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Abstract: The present study discusses the effect of stenosis on flow rate, resistance to flow and wall shear stress for different 

parameters. A two –layered mathematical model has been incorporated here by considering the peripheral layer as Newtonian 

fluid and the core layer as Bingham-plastic type non-Newtonian fluid. The numerical results are presented in graphical form. 

Keywords: Stenosis, Flux, Wall Shear Stress, Bingham-Plastic Fluid, Resistance to Flow, Yield Stress 

 

1. Introduction 

The study of blood flow characteristics are of great 

importance due to the unusual flow of blood for unusual fluid 

properties. Blood is a very complex fluid, as blood is formed 

by the suspension of fluid particles in an aqueous solution, 

called plasma which is composed of 90% of water and 7% 

protein. In human blood, red blood cells are more in number 

than other cells. The aforesaid cells play an important role in 

carrying oxygen from the lungs to all parts of the body and 

the removal of carbon dioxide which is one of the waste 

products of cell metabolism in the body to the lungs. About 

45% of the total blood volume is occupied by red cells. Of 

the remaining 1% are white cells or leucocytes entrusted with 

the function to resist the body to infection. 5% of the total 

blood volume constituted by Platelets and they perform a 

pivotal role in blood clotting. The normal blood flow is 

disturbed abnormally in presence of arterial diseases whose 

consequences cause several types of cardiovascular diseases. 

Blood flow characteristics mainly depend on resistance to 

flow. If bore of the vessel is reduced, resistance to flow is 

increased, and so normal blood flow is disturbed abruptly. 

Resistance to flow mainly depends on arterial occlusion such 

as stenosis and aneurysm. So if stenosis is formed blood flow 

is insufficient to reach every cell of the body and as a result 

nutrient supplement is insufficient to reach each cell. Many 

investigators (Majumdar et. al. [1], Sanyal and Maiti [2], 

Sanyal et. al. [3]) have presented two-layered mathematical 

model to study non-Newtonian behaviour of blood. Several 

researchers (Tu and Deville [4], Lee and Fung [5], Jung et. al. 

[6], Krumholz et. al.[7], Peterson et. al. [8], Rathod and 

Tanveer [9], Shukla [10], Maiti [11]) have presented 

experimental results to study the various aspect of blood flow 

through stenosed condition. Lerche [12] has analysed a two-

layered fluid model with both the fluids as Newtonian with 

different viscosities. But when blood flows in an artery, 

tendency of erythrocytes is to migrate towards the centre of 

the vessel, making relatively cell free in the plasma layer, so 

it is more appropriate to take the fluid of the core layer as 

non-Newtonian type with different viscosity. Many 

mathematician (Aroesty et. al [13], Chakraborty et. al. [14], 

Halder et. al. [15], Lee [16]) have shown the behaviour of 

blood flow by considering both the layers either Newtonian 

or non-Newtonian fluid. Pontrelli [17], Sankar and 

Hemalatha [18], Shalman et. al. [19] have proposed various 

types of mathematical models by considering the peripheral 

layer as Newtonian fluid and the core layer as non-

Newtonian fluid. They have shown that stenosis is very much 

important in micro circulation, where peripheral layer 

thickness and viscosity effects dominate the blood flow 

characteristics. Srivastava et. al. [20] have shown the effect 

of overlapping stenosis on blood flow by considering two-

layered fluid model. In a recent paper Singh et. al. [21] have 

studied the effect of magnetic field on blood flow by 

presenting two-dimensional of blood flow with variable 

viscosity. 
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In the present analysis a two-layered mathematical model 

is proposed to study the axisymmetric flow of blood by 

considering the peripheral layer as Newtonian fluid and the 

core layer as Bingham plastic type non–Newtonian fluid in 

presence of arterial stenosis. 

Let us consider the steady flow of blood through an axially 

symmetric but radially non-symmetric stenosed inelastic 

cylindrical arterial tube. 

2. Mathematical Formulation 

Here a two-layered blood flow model consisting of a 

central core layer has been considered which is suspension of 

red cells in plasma of radius �� and a peripheral plasma layer 

of thickness �� � ��� in the stenotic region. 

The shape of constriction in the peripheral plasma layer 

and core layer may be taken as ([11], [20]) 
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where ���� is the radius of the tube in the stenotic region, �� 

is the radius outside the stenosis, ��  is the length of the 

stenosis, d indicates its location and ��$ 2�  is the shape 

parameter, � is the ratio of the central core radius to the tube 

radius outside the stenotic region and ��, ���  are the 

maximum height of the stenosis and bulging of the interface 

in the stenotic region located at	� � � � &'
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Figure 1. Geometry of stenosis. 

The equation of motion for laminar, incompressible steady 

fully developed flow is given by 

� ,-
,. � �

/
0
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where (2, �) are the axial co-ordinates and 
,-
,. is the pressure 

gradient. 

The boundary conditions are 

(i) 3 is finite at 2 � 0 (regularity condition) 

(ii) 6 � 0	at 2 � ���� (no- slip condition) 

The relationship between shear stress and shear rate for 

Bingham plastic fluid is given by 

3 � 7 8� 09
0/: � 3�                            (3) 

Integrating (1) and using the boundary condition (i) we 

get, 
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where, 
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The volumetric flow rate ?� at the core layer is given by 
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where the no-slip boundary condition is used. 

The volumetric flow rate ?< at the plasma layer is given by 

?< � @ A2< =
27-

)(.)
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�2 

= F;
KGP 1�Q − ��Q4                               (6) 

where 	7E, 7-  are respectively the viscosities of the central 

core layer and plasma layer respectively. 

Thus the total flux is given by 

? = ?� + ?<	 
= F

KGP I=(�Q − (1 − 7)��Q − KL'G
N ��NO                  (7) 

where 

7 = 7-7E  

From which the pressure gradient = can be written as 

= =
RSPT
U VRW'SM )�M
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The pressure drop along the length of the tube is given by 
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Where >�	bc�	>�  are respectively the pressure at �	 = � 

and � = 0. 

The resistance to flow is given by 

d = -��-'
e                                 (10) 

The resistance to flow for Newtonian flow is given by 

df = KGP&
F)'J                                  (11) 

Thus the non-dimensional resistance to flow is given by 
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The wall shear stress is given by 

3� =	 Y
JSPTU VJW'SM )�M_)
)J�(��G))�J                        (13) 

The wall shear stress for Newtonian fluid in the absence of 

stenosis is given by 

3f = QGPe
F)'J                                  (14) 

Thus the wall shear stress in dimensionless form can be 

written as 

3̅ = 	 L�Li                                      (15) 

The wall shear stress at the throat of the stenosis is given 

by 

3kl = mJSSHTU\'M V	JML'G8Z� n
\':

Mo8�� n
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               (16) 

Thus the non-dimensional wall shear stress at the throat of 

the stenosis can be written as 

3lpppp = 	 LqrLi                               (17) 

3. Results and Discussions 

To interpret the present analysis, the results are shown 

graphically with the help of MATLAB- 7.6. 

Figure 2-3 represent the variation of flux ? for different 

values of � and 7. It is found that the flux ? decreases with 

the increase of �  but increases with the increase of 7  as 

stenosis developed. 

Figure 4-8 show the fluctuation of non-dimensional 

resistance to flow d	g  for various parameters with respect to 

stenosis size. It is observed that d	g  increases with the increase 

of � , �� , but opposite phenomenon occurs when �	and 7 

increase. It also increases with the increase of yield stress. 

Figure 9-10 represent the variation of wall non-

dimensional wall shear stress 3̅ with the variation of stenosis 

size,	�  and 7 . It is clear from figures that 3̅ increases as � 

increase, but the reverse effect occur when 7 increases. 

Figure 11-12 depict the fluctuation of non-dimensional 

wall shear stress at the throat of the stenosis 3lpppp  for the 

variation of �	and 7 with respect to stenosis size. The same 

phenomenon occurs as in 3̅. 

 

Figure 2. Variation of flux ? with the variation of	�. 
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Figure 3. Variation of flux ? with the variation of 7. 

 

Figure 4. Variation of non-dimensional resistance to flow	d̅  for different 

values of �. 

 

Figure 5. Variation of non-dimensional resistance to flow	d̅  for different 

values of shape parameter s. 

 

Figure 6. Variation of non-dimensional resistance to flow	d̅  for different 

values of 7. 

 

Figure 7. Variation of non-dimensional resistance to flow	d̅  for different 

values of yield stress 3�. 

 

Figure 8. Variation of non-dimensional resistance to flow	d̅  for different 

values of stenosis length ��. 
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Figure 9. Variation of non-dimensional wall shear stress 	3g  for different 

values of	�. 

 

Figure 10. Variation of non-dimensional wall shear stress 	3g  for different 

values of	7. 

 

Figure 11. Fluctuation of non-dimensional wall shear stress at the throat of 

the stenosis 3lpppp for different values of �. 

 

Figure 12. Fluctuation of non-dimensional wall shear stress at the throat of 

the stenosis 3lpppp for different values of 7. 

4. Conclusion 

The notion of the present analysis is to study the effect of 

severe stenosis on resistance to flow and wall shear stress. It is 

observed that resistance to flow decreases as stenosis shape 

parameter and viscosity increases, but the reverse effect occurs 

when stenosis size increases. The present study is able to predict 

the main characteristics of the physiological flows and may have 

played an important role in biomedical investigations. 
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