later times the interface

for the correct solution speeds up more quickly, and will eventually blow-up as

R → R+
c . Included in the figure is the thin dot-dashed curve, which shows the

asymptotic behaviour (3.37). It is expected that as R → R+
c the solid curve will
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Figure 3.7: Dependence of the interface speed dR/dt on R for σ = 0 (solid curve),
σ = 0.1 (dashed curve) and σ = 0.2 (dot-dashed curve). Each curve is drawn for
β = 2.
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Figure 3.8: Dependence of the interface speed dR/dt on R for α = 2, σ = 0.2,
V = 0. The solid curve uses the correct boundary condition (3.20) while the dashed
curve uses (3.14). Included is the asymptotic behaviours (3.36) (dotted curve) and
(3.37) (dot-dashed curve).

approach the dot-dashed curve. Also included in the figure as a dotted curve is the

asymptotic behaviour (3.36), derived by [97] using the condition (3.14). We expect

the dashed curve to approach the dotted one in the limit R → 0. In closing we note

that the difference between the curves drawn for (3.14) and (3.20) will become more

obvious for smaller values of the Stefan number.

3.7 Further discussion

This section deals with the one-phase Stefan problem for melting spherical and

cylindrical particles with the assumption that the melting temperature depends on

both surface tension and particle radius through the Gibbs-Thomson effect (1.1).

Analytical solutions for a small-time series, a large Stefan number expansion and

an integral iteration scheme are obtained, and they show good agreement with nu-

merical solutions under certain conditions, particularly when melting is slow, which
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often happens in real experiments with nanoscaled particles.

It is found that the addition of surface tension tends to accelerate the melting

process. This effect is only weak for small time, but increases as the solid-melt

interface evolves towards the centre of the particle. We find that the one-phase

problem (3.17)-(3.20) predicts that ultimately a form of blow-up will occur, with

the speed of the interface becoming infinite at a finite particle radius. This result

may be an artifact of the way in which the free boundary problem (3.17)-(3.20) was

derived; however, we note with interest that a phenomenon referred to as instant or

abrupt melting has been observed in experiments dealing with melting nanoscaled

particles [7]. This behaviour is qualitatively consistent with the predictions of our

one-phase model.

It is well known that the opposite process to the one considered in this section,

namely the outward solidification of an undercooled melt from a solid crystal, is ill-

posed, with slight deviations from radial symmetry leading to the formation of tree-

like structures or dendrites. Even under the idealised conditions of radial symmetry,

the (ill-posed) outward solidification problem is not the time-reversal of the (well-

posed) melting problem, due to the temporal derivative in the heat equation and

also the fact that in the outward solidification case (3.20) should be replaced with

(the more commonly used) (3.14)2. This idealised problem has been treated for

small time by Wu & Chen [49], while the more realistic problem which includes

the dendrite growth is expected to be significantly more complicated. The reader

is referred to [27] for discussions on the physics behind solidification problems with

undercooled melts and related modelling issues.

The one-phase problem (3.17)-(3.20) considered in this section is derived in Sec-

tion 3.2.3 by considering the two-phase problem in the singular limit κ = k∗s/k` → 0.

Although this limit may be appropriate for some insulators and semiconductors

[101], and also for analogous problems arising in mass transfer, for most metals it

is usually the case that κ = O(1). However, the problem (3.17)-(3.20) still provides

a useful approximation for melting nanoparticles, since in typical experiments the

Stefan number α is large, and in the limit α À 1 the temperature in the liquid phase

is only weakly dependent on the solid-phase, even for κ = O(1).

As an illustration, we consider the two-phase problem (3.7)-(3.13) for the sphere
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with V ≡ constant and α À 1. On the time-scale t = O(α) we scale time as t = αt̂,

and apply the expansion (3.25) for the liquid phase. Further, we write

Ts = v(r,R; α) + w(r, R; α)

for the solid phase, where

v ∼ v̂0(r,R) +
1

α
v̂1(r, R) + O(α−2), w ∼ e−αg(R)

(
ŵ0(r, R) + O(α−1)

)

as α →∞, and describe the location of the solid-melt interface by (3.26). Prelimi-

nary calculations reveal that

v̂0 = σ

(
1− 1

R

)
, v̂1 =

σδ(r2 −R2)

6κt̂′0R2
, (3.46)

ŵ0 =
2RUs

πr
sin

(πr

R

)
, g = −π2κ

δ

∫ 1

R

t̂′0
R2

R. , (3.47)

which implies that on the solid-melt interface ∂Ts/∂r = O(α−1), so that, to leading

order, the Stefan condition (3.11) is approximated by (3.28)2. Thus, at least for V ≡
constant and for 1−R = O(1), the one-phase problem (3.17)-(3.20) should provide

a reasonable approximation to the two-phase problem (3.7)-(3.13) when the Stefan

number α is large, even for κ = O(1). (Ideas which lead to similar conclusions

are stated in the Appendix of [102], where the three different regimes α À 1 with

κ = O(1), α À 1 with κ ¿ 1 and α = O(1) with κ ¿ 1 are noted for the two-

phase problem. The resulting boundary conditions given for the latter regime do

not conserve heat for well-posed melting problems, and so are only valid for ill-posed

crystal growth problems.) For α = O(1) and κ = O(1), however, the melting process

may be studied more comprehensively by considering the full two-phase problem;

such analysis will appear elsewhere.

We close by noting that the melting of genuinely two- and three-dimensional

objects may exhibit certain characteristics not displayed in the present study, which

has been confined to radially-symmetric particles. For example, a natural ques-

tion is to ask how the shape of the solid-melt interface evolves when a two- or

three-dimensional particle is melted, and for the one-phase limit this question is

addressed for the zero surface tension case using large-Stefan-number and near-

complete-melting asymptotics in [93, 103, 104]. It is shown there that the interface
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evolves to an ellipse or ellipsoid in shape just before complete melting, regardless

of the initial geometry. In the present study, we argue in Section 3.4.3 that the

final stages of melting are significantly affected by surface tension, to the extent

that for the more general two- and three-dimensional problem, the scalings used

in [93, 103, 104] would not be appropriate if σ 6= 0. Furthermore, there is experi-

mental evidence [105, 106] that suggests surface tension acts to force the elliptic or

ellipsoidal interfaces to become circular or spherical at very small times just before

complete melting. Thus the task of generalising [93, 103, 104] to include the effects

of surface tension would seem to provide an interesting and nontrivial problem for

future research.



Chapter 4

Two-phase Stefan problem with
spherical symmetry, including the
effects of surface tension

4.1 Introduction

In Chapter 3, we investigate the one-phase limit for nanoparticle melting with the

assumption that κ∗s/κ
∗
` → 0 by including the surface tension effect. However, for

many cases in the physical world, the differences between the thermal conductivities

of the solid and liquid phases are small. Thus, there is not ideal one-phase problem

when considering the effect of the surface tension. The approaches used in Chapter

3 are extended to study the two-phase melting problem for spherical nanoparticle

melting in Chapter 4 which is organized as follows. In Section 4.2 the governing

equations for the two-phase melting problem for spheres is formulated. This problem

is analysed using a small-time perturbation approach in Section 4.3, and then a

large Stefan number expansion in Section 4.4. Numerical results are computed

using a numerical front-fixing scheme, and these are discussed in Section 4.5. It is

shown that the analytic results derived in Sections 4.3 and 4.4 agree well with the

numerical results in the appropriate regimes. Further, in the limit of slow conduction

in the solid phase, numerical evidence is provided to show that the full two-phase

problem does indeed reduce to the one-phase problem derived in [89] and Chapter 3.

Finally, the numerical results predict that ultimately the solid becomes superheated

and, furthermore, the speed of the solid-melt interface becomes unbounded at some

critical time before complete melting takes place. At this time the temperature

gradient in the solid phase also becomes unbounded at the interface. This form

67
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of finite-time blow-up and the apparent relationship with the problem of melting a

superheated solid particle noted are discussed in Section 4.6.

4.2 Problem description and non-dimensional gov-

erning equations

The geometry for the melting process under consideration is illustrated in Fig. 3.1.

The relevant independent variables are the radial distance from the centre of the

particle, r∗, and time, t∗. We suppose the particle is initially of radius a∗, and

at a uniform temperature T ∗
i . Then at time t∗ = 0 the temperature on the surface

r∗ = a∗ is suddenly raised to T ∗
a , and subsequently held there at that value. Provided

that T ∗
a is above the melting temperature, the particle will begin to melt, with a

solid-melt interface r∗ = R∗(t∗) propagating from r∗ = a∗ towards the centre of the

particle.

From Section 3.2.1 in Chapter 3, when m = 2, the non-dimensional governing

equations for the spherical nanoparticle melting are

∂T`

∂t
=

∂2T`

∂r2
+

2

r

∂T`

∂r
in R(t) < r < 1, (4.1)

∂Ts

∂t
=

κ

δ

(
∂2Ts

∂r2
+

2

r

∂Ts

∂r

)
in 0 < r < R(t), (4.2)

subject to the boundary conditions

T` = 1 on r = 1, (4.3)

T` = Ts = σ

(
1− 1

R

)
on r = R(t), (4.4)

∂T`

∂r
− κ

∂Ts

∂r
= −dR

dt

(
−σ(1− δ)

R
+ α

)
on r = R(t), (4.5)

∂Ts

∂r
= 0 on r = 0, (4.6)

and initial conditions

Ts = V, R = 1, at t = 0. (4.7)

The five dimensionless parameters in the problem are defined by

κ =
ks
∗

k`
∗ , δ =

cs
∗

c`
∗ , σ =

ωT ∗
m

a∗∆T ∗ , α =
L

c`
∗∆T ∗ , V =

T ∗
i − T ∗

m(1− ω/a∗)
∆T ∗ .
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These are the ratio of thermal conductivities, the ratio of specific heat capacities,

the interfacial tension parameter, the Stefan number, and the dimensionless initial

temperature, respectively.

4.3 Small time limit

In Chapter 3 a small-time perturbation expansion, used in [51] for classical one-

phase problems and in Chapter 2 for classical two-phase problems, is extended to

the one-phase analysis by taking into account the effects of surface tension. In this

section we generalise the above studies to the full two-phase problem with surface

tension.

4.3.1 Summary of the details

The idea is to look for solutions of the form

u ∼ 1

r

{
A0(X) + Y A1(X) + O(Y 2)

}
, v ∼ V +

1

r

{
B0(X) + Y B1(X) + O(Y 2)

}
,

(4.8)

as Y → 0+, where X and Y are defined by

X =
1− r

1−R
, Y = 1−R.

This change of variables transforms the inner solid phase to 1 ≤ X < (1−R)−1 and

the outer liquid phase to the fixed domain 0 ≤ X ≤ 1.

After substituting (4.8) into the governing equations (4.1)-(4.2), (4.5), we find

that A0, A1, B0 and B1 satisfy the coupled ordinary differential equations

A′′
0 + γXA′

0 = 0, A′′
1 + γ(XA′

1 − A1) =
a1 − γα

α− σ(1− δ)
XA′

0,

κ

δ
B′′

0 + γXB′
0 = 0,

κ

δ
B′′

1 + γ(XB′
1 −B1) =

a1 − γα

α− σ(1− δ)
XB′

0,

where

γ = −A′
0(1)− κB′

0(1)

α− σ(1− δ)
, a1 = A′

1(1)− κB′
1(1) + κV.

From (4.3)-(4.4), (4.7), we have the boundary conditions

A0 = 1, A1 = 0, on X = 0,
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A0 = 0, A1 = −σ, B0 = −V, B1 = V − σ on X = 1,

B0 = o(1), B1 = o(X), as X →∞.

The leading order solutions are

A0 = 1− erf
(√

γ
2
X

)

erf
√

γ
2

, B0 = −V

erfc

(√
δγ
2κ

X

)

erfc
√

δγ
2κ

, (4.9)

where γ is the solution to

γ(α− σ(1− δ)) =
1

L`

e−γ/2 +
κV

Ls

e−δγ/2κ, (4.10)

with L` and Ls defined by

L` =

√
π

2γ
erf

√
γ

2
, Ls =

√
κπ

2δγ
erfc

√
δγ

2κ
.

The solution (4.9) together with the transcendental equation (4.10) is almost identi-

cal to the well known Neumann solution (Carslaw & Jaeger [33], page 285), the only

difference being that in the Neumann solution (which is for zero surface tension),

the term α− σ(1− δ) in (4.10) is replaced by α. The correction terms are

A1 = −σX + c1 X
(
1− eγ(1−X2)/2

)
,

B1 = c2

[
e−δγX2/2κ −

√
δγπ

2κ
X erfc

(√
δγ

2κ
X

)]
+ c3 Xe−δγX2/2κ, (4.11)

where

c1 =
1

3γ

(
γα− a1

β

)
1

L`

e−γ/2, c3 =
V

3γLs

(
γα− a1

β

)
, (4.12)

c2 =
κ

δγLs

{
σ − V

[
1− 1

3γ

(
γα− a1

β

)
1

Ls

e−δγ/2κ

]} [
1− κ

δγLs

e−δγ/2κ

]−1

,

γα− a1

α− σ(1− δ)
=

3

(
γα + σ − κV + κ(V − σ)

[
1− κ

δγLs
e−δγ/2κ

]−1
)

(3 + γ)β + V
γLs

e−δγ/2κ

{
κ

[
1− κ

δγLs
e−δγ/2κ

]−1

− κγ − κ + δγ

} .

From the Stefan condition (4.5) we have the small time behaviour

t =
1

2γ
(1−R)2 − 1

3γ2

(
γα− a1

β

)
(1−R)3 + O((1−R)4) as R → 1−. (4.13)

As discussed in Chapter 2, the solution described above does not satisfy the no-
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flux condition (4.6) at r = 0, and indeed by the very nature of this approach one

boundary condition must be sacrificed. However, we can easily derive an excellent

approximate solution for t ¿ 1 by changing (4.8)2 to be

v ≈ V +
1

r

{
B0(X)−B0(2Y

−1 −X) + Y B1(X)− Y B1(2Y
−1 −X)

}
,

where B0 and B1 are given by (4.9) and (4.11). Given that 2Y −1−X = (1+r)/(1−
R), this alteration can be thought of as adding an image solution in the domain

−1 ≤ r < 0. The effect of this change is that the new solution now satisfies (4.1)-

(4.3) and (4.6)-(4.7) exactly, but only satisfies (4.4)-(4.5) approximately; however,

the errors from (4.4)-(4.5) are exponentially small in Y as Y → 0+.

4.3.2 Slow diffusion limit of small-time analysis

In the limit κ → 0, the transcendental equation (4.10) becomes

γ(α− σ(1− δ)− δV ) =
1

L`

e−γ/2

and the constant c1 in (4.12) becomes

c1 =
γ(α + δσ − δV ) + σ

3 + γ
.

These two results agree with the small-time analysis of the one-phase problem studies

in Chapter 3, which is as expected.

4.4 Large Stefan number limit

In this section we generalise the large Stefan number analysis used in Chapter 2,

which was used for the classical two-phase problem, to allow for surface tension on

the solid-melt interface. In this limit the interface moves slowly, because of the large

amount of latent heat being absorbed there. For early stages the surface tension has

no qualitative effect on the melting process, and the details follow Chapter 2 very

closely. For later stages, the temperature in the solid phase decays very quickly to

zero for the classical case σ = 0; however, for σ 6= 0 the leading order temperature in

the solid follows the variable melting temperature, and correction terms ultimately

lead to superheating. That is, after some point in time we find the temperature in

the solid phase will be everywhere greater than the melting temperature.
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4.4.1 Time-scale t = O(1)

On the first time-scale, which is t = O(1), heat diffuses a distance O(1) (provided

κ = O(1)), but the interface only propagates a distance O(α−1/2). Thus a boundary

layer develops near r = 1.

4.4.1.1 Inner region, 1− r = O(α−1/2)

For the inner region we scale the spatial variables as r = 1 − α−1/2r̃, R(t) = 1 −
α−1/2R̃(t), and write

u ∼ ũ0(r̃, t) +
1

α1/2
ũ1(r̃, t) + O(α−1), v ∼ 1

α1/2
ṽ1(r̃, t) + O(α−1),

R̃ ∼ R̃0(t) +
1

α1/2
R̃1(t) + O(α−1) as α →∞.

The leading order problem for ũ0, namely

∂2ũ0

∂r̃2
= 0 in 0 < r̃ < R̃0, (4.14)

ũ0 = 1 on r̃ = 0, ũ0 = 0,
∂ũ0

∂r̃
= −dR̃0

dt
on r̃ = R̃0, (4.15)

has the solution

ũ0 = 1− r̃

R̃0

, R̃0 =
√

2t. (4.16)

Note that the solution is independent of the surface tension σ, and is thus identical

to that given in Chapter 2.

The next order problems are

∂2ũ1

∂r̃2
= 2

∂ũ0

∂r̃
in 0 < r̃ < R̃0,

∂2ṽ1

∂r̃2
= 0 in r̃ > R̃0, (4.17)

with boundary conditions

ũ1 = 0 on r̃ = 0, (4.18)

ũ1 + R̃1
∂ũ0

∂r̃
= −σR̃0, ṽ1 = −σR̃0,

∂ũ1

∂r̃
− κ

∂ṽ1

∂r̃
= −dR̃1

dt
on r̃ = R̃0, (4.19)

ṽ1 ∼ ã1(t)r̃ as r̃ →∞. (4.20)

The function ã1(t) will be determined by matching with the outer region, as de-

scribed below.
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In terms of ã1(t) the solutions to (4.17)-(4.20) are

ũ1 = − 1

R̃0

r̃2 +

(
1− σ +

R̃1

R̃2
0

)
r̃, ṽ1 = ã1(r̃ − R̃0)− σR̃0,

with R̃0 given in (4.16) and R̃1 satisfying the differential equation

dR̃1

dt
+

R̃1

R̃2
0

= 1 + σ + κã1 (4.21)

and initial condition R̃1(0) = 0.

4.4.1.2 Outer region, 1− r = O(1)

The outer region is for 1− r = O(1). Here we write v = v̄(r, t), where

∂v̄

∂t
= κ

(
∂2v̄

∂r2
+

2

r

∂v̄

∂r

)
in 0 < r < 1,

v̄ = 0 on r = 1,
∂v̄

∂r
= 0 on r = 0, v̄ = V at t = 0.

The solution for v̄ is

v̄ =
2V

πr

∞∑
n=1

(−1)n+1

n
sin(nπr)e−n2π2κt. (4.22)

4.4.1.3 Matching between regions

By rewriting (4.22) in inner variables (r̃, t) and expanding as α →∞ we find

ṽ1 ∼ 2V r̃

∞∑
n=1

e−n2π2κt as r̃ →∞.

Thus matching between the two regions gives

ã1 = 2V
∞∑

n=1

e−n2π2κt, ṽ1 = 2V (r̃ − R̃0)
∞∑

n=1

e−n2π2κt − σR̃0. (4.23)

By substituting ã1 and R̃0 into equation (4.21) and we obtain the moving boundary

location, i.e.

R̃1 =
2

3
(1 + σ)t + V

∞∑
n=1

{
2e−n2π2κt

n2π2
− erf

(
πn
√

κt
)

n3π5/2κ1/2t1/2

}
.
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4.4.1.4 Summary of time-scale t = O(1)

On the time-scale t = O(1) we see that near the moving boundary the temperature

in both phases has an algebraic dependence on the small parameter α−1/2. Further-

more, the two phases are coupled, although to leading order both the temperature

in the solid and location of the free boundary are independent of the liquid phase.

Note that the inclusion of surface tension has no qualitative effect on the solution

on this time-scale.

4.4.2 Time-scale t = O(α)

On the time-scale t = O(α) the solid-melt interface moves a distance O(1). We

rescale time as t = αt̂, where t̂ = O(1), and look for solutions of the form

T` = û0(r, R) +
1

α
û1(r, R) + O(α−2), Ts = v̂0(r,R) +

1

α
v̂1(r, R) + . . . + ŵ(r, R; α),

(4.24)

t̂ = t̂0(R) +
1

α
t̂1(R) + . . . + τ̂(R; α) as α →∞. (4.25)

The ellipses in (4.24)-(4.25) denote terms which are O(α−2) and independent of the

initial temperature V , while the terms ŵ(r, R; α) and τ̂(R; α) are exponentially small

in α (and will depend on V ).

The problems for ûi and v̂i (i = 0, 1) are all elliptic (with no initial conditions);

they are

1

r2

∂

∂r

(
r2∂û0

∂r

)
= 0 on R < r < 1,

1

r2

∂

∂r

(
r2∂v̂0

∂r

)
= 0 on 0 < r < R,

û0 = 1 on r = 1, û0 = v̂0 = σ

(
1− 1

R

)
on r = R,

∂v̂0

∂r
= 0 on r = 0,

t̂′0

(
∂û0

∂r
− κ

∂v̂0

∂r

)
= −1 on r = R,

1

r2

∂

∂r

(
r2∂û1

∂r

)
=

1

t̂′0

∂û0

∂R
on R < r < 1,

1

r2

∂

∂r

(
r2∂v̂1

∂r

)
=

1

t̂′0

∂v̂0

∂R
on 0 < r < R,

û1 = 0 on r = 1 û1 = v̂0 = 0 on r = R,
∂v̂1

∂r
= 0 on r = 0,

t̂′1

(
∂û0

∂r
− κ

∂v̂0

∂r

)
+ t̂′0

(
∂û1

∂r
− κ

∂v̂1

∂r

)
=

(1− δ)σ

R
on r = R.
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By solving the ordinary differential equations (ODEs) with appropriate boundary

conditions involving û0 and v̂0, we can obtain û0. v̂0 and t̂0. Then substitute û0. v̂0

and t̂0 into the other ODEs and we can obtain û1. v̂1 and t̂1. Based on this ideas,

we obtain the solutions

û0 =
1

r

[
1−

(
1− r

1−R

)]
+ σ

(
1− 1

r

)
, (4.26)

v̂0 = σ

(
1− 1

R

)
(4.27)

t̂0 = −σ2(1−R)

(1− σ)3
+

(1− 2σ)(1−R)2

2(1− σ)2
− (1−R)3

3(1− σ)
− σ2 ln [R + σ(1−R)]

(1− σ)4
(4.28)

û1 = −R + σ(1−R)

6rR2

(
1− r

1−R

) [
1−

(
1− r

1−R

)2
]

, (4.29)

v̂1 = −σδ[R + σ(1−R)]

6κR4(1−R)
(r2 −R2) (4.30)

t̂1 =
1− δσ − 3σ(1− δ)

3

{
σ(1−R)

(1− σ)2
+

(1−R)2

2(1− σ)
+

σ ln [R + σ(1−R)]

(1− σ)3

}
(4.31)

The function ŵ(r,R; α) satisfies

1

α

∂ŵ

∂t̂
=

κ

δ

(
∂2ŵ

∂r2
+

2

r

∂v

∂ŵ

)
in 0 < r < R,

∂ŵ

∂r
= 0 on r = 0, ŵ = 0 on r = R,

and an initial condition which comes from matching with the first time-scale. For

this problem we may think of R as being a given function of t̂. As explained in

Chapter 2, in the limit α → ∞ we may write ŵ ∼ e−αg(t̂) (ŵ0(ρ) + O(α−1)), where

ρ = r/R to derive an eigenvalue problem for ŵ0. The result is that

ŵ ∼ kR

r
sin

(πr

R

)
exp

{
−π2κα

δ

∫ t̂

0

dt̂

R2

}
as α →∞, (4.32)

where k is a constant determined as follows. By writing out Ts (given by (4.24),

(4.27)-(4.30) and (4.32)), in the variables used on the first time-scale, we find

Ts ∼ 1

α1/2

(
−σR̃ + kπ(r̃ − R̃)e−π2κR̃2/2δ

)
,

so by matching with ṽ1 in (4.23) we conclude that k = 2V/π. Finally, we calculate
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τ̂ via the condition

dτ̂

dR
∼ −κ

(
∂û0

∂r

)−2
∂ŵ

∂r
on r = R,

which gives

τ̂ ∼ 2κV

∫ 1

R

ξ3(1− ξ)2

[ξ + σ(1−R)]2
exp

{
π2κα

δ

[
1− ξ

1− σ
+

ln[ξ + σ(1− ξ)]

(1− σ)2

]}
dξ, as α →∞.

(4.33)

4.4.2.1 Summary of time-scale t = O(α)

On the time-scale t = O(α) we see that the temperature in both phases has an

algebraic dependence on the small parameter α−1, although the terms involving V

are exponentially small in α. The implication is that for large Stefan numbers the

melting process ultimately ‘forgets’ the initial condition v = V , and henceforth the

temperature in the solid phase is driven by surface tension alone. Furthermore,

given that v̂0 + v̂1/α is parabolic in shape with a maximum at r = 0, the solid

becomes superheated, with the temperature everywhere greater than the melting

temperature.

4.5 Numerical results

The problem (4.1)-(4.7) is solved numerically with a front-fixing method [32]. As

a test of the scheme, solutions for the classical case σ = 0 are computed using an

enthalpy method, with the two different numerical approaches agreeing quite well

over the full range of parameter values. Note that the enthalpy method cannot be

applied to the more general problem with σ 6= 0.

Typical temperature profiles are drawn in Fig. 4.1 for the case α = 1, κ = 1,

δ = 1, V = −1, σ = 0.1. In part (a), numerical solutions are compared with the

small-time approximation derived in Section 4.3, and they are seen to agree well

with each other. On this time-scale the melting temperature is almost constant,

and so the surface tension has no significant qualitative effect on the solutions. For

later times, numerical profiles are drawn in part (b) using the same parameters. We

see that as the melting temperature decreases, there is a point in time after which

the solid is superheated, with the temperature everywhere greater than the melting

temperature. We believe that this phenomenon is followed by a form of blow-up
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with ∂Ts/∂r(R, t) → −∞, Ṙ → −∞ as R → R+
c (with t < ∞), where Rc > 0 is

some critical radius. This point is further discussed below.

A representative solution for large Stefan number is presented in Fig. 4.2. Here

the Stefan number is α = 10, and the other parameters are the same as in Fig. 4.1.

Included in the figure is the numerical solution, as well as the large Stefan number

approximation given in Section 4.4. We see the asymptotic solution agrees extremely

well with the numerical solution, except for late times in the liquid phase. Note the

parabolic shape of the temperature in the solid phase for the profile with R = 0.1.

Although not entirely clear on this scale, the curve is concave down, meaning the

solid is superheated at that stage. Again, we predict the solution will cease to exist

before complete melting takes place, however we have observed that the critical

radius Rc decreases as the Stefan number increases. We expect that Rc → 0+ as

α →∞, since the infinite latent heat limit implies the interface will always be able

to absorb the surrounding heat energy, thereby preventing blow-up. See Section 4.6

for a related discussion.

It is of interest to compare numerical solutions of (4.1)-(4.7) for a small value of

κ to the corresponding solutions of the one-phase problem derived in Chapter 3 (see

also Evans & King [89]) via the singular limit κ →∞. This is done in Fig. 4.3 using

the same parameters as Fig. 4.1, except that κ = 0.05. In this figure the dot-dashed

curves in the liquid phase represent numerical solutions to the one-phase problem,

while dot-dashed curves in the solid phase are drawn using asymptotic results given

in [89] and Chapter 3, namely

T̃s ∼ V +

[
σ

(
1− 1

R

)
− V

]
exp

(
δṘ(R− r)

κ

)
,

where the interface speed Ṙ is taken from the numerical solution to the one-phase

problem. The agreement between these two approaches is excellent. Again, it is

worth noting how superheating develops in the solid phase, which we expect leads

to blow-up, as described above. In Chapter 3, it is suggested that in the limit

κ → 0, the blow-up will occur at the critical radius Rc = σ/(α + σ − V ). Using the

parameter values used for this figure, that would be approximately Rc = 0.048. The

profile drawn in the figure for R = 0.05 appears to be very close to blow-up, which

is consistent with the one-phase prediction.
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In order to illustrate a solution for a small Stefan number, and also to indicate

more clearly the behaviour of the melting process for late times, Fig. 4.4 presents

temperature profiles for α = 0.1, κ = 1, δ = 1, V = −1 and σ = 0.05. For

these parameter values, the numerical results suggest that finite-time blow-up will

occur approximately between R = 0.12 and 0.13. A characterising feature of the

solutions with small Stefan number is that blow-up appears to occur very soon

after the solid becomes superheated. We see this in part (b) of this figure, where a

approximately flat profile for R = 0.2 evolves very quickly to one which appears to

have an unbounded temperature gradient in the blow-up limit. Figure 4.5 illustrates

the dependence of the interface speed Ṙ on the particle radius R for the same

parameters. The figure shows that |Ṙ| appears to blow up at approximately between

R = 0.12 and 0.13.

4.6 Discussion

We have considered the Stefan problem for spheres, including the effects of surface

tension, motivated in some part by experimental observations concerning the melting

of nanoparticles, as reported by Kofman et al. [7]. By setting up experiments based

on dark-field electron microscopy, Kofman et al. [7] found that once the temperature

of the particle reached a certain value, the remaining solid core melted abruptly. It

may be that our prediction of superheating in the solid particles offers a possible

explanation for these peculiar observations.

A most interesting result of our study is that the addition of surface tension

in the full two-phase Stefan model leads to superheating in the solid phase, and

in fact our numerical computations suggest that the solution will cease to exist

when the particle radius reaches some critical value Rc (with t < ∞). This form of

finite-time blow-up is well-known to occur in some one-dimensional Stefan problems

with superheating. For example, consider the ill-posed one-phase problem (without

surface tension)
∂Ts

∂t
=

κ

δ

∂Ts

∂x
in 0 < x < s(t), (4.34)

Ts = 0, κ
∂Ts

∂x
= α

ds

dt
on x = s(t),

∂Ts

∂x
= 0 on x = 0, (4.35)

with the initial condition Ts = V (x) > 0. It is known (see Fasano & Primicerio
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[107], Fasano et al. [108] and Fasano et al. [109], for example) that blow-up will

occur with ṡ → −∞ as s → sc, where sc is some critical size of the domain, if

Q =

∫ 1

0

(V (x)− α) dx > 0.

In this case there is initially more heat energy in the solid than is required by the

solid-melt interface to melt the solid completely. Furthermore, this form of blow-up

is still possible for Q ≤ 0 if, for example, the initial condition V (x) has a sufficiently

high peak near x = 1. Here the situation is that there is a large amount of heat

energy concentrated near the interface, and this heat cannot be conducted away fast

enough to prevent blow-up. In a similar vein, for our own problem it may be that the

melting temperature decays sufficiently quickly so that blow-up will always occur,

regardless of the initial temperature, as there will come a time when too much heat

energy is concentrated near the interface. The exception will be the limiting case

α →∞, for which there can never be more heat in the solid than is required to melt

it, and presumably blow-up will not occur. We leave these issues to be dealt with

elsewhere.

We note that the complete asymptotic structure of (4.34)-(4.35) near blow-up

has been documented by King & Evans [88] and Herrero & Velázquez [110], for

example, with the use of a Baiocchi transform. The inclusion of surface tension in

our model prevents such an approach here, and it is expected that the corresponding

analysis for our problem will be more complicated. Again, we leave this aspect of

the problem for further research.

It is worth emphasising that the motivation for including surface tension in some

other studies has been to regularise the ill-posed problem of melting a superheated

solid (or, equivalently, freezing a supercooled liquid), with the goal of smoothing

(unphysical) singularities, or preventing blow-up from occuring. In contrast, the

present melting problem (with zero surface tension) is well-posed, and it is in fact

the inclusion of surface tension that drives the superheating, and hence is responsible

for the blow up of solutions so that complete melting can take place. This appears

to be a novel feature of the model. It may be that the addition of some other form

of regularisation mechanism (such as kinetic undercooling) in our problem would

enable the blow-up to be suppressed, so that the solution could be continued past
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the blow-up region in the classical sense.

A number of points regarding one-phase models are worth repeating. First, when

the effects of surface tension are included at the solid-melt interface, there can never

be a true one-phase problem, as there will be always be temperature variations in

both phases. However, Evans & King [89] derived a one-phase problem that arises

by taking the singular limit of slow conduction in the solid phase (κ → 0), and

this problem was analysed in Chapter 3 for radially symmetric geometries. The

present chapter provided numerical results that show strong agreement between the

one-phase model and the full two-phase model for small values of κ. As mentioned

in the Introduction, it is noteworthy that some authors treat the one-phase problem

that arises by setting κ = 0 in (4.5) and ignoring (4.2), however this problem does

not conserve heat at the interface. For example, Herraiz et al. [97] analysed the

near-complete-melting limit of that (unphysical) one-phase problem. There is no

finite-time blow-up for that problem, and the scalings derived by Herraiz et al. [97]

are not appropriate to either the one-phase problem treated in Chapter 3 or the full

two-phase problem studied presently.

It would be particularly interesting to generalise the current study to the problem

of melting an arbitrary shaped three-dimensional particle. For the classical case with

zero surface tension, the one-phase problem has been considered by McCue et al.

[93] and Andreucci et al. [104] . In that case the solution continues to exist right up

to complete melting, and these authors show that in general, the solid-melt interface

approaches an ellipsoid in shape in the near-complete-melting limit. However, given

the numerical results presented in the present chapter, one may expect the solution

for the more general three-dimensional problem to blow-up in a similar manner,

and it may be that the surface tension drives the melting process to be radially

symmetric just before blow-up, regardless of the initial geometry. These questions

remain unanswered, and are left for future research.
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Figure 4.1: Temperature profiles for α = 1, κ = 1, δ = 1, V = −1, σ = 0.1. In part
(a) the solid curves represent the numerical solution, while the dot-dashed curves
are the small-time approximations. Part (b) shows only numerical solutions. The
very thin curve in both parts denotes the melting temperature.
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Figure 4.2: Temperature profiles for α = 10, κ = 1, δ = 1, V = −1, σ = 0.1.
The solid curves represent the numerical solution, while the dot-dashed curves come
from the large Stefan number asymptotics. The very thin curve denotes the melting
temperature.
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Figure 4.3: Temperature profiles for α = 1, κ = 0.05, δ = 1, V = −1, σ = 0.1.
The solid curves indicate the numerical solution to the full two-phase problem (4.1)-
(4.7), while the dot-dashed curves represent numerical solutions to the limiting the
one-phase problem derived in Chapter 3.
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Figure 4.4: Temperature profiles for α = 0.1, κ = 1, δ = 1, V = −1, σ = 0.05.
The thick curves represent the numerical solution, while the thin curve denotes the
melting temperature. Part (a) is drawn for R = 0.2, 0.4, 0.6, 0.8 and 0.9, while part
(b) is for R = 0.13, 0.17 and 0.2.
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σ = 0.05.



Chapter 5

Two-phase Stefan problem with
cylindrical symmetry, including
the effects of surface tension

5.1 Introduction

The goal of this chapter is to present, for the first time, analytical and numerical

results for the full two-phase Stefan problem of melting a cylindrical particle, includ-

ing the effects of interfacial or surface tension through a Gibbs-Thomson condition

(1.1) applied on the solid-melt interface. We note that the motivation for including

surface tension in many other studies has been to regularise the ill-posed problem of

freezing a supercooled liquid, for example in the context of crystal formation (Gupta

[27]). However, the present melting problem is well-posed, and here the motivation

comes from understanding size-dependent thermal effects on the nanoscale, with the

goal of explaining some peculiar experimental observations such as abrupt melting

of nanoparticles.

Chapter 5 is divided into six sections. In Section 5.2 the problem for the two-

phase melting of cylindrical nanoparticle is described, and these are analysed using

a small-time perturbation expansion in Section 5.3, and then using a large Ste-

fan asympototics in Section 5.4. The numerical results and a short discussion are

presented in Sections 5.5 and 5.6.

5.2 Problem description and governing equations

The geometry for the melting process under consideration is illustrated in Fig. 3.1.

We suppose the cylindrical nanoparticle is initially of radius a∗, and at a uniform

86
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temperature T ∗
i . Then at time t∗ = 0 the temperature on the surface r∗ = a∗ is

suddenly raised to T ∗
a , and subsequently held there at that value. Provided that T ∗

a

is above the melting temperature, the particle will begin to melt, with a solid-melt

interface r∗ = R∗(t∗) propagating from r∗ = a∗ towards the centre of the particle.

By introducing the same dimensionless variables and parameters defined in Chap-

ters 3 and 4, the two-phase Stefan problem for the melting of cylindrical nanopar-

ticles reduces to solving the heat conduction equations

∂T`

∂t
=

∂2T`

∂r2
+

1

r

∂T`

∂r
in R(t) < r < 1, (5.1)

∂Ts

∂t
=

κ

δ

(
∂2Ts

∂r2
+

1

r

∂Ts

∂r

)
in 0 < r < R(t), (5.2)

subject to the the same boundary conditions given in equations (4.3)-(4.7).

5.3 Small time limit

In [49] and [51], one small-time perturbation method is applied to the one-phase

Stefan problem, and in Chapters 2 and 4 another small-time approaches are utilized

to obtain the analytical solutions for the Stefan problem in a spherical domain.

In this section we generalise the above studies to the full two-phase problem with

surface tension in a cylindrical domain.

5.3.1 Method 1

Our analysis follows Section 4.3.1 closely by using the same variables u, v, X, Y ,

A0, A1, B0 and B1.

After substituting u, v, X and Y into the governing equations (5.1)-(5.2) and

(4.5), we find that A0, A1, B0 and B1 satisfy the coupled ordinary differential equa-

tions

A′′
0 + γXA′

0 = 0, A′′
1 + γ(XA′

1 − A1) =
a1 − γα

α− σ(1− δ)
XA′

0 − A′
0,

κ

δ
B′′

0 + γXB′
0 = 0,

κ

δ
B′′

1 + γ(XB′
1 −B1) =

a1 − γα

α− σ(1− δ)
XB′

0 −
κ

δ
B′

0,

where

γ = −A′
0(1)− κB′

0(1)

α− σ(1− δ)
, a1 = A′

1(1)− κB′
1(1) + κV.
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From (4.6)-(4.4), (4.7), we have the boundary conditions

A0 = 1, A1 = 0, on X = 0,

A0 = 0, A1 = −σ, B0 = −V, B1 = V − σ on X = 1,

B0 = o(1), B1 = o(X), as X →∞.

We obtain the same leading order solutions and transcendental equation as (4.9) and

(4.10) in Section 4.3. This means that the melting process of cylindrical particles

is similar to that of spherical ones in a small time. The correction terms for the

cylindrical case are

A1 = −σX + c1 X
(
1− eγ(1−X2)/2

)
− X

∫ 1

X
e−γt2/2

2Ll

,

B1 = c2

[
e−δγX2/2κ −

√
δγπ

2κ
X erfc

(√
δγ

2κ
X

)]
+

(
c3X +

3κ

2δ

)
e−δγX2/2κ, (5.3)

where

c1 =
1

3γ

(
γα− a1

β

)
1

L`

e−γ/2, c3 =
V

3γLs

(
γα− a1

β

)
, (5.4)

c2 =
κ

δγLs

{
σ − V

[
1− 1

3γ

(
γα− a1

β
+

3κ

2δ

)
1

Ls

e−δγ/2κ

]} [
1− κ

δγLs

e−δγ/2κ

]−1

,

γα− a1

β
=

3

(
γα + σ − κV + κ(V − σ)

[
1− κ

δγLs
e−δγ/2κ

]−1
)

(3 + γ)β + V
γLs

e−δγ/2κ

{
κ

[
1− κ

δγLs
e−δγ/2κ

]−1

− κγ − κ + δγ

} .

From the Stefan condition (4.5) we have the small time behaviour

t =
1

2γ
(1−R)2 − 1

3γ2

(
γα− a1

β

)
(1−R)3 + O((1−R)4) as R → 1−. (5.5)

As discussed in Section 4.3.1 of Chapter 4, the solution described above does

not satisfy the no-flux condition (4.6) at r = 0. By using the same approach, we

obtain the image solutions which satisfies (5.1)-(5.2),(4.3) and (4.6)-(4.7) exactly,

but only satisfies (4.4)-(4.5) approximately; however, the errors from (4.4)-(4.5) are

exponentially small in Y as Y → 0+.
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5.3.2 Method 2

The key first step in the analysis is to transform the moving boundary problem to

one in which the domain is fixed. Following Kucera & Hill [91] the following change

of variables are made

ξ =
ln r

ln R
, τ = ln R, (5.6)

with the result being that the liquid and solid phases are fixed into the domains

0 ≤ ξ ≤ 1 and 1 ≤ ξ < ∞, respectively. The temperature in each of the phases is

expressed in terms of the new independent variables as

T`(r, t) = φ(ξ, τ), Ts(r, t) = V (1− θ(ξ, τ)) . (5.7)

Substituting (5.7) into the governing equations (5.1)-(5.2), together with the

application of the Stefan conditions (4.5), leads to the partial differential equations

∂2φ

∂ξ2
=

e(2ξ−1)τ

αeτ − σ(1− δ)

[
∂φ

∂ξ
(1, τ) + κV

∂θ

∂ξ
(1, τ)

] [
ξ
∂φ

∂ξ
− τ

∂φ

∂τ

]
, (5.8)

κ

δ

∂2θ

∂ξ2
=

e(2ξ−1)τ

αeτ − σ(1− δ)

[
∂φ

∂ξ
(1, τ) + κV

∂θ

∂ξ
(1, τ)

] [
ξ
∂θ

∂ξ
− τ

∂θ

∂τ

]
, (5.9)

which are subject to the following boundary and initial conditions

φ(1, τ) = σ(1− e−τ ), φ(0, τ) = 1, (5.10)

θ(1, τ) = 1− σ

V
(1− e−τ ),

∂θ

∂ξ
→ 0 as ξ →∞, (5.11)

θ → 0 as ξ →∞, τ → 0. (5.12)

The Stefan condition becomes

[
∂φ

∂ξ
(1, τ) + κV

∂θ

∂ξ
(1, τ)

]
[τ(σ(1− δ)− αeτ )]−1 =

dR

dt
, (5.13)

from which, given the solutions for φ and θ, the location of the solid-melt interface

can be obtained.

The next step in the perturbation process is to express the functions φ(ξ, τ) and

θ(ξ, τ) in the power series form

φ(ξ, τ) =
∞∑

n=0

An(ξ)τn, θ(ξ, τ) =
∞∑

n=0

Bn(ξ)τn, (5.14)

noting that the limit τ → 0 is equivalent to the small-time limit t → 0. The expres-
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sions for φ(ξ, τ) and θ(ξ, τ) in (5.14) are substituted into the governing equations

(5.8)-(5.9) and, after replacing the exponential terms with their Taylor series expan-

sions, the result is a pair of ordinary differential equations at each order in τ . The

resulting leading order equations are

A
′′
0 + µξA

′
0 = 0, B

′′
0 + γξB

′
0 = 0, (5.15)

while the correction terms satisfy

A
′′
n + µ

[
ξA

′
n − nAn

]
=

1

β

n∑
j=1

Γj(ξ)
[
ξA′

n−j − (n− j)An−j

]
, (5.16)

B
′′
n + γ

[
ξB

′
n − nBn

]
=

δ

κβ

n∑
j=1

Γj(ξ)
[
ξB′

n−j − (n− j)Bn−j

]
, (5.17)

where β = α− σ(1− δ) and the functions Γj(ξ) are defined as

Γj(ξ) =

j∑

k=0

akPj−k(ξ) for j = 1, 2, . . . (5.18)

In the above the constants an, µ and γ are given by

an = A
′
n(1) + κV B

′
n(1), µ =

−a0

α− σ(1− δ)
, γ =

δ

κ
µ, (5.19)

and the functions Pn(ξ) are defined as coefficients of the Taylor series expansion

[α− σ(1− δ)] e(2ξ−1)τ

αeτ − σ(1− δ)
=

∞∑
n=0

Pn(ξ)τn.

For the first few values of n these functions are

P0 = 1, P1 = 2ξ − 1− λ, P2 =
1

2
(2ξ − 1− λ)2 +

1

2
λ(λ− 1),

where the constant λ is defined by

λ =
α

α− σ(1− δ)
.

If σ = 0 (no surface tension) then the constant λ = 1 and the system of equations

for the An and Bn described above reduces to that given in Kucera & Hill [91], as

expected. Furthermore, since σ appears in each case as part of a product with 1−δ,

the same reduction occurs if δ = 1 (specific heat capacity is the same in both liquid

and solid phases). That is to say if we are studying the effect of nonzero surface
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tension, but take the (often reasonable) assumption that δ = 1, then the format

of the governing ordinary differential equations does not change. The boundary

conditions, however, will change, and these will alter the solutions for the An and

Bn at each order.

The appropriate boundary conditions for (5.15)-(5.17), which are derived by

applying (5.10)-(5.12), are

A0(1) = 0, An(1) =
σ(−1)n+1

n!
for n ≥ 1, (5.20)

B0(1) = 1, Bn(1) =
σ(−1)n

n!V
for n ≥ 1, (5.21)

A0(0) = 1, An(0) = 0 for n ≥ 1, (5.22)

B0(ξ) → 0, B
′
n(ξ) → 0 as ξ →∞ for n ≥ 0. (5.23)

Finally, from the Stefan condition (5.13) we obtain the speed of the liquid/solid

interface in terms of an as

[τ(σ(1− δ)− αeτ )]−1
∞∑

n=0

anτ
n =

dR

dt
. (5.24)

Thus the perturbation approach has reduced the two-phase Stefan problem with

surface tension into one of determining the solutions to the systems of coupled

ordinary differential equations (5.15) and (5.16) and (5.17), which are subject to the

boundary conditions (5.20)-(5.23).

The leading order solutions, found by solving the homogeneous equations (5.15)

together with the appropriate boundary conditions, are given by

A0(ξ) =
1

L`

∫ 1

ξ

e−µυ2/2dυ, , B0(ξ) =
1

Ls

∫ ∞

ξ

e−γυ2/2dυ, (5.25)

where the error function erf(z) and constants L` and Ls are defined as

erf(z) =
2√
π

∫ z

0

e−z2

dz, L` =

∫ 1

0

e−µυ2/2dυ, Ls =

∫ ∞

1

e−γυ2/2dυ, (5.26)

and from (5.19)3 we find that the constant µ satisfies the transcendental equation

e−µ/2

L`

+ κV
e−δµ/2κ

Ls

= [α− σ(1− δ)] µ. (5.27)

After solving the above equation, we know A0(ξ) and B0(ξ) and then a0. In a similar

way, we can calculate a1, a2,...an. By substituting a1, a2,...an into (5.24), we obtain
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the interface speed dR/dt and the relation between the interface position R and the

time t.

A method for solving (5.16)-(5.17) for each of the correction terms is described in

Davis & Hill [51]. Essentially each of the homogeneous equations is solved by making

the substitution z = −µξ2/2 for the An and z = −γξ2/2 for the Bn, leading to the

hypergeometric equation. Given the well-known linearly independent solutions to

this equation, a particular solution is found in the usual way by applying variation of

parameters. Here we only consider n = 1, for which the details are straightforward.

In this case (5.16) and (5.17) are

A
′′
1 + µ

[
ξA

′
1 − A1

]
=

1

α− σ(1− δ)
[2a0ξ − a0(1 + λ) + a1] ξA

′
0, (5.28)

B
′′
1 + γ

[
ξB

′
1 −B1

]
=

δ

κ [α− σ(1− δ)]
[2a0ξ − a0(1 + λ) + a1] ξB

′
0,

which are solved together with the boundary conditions (5.20) and (5.22) to give

A1(ξ) =
ξ

6L`

[
6σL` +

(
2a1

a0

+ 1− 2λ

)
e−µ/2 − 3

∫ 1

ξ

e−µυ2/2dυ (5.29)

+

(
2λ− 1− 2a1

a0

+ 3(1− ξ)

)
e−µξ2/2

]
,

B1(ξ) =
1

6Ls

{ 2a1

a0
+ 1− 2λ + 3

γ
− 6σ1e

γ/2Ls

1− γLseγ/2

[
e−

γξ2

2 −
√

γπ

2
erf

(√
γπ

2
ξ

)]

−
[
3ξ2 +

(
2a1

a0

− 2− 2λ

)
ξ +

3

γ

]
e−γξ2/2

}
,

A
′
1(1) = σ − e−µ/2{2a1 + µ[α + σ(1− δ)]}

6Ll[α− σ(1− δ)]
, (5.30)

B
′
1(1) =

−µ

6(κ/δ − µLseγ/2)

[
2a1

a0

+ 1− 2λ +
3

γ
− 6σ1Lse

γ/2

]

− e−γ/2

6Ls

(γ − 1)

[
2λ− 1− 2a1

a0

]
.

From (5.19) and above results a1 is solved to be

a1 =
a0

2





(2λ− 1)M − 6σ
µ

+ 3δV
1−γLseγ/2

(
1
γ
− 2σ1Lse

γ/2
)

M + 3[α− σ(1− δ)]



 , (5.31)

M =
e−µ/2

Ll

+
κV e−γ/2

Ls

(
δ

κ
− 1

µ

)
− δV

(1− γeγ/2Ls)
.

Equations (5.25)1 and (5.29)1 give reasonable results for the temperatures in the

liquid phase. However, from (5.25)2 and (5.29)2, we see that there is a singular
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point r = 0 . When r = 0, ξ →∞, B0(ξ) → 0, B1(ξ) → 0, this means Ts(0, t) ≡ V .

In order to avoid this problem, we use another fucntions and variables

ψ`(X, Y ) = φ(ξ, τ), ψs(X,Y ) = θ(ξ, τ), X =
1− r

1−R
, Y = 1−R, (5.32)

where ψ`(X,Y ) and ψs(X, Y ) are also assumed to have series solutions

ψ`(X,Y ) =
∞∑

n=0

Ān(X)Y n, ψs(X, Y ) =
∞∑

n=0

B̄n(X)Y n. (5.33)

Then ξ, τ , φ(ξ, τ) and θ(ξ, τ) can be expressed by the new variables X and Y . By

comparing the coefficients of Y , Ān(X) and B̄n(X) can be expressed in terms of

An(X) and Bn(X).

Ã0(X) = A0(X), Ã1(X) ' −A1(X) +
A
′
0(X)X(X − 1)

2
, (5.34)

B̃0(X) = B0(X), B̃1(X) ' −B1(X) +
B
′
0(X)X(X − 1)

2
,

from which we obtain

Ã1(X) = − X

6L`

[
6σL` +

(
2a1

a0

+ 1− 2λ

)
e−µ/2 − 3

∫ 1

X

e−µυ2/2dυ (5.35)

+

(
2λ− 1− 2a1

a0

+ 3(1−X)

)
e−µX2/2

]
− X(X − 1)e−µX2/2

2Ll

,

B̃1(X) = − 1

6Ls

{ 2a1

a0
+ 1− 2λ + 3

γ
− 6σ1e

γ/2Ls

1− γLseγ/2

[
e−

γX2

2 −
√

γπ

2
erf

(√
γπ

2
X

)]

−
[
3X2 +

(
2a1

a0

− 2− 2λ

)
X +

3

γ

]
e−γX2/2

}
− X(X − 1)e−γX2/2

2Ls

The speed of the interface and time can be obtained from (5.24) and (5.6)

dR

dt
' a0 + a1ln(R)

[σ(1− δ)− αR]ln(R)
, t '

∫ R

1

[σ(1− δ)− αξ]ln(ξ)

a0 + a1ln(ξ)
dξ. (5.36)

Here, we use only the first two terms a0 and a1 to approximately obtain the interface

speed dR/dt. Note that dR/dt is singular at both R = 1 and R = σ(1 − δ)/α,

meaning the solid-melt moves with infinite speed at t = 0 (R = 1), slows down

until a minimum speed is reached, and then speeds up again. When δ = cs/cl ≥ 1,

the speed will increase until the Gibbs-Thomson model (1.1) loses its validity. If

δ = cs/cl < 1, R = σ(1−δ)/α. By integration we obtain the relation (5.36)2 between



Chapter 5: Two-phase melting of cylindrical nanoparticles 94

the interface position R and time t .

As mentioned above, in principle it is possible to solve (5.16)-(5.17) for each n,

however as n increases the calculations become lengthy, and we have not attempted

them.

5.4 Large Stefan number limit

In this section we applied the large Stefan number analysis used in Chapters 2-4

to the two-phase melting problem for cylindrical nanoparticles including the surface

tension on the solid-melt interface.

5.4.1 Time-scale t = O(1)

On the first time-scale, which is t = O(1), heat diffuses a distance O(1) (provided

κ = O(1)), but the interface only propagates a distance O(α−1/2). Thus a boundary

layer develops near r = 1. The details follow Section 4.4.1 very closely.

5.4.1.1 Inner region, 1− r = O(α−1/2)

For the inner region we scale the spatial variables as r = 1 − α−1/2r̃, R(t) = 1 −
α−1/2R̃(t), and write

u ∼ ũ0(r̃, t) +
1

α1/2
ũ1(r̃, t) + O(α−1), v ∼ ṽ0(r̃, t) +

1

α1/2
ṽ1(r̃, t) + O(α−1),

R̃ ∼ R̃0(t) +
1

α1/2
R̃1(t) + O(α−1) as α →∞.

The leading order problem for ũ0, namely

∂2ũ0

∂r̃2
= 0 in 0 < r̃ < R̃0,

∂2ṽ0

∂r̃2
= 0 in r̃ > R̃0, (5.37)

ũ0 = 1 on r̃ = 0, ũ0 = 0, ṽ0 = 0,
∂ũ0

∂r̃
−∂ṽ0

∂r̃
= −dR̃0

dt
on r̃ = R̃0, (5.38)

has the solution

ũ0 = 1− r̃

R̃0

, ṽ0 = ã0(t)(r̃ − R̃) as r̃ →∞. (5.39)

The next order problems are

∂2ũ1

∂r̃2
=

∂ũ0

∂r̃
in 0 < r̃ < R̃0,

∂2ṽ1

∂r̃2
=

∂ṽ0

∂r̃
in r̃ > R̃0, (5.40)
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with boundary conditions

ũ1 = 0 on r̃ = 0, (5.41)

ũ1 + R̃1
∂ũ0

∂r̃
= −σR̃0, ṽ1 + R̃1

∂ṽ0

∂r̃
= −σR̃0,

∂ũ1

∂r̃
− κ

∂ṽ1

∂r̃
= −dR̃1

dt
on r̃ = R̃0,

(5.42)

ṽ1 ∼ ã0(t)r̃
2 + ã1(t)r̃ as r̃ →∞. (5.43)

The function ã1(t) will be determined by matching with the outer region, as de-

scribed below.

In terms of ã1(t) the solutions to (5.40)-(5.43) are

ũ1 = − 1

2̃R0

r̃2 +

(
1

2
− σ +

R̃1

R̃2
0

)
r̃, ṽ1 = ã0(r̃

2 − R̃2
0 − R̃1) + ã1(r̃ − R̃)− σR̃0,

with R̃0 given in (5.39) and R̃1 satisfying the differential equation

dR̃0

dt
+

1

R̃0

= κa0,
dR̃1

dt
+

R̃1

R̃2
0

=
1

2
+ σ + κ(2a0R0 + a1) (5.44)

and initial condition R̃0(0) = 0, R̃1(0) = 0.

5.4.1.2 Outer region, 1− r = O(1)

The outer region is for 1− r = O(1). Here we write v = v̄(r, t), where

∂v̄

∂t
= κ

(
∂2v̄

∂r2
+

1

r

∂v̄

∂r

)
in 0 < r < 1,

v̄ = 0 on r = 1,
∂v̄

∂r
= 0 on r = 0, v̄ = V at t = 0.

The solution for v̄ is

v̄ = 2V
∞∑

n=1

e−κβn
2t J0(βnr)

βnJ1(βn)
, (5.45)

where J0 and J1 are the Bessel functions of the order 0 and 1 of the first kind,

respectively, and the βn value is the positive roots of the equation J0(βn) = 0.

5.4.1.3 Matching between regions

By rewriting (5.45) in inner variables (r̃, t) and expanding as α →∞ we find

ṽ0 ∼ 0, ṽ1 ∼ 2V r̃

∞∑
n=1

e−κβ2
nt as r̃ →∞.
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Thus matching between the two regions gives

ã0 = 0, ã1 = 2V
∞∑

n=1

e−κβ2
nt, ṽ1 = 2V (r̃ − R̃0)

∞∑
n=1

e−κβ2
nt − σR̃0. (5.46)

We may now solve (5.44) for the moving boundary location, yielding

R̃1 =
1

3
(1 + 2σ)t + V

∞∑
n=1

{√
πerf

(
βn

√
κt

)

β3
nκ

1/2t1/2
− 2e−κβ2

nt

β2
n

}
.

5.4.1.4 Summary of time-scale t = O(1)

On the time-scale t = O(1) we see that near the moving boundary the temperature

in both phases has an algebraic dependence on the small parameter α−1/2. Further-

more, the two phases are coupled, although to leading order both the temperature

in the solid and location of the free boundary are independent of the liquid phase.

Note that the inclusion of surface tension has no qualitative effect on the solution

on this time-scale.

5.4.2 Time-scale t = O(α)

The solutions are assumed to be the form

T` = û0(r, R) +
1

α
û1(r, R) + O(α−2), Ts = v̂0(r,R) +

1

α
v̂1(r, R) + . . . + ŵ(r, R; α),

(5.47)

t̂ = t̄0(R) +
1

α
t̄1(R) + · · ·+ τ̂(R; α) as α →∞ (5.48)

The problem for ūi and v̄i are

1

r

∂

∂r

(
r
∂ū0

∂r

)
= 0 on R < r < 1,

1

r

∂

∂r

(
r
∂v̄0

∂r

)
= 0 on 0 < r < R,

ū0 = 1, on r = 1, ū0 = v̄0 = σ

(
1− 1

R

)
on r = R,

∂v̄0

∂r
= 0 on r = 0,

t̄
′
0

(
∂ū0

∂r
− κ

∂v̄0

∂r

)
= −1 on r = R,

1

r

∂

∂r

(
r
∂ū1

∂r

)
=

1

t̄
′
0

∂ū0

∂R
on R < r < 1,

1

r

∂

∂r

(
r
∂v̄1

∂r

)
=

1

t̄
′
0

∂v̄0

∂R
on 0 < r < R,

ū1 = 0 on r = 1 ū1 = v̄1 = 0 on r = R,
∂v̄1

∂r
= 0 on r = 0,

t̄
′
1

(
∂ū0

∂r
− κ

∂v̄0

∂r

)
+ t̄

′
0

(
∂ū1

∂r
− κ

∂v̄1

∂r

)
=

(1− δ)σ

R
on r = R.
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We use the same ideas mentioned in Section 4.4.2 and the solutions for the first

order are

ū0 =
(R− 1)σ ln r

R ln R
+

(ln R− ln r)R

R ln R
, (5.49)

v̄0 = σ

(
1− 1

R

)
, (5.50)

t̂0 =
1−R2 + 2R2 ln R

4(1− σ)
− σ(1−R + R ln R)

(1− σ)2
+

σ2

2(1− σ)3
(5.51)

×
{

2 ln

[
R + σ(1−R)

σ

]
ln R + 2dilog

[
R + σ(1−R)

σ

]
+ 2dilog(σ) + (ln σ)2

}
,

and the solutions for the next order are

û1 =
R + σ(1−R)

4R4 ln2 R

[
R + σ(1−R)

ln R
+ σ

]
(5.52)

×
{

1− r2 +

[
r2 −R2 − 1−R2

ln R

]
ln r

}
,

v̂1 = −σδ(R + σ(1−R))

4κR4 ln(R)
(r2 −R2), (5.53)

t̂1 =

∫ 1

R

{[(2ξ2 − 2δξ2)(ln ξ)3 + 2ξ3(ln ξ)2 + (1− 2ξ3 + ξ2) ln ξ + 1 + ξ3 − ξ − ξ2]σ

− ξ[−1− 2ξ2 ln ξ + ξ2 + 2ξ2(ln ξ)2]} dξ

4ξ(ln ξ)2[ξ + σ(1− ξ)]
. (5.54)

The function ŵ(r,R; α) satisfies

1

α

∂ŵ

∂t̂
=

κ

δ

(
∂2ŵ

∂r2
+

1

r

∂v

∂ŵ

)
in 0 < r < R,

∂ŵ

∂r
= 0 on r = 0, ŵ = 0 on r = R,

and an initial condition which comes from matching with the first time-scale dis-

cussed in Section 5.4.1. For this problem we may think of R as being a given

function of t̂. As explained in Chapter 2, in the limit α → ∞ we may write

ŵ ∼ e−αg(t̂) (ŵ0(ρ) + O(α−1)), where ρ = r/R to derive an eigenvalue problem for

ŵ0. The result is that

w̄ = 2V
∞∑

n=1

J0(γnr/R)

γnJ1(γn)
exp

{
−ακγn

2

δ

∫ t̂

0

dt̂

R2

}
, (5.55)

where

∫ t̂

0

dt̂

R2
∼

2dilog
{

σ(1−R)+R
σ

}
+ 2dilog(σ) + 2 ln R ln

{
σ(1−R)+R

σ

}
+ (ln σ)2

2(σ − 1)
,
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and the γn value is the positive roots of the equation J0(γn) = 0. Finally, we

calculate τ̂ via the condition

dτ̂

dR
∼ −κ

(
∂û0

∂r

)−2
∂ŵ

∂r
on r = R,

which gives

τ̂ ∼ 2κV

∫ 1

R

ξ3(ln ξ)2

[ξ + σ(1− ξ)]2
exp

{
γ2

1κα

2δ(σ − 1)

[
2dilog

(
σ(1− ξ) + ξ

σ

)
(5.56)

+ 2dilog(σ) + 2 ln ξ ln

(
σ(1− ξ) + ξ

σ

)
+ (ln σ)2

]}
dξ as α →∞.

5.4.2.1 Summary of time-scale t = O(α)

It can be seen that the melting of cylindrical nanoparticle displays similar behaviours

to spherical nanoparticle melting studied in Chapter 4. on the time-scale t = O(α)

the temperature in the two phases has an algebraic dependence on the small pa-

rameter α−1, although the terms involving V are exponentially small in α. This

means that for large Stefan numbers, the initial condition has little effect on the

later melting stage and the melting process is is driven by surface tension alone.

Furthermore, given that v̂0 + v̂1/α is parabolic in shape with a maximum at r = 0,

the solid becomes superheated, with the temperature everywhere greater than the

melting temperature.

5.5 Numerical results

The two-phase melting problem (5.1)-(5.2) is solved numerically using a front-fixing

method [32]. For the cases without surface tension (σ=0), this method agrees well

with the accurate enthalpy approach [53] in a large range. It should be noted that

the enthalpy method cannot be applied to the cases when the surface tension exists

(σ 6= 0).

The temperature profiles for medium Stefan number (α = 1) are shown in Fig. 5.1

and Fig. 5.2. Fig. 5.1(a) compares the results from the numerical method and the

small-time solution derived in Section 5.3.1. In this time scale, the two methods

agree very well in the liquid and solid phase. With the solid/liquid interface moving

forward, the small-time solution does not work well for the solid phase and thus the

temperature profiles are not shown. From Fig. 5.1(b) it can be seen that during
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the initial melting stage, the particle absorbs heat and the temperatures in the two

phases increase with time. However, the temperature in the solid phase decreases

when the solid/liquid interface comes very close to the centre of the particle. A

local temperature plot for R=0.4 is shown in Fig. 5.2 from which we see that the

temperature in the solid phase has a maximum when r is about 0.29. When the

melting point decreases again, there exists a point after which the particle is super-

heated with all the temperature inside the particle larger than the melting point. A

blow-up is expected to happen when R → R+
c with ∂Ts/∂r → −∞, dR/dt → −∞.

Fig. 5.3 gives typical temperature plots for large Stefan numbers. In this case,

α = 10 and other parameters are the same as those in Fig. 5.1. The short- and long-

time solutions from the numerical front-fixing method are compared with those from

the large Stefan number limit derived in Section 5.4.2. From part (a), for a short-time

scale, the temperatures in the liquid phase obtained from both methods agree well

while the temperatures in the solid phase do not. When the solid/liquid interface

moves forward, the discrepancy between the temperatures in the solid phase from

the two methods reduces. In part (b) the two approaches are in excellent agreement

for the two phases at a large-time scale except the solid phase at a later stage.

We note that when R = 0.1 the temperature gradient at the interface is much less

than that in Fig. 5.1 but a blow-up is still expected to happen when R → R+
c .

By comparing Fig. 5.3(b) with Fig. 5.1(b), we know that when the Stefan number

increases, the critical radius Rc decreases and the the superheating in the solid phase

occurs earlier.

In Fig. 5.4, the two-phase results from the front-fixing method for very small κ

are compared with those from the one-phase numerical solutions derived in Chapter

3. In the present example, κ = 0.05 and other parameters are the same as those

in Fig. 5.1. The solid curves show the two-phase numerical solutions, while the

dashed curves for the liquid phase represent the one-phase numerical solutions and

the dashed curves for the solid phase is drawn from the approximations derived in

Chapter 3. It can be seen that the two-phase and one-phase limiting models are in

good agreement. Except the sudden jump for the temperature near the solid/liquid

interface, the temperature in the inner solid particle, especially near the center

of the particle, does not have great change. From Chapter 3, the critical radius
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is Rc = α/[σδ + α − δV ]=0.048. It should be also noted that when R = 0.05,

∂Ts/∂r → −∞, a blow-up is likely to occur. The critical radius predicted by the

two- and one-phase solutions agree very well.

In order to study the melting behaviour more closely, the case with small Stefan

numbers is also considered and the numerical results are shown in Fig. 5.5. The

plots is drawn for α = 0.1, κ = 1, δ = 1, V = −1, σ = 0.05. Part (b) shows the

temperature evolution in the solid phase near the interface R = 0.13, 0.16 and 0.20.

It can be seen clearly that the blow-up phenomena happens near R = 0.13. Fig. 5.6

presents the speed of the solid/liquid interface. We see that when R > 0.2 the speed

of the interface is relatively smooth and slow while there is large jump especially

when R is about 0.13. This kind of change is reflected by the sudden increase of the

temperature gradient in the solid phase near the interface.

5.6 Discussion

In this chapter we treated the melting of cylindrical nanoparticle as a two-phase

Stefan problem including the effect of the surface tension, triggered by a great deal

of research which indicates that the melting point of nanoparticles shows a size-

dependent characteristic [11, 24, 25, 111, 112], that it is very difficult to measure the

temperature distribution of the particle in the and that some interesting phenomena,

such as abrupt melting [7], may occur in the nanoscale. Kofman et al. [7] found that

when the radius of the solid particle arrives at a certain value, the melting process of

gold nanoparticle is complete ”suddenly”. The analysis of this chapter may provide

a possible explanation for these phenomena.

One aim of this chapter is to obtain the temperature distribution in the two

phases of cylindrical nanoparticles. As the size is very small, it is very difficult to

measure the temperature distribution of the particle in the micro- or nano- scale. For

the short-time scale we can use the small-time perturbation approach to calculate the

temperature distribution while for the large time scale the large Stefan asymptotics

can be utilized to study the melting/freezing of the particle in a cylindrical domain.

In addition to the temperature reduction at the solid/liquid interface when the

particle size becomes small, the inclusion of the surface tension also has a consid-

erable effect on the temperature distribution in the particle, especially in the solid
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phase, leading to superheating in the solid phase. Of course, as the heat exchange

in the particle requires finite time to finish, the abrupt melting does not take place

suddenly. The numerical solutions have shown that when R → R+
c , ∂Ts/∂r → −∞,

dR/dt → −∞ leading to the blow-up in the solid phase.

It should be noted that, generally speaking, the melting point of metallic nanopar-

ticles will never be negative. This means that equation (1.1) will lose its validity

when the solid/liquid interface position R∗ (or R) is very small. The issue when the

Gibbs-Thomson model does not work is left to be determined by other research.

One interesting potential application of nanoparticles is targeted ablation of

tumor cells [111]. Melted particles will release the drug molecules faster than solid

particles because of their higher diffusion coefficient of the drug molecules inside

the liquid carrier. When the nanoparticles enclosing drug molecules arrives at a site

where the temperature is higher than the melting point of the nanoparticle, they will

melt quickly and release the drug load. Note that in physical world, the liquid phase

will flow away when the particle melts, thus in the present chapter the condition of

constant temperature at the outside liquid surface is a ideal state. Therefore, it is

very important to describe the nanoparticle melting dynamically.

It is also of great interest to extend our analysis to other melting or freezing

problems for nanoparticle with different shapes. Cylindrical nanoparticle can be

nanodisk, nanofilm, nanorod or nanowire. As the melting or freezing is sometimes

related to the orientation, it is very important to generalize our study to the problems

of melting an arbitrary shaped three-dimensional particles. This will be tackled in

the future research.
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Figure 5.1: Temperature profiles for α = 1, κ = 1, δ = 1, V = −1, σ = 0.1 at
different positions: (a) is for R=0.85, 0.90 and 0.95; (b) is for R=0.1, 0.4, 0.6 and
0.8. In part (a), the solid curves represent the numerical solution, while the dashed
curves are the small-time approximations. Part (b) shows only numerical solutions.
The very thin curve in both parts denotes the melting temperature.
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Figure 5.2: Local temperature plot when R = 0.4 for the case α = 1, κ = 1, δ = 1,
V = −1, σ = 0.1. The thick curves represent the numerical solution, while the very
thin curve denotes the melting temperature.
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Figure 5.3: Temperature profiles for α = 10, κ = 1, δ = 1, V = −1, σ = 0.1 at
different positions: (a) is for R=0.85, 0.90 and 0.95; (b) is for R=0.1, 0.2, 0.4, 0.6
and 0.8. The solid curves represent the numerical solution, while the dashed curves
come from the large Stefan number asymptotics. The very thin curve denotes the
melting temperature.
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Figure 5.4: Temperature profiles for α = 1, κ = 0.05, δ = 1, V = −1, σ = 0.1
at different positions R=0.1, 0.2, 0.4, 0.6 and 0.8. The solid curves indicate the
numerical solution to the full two-phase problem (4.1)-(4.7), while the dashed curves
represent numerical solutions to the limiting one-phase problem derived in Chapter
3
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Figure 5.5: Temperature profiles for α = 0.1, κ = 1, δ = 1, V = −1, σ = 0.05.
The thick curves represent the numerical solution, while the thin curve denotes the
melting temperature. Part (a) is drawn for R = 0.2, 0.4, 0.6, 0.8 and 0.9, while part
(b) is for R = 0.13, 0.16 and 0.2.
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Figure 5.6: Plot of the interface speed Ṙ versus R for α = 0.1, κ = 1, δ = 1, V = −1,
σ = 0.05.



Chapter 6

Concluding remarks

6.1 Summary

Based on the assumption that heat transfers only via conduction in a pure material,

the melting or freezing of particles, especially nanoparticles, is investigated from the

perspective of Stefan problems. Analytical or semi-analytical methods (small-time

perturbation expansions, large Stefan number limit and integral iterative approach)

and numerical schemes (enthalpy formulation and front-fixing method) are utilized

to study the melting and freezing problems in a spherical or cylindrical domain. The

results from these methods are in good agreement to some extent and show some

interesting results.

6.1.1 Effect of the surface tension on the temperature dis-
tribution

The surface tension has a considerable effect on the temperature distribution. Chap-

ter 2 investigates the classical two-phase solidification problem (the corresponding

melting is equivalent). In this case, the temperature at the solid/liquid interface is

equal to the fusion temperature and the temperature in the liquid phase is always

higher than that in the solid phase. Moreover, the temperatures in the two phases

are a monotone function of time and space.

However, when taking into account the effect of surface tension, the temperature

at the solid/liquid interface decreases when the interface becomes close to the centre

of the nanoparticle, see Chapters 3-5. In addition, the surface tension have a great

effect on the temperature in the particle, especially in the solid phase. Take the

problem studied in Chapters 3-5 for example. During the initial melting stage, the
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particle absorbs heat and the temperature in both phases increases with time. When

the solid/liquid interface moves inward, the temperature at the interface decreases

leading to the decrease of the temperature in the solid phase near the interface.

When the melting temperature continues to decrease, there is a point in time after

which the particle is superheated, with the temperature everywhere greater than

the melting temperature. This is called superheating phenomenon which has been

confirmed in [112, 113, 114].

6.1.2 Effect of the surface tension on the interface speed

Chapter 3 shows that for the melting of nanoparticles, the varying surface tension

does not have a significant effect on the speed of the solid/liquid interface in a small

time. However, as the interface position R decreases, surface tension becomes more

important and has a dramatic effect on the speed of the interface. Moreover, there

exists a critical position with a radius Rc where a blow-up occurs and the speed

of the interface becomes infinite. For the two -phase melting problem studied in in

Chapters 4 and 5, it is still found that a finite blow-up will happen when the interface

comes to a critical position Rc. This may explain the interesting phenomenon of

“abrupt melting” observed in experiments [7].

6.1.3 Potential applications and future research

The study on size-dependent melting of nanoparticles is important not just from a

fundamental point of view. It offers new possibilities for drug delivery and targeted

destruction of cancer tumors: melted particles will release their drug load much

faster than solid particles due to the higher diffusion coefficient of the drug molecules

inside the liquid carrier. When solid particles circulating in the bloodstream reach

a site where the temperature is higher than the melting temperature of the particle

matrix e.g., due to an external warming of that sites they will suddenly melt and

rapidly release their drug load. Such drug delivery systems require carrier particles

with a narrow melting temperature range around approximately 39-40 ◦C.

This thesis mainly deals with nanoparticles with a spherical or cylindrical shape

under certain assumptions, such as their density for the liquid phase is a constant,

and the liquid phase does not flow away. Another important future issue is what



Chapter 6: Concluding remarks 110

is the melting point when the particle size approaches zero. Thus, possible future

research will be undertaken on the following topics:

1. Two/three dimensional melting of particles with arbitrary shapes;

2. Two/three dimensional melting of particles with contact angles on the sub-

strates;

3. The melting of particles by considering the effect of density change (this means

that the fluid flow cannot be ignored).
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Appendix A

Derivation of (2.30) in Chapter 2

The leading order behaviour of T̂ (0; β) as β →∞ is determined by considering

∫ 1

0

R(1−R)2

∞∑
n=1

exp
{
n2π2κβ(1−R + ln R)

}
dR, ,

which comes from combining (4.33) and (2.29). The argument of the exponential

is maximum at the endpoint R = 1, but the infinite sum does not converge at this

value. Thus some care must be taken.

We note that for β À 1 the maximum of the integrand occurs roughly at

R = 1− σ, σ =

√
2

πκ1/2β1/2
.

Thus, in order to proceed, we divide the range of integration into two parts: the

first is for R between 0 and 1−σ, and the other for R between 1−σ and 1. For the

first part, the major contribution arises near the upper limit 1−σ. We cannot apply

Laplace’s method directly, as 1− σ is dependent on β. However, since 1− σ → 1 as

β →∞, we may expand 1−R + ln R about R = 1, so that

∫ 1−σ

0

R(1−R)2en2π2κβ(1−R+ln R)dR ∼
∫ 1−σ

0

R(1−R)2e−n2π2κβ(1−R)2/2dR

∼ 1√
2π3κ3/2β3/2

(
2e−n2

n2
+

π1/2

n3
(1− erf(n))

)
as β →∞.

For the second part, we use the property (2.20) to write the integrand in terms of a

rapidly converging series. By expanding the integrand about R = 1 we find

∫ 1

1−σ

R(1−R)2

∞∑
n=1

en2π2κβ(1−R+ln R) dR ∼ 1√
2π3κ3/2β3/2

(
π1/2 − 2

3

)
as β →∞.

The result (2.30) follows.
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High-order solutions for large
Stefan number limit in Chapter 3

Here we present solutions associated with the large Stefan number expansions. For

the spherical case the second-order solutions are

T̂2 =
R + σ(1−R)

6rR5

(
1− r

1−R

)
(B.1)

×
{(

R + 2σ(1−R)(1−R− 3R2)

6
−R3(σ(1− δ) + δV (R))

)

×
[
1−

(
1− r

1−R

)2]
+

R(4R− 1) + 2σ(1−R)(2R− 1)

20

[
1−

(
1− r

1−R

)4]}
,

t̂2 = −(1−R)(2−R)

45R
+

1

45(1− σ)

{
σ ln R +

1

σ
ln

[
R + σ(1−R)

R

]}
, (B.2)

while the first-order solutions for the cylindrical case are

T̂1 =
R + σ(1−R)

4R4 ln2 R

[
R + σ(1−R)

ln R
+ σ

]{
1− r2 +

[
r2 −R2 − 1−R2

ln R

]
ln r

}
,(B.3)

t̂1 =
1

4

[
(1 + R)2 +

1−R2

ln R

]
− σ(1− δ)t̂0 + δ

∫ 1

R

ξ2 ln ξ

ξ + σ(1− ξ)
V (ξ)dξ

+
σ

4

∫ 1

R

[
4ξ2 ln ξ − 2ξ − 2ξ ln ξ +

ξ

ln ξ
− 1

ξ ln ξ

]
dξ

ξ + σ(1− ξ)
. (B.4)

This last integral may be simplified somewhat, but these details are not included

here.
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Functions for high-order iterations
in Chapter 3

The following functions are used in the iteration scheme:

h1 = 3(R− 1)2[(R− 1)2(60R2 − 8R + 7) + 3(r − 1)2(4R− 1)]σ2

+ (R− 1){6R[(R− 1)2(60R2 − 4R + 7) + 3(r − 1)2(2R− 1)](α− σ(1− δ)

− δV (R)) + (R− 1)2(144R2 −R + 7)− 3(r − 1)2(12R2 − 3R + 1)}σ
+ 3R2{(R− 1)2[60R2(α− σ(1− δ)− δV (R))2 + (48R− 7)(α− σ(1− δ)

− δV (R)) + 7] + 3(r − 1)2[(1− 4R)β − 3]}+ 3R2(1−R)[σ(R− 1)−R]

×[3(r − 1)2 − 7(R− 1)2]δ
dV (R)

dR
, (C.1)

h2 = 135R2(R− 1)3σ3 + 3(R− 1)2[135(α− σ(1− δ)− δV (R))R3 + 45R2

+ R + 1]σ2 + (R− 1)[405(α− σ(1− δ)− δV (R))2R4 + 270(α− σ(1− δ)

− δV (R))R3 + 3(α− σ(1− δ)− δV (R))R2 + 42R2 + 6(α− σ(1− δ)

− δV (R))R + 2R + 1]σ + 3R2[1 + 45R3(α− σ(1− δ)− δV (R))3

+ 45R2(α− σ(1− δ)− δV (R))2 + (−1 + 14R)(α− σ(1− δ)− δV (R))]

+ 3R2(R− 1)[(R− 1)σ −R]δ
dV (R)

dR
, (C.2)

h3 = 2(R− 1)[(R− 1)2(−30R2 − 4R + 7) + 3(r − 1)2(2R− 1)]σ

− R[(R− 1)2(12R + 7) + 3(r − 1)2(4R− 1)] + 60(σ(1− δ)

+ δV (R))R3(R− 1)2, (C.3)
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h4 = [2R3 ln R−R2 ln R− 2R2(ln R)3 −R3 + R2 + R− 1− ln R− 2R3(ln R)2

+ 4(ln R)3R3]σ + 2R3(ln R)2 −R + 4(ln R)3R3(α− σ(1− δ)− δV (R))

− 2R3 ln R + R3. (C.4)



Appendix D

The numerical front-fixing method

As there are no exact analytical solutions available for the two-phase Stefan problem

of nanoparticle melting, the numerical results are obtained by employing a front-

fixing method. The idea of this approach is to fix the moving boundary by making

the following Landau transformations [82]

η =
r

R(t)
v(η, t) = Ts(r, t) (solid), ζ =

r − 1

R(t)− 1
u(ζ, t) = Tl(r, t) (liquid),

so that for the liquid phase (R(t) ≤ r ≤ 1) r = R(t) becomes ζ = 1 and r = 1

becomes ζ = 0, and for the solid phase (0 ≤ r ≤ R(t)) r = R(t) becomes η = 1 and

r = 0 becomes η = 0. The domains 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1 are divided into N1

and N2 sub-regions. By substituting the above transformations into equations (3.7)

and (3.8), and then using forward finite differences and central differences for the

temperature derivatives with respect to time and space respectively, straightforward

formulations for the solid and liquid phases are easily obtained as follows

vk+1
i = vk

i +
κF1

δR2
k

(vk
i−1 − 2vk

i + vk
i+1) (D.1)

+
∆ηF1

2Rk

[
ηiṘk +

mκ

δηiRk

]
(vk

i+1 − vk
i−1),

uk+1
i = uk

i +
F2

(R2
k − 1)

(uk
i−1 − 2uk

i + uk
i+1)

+
∆ζF2

2(Rk − 1)

[
ζiṘk +

m

1 + ζi(Rk − 1)

]
(uk+1

i − uk−1
i ), (D.2)

where F1 = ∆t/∆η2 and F2 = ∆t/∆ζ2. At the origin and the surface of the particle,

the temperatures are expressed by

vk+1
1 = vk

1 +
mκF1

δR2
k

(vk
2 − vk

1), uk+1
1 = 1, (D.3)
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and at the solid-melt interface, the equilibrium temperature becomes

vk+1
N1+1 = vk+1

N2+1 = σ

(
1− 1

Rk+1

)
. (D.4)

The speed of the solid-melt interface is also expressed in terms of finite differences

as

dRk

dt
=

{
(1− δ)σ

Rk

− α

}−1{3uk
N2−1 − 4uk

N2
+ uk

N2+1

2∆ζ(Rk − 1)
− κ

3vk
N1+1 − 4vk

N1
+ uk

N1−1

2∆ηRk

}
.

(D.5)

We see that, given the interface position Rk and the temperature distributions uk
i ,

vk
i at a particular time step, we can obtain the interface position Rk+1 through

Rk+1 = Rk + ∆t ∗ dRk/dt and the temperature profiles at the next time step using

equations (D.1)-(D.4). By using the Von Neumann’s method [100] a suitable time

step is chosen to make the numerical scheme stable

∆t ≤ 2R2∆η2κ/δ

4κ2/δ2 + ∆η2R2
(
Ṙ2 + m2κ2/[δ2∆η2R2]

) , (solid phase) (D.6)

∆t ≤ 2(R− 1)2∆ζ2

4 + ∆ζ2(R− 1)2
(
Ṙ2 + m2/R2

) , (liquid phase)

where m = 1 and m = 2 are for cylindrical and spherical cases, respectively. As there

is no liquid phase when the melting begins and the program needs the initial infor-

mation of the solid and liquid phases, we create an ”initial condition” by assuming

that the solid/liquid interface moves forward a very small step. The time required

and temperature distributions can be calculated using the small-time solutions so

that the program can be run.
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