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Abstract The multiperiod cutting stock problem arises in the production planning and pro-

gramming of many industries that have the cutting process as an important stage. Ordered

items are required in different periods of a finite planning horizon. It is possible to bring

forward or not the production of items. Unused inventory in a certain period becomes avail-

able for the next period, all together with new inventory which may come to be acquired in

the market. Based on mixed integer optimization models from the literature, extensions are

proposed to deal with the multiperiod case and a residual heuristic is used. Computational

experiments showed that effective gains can be obtained when comparing multiperiod mod-

els with the lot for lot solution, which is typically used in practice. Most of the instances are

solved satisfactorily with a high performance optimization package and the heuristic method

is used for solving the hard instances.

Keywords Cutting stock problem · Multiperiod · Mathematical models · Residual heuristic

1 Introduction

The cutting stock problem consists of finding an optimized way of cutting objects in stock of

known dimension into smaller items in order to meet a given demand. In general, the objective

to be optimized is related to the minimization of the waste of material. The multiperiod cutting

stock problem consists basically of solving, in each period of a finite planning horizon,

a cutting stock problem, to meet demand of items in the several periods of the planning
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horizon. However, production of some items might be brought forward or not. This allows

new combinations to be considered, i.e., an item that has no demand in a given period might

be brought forward from the next period, for example, if its combination with other demanded

items decreases the waste. Stock objects not used in a period become available for the next

period, together with the new stock for that period (such objects may be acquired in the market

or produced in the same factory, as in the case study presented by Poltroniere et al. (2008), in

a paper factory). The amount of objects in stock (acquired or produced) is considered, in this

work, as input data. The objective function to be minimized combines the material waste,

holding costs of items brought forward and stock object holding costs.

Due to current economic circumstances, industries try to make their production process

more efficient and this stimulates academic research on optimization models to control indus-

try’s production planning as a whole. Therefore, coupled problems have been studied. In the

coupled context, the cutting stock problem arises as a subproblem which has to be solved

integrated with others optimization problems in industry. Common examples in different

industries are cutting stock problems coupled with lot sizing problems (Trigeiro et al. 1989).

Typically, lots are defined and a cutting stock problem is solved independently for each lot,

so the waste in the cutting process does not interfere in the lot size determination. Taking the

coupled lot sizing and cutting stock decisions, it is possible to bring forward the production

of some items and to have better cutting patterns (as a larger variety of pieces possibly allows

better combinations).

Gramani and França (2006) proposed a mathematical model for coupling lot sizing and

two-dimensional cutting stock problems based on a case study of a furniture factory. The

aim is to determine which and how many final products (desks, shelves, wardrobes, etc.)

should be produced in a given period of a finite planning horizon. It consists of deciding

the amount of final products such that it minimizes production, setup and holding costs (lot

sizing problem) and also the number of stock objects cut into items to build the final products

to meet the demand (cutting stock problem). Note that an optimal solution for the coupled

problem may contain non-optimal solutions to the cutting stock problem and the lot sizing

problem when considered separately. Later on, in 2009, Gramani et al. (2009) presented an

integrated lot sizing and cutting stock model that incorporates the conjecture that it is more

advantageous to bring forward the production of certain lots of final products. In this paper the

importance of multiperiod cutting stock problem can be seen. This importance is confirmed

in Gramani et al. (2011) in which the authors address the integrated problem by solving

its linear relaxation using the column generation technique. They were able to improve the

solution by up to 12.7 % when compared to the solution from the decomposed model. The

coupled lot sizing and cutting stock problem in the furniture industry was also addressed by

Alem and Morabito (2012, 2013) and Vanzela et al. (2013).

Other coupled cutting stock and lot sizing problems were studied by Arbib and Marinelli

(2005), Poltroniere et al. (2008), Nonas and Thorstenson (2008), Malik et al. (2009), Suliman

(2012) and Silva et al. (2014). Cutting stock problems with due dates have been considered

by Li (1996), Johnston and Sadinlija (2004), Reinertsen and Vossen (2010) and Arbib and

Marinelli (2014).

In particular, this study was motivated by a production planning problem that arises in

a paper factory, which is well defined in Poltroniere et al. (2008). First of all, a lot sizing

problem is considered in order to decide which should be the weight of jumbos (large reels) to

be produced in each period of a planning horizon. After being made, the jumbos are cut into

smaller reels of given widths (which may be cut in sequence into rectangles) in order to meet

a given demand in such a way as to minimize the waste. In other words, it is an usual cutting

stock problem. Typically, the problem of jumbo production is empirically solved by expert
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production managers, who focus mainly on setup minimization. Therefore, lots of jumbos

are produced without paying attention to the next production stage of cutting the jumbos

which waste depends on the jumbos (widths and quantities) previously made. Of course,

the best widths and quantities of jumbos in terms of the cutting problem can introduce high

setups when producing them. So, the planning decisions consist of choosing which jumbo

reels (defined by their length and thickness of the paper) and how many (lot size) jumbo

reels should be produced in each period of time, in order to meet demand, avoiding holding

costs and minimizing the waste of material. Therefore, these two problems, i. e., the lot

sizing problem and the cutting stock problem, are interdependent and should be solved in

an integrated manner. The authors formulated two mathematical models and developed a

method to solve the problem.

In most papers that consider coupled models for lot sizing and cutting stock problems

including the paper from Poltroniere et al. (2008), the multiperiod cutting stock problem

can be identified as a subproblem and this shows the importance of solving the multiperiod

cutting stock problem efficiently.

In this context, this paper makes several contributions. First, it generalizes, for the multi-

period cutting stock problem, two mathematical models that were originally proposed for the

single period classical cutting stock problem. To the best of our knowledge, no paper in the

literature on multiperiod cutting stock problem has either so far adopted the arc flow model

proposed in this paper. Second, the generalized models include different types of objects in

stock, and the stock availability of objects is considered as a parameter, and also as a decision

variable. Third, a residual heuristic adapted from Poldi and Arenales (2010) is presented

for solving difficult instances. Forth, extensive computational results are presented showing

the quality of the computational package in solving the proposed mathematical models and

the quality of the proposed heuristic. It is worth noticing that the proposed mathematical

models have direct practical application in different industries in which the cut products are

the same as the ordered products, such as: pre-cast roof-slabs and industries that cut items

for other industries, such as, in the furniture sector. Moreover, the addressed problem arises

as a subproblem in industrial processes where the lot sizing problem is integrated with the

cutting stock problem. The amount of research in recent years indicates the relevance of

these integrated lot sizing and cutting stock problems in various industrial settings, such as,

furniture and paper industries, among others.

In Sect. 2, the mathematical models that consist of generalizations of the model proposed

by Gilmore and Gomory (1963) and the arc flow model (Valério de Carvalho 1999, 2002)

are presented. In Sect. 3, a small example that shows the importance of considering the

multiperiod problem is given. The residual heuristic is described in Sect. 4 and Sect. 5

presents, presents the computational results. Finally, in Sect. 6, the conclusions are drawn

and suggestions for future research are made.

2 Problem definition and mathematical models: multiperiod cutting stock
problem

Here is a short description of the multiperiod one-dimensional cutting stock problem with

several types of stock objects.

Assume there is a finite planning horizon divided into T periods, t = 1, . . . , T . One

period can be a working-hour, a working-week or a working-month. Assume, also, there

are available K types of objects (bars, reels, rolls, etc.) of given length Lk, k = 1, . . . , K ,
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each type available in quantity ekt , k = 1, . . . , K in each period t of the planning horizon,

t = 1, . . . , T . In each period t , a set of items of given length li , i = 1, . . . , m, has to be

cut to meet demand di t , i = 1, . . . , m, t = 1, . . . , T . The multiperiod cutting stock problem

consists of producing the demanded items by cutting the stock objects available in each period

of the planning horizon, in such a way that clients’ demand is met and a certain objective

function is minimized, e.g., minimize material waste and holding costs.

2.1 Generalized Gilmore and Gomory’s model (GGG)

We present a generalization of the model proposed by Gilmore and Gomory (1961, 1963,

1965) for the cutting stock problem, to deal with the multiperiod cutting stock problem (Poldi

and Arenales 2010). Consider the following:

Indices:

• t = 1, . . . , T : number of periods in the planning horizon;

• k = 1, . . . , K : number of types of objects available in stock;

• j = 1, . . . , Nk : Nk is the number of cutting patterns for stock object type k, k =

1, . . . , K ;

• i = 1, . . . , m: number of types of ordered items.

Data:

• Lk : length of stock object type k, k = 1, . . . , K ;

• ekt : stock availability of object type k in period t, k = 1, . . . , K , t = 1, . . . , T ;

• li : length of item type i, i = 1, . . . , m;

• di t : demand of item type i in period t, i = 1, . . . , m, t = 1, . . . , T (dt : vector with

components di t ).

Parameters:

• c jkt : cost of cutting a stock object type k according to the j th cutting pattern in period

t, j = 1, . . . , Nk, k = 1, . . . , K , t = 1, . . . , T ;

• cr
i t : holding cost for item type i in period t, i = 1, . . . , m, t = 1, . . . , T ;

• cs
kt : holding cost for stock object type k in period t, k = 1, . . . , K , t = 1, . . . , T .

Decision variables:

• x jkt : number of stock objects cut according to cutting pattern j of object type k in period

t ;

• ri t : number of items type i which are brought forward to period t (rt : vector with com-

ponents ri t );

• skt : number of objects type k not used in period t , and available in period t + 1.

Definition 1 We call a cutting pattern akt the way a stock object is cut to produce the

ordered items. To each cutting pattern there is an m-dimensional vector which represents the

produced items,

akt = (a1kt, a2kt, . . . , amkt)
T

where aikt is the amount of items type i , in a cutting pattern for object type k, in period t .

In one-dimensional cutting problems, a cutting pattern akt has to satisfy the capacity

constraint of a knapsack problem:

l1 a1kt + l2 a2kt + · · · + lm amkt ≤ Lk (1)

0 ≤ aikt ≤ di t , and integers, i = 1, . . . , m, k = 1, . . . , K , t = 1, . . . , T . (2)
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Therefore, let us consider aijkt the amount of items type i , in the cutting pattern j for object

type k, in period t . Consequently, let ajkt be an m-dimensional vector with elements aijkt .

Mathematical model (GGG):

Min

T
∑

t=1

⎛

⎝

N1
∑

j=1

c j1t x j1t +

N2
∑

j=1

c j2t x j2t+ · · · +

NK
∑

j=1

c j K t x j K t +

m
∑

i=1

cr
i tri t +

K
∑

k=1

cs
kt skt

⎞

⎠

(3)

Subject to:

N1
∑

j=1

a j1t x j1t +

N2
∑

j=1

a j2t x j2t+ · · · +

NK
∑

j=1

a j K t x j K t + rt−1 − rt = dt ,

t = 1, . . . , T, (4)

Nk
∑

j=1

x jkt − sk,t−1 + skt = ekt , k = 1, . . . , K , t = 1, . . . , T, (5)

x jkt ∈ Z+, ri t ∈ R+, skt ∈ R+, j = 1, . . ., Nk, k = 1, . . . , K , t = 1, . . . , T . (6)

The objective function (3) minimizes the total waste of material, in all periods and the

holding costs of items and stock objects. The cost of a column that represents a cutting

pattern is considered equal to the waste in the corresponding cutting pattern: c jkt = Lk

–
∑m

i=1 li αijkt , i. e. the waste in the j th cutting pattern for object type k. The cost of

bringing forward the production of an item from one period to the previous period is given

by: cr
i t = αli . The holding cost for stock objects that are not used in a certain period and

will become available in the next period is given by: cs
kt = βLk . Parameters α and β were

defined to study the influence of holding costs in the proposed model. One can fix any value

to cr
i t and cs

kt , i. e. these parameters can be tuned by the user, according to the real needs of

the industry.

Bringing forward the cut of some items may increase the items’ holding cost (cr
i t ), on the

other hand, it may allow a better match of items, which minimizes total waste. The constraints

(4) make sure that original demand is met and (5) that stock availability of each type of object

will not be exceeded. Stock objects not used in a period t became available in period t + 1,

with a “penalty”, i.e., the holding cost cs
kt . When considering null holding costs, there is

a tendency to bring forward the production of items, which is limited by the stock objects

availability.

The GGG model (3)–(6) can be used to solve either one-dimensional or two-dimensional

cutting stock problems, the only difference is how the cutting pattern is built. As in the

multiperiod cutting stock problem, the cutting stock problem with several types of stock

objects (Gilmore and Gomory 1963) also allows better combinations of items that can lead

to smaller waste.

2.2 Generalized arc flow model (GAF)

Valério de Carvalho (1999, 2002) considered the bin-packing problem where variables that

correspond to items of a given type are indexed by the physical position they occupy inside the

large objects, i. e., a variable represents the placement of an item at a given distance from the

border of the roll. There are other papers in the literature that consider mathematical models

based on position-indexed (e.g. Beasley 1985) for the two-dimensional non-guillotine cutting

stock problem; Pinho de Sousa and Wolsey (1992) for the scheduling problem (time-indexed

formulation)).
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Based on the position-indexed principle, Valério de Carvalho (1999, 2002) presents an

arc flow formulation. Given the data described in the previous section, finding a valid cutting

pattern in the proposed model is equivalent to finding a path in the acyclic oriented graph

G = (V, A), with a set of vertices V = {0, 1, . . . , Lmax }, where Lmax = max{Lk} is the

length of the largest object; and the set of arcs A is defined as: there exists a directed arc

between two vertices if there is an item of the corresponding size (A = {( j, h) : 0 ≤ j <

h ≤ Lmax and h − j = li for every 1 ≤ i ≤ m}). Furthermore, there are additional losses

arcs ( j, j + 1), j = 0, 1, . . . , Lmax − 1. There a cutting pattern in a single object of length

Lk if there is a path between vertices 0 and Lk . The lengths of the arcs that constitute the

path define the item sizes to be cut. In the same set of vertices, consider directed arcs from

vertex Lk to vertex 0, if there is an object of length Lk, k = 1, . . . , K .

Hereafter we present the generalized arc flow (GAF) formulation for the multiperiod

cutting stock problem. Consider the following additional variables:

• fkt : number of object of length Lk cut in period t (can be seen as a feedback arc, from

vertex Lk to vertex 0);

• z jht : number of items of size (h − j) placed in any object at a distance j from the

beginning of the object, considering all the cutting patterns cut in period t .

Mathematical model (GAF):

Min

⎛

⎝

K
∑

k=1

T
∑

t=1

Lk fkt −

m
∑

i=1

T
∑

t=1

∑

( j, j+li )∈A

li z j, j+li ,t

⎞

⎠ +

m
∑

i=1

T
∑

t=1

cr
i tri t +

K
∑

k=1

T
∑

t=1

cs
kt skt

(7)

Subject to:

∑

( j,0)∈A

z j0t −
∑

(0,g)∈A

z0gt = −

K
∑

k=1

fkt , t = 1, . . . , T, (8)

∑

( j,h)∈A

z jht −
∑

(h,g)∈A

zhgt = 0, h = 1, . . . , Lmax − 1(h �= Lk,∀k) t = 1, . . . , T, (9)

∑

( j,Lk )∈A

z j Lk t +
∑

(Lk ,h)∈A

zLk ht = − fkt , k = 1, . . . , K , t = 1, . . . , T, (10)

∑

( j, j+li )∈A

z j, j+li ,t + ri,t−1 − ri t = di t , k = 1, . . . , K , t = 1, . . . , T, (11)

fkt − sk,t−1 + skt = ekt , k = 1, . . . , K , t = 1, . . . , T, (12)

fkt ∈ Z+, skt ∈ R+, ri t ∈ R+, z jht ∈ Z+,

k = 1, . . . , K , t = 1, . . . , T, i = 1, . . . , m, ( j, h) ∈ A. (13)

The objective function (7) minimizes the total waste of material (first parcel) and the holding

costs of items and stock objects. Constraints (8)–(10) are the flow conservation constraints.

Constraints (11) and (12) are equivalent to (4) and (5), respectively; (11) guarantee that the

demand is met and (12) that the stock availability is respected. As shown in the computational

results, the GAF model enables the solving of medium-sized instances of the integer problem,

using a standard MIP-solver.

It is important to note that, considering the single period problem, Valério de Carvalho

(1999) proved that the linear programming arc flow model is equivalent to the classical

Gilmore and Gomory’s model, and hence the linear programming bounds are the same. Next

we extend this proposition and proof for the multiperiod case.
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Proposition 1 The linear programming (LP) relaxations of the models (3)–(6) and (7)–(13)

are equivalent and hence the linear programming bounds are equal.

Proof Considering the LP relaxation of formulation (7)–(13), it is possible to obtain an

equivalent formulation by applying a Dantzig–Wolfe decomposition, keeping constraints

(11) and (12) in the master problem, and constraints (8)–(10) in the subproblem.

The set of constraints (8)–(10) and the non-negativity constraints without the integral-

ity requirements define a homogeneous system that corresponds to a set X . According to

Minkowski’s theorem (see Nemhauser and Wolsey 1988), any point x of a nonempty poly-

hedron X can be expressed as a convex combination of the extreme points of X plus a

nonnegative linear combination of the extreme rays of X .

The set X has only one extreme point, the solution with null flow in every period, and

all other valid flows can be expressed, in each specific period, as non-negative linear com-

binations of circulation flows along cycles. Each cycle will correspond to a valid cutting

pattern and is defined, in a given period, by a unique stock object and a set of items.

Thus, in a given period, the cycles start at node 0, include a set of item arcs, and even-

tually loss arcs, and return to node 0, through a feedback arc, which corresponds to a stock

object.

The circulation flows along each cycle cannot be expressed as non-negative linear com-

binations of other circulation flows, and are, therefore, extremal. The extremal flows are

not bounded and each set of cycles on the planning horizon will correspond to an extreme

ray. Therefore, the corresponding polyhedron has a single extreme point, the null solution,

and a finite set of extreme rays, which are the directed paths, each corresponding to a valid

cutting pattern for each period. As a consequence, the reformulated problem will not have a

convexity constraint.

The subproblem will only generate extreme rays to the master problem. Let � be the set

of feasible cycles. For each different capacity Lk , there will be a set of valid cutting patterns

that can be used in a given period t . Let �k be the set of feasible cycles for object type

k, k = 1, . . ., K . The sets �k are mutually disjoint and � =
⋃

k �k .

Each cycle r ∈ �k in a given period t can be described using the binary variables zr
jht

and f r
kt that take the value 1, if the corresponding arc is included in the cycle of that period.

For a period t a column in the master problem can be defined by (ãr
kt , b̃r

kt ), where ãr
kt =

(ar
1kt , . . . , ar

ikt , . . . ., ar
mkt ) is the vector that defines the number of items for each order and

b̃r
kt = ẽkt = (0, . . . , 1, . . . , 0) ∈ N k is the kth unit vector, with a 1 in position k, that

identifies the stock object where the items are cut in the fixed period t . The coefficients of

these columns, ar
ikt , are expressed in terms of the decision variables of the subproblem, zr

jht ,

which correspond to the arcs ( j, h) that take the value 1 in the shortest path subproblem

between nodes 0 and Lk, in period t :

ar
ikt =

∑

( j,h):h− j=li

zr
jht i = 1, . . . , m, (14)

while the element of the vector b̃r
kt that is equal to 1 is the one that matches f r

kt .

Let µr
kt be the variables of the master problem, which mean the number of times the

cutting pattern r is cut in object type k in period t . The replacement of these cutting patterns

in (7), (11) and (12) provides a model which is equivalent to model (3)–(6).

Let LGGG and LGAF be the lower bounds provided by the classical model and by the arc

flow model, respectively. From the equivalence, it follows that LGGG = LG AF . ⊓⊔
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2.2.1 Reduction criteria

The arc flow model presents many symmetric solutions, i. e., several alternative solutions

that correspond to the same set of cutting patterns. For example, if we consider an object with

length 7, to cut two items of size l1 = 2 and one item with size l2 = 3 has an equivalent solution

given by cutting one item with size l1 = 2, one with size l2 = 3 e one with size l1 = 2. So,

Valério de Carvalho (1999, 2002) presented some reduction criteria that allow for eliminating

some arcs and therefore reducing the number of symmetric solutions, without eliminating

any valid cutting patterns. This procedure reduces the number of variables (columns) in the

problem.

We use two of these criteria in our generalized model. The first one consists in ordering

the items according to their size and including them in a cutting pattern in decreasing order,

i. e., an item of size i1 can be placed only after another item of size i2 with li1 ≤ li2, or

at the beginning of the object. So, in our previous example, the items with sizes l2 = 3

and l1 = 2 would be placed in the object in the following order: l2 = 3, l1 = 2 and

l1 = 2.

The second reduction criterion used in our generalized model is that the first loss arc

is inserted in our graph at a distance from the beginning of the object that is equal to

the size of the smallest item. The intention is to put the losses arcs at the end of the

object.

These two criteria were chosen because they can easily be adapted for the multiperiod case.

Another criterion proposed by Valério de Carvalho (1999, 2002) is related to the demand

of the items and does not allow a cutting pattern with excess of production. However, this

criterion cannot be used in the multiperiod problem because the excess of production in a

period is allowed as an inventory to meet future demand.

Some computational tests were carried out in order to check the effect of these reduction

criteria for solving the problems and the conclusion is that, on average, they reduced the

solution time in 90 % for solving the mixed-integer problems.

3 Example

In this section an example of a multiperiod cutting stock problem is presented. Two dif-

ferent solutions for the example are shown: a lot for lot solution that considers solving

one single period cutting stock problem for each period and a multiperiod cutting stock

problem solution. These solution exemplify the importance of considering multiperiod

decisions.

Assume there are T = 3 periods and, for each of them, there are K = 2 types of

stock objects, the specifications of which (length and availability) are given in Table 1

and, m = 3 types of ordered items, the length and demand of which are given in Table 2.

Item holding costs (cr
i t ) and stock objects holding costs (cs

kt ) were considered null for this

example.

Multiperiod linear solution:

Table 3 presents the solution for the linear relaxation of the problem (3)–(6).

In the first period, 9.1818 stock objects type 1 are used and its stock availability is 10,

so, the remaining amount 0.8182 is added to the stock object type 1 availability for the next

period, that is, the second period. Stock object type 2 availability (that is 7) is completely

used in the first period, so, there is no remaining object type 2 for the next period. Production
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Table 1 Stock objects data
Id Length Stock availability

1st period 2nd period 3rd period

1 L1 = 161 e11 = 10 e12 = 5 e13 = 4

2 L2 = 234 e21 = 7 e22 = 3 e23 = 3

Table 2 Demanded items data
Item Length Demand

1st period 2nd period 3rd period

1 l1 = 31 d11 = 35 d12 = 20 d13 = 1

2 l2 = 42 d21 = 20 d22 = 10 d23 = 10

3 l3 = 57 d31 = 20 d32 = 5 d33 = 10

Table 3 Multiperiod solution
Object id x Cutting pattern Waste

1st period

1 9.1818 (2 1 1) 0

2 5.7272 (3 2 1) 0

2 1.2727 (0 0 4) 6

Total waste of material in the first period = 7.6363

2nd period

1 5.7272 (2 1 1) 0

2 3.0000 (3 2 1) 0

Total waste of material in the second period = 0

3rd period

1 1.9090 (0 4 1) 9

2 1.0909 (0 0 4) 6

Total waste of material in the third period = 23.7272

of items type 1 and 2 was brought forward (0.5454 units of type 1 and 0.6363 units of

type 2).

In the second period, the stock object type 1 availability is e12 = 5 plus the remaining

amount from the previous period: 0.8182, i.e., e12 = 5 + 0.8182 = 5.8182. Stock object

type 2 availability remains e22 = 3 because no object type 2 remained unused from the first

period. Production of three items was brought forward from period 3 to period 2: item type

1 (1 unit), item type 2 (2.3636 units) and item type 3 (3.7272 units).

In the third period, stock object type 1 availability is updated (the remaining amount from

the previous period is added) to e13 = 4 + 0.091 = 4.091. Stock object type 2 availability

is not changed because no object of this type remained from the previous period. Production

of all items is finalized. Stock objects not used are: 4.091 objects type 1 and no stock object

type 2 was left unused.

The total waste of material given by the linear relaxation of the multiperiod model is,

7.6363 + 0 + 23.7272 = 31.3636.
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Table 4 Lot for lot solution
Object id x Cutting pattern Waste

1st period

1 10.0000 (2 1 1) 0

2 5.0000 (3 2 1) 0

2 1.2500 (0 0 4) 6

Total waste of material in the first period = 7.5000

2nd period

1 0.4166 (1 3 0) 4

1 1.2500 (2 2 1) 0

1 1.1666 (5 0 0) 6

2 3.7500 (3 2 1) 0

Total waste of material in the second period = 8.6666

3rd period

1 1.0000 (1 3 0) 4

1 1.1818 (0 1 2) 5

2 1.4545 (0 4 1) 9

2 1.5454 (0 0 4) 6

Total waste of material in the third period = 32.2727

Lot for lot linear solution:

Still regarding the data in Tables 1 and 2, Table 4 presents the solution for the lot for

lot problem, i. e., demand is met in each period and no production of any item is brought

forward.

The total waste of material given by the lot for lot solution, for the three periods, is 7.500

+ 8.6666 + 32.2727 = 48.4393, which is much worse than the solution for the multiperiod

problem.

4 Heuristic method

The mathematical model (3)–(6) was solved using a home-made simplex method with column

generation, with the relaxed integrality constraints on the variables xjkt (Eq. (6)). Poldi (2007)

proposed two approaches to obtain the integer solution for the multiperiod cutting stock

problem, based on rolling horizon strategies (de Araujo et al. 2008; de Araujo and Clark

2013). Now, the best of the two strategies proposed in Poldi (2007) for rounding the fractional

solution of the multiperiod cutting stock problem is given.

Since we are dealing with a problem regarding several periods, the rolling horizon strategy

is used, meaning that an integer solution for the first period is found while allowing the solution

for the other periods to be fractional. In a second stage, after the first period has started

being implemented in practice, new ordered items may arrive and some may be canceled.

Therefore, the ordered items is updated and a new and slightly different multiperiod cutting

stock problem is formed, which will be solved and, again, only its first period solution should

be rounded to an integer solution. Although the solution for the next periods stays fractional,

it gives an estimate of what will happen in the next periods.
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Algorithm

Step 1:

Solve the multiperiod cutting stock problem (3)–(6) disregarding the integrality constraints

and consider:

A1 : matrix with the cutting patterns in the first period;

x1: vector with the frequencies of the cutting patterns in the first period;

d1: vector with the original demand in the first period;

e1: vector with the stock availability in the first period;

r1: vector with the amount of anticipated items in the first period;

n: the number of cutting patterns in the first period considering all stock objects types.

Round down all the components in vector r1;

Do: dr = d1 + r1, it means, vector dr holds the original demand in the first period plus the

amount of items brought forward.

Step 2:

Round the frequencies x1 as follows:

Let n be the number of cutting patterns in the first period.

For j = 1, . . . , n, do: x1
j = ⌊x1

j ⌋

Step 3:

Update demand/production of items: dr

Update stock availability: e1

If A1 ≥ d1 (it means that original demand is met)

then STOP.

Step 4:

Solve a constrained knapsack problem to dr for each object type k available in stock.

Choose the cutting pattern with the smallest waste, such waste is given by φ.

Let lmin = min{l1, l2, . . . , lm} be the smallest ordered item.

If φ ≥ lmin (i. e, there is still space for allocating an item in the cutting pattern)

then solve an unconstrained knapsack problem of size φ and fulfill the cutting pattern.

Apply this cutting pattern as many times as possible.

Go back to step 3.

End-of-the-algorithm

5 Computational experiments

Computational experiments were carried out in order to analyze the multiperiod cutting stock

models, proposed in Sect. 2, and the heuristic method described in Sect. 4. We compare its

solution with lot for lot solution that is currently used in practical problems. The heuristic

method was implemented in Delphi 7. The mathematical models were implemented using

AMPL/CPLEX 12.5. Tests were carried out on an i7 with 6Gb RAM. Gau and Wäscher

(1995) proposed a generator for one-dimensional cutting stock problems, called CUTGEN1.

However, CUTGEN1 cannot be used here because it generates instances with only one

standard stock object length and we are dealing with the problem with several stock object

lengths. So, a random generator based on CUTGEN1 had to be developed. Instances are

divided into 8 classes of problems. Each class has 20 instances. Here are the details on how

the classes were built and the results obtained.

Before presenting the computational results it is important to discuss the utilization of the

models GGG and GAF. As the linear relaxations of the models GGG and GAF are equivalent
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Table 5 Parameters which

define the classes of instances
Class Number of

periods

Number of

objects

Number

of items

1 3 3 10

2 3 3 20

3 3 5 10

4 3 5 20

5 6 3 10

6 6 3 20

7 6 5 10

8 6 5 20

we can choose one of them to solve the linear relaxation and we choose the GGG model. When

solving the mixed integer programming problem the model GAF has advantages because it

is more compact and the complete set of arcs can be easy included in the model while it is not

easy to include the complete set of columns for the model GGG. Moreover we observed that

the computational package can deal very well with the arc flow model, probably because it

has special routines for this kind of problems. The heuristic method was implemented using

as base the model GGG, because it is a residual heuristic and is based on the linear relaxation

of the problem and, as said before, we implemented a home-made simplex method with

column generation for solving model GGG.

5.1 The random generator

In order to make computational experiments, some parameters were fixed, such as:

• number of periods: T = 3 and 6;

• number of stock object types: K = 3 and 5;

• number of ordered item types: m = 10 and 20;

• stock objects holding cost: cs
kt = β Lk , with β = 0; 0.01 and 0.1;

• items holding cost: cr
i t = α li , with α = 0; 0.01; 0.1; 0.5 and 1.

Other parameters to define the instances were randomly generated in the following inter-

vals,

• stock object length: Lk ∈ [300 1000];

• item length: li ∈ [0.1 0.4]
∑K

k=1 Lk

K
;

• stock availability of object type k, in period t : ekt ∈ [⌈avt⌉⌈2avt⌉], where avt =
∑m

i=1 li di t
∑K

k=1 Lk

;

• demand of items: di t ∈ [1 50].

Eight classes of problems were generated, each one containing 20 instances. These classes

were defined as shown in Table 5.

5.2 Computational results for α = 0 and β = 0

Results in Tables 6 and 7 were obtained considering null holding costs, i.e., item holding cost

α = 0 and stock object holding cost β = 0. So, the objective function shown in Tables 6 and 7

is the total waste, since all holding costs (for objects and items) are null. Obviously, bringing

forward parts that have zero holding cost will reduce waste, this section is therefore intended

to show the improvement of the multiperiod solution in relation to the lot for lot solution.
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Table 6 Objective function for

the linear relaxation (average of

the 20 instances in each class)
α = β = 0

Class Lot for lot

(linear)

Multiperiod

(linear)

Difference Gain %

1 124.39 112.91 11.48 9.23

2 33.44 30.61 2.83 8.46

3 83.18 76.01 7.17 8.62

4 11.34 9.59 1.75 15.43

5 323.86 255.70 68.16 21.05

6 79.61 54.39 25.22 31.68

7 258.43 198.94 59.49 23.01

8 99.46 94.83 4.63 4.66

Average 126.71 104.12 22.58 17.82

Table 7 Objective function for integer problem (average of the 20 instances in each class) α = β = 0

Class Lot for lot

(integer)

Multiperiod

(integer)

Difference Gain % Gap %

(linear)

Gap %

(CPLEX)

1 150.55 124.4 26.15 17.37 15.07 12.70

2 92.85 40.25 52.6 56.65 43.12 42.57

3 94.3 79.3 15 15.91 7.08 3.52

4 55.95 62.2 −6.25 −11.17 63.36 61.78

5 500.45 265.8 234.65 46.89 10.06 9.05

6 791 2172.41 (3)a −1381.41 −174.64 60.75 60.53

7 323.3 207.8 115.5 35.73 8.81 7.92

8 15008.15 11235 (7) 3773.15 25.14 92.67 92.66

Average 2127.069 1773.95 353.6738 16.63 37.62 36.34

a The numbers in brackets are the number of instances that CPLEX could not find a feasible solution in the

time limit

In Table 6 we consider the linear relaxation of two different solution approaches. The

first one is the lot for lot approach which considers each period individually, i.e. in each

period a classical cutting stock problem is solved without leaving stock for the next period.

The second approach considers the multiperiod GGG model (it could be GAF since the

results for the linear relaxation are equivalent). The second and third columns represent the

average of the linear relaxation for 20 instances for each class, considering the lot for lot

and the multiperiod approaches, respectively. The fourth and fifth columns are the absolute

difference and percentage difference, respectively. The multiperiod cutting stock model,

without holding costs, i. e., the method is free to bring forward items if they match better, in

fact obtained solutions with less waste. On average the gain is 17.82 %.

Although it is not the aim of the multiperiod model, the computational tests show that

the multiperiod approach to cutting stock problem provides solutions with fewer different

cutting patterns than the lot for lot solution. Considering the solutions presented in Table 6,

the average number (for the 8 classes) of different cutting patterns in the lot for lot solution is

70.2. The average for the multiperiod solution is 38.23 different cutting patterns. So, we can

notice that the multiperiod approach could reduce the number of different cutting patterns in

45 %. The minimization of the number of different cutting patterns is being well explored in

the literature (Diegel et al. 1996; Foerster and Wäscher 2000; Vanderbeck 2000; Aloisio et al.
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Table 8 Analysis of the CPLEX

package applied to the model

GAF

Class Number optimal

solutions

Nodes Cuts Computational

time (s)

1 6 1185794 179 453.16

2 9 52716.95 105 376.39

3 10 1714000.5 171 325.93

4 6 38673.2 84 485.55

5 2 1636869.8 332 556.32

6 3 33790.8 158 550.65

7 7 1504889.3 309 439.31

8 0 9030.7 78 600.00

Average 5.37 771970.63 177 473.4

2009; Yanasse and Limeira 2006; Henn and Wäscher 2013; de Araujo et al. 2014; among

others).

In Table 7, the same comparison is made but considering the integer problem. In order

to solve this problem CPLEX 12.5 was used with a time limit of 10 min applied to the

GAF formulation with the reduction criteria. In Table 7 we present two additional columns:

Gap % (Linear) that represents the gap between the integer solution and the linear relaxation

solution and is calculated by:

Gap % (Linear) =
100 × (Multiperiod (Integer) − Multiperiod (Linear))

Multiperiod (Integer)
.

The other additional column is Gap % (CPLEX) and presents the Gap provided by the solver

CPLEX when solving the integer GAF formulation.

Comparing the multiperiod approach with the lot for lot approach, for the even classes

(classes with 10 items) the multiperiod approach is much better than the lot for lot approach.

However, for the odd classes (classes with 20 items) the CPLEX package cannot obtain good

results by solving the multiperiod GAF formulation, and the results are not so good, except

for class 2, which has 3 periods and 3 types of objects.

A similar conclusion can be reached when analyzing the columns Gap% (linear) and the

Gap% (CPLEX). Analyzing the gap between the upper bound obtained by the Multiperiod

(integer) solution and the lower bound given by the Multiperiod (linear) solution, we can see

that for the classes with 10 items (even classes) the performance of the solver is relatively

good. On average the Gap% (linear) for these classes is 10.25 %. However, when the number

of items is increased to 20 items (odd classes), these gaps increase a lot, and for some instances

of classes 6 and 8, the CPLEX package cannot find a feasible solution.

Table 8 shows the number of optimal solutions obtained by CPLEX limited by 10 min; the

number of nodes of the branch-and-cut tree necessary to obtain such solution; the number of

cuts applied at the root node of the branch-and-cut tree; and the computational time. As we

can see, considering the even classes and class 2, CPLEX proved optimality of an expressive

number of the 20 instances. It can explore a high number of nodes for the even classes.

5.3 Computational results for other values of holding costs

In order to better analyze the performance of the GAF formulation in solving the multiperiod

problem, some additional results are shown where we vary the parameters: item holding cost

(cr
i t = α li ) and object holding cost (cs

i t = β Lk). Table 9 shows the linear relaxation results,
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while Table 10 shows the results for the mixed integer GAF model, solved by CPLEX

12.5 limited to 10 min, considering variations in the parameters β and α. Holding costs

considered here are fictitious; in practical situations they must be very carefully tuned so that

the multiperiod model can give suitable solutions for this particular factory. Given the bad

quality of the results for classes 6 and 8 presented in the previous section, in this section the

results for such classes were not considered to compute the averages.

It can be seen in both tables that, keeping the object holding cost β = 0, when the

parameter α is increased as well as the expected increasing of the item holding cost, the

waste cost also increases. This happens because the reduction on the stocked items reduces

the possible combinations which, in turn, increases the amount of waste. On the other hand,

keeping the item holding cost α = 0, the increasing of the parameter β also increases the

waste cost, because it tries to use as many objects as possible in order to reduce the holding

costs and this increases the waste cost. Considering the parameter α �= 0, when we vary the

parameter β, the waste cost does not vary so much and the model focuses on minimizing the

holding costs.

Comparing the linear relaxation (lower bound) solutions given in Table 9 and the inte-

ger (upper bound) solutions in Table 10 we can see that, for the considered instances, the

CPLEX package obtained relatively good integer solutions independently of the variations

in parameters α and β.

We have also compared the multiperiod strategy with the lot for lot strategy. However,

as there is no inventory of items in the lot for lot strategy, there is no sense in varying the

parameter α. So, Table 11 presents the results for the lot for lot strategy considering the

variation of the parameter β. The first line of the results is the linear relaxation and can be

compared to the first line of Table 9, and the second line is the integer results and can be

compared to the first line of Table 10. These comparisons show the improvements made

by the multiperiod strategy. When the parameter β is different from zero, the multiperiod

strategy increases the waste of material; but this increasing is compensated by a decreasing

of the object holding costs and consequently the multiperiod strategy obtains a smaller total

cost.

5.4 Heuristic method results

Based on the results presented in the previous sections, when solving the GAF model with the

CPLEX 12.5, good solutions can be obtained for some instances. However, two limitations

of this procedure need to be emphasized. The first one is the computational time that needed

to be limited to 10 min to obtain such solutions and this amount of time can be prohibitive

in practice. The second one is the limitation on the size of instances that can be solved, as

we can see in Table 7, classes 6 and 8. In order to overcome this limitation, the heuristic

procedure presented in Sect. 4 was used and the results are presented in this section.

Since only the first period is indeed implemented, this is the only period whose solution

will be rounded. However, it is not wise to have a very good solution for the first period and in

the following periods, the quality of the solutions is not kept up. So, two estimated solutions

are calculated for the following periods up to the planning horizon.

Such estimations were calculated as follows: all demanded items and available objects in

stock, in all periods of the planning horizon, were summed. From these values, the production

of the first period was subtracted, including items that were brought forward to the first period.

Thus, we have a “super period” which represents the periods 2 up to T (where T is the last

period). Therefore, a solution to the “super period” provides an estimate for the losses in the

final period.
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Table 12 Value of the objective

function (total waste): rounded

first period + linear relaxation

solution for the other periods

Class Lot for lot

heuristic solution

Multiperiod heuristic

solution

1 364.33 155.99

2 207.33 120.71

3 242.14 181.28

4 187.62 176.22

5 886.72 294.42

6 328.45 178.50

7 766.73 381.01

8 447.52 235.24

Average 428.83 215.42

Table 13 Value of the objective

function (total waste): rounded

first period + rounded other

periods

Class Lot for lot

heuristic solution

Multiperiod heuristic

solution

1 832.20 411.35

2 721.20 289.25

3 613.65 335.50

4 522.10 345.10

5 2003.65 482.90

6 1524.55 375.30

7 1690.30 573.60

8 1098.70 425.80

Average 1125.79 404.85

Two different approaches are used to find a solution for the “super period”. In the first

one, as there is no need to explicitly determine the integer solution for the future periods, we

solve the “super period” by linear programming. Then, the waste of the rounded first period

plus the waste obtained by linear relaxation provides a limiting factor for the overall waste.

These values are given in Table 12.

In Tables 12 and 13, the results of the lot for lot solution obtained when the same heuristic

is applied to round the linear solution are presented, i.e. the same algorithm described in

Sect. 4 is applied but in step 1 the single period cutting stock problem is solved.

In the second approach, an integer solution to the “super period” is determined. The

procedure used was the three versions of rounding heuristics proposed by Poldi and Arenales

(2009). We compute the best solution among the three obtained. Thus, the waste of the

rounded first period plus the waste obtained for the integer solution of the “super period”

provides a further estimate of the total waste. These values are given in Table 13.

As expected, in both tables, the heuristic solution is much better than the lot for lot solution.

Solving the linear relaxation of the “super period” (Table 12) gives better results than solving

its integer version (Table 13). However, the integer version gives a more realistic estimate

for periods 2 to T . It is important to observe that both approaches found feasible solution for

all instances.
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Table 14 Computational time

for the heuristic solution (in

seconds). Total time for the 20

instances in each class

Class Total time

1 1.832

2 13.801

3 3.439

4 21.145

5 4.477

6 38.671

7 11.462

8 93.551

Table 15 Objective function for

integer problem considering ekt

as variables (average of the 20

instances in each class)
α = β = 0.00

Class Lot for lot

(integer)

Multiperiod

(integer)

Difference Gain %

1 137.3 101.7 35.6 25.99

2 191.7 74.4 117.3 61.19

3 62.6 47.4 15.2 24.28

4 105.5 69.65 35.85 33.98

5 420.5 236.2 184.3 43.89

6 992.1 220.5 771.6 77.78

7 191.5 90.9 100.6 52.53

8 648.9 414.0 234.9 36.20

Average 343.7 156.80 186.9 54.38

Finally, in Table 14, the computational time for the heuristic solution (considering the

rounded solution for the “super period”) is presented and it shows that, indeed, it is much

faster than the 10 min given by the solution of the mathematical model.

5.5 Computational results considering the stock availability as decision variables

In this section we present some additional computational results regarding “ekt : stock avail-

ability of object type k in period t, k = 1, . . . , K , t = 1, . . . , T ”, as decision variables,

different from the original definition as parameter in the previous model. Observe that in

this case the objects replenishments policy is integrated with the decisions related to the

multiperiod cutting stock problem. We will present some computational results considering

the integer solution of the model GAF solved by CPLEX 12.5 with time limit of 10 min.

Table 15 is similar to Table 7 but considering ekt as variables. The average gain of the

multiperiod approach compared to the lot for lot approach is 54.38 % which is even bigger

than the gain presented in Table 7. Observe that on this case the CPLEX package did not

have problems for solving the odd classes for the multiperiod approach.

Aiming to better analyze the performance of the GAF formulation in solving the multi-

period problem, some additional results are shown in Table 16 where we vary the parameter:

item holding cost (cr
i t = α li ). Observe that there is no sense in varying the object holding

cost (cs
i t = β Lk) because, once it is a variable in this case, it will be always zero if we have

costs different from zero. This happens because we are considering the object is available in

the same period it is ordered, i.e., there is no lead time for the objects.
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Analyzing the results of Table 16 it can be seen that keeping the object holding cost β = 0,

when the parameter α is increased, as expected, the item holding cost also increase. However,

the waste cost does not necessary increase as in Table 10. It is worth noticing the difficulties

on solving some instances of classes 6 and 8 which make the average to increase a lot in

comparison to the results of the other classes.

6 Conclusions and future research

In this work a cutting stock problem in which demand occurs along a planning horizon was

defined. A mathematical model was presented that generalized the classical model proposed

by Gilmore and Gomory (1963) and the column generation technique was adapted for solving

the linear relaxation of the multiperiod problem. A generalization of an arc flow model

(Valério de Carvalho 1999) was also proposed that can solve small instances of the mixed

integer multiperiod problem. Finally, a heuristic procedure was presented in order to improve

the computational time and to solve difficult instances of the problem.

Computational experiments have shown that the multiperiod cutting stock model seems to

have a great potential to obtain better solutions than the lot for lot solution, which is generally

used in practical situations. The generalized arc flow model can solve small instances of the

mixed integer multiperiod problem and the heuristic procedure improves the computational

time taken to solve the model and can be used to deal with difficult instances of the problem.

It has also been shown by the computational results that the multiperiod approach to

cutting stock problem provides solutions with fewer different cutting patterns than the lot

for lot solution. Reducing the number of different cutting patterns is an important and useful

byproduct in some practical cases where the setup cost of a machine to perform each cutting

pattern is relevant. An idea for future research is to explore multiperiod approach also with

the aim of reducing the number of different cutting patterns.

Other ideas for future research are: to extend the solution method to two-dimensional cut-

ting stock problems; the inclusion of capacity constraints; the extensions of the integration

of objects replenishments policy with decisions related to the multiperiod cutting stock prob-

lem; the development of a branch-and-price method for solving the multiperiod problem;

and finally, the authors intend to use the ideas presented in this paper on the integrated lot

sizing and cutting stock problem.
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