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Abstract.

This paper focuses on the mathematical modelling required to support the

development of new primary standard systems for traceable calibration of dynamic

pressure sensors. We address two fundamentally different approaches to realising

primary standards, specifically the shock tube method and the drop-weight method.

Focusing on the shock tube method, the paper presents first results of system

identification and discusses future experimental work that is required to improve the

mathematical and statistical models.

We use simulations to identify differences between the shock tube and drop-weight

methods, to investigate sources of uncertainty in the system identification process

and to assist experimentalists in designing the required measuring systems. We

demonstrate the identification method on experimental results and draw conclusions.

Keywords Traceability, dynamic measurement, pressure sensor calibration, shock tube,

drop-weight system

1. Introduction

At present traceability exists for static realisations of the mechanical quantities force,

torque and pressure. This traceability is established through validated primary

calibration systems together with a standardised uncertainty evaluation in line with

the Guide to the expression of uncertainty in measurement (GUM) and related

documents [1, 2, 3]. The European Metrology Research Programme (EMRP) project

IND09 Traceable Dynamic Measurement of Mechanical Quantities is designed to address

the extension of traceability to dynamic measurements of these quantities, i.e., to

those cases in which the frequency-dependent response of a sensor cannot be described

by a single parameter (sensitivity) from static calibration. In these cases there is a

need to correct the measured data for the bandwidth-limitations of the sensor. This



Dynamic pressure 2

correction requires that a dynamic model for the sensor be established through a

dynamic calibration [4, 5, 6, 7, 8].

Many applications of the measurement of mechanical quantities such as force,

torque and pressure are of a dynamic type, i.e., the measurand shows a strong variation

over time. The sensors employed in such applications are in most cases calibrated

only by purely static procedures owing to a lack of commonly accepted procedures

or documentary standards for the dynamic calibration of mechanical sensors, see,

e.g., [8, 9, 10, 11, 12] and references therein. On the other hand, it is well known

that mechanical sensors exhibit distinctive dynamic behaviour that shows an increasing

deviation from their static sensitivity characteristic as the frequency increases. These

limitations lead not only to inaccurate measurement results but in some cases can

culminate in an almost complete ignorance of the magnitude of the measurement

uncertainty; see, for instance, [13] for a comparison of static and dynamic uncertainty

evaluation.

To support emerging industrial needs for calibrated pressure sensors for dynamic

applications, four European NMIs (SP: Sweden, MIKES: Finland, PTB: Germany,

NPL: UK) are developing new primary measurement standards that can generate time-

varying pressure signals of the required bandwidth and dynamic range. Two primary

standard systems are being developed and compared: shock tubes (NPL, SP) and

drop-weight systems (MIKES, PTB). The two techniques cover different pressure and

frequency intervals and a key metrology challenge is to establish traceability over as

wide pressure and frequency intervals as possible, while ensuring agreement between

the two techniques and agreement between dynamic and static pressure calibrations.

New mathematical and statistical techniques are required to underpin the

development of these calibration methods, specifically: the development and

identification of models of the complete dynamic measurement chain and its constituent

parts as, e.g., in [6]; a consistent treatment of uncertainty evaluation and propagation

both in NMI-based primary calibration procedures and secondary methods used for

industrial applications [7, 8]; and the reconstruction of the input signal by the

deconvolution of sensor and system effects from the output signal, to enable reliable

evaluation of the dynamic quantity of interest and its associated uncertainty [14, 15].

The goal of this paper is to highlight the mathematical challenges in the

development of a primary standard for dynamic pressure calibration and to present new

results of system identification. The paper focuses in particular on available approaches

to modelling and measuring the input signal and the subsequent identification of

the sensor or extended measuring system. In this work we consider calibration of a

measuring chain, comprising a sensor and a charge amplifier. Therefore throughout

the remainder of this paper, we will use the term measuring system to refer to a

multi-component measuring chain, and to distinguish between this chain and the sensor

component of the chain.

A simulation approach has been used to study and develop the necessary

mathematical tools to support the new dynamic pressure calibration methodologies.
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There are a number of stages to the calibration process and it is important to understand

the effect of each of these stages on the resulting calibration. The pressure signals

generated by the shock tube and drop-weight system are very different in terms of

magnitude, duration and bandwidth. Simulating the response of a measuring system

to these different types of input signals can help to identify the potential scope and

capability of the two calibration systems and to establish minimum requirements for

the respective input signals to achieve target uncertainties. The final output from

the calibration depends on the type of measuring system used, the signal processing

techniques applied to process the measurements and the form in which the results are

provided. By simulating the full calibration process, it is possible to estimate the effect

on uncertainties of applying different analysis techniques and of providing, for example,

a calibration in terms of an amplitude and phase frequency response at a given set

of frequencies, compared to a full parametric model describing the measuring system

response.

The structure of this paper is as follows. In Section 2 we introduce the calibration

systems considered, namely shock tubes and drop-weight systems, and identify the

pressure and frequency intervals that we expect to achieve with each system. Section 3

details the simulation approach we have taken and demonstrates calibration software

that provides a frequency response for a measuring system. In Section 4 the software

is extended to fit a parametric model to the measuring system response. Analysis of

shock tube data is described in Section 5. Conclusions and an outlook to future work

are set out in Section 6.

2. Dynamic calibration of pressure sensors

A calibration process typically requires a known input to be provided to a sensor (or

measuring system) and the recording of the response to that known input. For dynamic

systems that can be modelled as a linear time-invariant system, the input signal and the

output response signal are then employed in a system identification process to derive

the transfer function (frequency domain) or impulse response (time domain) of the

sensor [4, 5]. This process can be described by

y(t) = h(t) ∗ x(t) + ε(t), (1)

where “∗” denotes convolution, x(t) is the generated time-dependent pressure input

signal, h(t) the sensor impulse response, y(t) the output signal, and ε(t) the measurement

noise. A description of the sensor behaviour may be derived in different forms. One

form frames the calibration problem as a deconvolution process: assuming the pressure

input x(t) is known, the ratio of the Fourier transforms of the output signal and known

input signal will estimate the frequency response of the sensor [16]. Alternatively, the

problem may be viewed as a system identification task where a parameterised model

of the sensor is fitted to a model (1) or the corresponding Fourier ratio, for a known

pressure input x(t) [17].
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Both methods of analysis assume that the sensor under calibration exhibits linear

behaviour. Pressures used to calibrate a sensor should remain well within the limits

stated by the manufacturer, to ensure that this assumption remains accurate. It

should also be noted that any calibration results, whether a frequency response or a

parameterised model, will only be valid up to the maximum pressures used in calibration.

No assumption of linearity can be assumed beyond this pressure.

We consider two different systems for the generation of the time-varying pressure

input: shock tubes and drop-weight systems. These two systems are described in

Sections 2.2 and 2.3, respectively.

2.1. Primary standard systems for dynamic pressure

A primary calibration system is required to allow reliable traceability for the

measurement of dynamic pressure. Despite development studies carried out at the

National Institute of Standards and Technology (NIST), USA [18, 19], to the authors’

knowledge, the use of shock tubes as a primary calibration system has not yet been

fully realised. Similarly, to date drop-weight systems have been used only as secondary

calibrators. A reference sensor and the sensor to be calibrated are usually compared

by means of the drop-weight system, with traceability for the reference sensor being

reached by static calibration.

Primary calibration requires independent, traceable knowledge of the input pressure

to the sensor. The NIST shock tube proposal suggested the use of laser spectrometry to

meet this requirement [18]. For the shock tube systems considered here the input signal

(the pressure shock front experienced by the sensor undergoing calibration) cannot be

measured independently. To this end, it is intended to predict the nature of the shock

front by means of mathematical models derived from shock tube theory (e.g., [20])

and traceable measurements of the shock propagation speed and the initial pressure

and temperature (e.g., [21]) (see Section 2.2). For the drop-weight systems considered

here, a traceable indirect measurement of the input signal is achieved via two different

approaches (see Section 2.3); one based on the acceleration measurement of a falling

mass, the other on the refractive index variation of a fluid under pressure. For both

shock tube and drop-weight systems, the relation of these indirect measurements to an

estimate of the time-varying pressure within the system relies on the validity assumption

of a theoretical model. The different approaches to knowledge of the input signal will

have consequences for uncertainty analysis.

Details of approaches explored for modelling of the pressure input are given below

for both the shock tube and drop-weight system.

2.2. Shock tube as a primary calibration system

A shock tube is set up with low-pressure (driven) and high-pressure (driver) sections

of the tube, separated by a diaphragm. Sensors to be calibrated are mounted in the

end-wall of the driven section. The diaphragm is burst, typically by increasing pressure
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in the driver section, generating a shock wave that travels along the driven section. The

shock front is reflected off the end-wall of the driven section, causing a fast-rising step

change in the pressure at this point.

NPL is building a shock tube with a maximum pressure capacity of 7 MPa, and SP

has a shock tube with maximum capacity of 1 MPa. In an ideal shock tube rise times for

the pressure step are considered to be almost instantaneous, of the order of 5 ns. Given

the relative response time of sensors, it is difficult to measure the rise time of the step in

practice. However, in real shock tubes in which diaphragms do not burst instantaneously

or only burst partially, and where pressure differences between the driver and driven

sections of the shock tube are of the order of only a few MPa, such shock rise times may

not be achievable, with tens of nanoseconds being more likely. Such rise times should

allow calibrations in the MHz range.

A key challenge concerning the use of shock tubes as a calibration system will be

the consistent evaluation of uncertainties associated with the estimate of the pressure

input and uncertainties introduced by the use of a step-like calibration signal.

Many previous studies using shock tube-generated pressure waveforms assume an

ideal (or near-ideal) step input, e.g., [19, 21, 22]. Under this assumption, the main

parameters of a pressure input model are the rise-time and amplitude of the pressure

step. From shock tube theory, the amplitude of the pressure gain (∆P ) as the shock

front is reflected off the end-wall can be calculated using the starting pressure (P1) and

temperature (T1) of the driven gas, and the speed of the shock front (Vs) as it travels

along the tube. For example, when air is used in the low pressure end of the tube, the

pressure gain is calculated as [23]

∆P =
7

3
P1

(
M2

s − 1
)(2 + 4M2

s

5 +M2
s

)
, (2)

where the shock wave Mach number (Ms) is given by

Ms =

(
Vs

344.5

)√
298

T1

,

for temperature T1 given in K and speed Vs in m s−1. Side-wall mounted sensors provide

a means of estimating the shock speed, and therefore the expected pressure step.

Experiments were carried out in a prototype shock tube at NPL, to test the

applicability of shock tube theory in predicting pressure gain across the reflected

shock [24]. This work found good agreement between the changes in pressure predicted

by ideal gas theory and the changes in observed sensor output, for a number of

different gases, shock wave velocities, and driven section pressure magnitudes. In each

case, the mean calculated sensitivity for the pressure sensor lay close to its reported

static sensitivity. For the initial analysis, we therefore consider only the uncertainties

associated with the measured parameters of initial pressure, temperature and shock

speed, with no uncertainty associated with the validity of model 2.

In practice, there may be numerous sources of non-ideal behaviour in the shock

tube. For example, non-instantaneous opening of the diaphragm, reflections of a non-

planar shock wave from the tube walls, or boundary-layer effects. The diaphragm burst
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mechanism is an obvious non-regularity of the shock tube that cannot be controlled

from one firing to the next.

A lattice Boltzmann model [25] was developed to investigate this potential source

of non-ideal behaviour [26]. Unlike some more traditional methods for modelling fluid

flow, the lattice Boltzmann method is able to model discontinuities, such as shock

waves. A 3D model was used to investigate both non-instantaneous opening (allowing

for opening times up to 30 ms), and symmetrical and non-symmetrical partial opening

(allowing for opening proportions down to 20 %). Driven section lengths from 3 to 12

times the diameter, and starting pressure ratios from 2.5 to 10 were used. Results from

the model suggest that many disturbances produced by the diaphragm burst can be

eliminated by using a sufficiently long shock tube. Both the proposed NPL and SP

shock tubes comfortably meet this length requirement. The required tube length may

be dependent on the strength of the shock produced. For example, in [27] it was found

that for relatively weak shocks, post-shock oscillations were not eliminated by increasing

the tube length (though amplitude of the oscillations could be substantially reduced).

Experimental investigations into the effects of non-ideal diaphragm burst were made in

the prototype shock tube at NPL [24]. Repeated firings were made with diaphragms of

different material; aluminium, brass of varying thickness, and copper. The diaphragms

possess very different opening mechanisms. For example, ductile aluminium diaphragms

petal out and remain intact, while the copper diaphragms tend to shatter open. Over the

post-shock region of interest, the (normalised) outputs from the different diaphragms

were very repeatable, suggesting that the shock tube was sufficiently long, and the

bursting pressures sufficiently high to overcome any diaphragm effects on the signal.

Again, the dimensions and pressure ranges of the proposed NPL and SP shock tubes

exceed those of the prototype tube.

A feature observed in the lattice Boltzmann model that cannot be eliminated

through shock tube geometry is a gradual linear decline in the post-shock signal.

A similar feature is observed in the data that NPL obtained during preliminary

investigations using a shock tube at the UK’s Cranfield University, described in

Section 5, and has also been reported in measurements of side-wall post-shock

pressure [28]. The model can also simulate ideal flow within the shock tube. The model

records both pressure and temperature variation along the tube, and can be useful in

identifying the sources of events and reflections observed in the data from the end wall

(Figure 1).

2.3. Drop-weight systems for primary calibration

Two NMIs, MIKES and PTB, are developing drop-weight systems as new primary

measurement standards for dynamic pressure calibrations. The drop-weight system

is a simple and effective technique for calibrating high-amplitude dynamic pressure

sensors. A free-falling mass falls along a guide system, strikes a piston at the top of

a cylinder/chamber full of fluid, thus compressing the fluid. The increase in pressure
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Figure 1. Left: Measured output data from the end wall (solid line) compared to an

ideal flow from a lattice Boltzmann model (dashed line). Right: Predicted pressure

variation with time, along the length of the tube, illustrates the source of peaks and

reflections observed in the end wall signal.

acts on the sensor via the compressed hydraulic fluid. The pressure signal generated

resembles a positive half-sine or squared sine wave [29, 30]. The magnitude and duration

of the pressure pulse can be varied by using different masses released from different

heights.

Figure 2 depicts two drop-weight pressure pulses of approximately 100 MPa and

400 MPa, respectively, measured for the MIKES drop-weight system. The maximum

pressure is estimated from accelerometer measurements. With maximum values of the

order of hundreds of MPa, drop-weight systems have much higher pressure capacities

than shock tubes. However, the expected rise times for drop-weight systems are of the

order of 1 to 2 ms leading to much reduced calibration bandwidths (less than 1 kHz)

in comparison to shock tubes. Figure 3 shows a comparison of the expected frequency

content of signals from a shock tube and a drop-weight system.

The systems being developed at the two NMIs are mechanically similar, and work

over similar pressure intervals: the MIKES system from 100 MPa to 500 MPa, and

the PTB system from 5 MPa to 500 MPa. Traceability for the MIKES system will be

provided by calculating the acceleration of the piston from a traceable interferometric

measurement of the mass displacement, and independent measurements of the mass

of the drop-weight and the cross-section area of the piston. An equation for the

pressure inside the chamber can then be derived from Newton’s second law. The system

developed at PTB is equipped with a laser for measuring the time variation of the

pressure-dependent refractive index of the fluid under compression [32].

The drop-weight systems at both NMIs are still under development and as such

there remains a lack of accurate knowledge of the form of the true pressure input. The

analysis described in the remainder of the paper is therefore focused on the shock tube



Dynamic pressure 8

Figure 2. First measured output data from the MIKES drop-weight system.

system.

3. Simulation-based analysis

Simulation software has been developed in Matlab R© [33] that predicts the frequency

response of a measuring system with the shock tube, at a discrete set of frequency

values. The software has been written such that when real measured data are available,

the software can be used as a calibration tool, producing the uncertainties associated

with the system response. Here we also consider the extension to system identification

of a parametric model (see Section 4), allowing the response to be calculated over a

continuous frequency interval.

3.1. Generating pressure input

Based on shock tube theory and the results from the modelling work described in

Section 2.2, the pressure input for the shock tube is modelled as a fast-rising step (of

the order of 0.1µs) with the post-step amplitude determined from the starting pressure

and temperature, and the shock speed.

3.2. Simulating the measuring system

A model for the measuring system was derived as follows. Based on the data sheets

and user manuals for piezo-electric pressure sensors and charge amplifier units to be



Dynamic pressure 9

Figure 3. Frequency content of typical pressure signals generated by the shock tube

and drop-weight systems. Gans-Nahman windowing technique [31] is applied to the

signal generated by the shock tube. The smaller figure shows the two spectra in the

low-frequency region.

used, an initial attempt to provide a parametric model for the system response includes

a simple second order system, representing the pressure sensor, followed by a low-pass

filter (LPF) to model the amplifier. The response of the sensor is described by the

transfer function in the Laplace domain

HS(S0, δ, ω0; s) =
S0ω

2
0

s2 + 2δω0s+ ω2
0

, (3)

for resonance frequency ω0 = 2πf0, damping ratio δ and gain S0. The charge amplifier,

modelled by a 6th order Butterworth LPF, has transfer function

HA(fc; s) =
b0s

6 + b1s
5 + . . .+ b6

a0s6 + a1s5 + . . .+ a6

,

where the coefficients ai and bi depend on the filter’s cut-off frequency fc. The transfer

function describing the complete measuring system is then obtained as the cascade of

the sensor and amplifier responses, which equals the product of the responses

Hmodel(S0, δ, ω0, fc; s) = HS(S0, δ, ω0; s)HA(fc; s) . (4)
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The parameters, φ, describing the model are therefore the damping ratio, gain and

resonance frequency in expression (3), and the cut-off frequency of the LPF.

An output signal may then be simulated as the response of the system model (4)

to a simulated input pressure signal, as described in Section 3.1.

3.3. System frequency response

To simulate the calibration as a simple deconvolution process, the sensor and charge

amplifier are considered as a combined measuring system to be calibrated. Where

the amplifier has previously been calibrated (i.e., the frequency response HA has been

obtained independently), a pre-processing deconvolution step may be applied to the

data to correct for the effects of the amplifier.

Denote by y and x, respectively, the time-varying values of the measured output

signal and pressure input signal. From Equation (1), the system frequency response is

calculated as the ratio of the Fourier transforms of the output signal y and assumed

pressure input signal x. Uncertainties associated with the pressure input and the sensor

output are propagated through to the derived frequency response using a Monte Carlo

method.

An uncertainty is associated with the initial pressure and temperature in the driven

section of the shock tube, the speed of the shock front and its arrival time at the end

wall, and the rise-time of the reflected shock. These parameters are varied to produce

a different assumed input pressure signal for each Monte Carlo trial, assuming a clean

step input, with amplitude calculated using Equation (2).

Prior to applying the Fourier transform, both the input and output signals are

windowed using the Gans-Nahmann technique [31], further described in the Appendix.

A discrete Fourier transform cannot be applied directly to a step-like signal, and a

window is applied to the step to generate a signal with equal end-points. For an ideal

step signal, where a constant post-step value has been reached, the choice of where

to truncate the signal (i.e., where to apply the window) has a negligible effect on

the resulting transform. When there is variation on the post-step signal, the choice

of truncation point may affect the transform and should therefore be considered as a

source of uncertainty. Therefore, uncertainties associated with the signal processing

are considered by varying the truncation point of the output signal (implemented as a

sliding window to maintain a constant signal length). Finally, measurement noise ε(t)

is added to the simulated output signal.

As an example, using the distributions listed in Table 1, Figure 4 shows the

estimated amplitude and phase of the system frequency response, with associated

standard uncertainties shown for each frequency. The reference values used to simulate

the system response were chosen to be broadly indicative of those expected for the

system used in the Cranfield tests, with the exception of the cut-off frequency. A

relatively high cut-off frequency of 0.8 MHz was used to simulate the LPF response,

to allow the behaviour around the resonance frequency to be clearly observable. The
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Parameter Unit Distribution/

Reference value

Rise-time ns N(50, 202)

Initial pressure kPa N(100, 0.52)

Initial temperature K N(294, 0.12)

Shock speed m s−1 N(600, 2.52)

End-wall arrival ms N(4, (1× 10−6)2)

Cut-off ms R(4.95, 5)

Noise V N(0, 0.0012)

Resonance freq. MHz 0.4

Cut-off freq. MHz 0.8

Gain - 1

Damping - 0.1

Table 1. Parameters varied for assumed pressure input for simulations of measuring

system calibration in a shock tube system, and reference values used for the simulated

system response, where N(µ, σ2) describes a normal distribution with expectation µ

and standard deviation σ, and R(a, b) describes a rectangular distribution with lower

bound a and upper bound b .

amplitude estimates show good agreement with the simulated reference values up to the

high-frequency points. The phase estimates deviate from the reference values around

the resonance frequency at 0.4 MHz, but remain within the uncertainties. The relative

uncertainty for amplitude is 1.5 % at the DC level and approximately 8.5 % around the

resonance frequency at 0.4 MHz.

Figure 4. Mean amplitude (left) and phase (right) of system frequency response for

a shock tube system from 100 000 Monte Carlo trials with assumed pressure input

rise-time, step height, step time and signal cut-off varying as in Table 1. Error bars

show standard deviation for each frequency. Red dashed line shows simulated reference

response.
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4. System identification

The frequency response calculated in Section 3.3 provides estimates (and associated

uncertainties) of the amplitude and phase of the measuring system response at the

given, discrete set of frequency values only. The frequencies at which the response is

estimated are determined by the duration of the input pressure signal and the sampling

frequency of the measuring system. Determining a parametric model to describe the

system allows the response to be calculated on a continuous frequency interval and

enables validation of sensor calibrations across different bandwidths. Depending on

the particular parameterisation, it may also be possible to assign physical meaning to

estimated parameters.

Assume that the statistical model for the data in the frequency domain is given in

the form of real and imaginary parts:

<H(ωi) = <Hmodel(φ;ωi) + εi, i = 1, . . . , N , (5)

=H(ωi) = =Hmodel(φ;ωi) + εN+i, i = 1, . . . , N ,

with errors εi ∼ N(0, σ2), where σ is assumed to be unknown, and substituting

s = jω in Equation (4). Here we use an input signal of 5 ms duration, sampled at

10 MHz, resulting in N = 25 000 frequency points. We initially assume independence

between frequencies to limit the required computational power. The use of a compact

covariance matrix representation will be explored in the next stages of this project,

to allow for consideration of correlation between frequencies. In future applications

of this method, the unknown error parameter σ may be updated from experimentally

determined measurement uncertainties.

For a given pressure input signal, x∆p, the measuring system model parameters φ

are then determined as

φ̂ = arg min
φ
{S(φ)},

with

S(φ) =
N∑
i=1

[
(<Hmeas(y,x∆p;ωi)−<Hmodel(φ;ωi))

2

+ (=Hmeas(y,x∆p;ωi)−=Hmodel(φ;ωi))
2] , (6)

where the measured system response Hmeas is the ratio of the (discrete) Fourier

transforms of the output signal y and the pressure input signal x∆p. Calculation of φ̂ is

carried out using nonlinear least squares with the Levenberg-Marquardt algorithm [34].

Uncertainties associated with the estimated model parameters, assuming the statistical

measurement model (5), are calculated as

Uφ̂ = (Jφ̂
>Jφ̂)−1 S(φ̂)

N − 4
, (7)

where Jφ̂ denotes the Jacobian of expression (6) with respect to φ evaluated at φ̂, and

N − 4 denotes the degrees of freedom.
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Applying the system identification to a simulated shock tube output signal, with the

known reference pressure step input assumed, recovers good estimates of the parameters

describing damping, gain and resonance frequency of the system. Table 2 gives the

reference values of the parameters used to simulate the measurement along with the

estimates and relative uncertainties, using expressions (6) and (7) respectively. Note

that a relatively low value of 0.6 MHz was used for the LPF cut-off frequency. A value

close to the resonance behaviour was chosen to test the ability of the algorithm to

identify the resonance frequency when a relatively low-frequency filter is applied.

Parameter Damping Gain Res. freq. Cut-off freq.

Unit - - MHz MHz

Reference value 0.1 1 0.4 0.6

Estimate using reference input 0.0999 0.9990 0.4001 0.5999

Relative uncertainty (%) 0.009 0.003 0.001 0.003

Mean 0.1001 1.0012 0.4002 0.5999

Standard deviation 0.0001 0.0171 0.0001 0.0002

Table 2. Mean parameter values, and standard deviations, from 5000 Monte Carlo

trials, with assumed pressure input varying according to the distributions given in

Table 1. The reference parameter values are those used to simulate the measured

data. Also shown are the estimates and relative uncertainties (7) returned by the

optimisation (6) when the reference pressure input is used.

The sensitivity of the estimated system parameters to the assumed pressure input is

investigated using a Monte Carlo method. Here, the variables determining the generated

pressure are varied, according to the distributions listed in Table 1, to produce a different

assumed input for each trial, and measurement noise ε(t) is added to the simulated

output signal. The end-wall arrival time is assumed to be known exactly for the system

identification, as the initial response time of the system cannot be controlled by the

four parameters considered in model (4). Subsequent system models may incorporate a

delay parameter, whose estimate would depend on the shock arrival time and associated

uncertainty.

The last two lines of Table 2 list the mean value for each parameter obtained

by a Monte Carlo method, along with their standard deviations. All four parameters

are identified well and the modelled output, generated using the reference pressure

input and estimated system parameters in Table 2, provides a good fit to the simulated

reference output (Figure 5). Plotting the results from each Monte Carlo trial gives

a clearer indication of which effects on the input pressure signal have an appreciable

influence on the estimates of the model parameters, and helps to identify correlations

between the fitted parameters. Therefore, we carried out a further, comprehensive

simulation study using different values for the initial pressure and input signal rise-time.

Within the regions studied, the variation in the assumed initial pressure has the most

significant influence, with the step rise-time having a lesser, but also observable, effect.
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Figure 5. System output for the reference parameter values (dashed black line)

and estimated parameter values (solid red line) from the system identification with

uncertainties associated with the values of the input pressure signal.

For example, the influence of these two input variables on the fitted gain parameter

can be seen in Figure 6(a). As the value of the assumed initial pressure decreases, the

value of the fitted gain has to be increased to fit the model to the measured signal. For

a constant initial pressure, there is also a small increase in fitted gain as the rise-time

of the pressure step increases. For starting pressures below approximately 0.05 MPa,

the fitted gain value becomes fixed at the upper boundary given in the optimisation

function, and the fitted damping parameter is reduced to compensate (Figure 6(b)).

While there will clearly be correlations between the fitted system parameters, these

correlations are not considered in the values given in Table 2.

5. Shock tube data

In this Section, we briefly describe the application of the system identification techniques

described in Section 4 to measured data available from shock tube firings. These data

are from early measurements from the SP shock tube and the preliminary work carried

out at Cranfield University.

The Cranfield shock tube has a driven section of length 7.3 m and diameter 81.3 mm.

Measured data was analysed from six different firings of the Cranfield shock tube, with

aluminium diaphragms and with the same piezo-electric sensor and charge amplifier used

each time. Burst pressures varied from 6.9 MPa to 8.3 MPa, giving initial pressure ratios

of approximately 70 – 80. The data showed variations in the step height, presumably

due to different burst pressures, and also differences in a gradual linear trend observed

in the post-step section of the output signal. A consistent feature seen in all data sets

is a series of impulse-like disturbances, decreasing in size, in the post-step section of the
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Figure 6. Fitted values for the system gain (shown as colour) with varying assumed

initial pressure and (a) step rise-time, (b) fitted system damping. Note that for each

data point shown, initial temperature and shock speed also vary. Dashed lines in (a)

show the reference values of both parameters.

output signal.

Figure 7. Data (shifted and scaled) from the accelerometer and end-wall sensor in a

typical run.

Modern dynamic pressure sensors are designed to be reasonably insensitive to

accelerations. The sensor used in the Cranfield shock tube uses a seismic mass to

compensate for sensitivity to acceleration. This mechanism is not explicitly included

in the sensor response model (3), but could be incorporated as a coupled, damped

oscillator. However, comparisons of output signal with vibrations measured by an

accelerometer fitted within the side-wall of the shock tube (Figure 7), suggest that

the peaks observed in the measuring system output may be, at least partially, due to
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vibrations during the shock tube firing that the compensation mechanism of the sensor

is not able to deal with adequately. The same sensor has since been used in a prototype

shock tube recently installed at NPL. The acceleration-compensation has been tested

by firing the shock tube with the sensor mounted on the end-wall, but completely sealed

off from the gas in the tube, therefore experiencing no pressure change. Relatively large

amplitude events recorded by the measuring system support the suggestion that the

vibrations produced by firing a shock tube are of a greater amplitude and/or frequency

than the sensor compensation mechanism can correct for. For the system identification

described in Section 5.1, the post-shock data was truncated before the arrival of the

first of these larger disturbances.

Three data sets from the SP shock tube are considered. The SP shock tube has

driven length 2 m, diameter 0.1 m and uses layered cellophane diaphragms. Typical

burst pressures are 0.6 MPa. Again, a piezo-electric sensor and charge amplifier make

up the measuring system, though both are different from those used for the Cranfield

measurements.

5.1. System identification

A clean step pressure input is assumed in all cases, with a rise-time of 50 ns. The step

amplitude ∆P is determined from initial pressure and shock speed estimates, using

Equation (2).

Data sheets for the sensor and amplifier used in the Cranfield shock tube give values

of 0.4 MHz and 0.2 MHz for the natural frequency of the sensor and the cut-off frequency

of the analog low-pass filter of the charge amplifier, respectively. These values can be

employed to justify the determined model parameters.

Figure 8 shows the identified parameter values for the six firings of the Cranfield

shock tube. At this stage it is assumed that the pressure input is known exactly, i.e., no

uncertainties are associated with its parameters. The error bars on the parameter values

represent the uncertainties (7) under the assumption of the measurement model (5).

With the exception of the second firing, the two frequency parameters show a

consistent fitted value across the data sets. The cut-off frequency corresponds to that

expected from the manufacturer’s data sheet, while the resonance frequency is slightly

lower than that expected from the sensor documentation. However, given that the

stated frequency of 0.4 MHz is greater than the cut-off frequency of the LPF, it is very

likely that much of the activity closer to the resonance has been lost, therefore making

it difficult to fit this parameter. Future measurements using the NPL shock tube will

use an amplifier setting that does not suppress the sensor’s resonance frequency. The

damping parameter δ is consistent across the six runs, but with larger uncertainties

appears to be harder to fit than the frequency parameters. A less consistent fit is seen

for the gain parameter S0. However, this parameter is very sensitive to the estimated

value of the pressure height. With a more accurate knowledge of this value, or analysis

that took into account the uncertainty of the value, consistency across the runs may
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Figure 8. Identified values for system parameters, assuming ideal step input. The

error bars on the parameter values represent the standard uncertainties (7) calculated

under the assumption of the measurement model (5).

improve.

Figure 9 shows the measured frequency response for a single run from the Cranfield

shock tube, compared to the fitted frequency response model, assuming an ideal step

input. While the model reproduces the general shape of the measured response, much

of the finer structure is not captured. These differences indicate that either the system

model (4), or the measurement model (5), or both, are not yet fully adequate.

The model is also tested by simulating an output signal in the time domain, based on

the assumed pressure input and modelled system response (Figure 9). Again, although

the rise and over-shoot of the signal are captured well, the later disturbances in the

signal are not explained by the current model (4).

As the current model cannot fit the post-shock disturbances after approximately

0.65 ms, the system identification is repeated using only the signal up to 0.65 ms.

Figures 10 and 11 show the optimised parameter values, and the fitted model for a

single run, respectively.

The parameter values remain largely similar to those shown in Figure 8, which

may be expected given that the initial system identification fitted just this first part

of the post-shock signal. The notable differences are the damping parameters, which

have smaller uncertainties but are not consistent across the runs, and the consistency

now observed across the resonance values, which also have smaller uncertainties. The

frequency response in Figure 11 illustrates that the resonance frequency is now more

easily identifiable, without the noise from the omitted post-shock oscillations.
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Figure 9. Left: Fitted frequency response for single run from Cranfield shock tube.

Right: Model validation of system output for single run from Cranfield shock tube.

Figure 10. As for Figure 8, using measured output signals up to 0.65 ms.

Figure 12 shows a single output signal from the SP shock tube, and the frequency

response of the system, assuming a clean step pressure input. There is a more obvious

peak frequency than in the Cranfield data (see Figure 9), clear both in the time and

frequency domain. The natural frequency of the sensor is quoted as 0.16 MHz, within

the peak frequency range seen in Figure 12. A sharp drop-off follows this peak, but

subsequently there is less evident attenuation at the higher frequencies than seen in the

Cranfield data, implying that any cut-off occurs beyond the natural frequency of the
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Figure 11. As for Figure 9, using a measured output signal up to 0.65 ms

sensor. For the system identification, the influence of the amplifier on the frequency

response was assumed to be negligible.

Figure 12. Output signal from measuring system in the SP shock tube (left), and

derived frequency response for the system (right), assuming a clean step input.

In the optimisation process, the estimated sensor frequency corresponds to that

given by the manufacturer’s data sheet, and is consistent across the three measurement
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runs (Figure 13). The damping estimate is also consistent across the three, and

significantly less than that derived for the Cranfield system. The lack of damping is

evident in Figure 12, with little attenuation of the post-shock ringing. As before, the

gain parameter is more varied across the three runs, but again is significantly affected

by the assumed height of the step input. Gain estimates will therefore be improved

through more accurate measurements of the starting pressures and shock speed for each

firing.

Figure 13. Identified values for system parameters in the SP shock tube, assuming a

clean step input and no LPF in the system model (4). Error bars represent standard

uncertainties (7) assuming the measurement model (5).

The fitted model is shown with the measured data both in the frequency and time

domain in Figure 14. The model captures the system response much more fully than in

the case of the Cranfield data, though still fails to capture some features.

Although the parametric model identified for the system is reasonably consistent

across multiple data sets, and for two different shock tubes, Figures 9 and 14 show that

there are many features within the data that are not explained by the model. System

identification assumes knowledge of the input signal to the system and for the current

problem we have to rely on a model for this input. The consistency of parameters for

the system model may imply that it is the pressure input model that is too simple.

However, empirical results also suggest that some features in the post-shock signal may

be due to acceleration compensation in the sensor. An extension of the simple sensor

model (3) to account for such a coupled system may improve the fit to observed data,

and will be investigated in future work. Further experiments are being carried out to

validate the pressure input model and to investigate extension of the system and the
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Figure 14. Left: Fitted model and measured frequency response, assuming a step

pressure input, for a firing of the SP shock tube. Right: Measured output from the

SP shock tube and modelled output derived from fitted system parameters, assuming

a step input.

measurement models.

6. Conclusions

The development of primary standard calibration systems for dynamic pressure presents

a number of mathematical and metrological challenges. The current EMRP project

focuses on the use of shock tubes and drop-weight systems to generate wide-bandwidth

time-varying pressure signals and here we introduced some of the specific issues that

arise with these systems, and our approaches to tackling them.

Shock tubes can generate repeatable fast-rising step-like signals. However, a

significant challenge in using these signals for calibration purposes is the inability to

independently measure the pressure change. To this end, we assumed a step-like input

with height and rise-time determined from measurements of shock speed and initial

pressure. Using a comprehensive simulation study we demonstrated that knowledge

of the initial pressure has a strong impact on the estimation result. Our system

identification fits a consistent model across multiple firings of the tube, but our current

model does not explain all features observed in the data. The next stages of our work

will attempt to identify the sources of these features, and in particular whether they are

generated within the shock tube itself or the sensor. A prototype shock tube developed

at NPL is currently being used to try to identify and quantify any sources of non-ideal

behaviour within the shock tube. The repeatability observed over multiple firings of this

shock tube with diaphragms of different material, suggest that many of the post-shock

features of the measured signal may be a sensor response. A comparison of different

sensors across the NPL and SP shock tubes will also help to distinguish between aspects
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of shock tube and sensor behaviour. Disturbances generated by the shock tube can to

some extent be minimised or eliminated through shock tube design. Components of the

output that are inherent in the sensor response must be incorporated into our sensor

model. A potential extension to the representation of the sensor may be to consider a

coupled system, to better model vibrations or reflections within the sensor itself.

For the drop-weight system different methods to obtain an independent

measurement of the input pressure signal are possible. Each of these methods

incorporate measurements or characteristics of fluid properties that are not yet fully

investigated in terms of mathematical models. To this end, future research at MIKES

and PTB will be carried out to derive a suitable model that can be applied in a system

identification to generate input pressure signals from traceable measurement of certain

parameters similar to the shock tube approach.

The final aim is to use a comparison between the different drop-weight and shock

tube systems as a validation tool for the system identification approach developed.

Where the calibration process has fitted a parameterised model of the measuring

system, comparison across the calibration systems will be straightforward. The ability

to compare frequency responses calculated from the different calibration systems will

depend on the extent of overlap between the respective frequency intervals, in terms of

meaningful data for amplitude and phase at those frequencies. With a fully developed

model for drop-weight pressure, simulations may be used to determine to what extent

such a comparison may be possible in practice, before final development of the standard

systems.
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Appendix

Applying a discrete Fourier transform (DFT) directly to a step function results in errors

as the DFT for finite intervals is exact only for band-limited signals that have a smooth

periodic extension [35]. The reason is that taking the DFT of a signal on a finite interval

implies the approximation of the Fourier series of its infinite periodic extension. When

the signal values at the interval end points are unequal this periodic extension has

discontinuities. For an increasing sampling frequency the Fourier series of the periodic
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extension at the end points of the original interval then converges to the average of both

values resulting in significant errors, see Theorem 2.4 in [35]. In addition, the unequal

values at the end points result in the so called Gibbs effect - a ringing in the inverse

DFT [35]. To this end, various techniques have been applied to the spectral analysis

of step-like functions. These techniques generally require the addition, subtraction or

multiplication of an additional signal with the original to create a signal that is zero-

valued at its end-points. An alternative approach is to differentiate the step response to

obtain an impulse response signal. The disadvantage with this approach is the increase

in uncertainties caused by differentiating the signal.

The approach adopted here was described by Gans and Nahman [31]. Their

technique involves the extension of the original, truncated step-like time series v(t) as

follows. Assume the original, step-like signal v(t) is measured for t ∈ [0, T ] and satisfies

v(t) = 0, for t < 0,

v(t) = v(T ), for t > T,

implying that the signal has reached a final, steady value when it is truncated at t = T .

Then a new function g(t) is defined on the interval [0, 2T ] as

g(t) = v(t)− v(t− T ),

which then satisfies g(0) = g(2T ) = 0, hence it is a signal with zero-valued end points.

This technique effectively doubles the length of the time signal and number of samples.

It therefore doubles the number of harmonic frequencies at which the FFT is defined.

However, the FFT solution is zero at the even harmonics [31].
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