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Abstract. The basic structural assumptions concerning the dynamic models of 

the reaction latency are presented. The linear dynamic stochastic model of the reac- 

tion latency is considered as a special case of dynamic model. The biological moti- 

vation for using these models are outlined. These models express the reaction latency 

as a first access time of the random threshold of a certain stochastic process. This 

approach was used in modelling the reaction latency in escape and avoidance expe- 

riments (the results will be presented in subsequent papers). 

THE ROLE OF MODELLING IN BIOLOGY 

It is a frequently met question: is mathematical modelling truly required in 

biology? To answer this question one must think about the advantages of mathema- 

tical modelling which are not accesible with other methods. 

The first advantage of modelling is the possibility of presenting otherwise known 

results in an exact, precise form. Therefore the modelled results should be capable of 

having the required degree of precision. However, the biological facts often have 

only a qualitative nature, which must be recognized a t  the very earliest stages of 

model building. But just this qualitative nature of biological description requires 

developmen'c of adequate mathematical tools to handle and analyze such phenomena. 

The second, frequently noted advantage of mathematical models is that they make 

it possible to handle large sets of data and facts. This is useful in analyses of results 

of experiments. One cannot handle r:sults of neuron stimulation or of behavior 



experiments without even simple models. The most popular models treat these re- 

sults as a sample of a number of random variables. Because of this assumption, 

statistical analyzes may be applied. Initially a distribution function is computed, but 

this can be computed without using a probabilistic (modelling) framework (it is then 

referred to as cumulative frequency function). In such cases one cannot treat the cum- 

mulative frequency function as a distribution function and to interpret the results 

statistically. Thus, one cannot use the results of this analysis without adding 

a probabilistic framework. Even frequently used averaging of sequences of data of 

an experiment may, in fact, be used only when related to a mathematical model In 

fact, averages as they are normally computed, do not have the interpretations usually 

given to them unless the averaged elements are considered as random variables 

with appropriate mathematical properties which permit the use of the limit theorems 

of probability theory. Often averaging is done without checking the assumptions 

about the model, but this situation becomes dangerous only when one is using the 

model without bearing this hazard in mind. 

The third role of mathematical models is the most important, because mathema- 

tical models of composite phenomena make it possible to handle and analyze such 

phenomena. In consequence, models may lead to discovering new features of these 

phenomena which were not earlier noticed because of their complicated nature. 

Properly chosen models can handle the observed facts in a simpler way than one could 

do without them. In effect, mathematical models allow one to explain known facts 

or to present them in simpler form. Models may also lead to new experiments which 

verify these models and also uncover new facts. 

The goal of modelling has a strong impact on the shape of the model. In the model- 

ling of technical systems, many types of models can be distinguished on the basis 

of their purpose. For example, there are models for control applications; on the 

basis of these models the rules of control of a technical system are developed. 

Another type constitute models for prediction. These models are used to predict 

future behavior of the system under analysis. We also meet with "cognitive models". 

In these models it is required to have all behavior of the model very close to the 

behavior of the real system. Depending on the goal, we would choose different models 

of the same system. Models should describe only those features of the modelled 

system, which are essential from the point of view of the goal of modelling. All 

unessential features should be neglected. In effect, elements of the model do not ne- 

cessarily have to be identical with the elements of the modelled event. If, for instance, 

a random variable is included in the model, then this random variable would not exist 

as a physical object in the modelled system. Elements of mathematical models are 

mathematical abstracts. They should be interpretable in the sense that the behavior 

of elements of the model should have the same behavior as elements of the modelled 

system. 

In all cases there exist a number of differences between the model and the reality. 

These differences provide the basis of one important way for the classification of 
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the models. Deterministic models interprete these differences in terms of numbers. 

Stochastic (probabilistic) models treat them as random variables or stochastic pro- 

cesses. There are other interesting types of models, for instance fuzzy models. 

Frequently in modelling one can assume only the structure of the model and the 

parameters must be determined on the basis of experimental data. Therefore, an es- 

sential role is played by the theory of identification together with the connected bran- 

ches of mathematics such as estimation theory. 

The last stage of modelling should be verification of the model. The verification 

procedure has its mathematid framework: theory of hypothesis testing and other 

branches of statistics can be used. But one should also perform a second, no less 

important, stage of verification, that is client verification. In biology, only the bio- 

logist can accept or reject the model on the basis of biological behavior of the model. 

This phase of modelling which will be called acceptation is often skipped in practice 

but, in the author's opinion, it is the most important stage of verification and, there-. 

fore, of modelling. When either the verification or the acceptation have not been 
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Fig. 1. Stages of mathematical modelling. 



successful, one must return'to the stage of structure determination (or to the stage 

of estimation but with the use of larger - or better - data sets). The whole procedure 

of model building is presented schematically in Fig. 1. 

THE MODELLED PHENOMENON 

The subject of modelling presented in this paper is the latency of reaction in the 

experiments on cats which were performed in the Nencki Institute of Experimental 

Biology. Each cat was placed in a cage and subjected to a sequence of stimulations. 

The cats were trained to press the bar placed on the wall of their cage. Two experi- 

mental procedures will be discussed. Both experiments consist of series of trials. 

The first procedure called escape experiment (12) consists in applying an electric 

shock to the paws of the cat in each trial. In this procedure the cats were trained to 

~ e r f o r m  an escape response, that is, pressing the bar, in order to terminate the painful 

stimulation. 

The second procedure called avoidance experiment (13, 14) consits in possibility of 

applying two stimuli in each trial. Each trial begins with applying the conditioned 

sti~iiulus (an acoustic white noise with constant applitude). If the animal performs the 

proper reaction during given period (that is, bar-pressing response) than the trial 

terminates at the moment of pressing. If it doesn't answer properly then after this 

given period the unconditioned stimulus is applied together with the conditioned 

one. The proper reaction causes termination of the trial. A lack of such reaction after 

sufficiently long time forces experimenter to make some extraordinary activity which 

is beyond the scape of the model. It is worth pointing out that it also happens that 

the animal performs the reaction without stimulation (so called intertrial responses). 

The latency of the reaction was measured in both the experiments. The results 

of the experiments are - from the numerical point of view - a data series expressing 

latencies of reactions in consecutive trials. The models presented in the paper treat 

this data series as a series of random variables, that is, as a discrete-time stochastic 

process generated by the model. In the course of the experiment, the cats underwent 

a learning process, which caused changes in the model parameters. These changes 

were the basis of the model verification. This problem will be treated later (Pacut; 

Pacut and Tych, in preparation). In the following, the structure of the model will 

be specified and some remarks concerning the model behavior and identification 

problems will be made. 

GENERAL STRUCTURE OF THE MODEL: DYNAMIC STOCHASTIC MODEL 

The model under consideration, called the dynainic stochastic model, needed to 

be useful in analysis of the experimental data so it had to be relatively simple to make 

it possible to identify its coefficients, but at the same time complicated enough to be 



able to handle all the substantial features which were contained in the data. There- 

fore the model had to have a structure that would be consistent with the biological 

principles associated with the experiment. 

The structure of the dynamic stochastic model can be divided into three functional 

parts. These are the transformation system, the decision system, and the execution 

system (Fig. 2). The model aims to describe the dependence of reaction latency on 

Fig. 2. General structure of the model. 
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the stimulus. Therefore the stimulus is the input signal to the model (it does not matter 

what we mean by the term "stimulus"). The activity of the transformation system is 

connected to the sensory systems of the animal, among other things. It generates 

a hypothetical time function called the excitatory potential. This function is a deve- 

lopment of ideas of Hull (6), Spence (1 1) and Grice (3, 4). The transformation system 

represents all the transformations of the stimulus before it reaches the next link - 

the decision system. This decision part of the model compares the excitatory potential 

with a certain threshold value and may initiate execution of the reaction which, in 

turn, is performed by the execution system. One may imagine the composite net of 

transformation, decision and execution systems (Fig. 3) which connects all the sensory 

inputs through many decision systems with many reactions. There are pathways 

in this net which describe nonspecific reactions or performance of the learned reac- 

tion to nonexperimental stimuli. Nevertheless, only one small portion of this net will 

be considered more deeply, that is the pathway(s) which connects the experimental 

stimulus (or stimuli) with the reaction desired by the experimenter (called the expe- 

rimental reaction). The paths that have to be used in the "active" part of the model 

depend on the type of experiment. 

In the escape experiment (12) the animals were trained to respond to the uncon- 

ditioned stimulus of electric shock by pressing the bar. The input used by the model 
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is the intensity of the electric shock. But there are other influences, such as fear 

or the whole experimental setting, which affect the animals behavior, and these may 

be treated as other inputs in the model, which were not measured. In our models 

we will extract only one input, the intensity of electric shock, and the remaining 

influences will be treated as stochastic disturbances in the model. 

In avoidance experiment (13) there are two basic stimuli: an electric shock and 

an accoustic white noise. Therefore at least two inputs must be considered in the 

model: electric noise intensity and acoustic noise intensity. The remainder of the 

stimuli which act on the animal will be treated as the model noise. 

It is worth noting that the extraction of only these one or two inputs does not 

imply that the rest of the cues is beyond treatment by modelling methods. If the 

experimental procedure were changed even without changing these one or two cont- 

rolled stimuli, the model would have to be modified because the structure of the 

stochastic inputs to  the model would be changed. 

There is a similar problem with the output from the model. The controlled reac- 

tion is (in the experiments described in (12) and (13)) pressing the bar placed on the 

wall of the cage. But there are of course many other reactions to the same experi- 

mental stimulation. Only a small portion of these reactions is dealt with instrumental 

procedure. The instrumental procedure can be treated as negative feedback - say 

"instrumental feedback" - which connects the desired reaction with the experimen- 

tal stimulus (Fig. 4). Let us underline that the reaction which is fed back by feedback 

Fig. 4. Instrumental conditioning as feedback. 

loop is not only pressing the bar but also all the other activity which is naturally 

connected with this pressing. Therefore from the point of view of identification there 

is no possibility of differentiating between elements of the different patterns of ac- 

tions which might be performed during desired response to the stimulus. All of 

them will be treated together and called the output of the model. 

The logic of the model is as follows. The external stimulation changes the level 

of the hypothetical excitatory potential. Values of this potential are compared with 

the threshold and decisions concerning if and how to react are then taken. Several 
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models of reaction latency previously considered by other authors can be considered 

as special cases of the dynamic model discussed here. Spence (11) postulated that 

the overt reaction may be considered as one of unobserved reactions in which oscil- 

lations are generated. The observed reaction occurs when the oscillation attains an 

amplitude greater than some level. In consequence Spence's model may be included 

in the class described above (Fig. 5). Its transformation system transforms input 

random \ I  number 

when Y=I - r e a c t  

  hen YEO-no react 

Fig. 5. Spence's model as special case of dynamic model. 

signals to a white Gaussian sequence1 and its decision system is given by a threshold 

element. A modification of Spence's model which leads to a better behavior of this 

model is given in another work (7). 

A very impressive model has been proposed by Grice (3). He supposed that the 

stimulus consists of series of impulses which are counted by some probabilistic 

counter in the organism. The reaction occurs at the first moment that the cumulative 

Fig. 6. Grice's model as special case of dynamic model, 
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count reaches some given level (random, in general). Some generalizations are given 

in the later work (4). Remarks on modified versions of these models are given in 

another work (7). The model of Grice may also be included in the class of general 

dynamic models (Fig. 6). Grice's transformation system is an integrating (counting) 

element and the decision system is a threshold element with a possibly random thres- 

hold. 

E when Y =O- no react R - 

I i.e. the sequence of independent random variables which have Gaussian 

distribution. 



In consequence Spence's and Grice's models have the structure of the dynamic 

model which has been proposed. This structure is too general to be useful without 

beeing specified further, and we now proceed to do this. 

FURTHER STRUCTURAL ASSUMPTIONS: LINEAR DYNAMIC STOCHASTIC MODEL 

The special structure which we call the linear dynamic stochastic (LDS) model, i- 

described as follows. Let the transformation system be described by a linear firsts 

order dynamic system driven by a stochastic noise. Let the decision system be based 

on a threshold mechanism and the execution system acts without delay. The above 

assumptions, which are specified below in detail for the escape and avoidance expe- 

riment, completely describe structure of the LDS model. 

For the escape experiment we consider one stimulus (one input) and one reaction 

(one output). Therefore, one transformation system, one decision system and one 

execution system, coupled in series, will be considered. The execution system will 

be modelled by the first order stochastically disturbed differential equation. This 

type of equation may be considered as a local approximation of more complicated 

relationships and was successfuly used in various applications. Namely, 

where : 

t is time which is measured from the moment of the initiation of the stimulation, 

E(t) is the excitatory potential created by the stimulus, 

~ ( t )  is a stochastic Wiener process with &w(t) = O,Vdw(t)= aidt, where 6' denotes 

expectation, Vdenotes variance and dw is a stochastic differential (see, for 

instance 2), 

E,, is a Gaussian random variable independent of the process w (t) with &E,, = m,, 

Y E o  = oi, 

s(t) represents the stimulus strength for the stimuli which will be considered, 

s(t) = 0 for t < 0 and s(t) = S for t 3 0, 

k denotes the static gain 

a denotes the dynamic gain 

The decision system will be modelled by a random threshold element whose 

output we denote by y(t). This means that 

when y(t) = Y the reaction occurs and-there is no reaction if the output is 0. L is 

a Gaussian random variable representing the random threshold, independent of 

w(t) and E, with parameters 

EL = m, and VL = a:. 



In other words 

where 

R = (L ,oo)  

is a region on a line called reaction region (see Fig. 8a). This notion will be more use- 

ful in the modelling of avoidance reaction. The execution system will be modelled 

by simple nondynamic transducer. Therefore the whole model structure is as shown 

in Fig. 7. 

Fig. 7.  Model of the escape experiment. 

For the avoidance experiment we consider two stimuli (two inputs) and one 

reaction (one output). Therefore two transformation system will be assumed, each 

of them having the same form as described above for the excitatory potential. 

In other words, 

where the subscript c denotes functions and parameters connected with conditioned 

stimulus, and 

dE,(t) = (k,s,(t)-a,E,)dt+dw,,(r), E,(O) = E,,, ( 6 )  

where the subscript u denotes functions and parameters connected with the uncondi- 

tioned stimulus. I t  may be assumed that s,(t) = 0 for t < T, where T is the moment 

of initiation of the unconditioned stimulus. Nevertheless it cannot be assumed that 

the random variables which are connected with the u-subscripted (unconditioned) 

part are independent of the corresponding random variables which are connected 

with the c-subscripted (conditioned) part. 

The decision system is more complicated because it makes a decision based on 

a comparison two excitatory potentials (to be called conditioned and unconditioned, 

respectively) with some associated thresholds. It will be assumed that the decision 

system consists of two thresholds, each of them being a random variable, and cosrela- 



tcd with the other. The execution signal which causcs the activation of the execution 

system will be sent when any one of the excitatory potentials reaches its threshold 

value. 

This means that 

y ( t )  = 
0 i f  Ec( t )  < L C  and E,(t) < L ,  

Y if E,(t) 2 LC or E,(t) L ,  

where L = [fi] is a random Gaussian vector with expectation 

vector BL - m, = and covariance matrix 

where ,o denotes the correlation coefficient between the two thresholds: one con- 

nected with the conditioned stimuli and the other connected with the unconditioned 

one. It may be more fruitfull to write relation (5) in the form 

where 

s called the excitatory vector and the region R, to be called the reaction region, 

s given by 

R = { (ec,  e3:ec  > LC or e, > L,). (9) 

In other words, R is a region on the plane in which at least one of the coordinates 

is greater than the corresponding threshold value. Because LC and L, are random va- 

riables, R is a random region. 

In consequence, for both models (of the escape reaction and the avoidance reac- 

tion), the decision system has the common form (3) or (8). The decision regions 

are given in Fig. 8 for both models. The execution system will be assumed to have 

the same form as for the escape model. The whole structure of the avoidance model 

is given in Fig. 9. 

Therefore the LDS models for escape and avoidance have a common structure. 

As we will see, the parameters and the functions of this structure have a biological 

interpretation. 

Consider the transformation systems. There are two parameters for each of them: 

the static gain k and the dynamic gain a. The static gain may be interpreted as a pa- 

raneter connected with unit and scale changes as well as with changes of carrier 
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of information, for instance from the acoustic signal to the electric one. The dynamic 

gain is the coefficient in the negative feedback. Therefore the rate parameter 

(time constant) of the excitatory potential is equal to l la.  This means that the average 

speed of excitatory potential increase depends on this dynamic gain. 

One of the inputs to the transformation system is the stimulus and the second is 

a stochastic white noise which is a convenient description of the derivative of a Wiener 

Fig. 8. Decision regions R for escape A, and avoidance B, model. 

Fig. 9. Model of the  avoidance experiment. 



process with respect to time. This noise may be interpreted as existence of uncer- 

tainty in nervous system which causes changes of its activity even without stimulation. 

The integrator in the transformation system is responsible for accumulating the im- 

pressions caused by the stimulus. 

Next consider the decision system. For both models the elementary actions of the 

decision system consist in comparing the excitatory potential with a given value. Such 

a comparison is easily interpreted on the basis of the threshold-like activity of neu- 

rons. The randomness of the threshold represents random variations of the threshold 

from trial to trial. 

The situation may be compared to that in the theory of signal detection, where the 

noise is compared with the signal corrupted by noise. The decision what is observed: 

noise or signal plus noise may be taken on the base of distribution function analy- 

sis (5). 

A very simple model has been chosen for the execution system. It was assumed 

that the delay caused by this system is small in comparison to other sources of 

delay. Some effects of this delay has been modelled as random disturbances. A direct 

inclusion of this delay into the model would make the model identification much more 

complicated. Special attention should be devoted to random elements in the model. 

There are a t  least two main sources of randomness. The first one is connected with 

fluctuations of the state of the system even without stimulation. This source is expres- 

sed by the Wiener process a t  the input of the model and by assuming random initial 

conditions. It may be noted that when there exists no stimulation and s(t)  = 0, 

then the excitatory potential E(t) is given by the equation dE(t) = -aE(t)dt+dw(t) 

and therefore E(t) has an asymptotically (for t - t  co) Gaussian distribution with 

parameters &E(t) +O, VE(t)  +02,/2a (for a > 0). Thus if one assumes that the 

time distance between two consecutive trials is much greater than the latency, then 

the parameters of the random variable expressing the initial conditions may be 

expressed through input noise parameters. 

The second source of randommess, which is assumed to be independent of the 

above one is connected with the threshold. For the case of the escape experiment this 

is a one-dimensional Gaussian variable and for the case of the avoidance experiment 

this is a two-dimensional Gaussian variable. 

It may be noted that the zero and the unit of excitatory potential is not subject to  

identification. The excitatory potential is hypothetical function and therefore the 

hypothetical zero and unit may be chosen. 

It will be reasonable to assume that zero of this scale is connected with the asymp- 

totic situation when no stimulation exists. In consequence, it leads to the assumption 

nz, = 0. 

The choosing of the unit ofthe excitatory potential will be considered when analyz- 

ing the properties of random threshold models. 

It is easy to check that the models of Spence and Grice are also the special cases 

of LDS models of the escape-type reactions (for this problem see 7). 



ANALYSIS OF LDS MODELS 

It is not a simple matter to fully analyze the behavior of the LDS models. It  is 

a simple task to know the behavior of the excitatory potential but it is a rather invol- 

ved one to solve the so-called first access problem for the stochastic process E(t). 

We consider both problems briefly. 

It can be shown (8) that the excitatory potentials have an exponential shape 

"in the average", namely 
t 

for the escape experiment and, in a slightly modified form, for the avoidance experi- 

ment. Therefore the individual excitatory potential may be illustrated as in Fig. 10 

for the escape model and in Fig. 11 for avoidance model. 

For both models the latency time t can be written as 

inf 
{ t :  E(t) E R) if { t :  E(t) E R} # 0, 

01 for the opposite case, 

where Y is the stimulation period and Y = ( 0, t,,,) . Because of the randomness 

of E(t) and R the latency t is a random variable. The problem of determining the 

latency distribution is, therefore, the first access time problem2 for the process 

Fig. 10. Reaction evocation for escape experiment. 

E ( t )  and the region R. This problem has been effectively solved only for a small class 

of stochastic processes (1, 10). A very useful survey of existing techniques is given 

in Ricciardi (9). 
- 

? First access problem. For  a give'n stochastic process and a region R find .the 

distribution of random variable T given by (11). 



The first access problem can be resolved for both models. A method for the escape 

model is given in (8). A method for the avoidance model can be based on the same 

approach. However, only the Laplace transformation of the distribution function of 

t ~ l l  t h e  moment  1 E i t 1  l ~ e s  on the  p l a n e  L c r  t 

f rom thp moment T E I t i  l ~ e s  In t h e  space L C  x L , x t  

Fig. 11. Reaction evocation for avoidance experiment. 

the first access time is known. This solution is not useful for solving the identification 

problem and a numerical method of solving the problem in terms of a time-domain 

analysis must be used. For a discussion of these problems the reader is referred 

to  (8). 

IDENTIFICATION PROBLEMS 

The only observations which can be used for the identification of the model para- 

meters is the first access time. However this time is a random variable and it cannot 

be identified on the basis of a single observation. The sample distribution of this time 

must be derived from experimental data. 

A problem arises of how to compute the sample distribution. The problem con- 

sists of the fact that there is learning during the experiment and therefore the latency 

data cannot be treated as a stationary series of random variables. There are several 

ways to handle this problem. One good approach is to model the reason for the nonsta- 

tionarity. This approach cannot be directly used. The reason is that the structure of 

the nonstationarity is unknown. Knowledge of this structure is equivalent to knowledge 



of the structure of the learning process and this in its turn may be known after 

examination of the described model. Therefore another approach must be taken. It is 

assumed that the learning process behaves like a stationary one when considering 

only a small number of consecutive trials. If the latencies in these trials can be treated 

as independent then the averaging procedures can be used and sample distributions 

may be computed. An analogous approach may be used in examination of the 

structure of learning. Therefore this approach may be also treated as the initial step 

in modelling the learning process. 

There is a substantial constraint on the quality of the identification. This depends 

on the number of latency measurements which can be used in the computation of 

the sample distribution computation. The data taken together will be called stage of 

learning. For the considered experiment it may never be assumed that the stage lasts 

longer than 50-200 trails. Moreover, it changes from animal to animal. It seems to 

be appropriate to assume that the time-lenght of the stage depends on the animal and 

is given by dividing the total number of trials by the number of stages which was 

assumed to be constant. In consequence, the number of parameters which may be 

identified on the basis of stage data is drastically constrained. 

The detailed development of the concerning identification problem for the escape 

and avoidance models will be presented in subsequent papers (Pacut; Pacut and 

Tych, in preparation). 

CONCLUSIONS 

In the paper the basic structural assumptions concerning the dynamic models 

and then the linear dynamic stochastic models of the reaction latency have been 

presented. The models have a uniform structure. Moreover, the same structure can 

be applied to other experiments, like differentiation conditioning. The biological 

motivation for using these models has been dutlined. The models express the latency 

time as the first access time of the random threshold of a rather simple stochastic 

process, but even with such simple models identification is very complicated. 

In the result the model must be identified in simpler form and then verification 

must be performed. In subsequent papers an analysis of the identified models will 

be presented as well as the results of the identification procedure. 

I thank Prof. H. J. Kushner of Brown University, Providence, Rhode Island, Prof. F. R. Brush 

of Syracuse University, Syracuse, and Prof. K. Zielidski for helpful discussion on previous version 

of this paper. 
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